Abstract Dynamic Programming

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

Overview of the Research Monograph "Abstract Dynamic Programming" Athena Scientific, 2013

Abstract Dynamic Programming

Main Objective

- Unification of the core theory and algorithms of total cost sequential decision problems
- Simultaneous treatment of a variety of problems: MDP, sequential games, sequential minimax, multiplicative cost, risk-sensitive, etc

Methodology

- Define a problem by its "mathematical signature": the mapping defining the optimality equation
- Structure of this mapping (contraction, monotonicity, etc) determines the analytical and algorithmic theory of the problem
- Fixed point theory: An important connection

Three Main Classes of Total Cost DP Problems

Discounted:

- Discount factor < 1 and bounded cost per stage
- Dates to 50s (Bellman, Shapley)
- Nicest results

Undiscounted (Positive and Negative DP):

- *N*-step horizon costs are going \downarrow or \uparrow with *N*
- Dates to 60s (Blackwell, Strauch)
- Not nearly as powerful results compared with the discounted case

Stochastic Shortest Path (SSP):

- Also known as first passage or transient programming
- Aim is to reach a termination state at min expected cost
- Dates to 60s (Eaton-Zadeh, Derman, Pallu de la Barriere)
- Results are almost as strong as for the discounted case (under appropriate conditions)

Contractive:

- Patterned after discounted
- The DP mapping is a sup-norm contraction (Denardo 1967)

Monotone Increasing/Decreasing:

- Patterned after positive and negative DP
- No reliance on contraction properties, just monotonicity (Bertsekas 1977)

Semicontractive:

- Patterned after stochastic shortest path
- Some policies are "regular"/contractive; others are not, but assumptions are imposed so there exist optimal "regular" policies
- New research, inspired by SSP, where "regular" policies are the "proper" ones (the ones that terminate w.p.1)

- 2 Results Overview
- Semicontractive Models

Abstract DP Mappings

- State and control spaces: X, U
- Control constraint: $u \in U(x)$
- Stationary policies: $\mu : X \mapsto U$, with $\mu(x) \in U(x)$ for all x

Monotone Mappings

• Abstract monotone mapping $H: X \times U \times E(X) \mapsto \Re$

$$J \leq J' \implies H(x, u, J) \leq H(x, u, J'), \quad \forall x, u$$

where E(X) is the set of functions $J: X \mapsto [-\infty, \infty]$

• Mappings T_{μ} and T

$$(T_{\mu}J)(x) = H(x,\mu(x),J), \quad \forall x \in X, J \in R(X)$$

$$(TJ)(x) = \inf_{\mu} (T_{\mu}J)(x) = \inf_{u \in U(x)} H(x, u, J), \qquad \forall \ x \in X, \ J \in R(X)$$

Stochastic Optimal Control - MDP example:

$$(TJ)(x) = \inf_{u \in U(x)} E\{g(x, u, w) + \alpha J(f(x, u, w))\}$$

Abstract Optimization Problem

• Given an initial function $\overline{J} \in R(X)$ and policy μ , define

$$J_{\mu}(x) = \limsup_{N \to \infty} (T^N_{\mu} \overline{J})(x), \qquad x \in X$$

• Find $J^*(x) = \inf_{\mu} J_{\mu}(x)$ and an optimal μ attaining the infimum

Notes

• Theory revolves around fixed point properties of mappings T_{μ} and T:

$$J_{\mu}=T_{\mu}J_{\mu}, \qquad J^*=TJ^*$$

These are generalized forms of Bellman's equation

- Algorithms are special cases of fixed point algorithms
- We restrict attention (initially) to issues involving only stationary policies

Examples With a Dynamic System $x_{k+1} = f(x_k, \mu(x_k), w_k)$

Stochastic Optimal Control

$$\begin{split} \bar{J}(x) &\equiv 0, \qquad (T_{\mu}J)(x) = E_w \{g(x,\mu(x),w) + \alpha J(f(x,\mu(x),w))\} \\ J_{\mu}(x_0) &= \lim_{N \to \infty} E_{w_0,w_1,\dots} \left\{ \sum_{k=0}^N \alpha^k g(x_k,\mu(x_k),w_k) \right\} \end{split}$$

Minimax - Sequential Games

$$\begin{split} \bar{J}(x) &\equiv 0, \qquad (T_{\mu}J)(x) = \sup_{w \in W(x)} \left\{ g(x, u, w) + \alpha J(f(x, u, w)) \right\} \\ J_{\mu}(x_0) &= \lim_{N \to \infty} \sup_{w_0, w_1, \dots} \sum_{k=0}^{N} \alpha^k g(x_k, \mu(x_k), w_k) \end{split}$$

Multiplicative Cost Problems

$$\begin{split} \bar{J}(x) &\equiv 1, \qquad (T_{\mu}J)(x) = E_{w} \{ g(x,\mu(x),w) J(f(x,\mu(x),w)) \} \\ J_{\mu}(x_{0}) &= \lim_{N \to \infty} E_{w_{0},w_{1},\dots} \left\{ \prod_{k=0}^{N} g(x_{k},\mu(x_{k}),w_{k}) \right\} \end{split}$$

Bertsekas (M.I.T.)

Finite-State Markov and Semi-Markov Decision Processes

$$\bar{J}(x) \equiv 0, \qquad (T_{\mu}J)(i) = \sum_{i=1}^{n} p_{ij}(\mu(i)) \left(g(i,\mu(i),j) + \alpha_{ij}(\mu(i))J(j)\right)$$
$$J_{\mu}(i_{0}) = \limsup_{N \to \infty} E \left\{ \sum_{k=0}^{N} \left(\alpha_{i_{0}}(\mu(i_{0})) \cdots a_{i_{k}i_{k+1}}(\mu(i_{k}))\right) g(i_{k},\mu(i_{k}),i_{k+1}) \right\}$$

where $\alpha_{ij}(u)$ are state and control-dependent discount factors

Undiscounted Exponential Cost

$$\bar{J}(x) \equiv 1, \qquad (T_{\mu}J)(i) = \sum_{i=1}^{n} p_{ij}(\mu(i)) e^{h(i,\mu(i),j)} J(j)$$
$$J_{\mu}(x_{0}) = \limsup_{N \to \infty} E\left\{ e^{h(i_{0},\mu(i_{0}),i_{1})} \cdots e^{h(i_{N},\mu(i_{N}),i_{N+1})} \right\}$$

Models

Contractive (C)

All T_{μ} are contractions within set of bounded functions B(X), w.r.t. a common (weighted) sup-norm and contraction modulus (e.g., discounted problems)

Monotone Increasing (I) and Monotone Decreasing (D)

- $ar{J} \leq T_{\mu}ar{J}$ (e.g., negative DP problems)
- $ar{J} \geq T_\mu ar{J}$ (e.g., positive DP problems)

Semicontractive (SC)

 T_{μ} has "contraction-like" properties for some μ - to be discussed (e.g., SSP problems)

Semicontractive Nonnegative (SC⁺)

Semicontractive, and in addition $\overline{J} \ge 0$ and

$$J \ge 0 \qquad \Longrightarrow \qquad H(x, u, J) \ge 0, \ \forall x, u$$

(e.g., affine monotonic, exponential/risk-sensitive problems)

Semicontractive Models

ffine Monotonic/Risk-Sensitive Models

Optimality/Bellman's Equation

 $J^* = TJ^*$ always holds under our assumptions

Bellman's Equation for Policies: Cases (C), (I), and (D)

 $J_{\mu}=T_{\mu}J_{\mu}$ always holds

Bellman's Equation for Policies: Case (SC)

- $J_{\mu} = T_{\mu}J_{\mu}$ holds only for μ : "regular"
- J_{μ} may take ∞ values for "irregular" μ

Case (C)

T is a contraction within B(X) and J^* is its unique fixed point

Cases (I), (D)

T has multiple fixed points (some partial results hold)

Case (SC)

 J^* is the unique fixed point of T within a subset of $J \in R(X)$ with "regular" behavior

Cases (C), (I), and (SC - under one set of assumptions)

 μ^* is optimal if and only if $T_{\mu^*}J^*=TJ^*$

Case (SC - under another set of assumptions)

A "regular" μ^* is optimal if and only if $T_{\mu^*}J^*=TJ^*$

Case (D)

 μ^* is optimal if and only if $T_{\mu^*}J_{\mu^*} = TJ_{\mu^*}$

Case (C)	
$T^kJ o J^*$ for all $J \in B(X)$	

Case (D)		
$T^k ar{J} o J^*$		

Case (I)

 $T^k \bar{J}
ightarrow J^*$ under additional "compactness" conditions

Case (SC)

 $T^k J \to J^*$ for all $J \in R(X)$ within a set of "regular" behavior

Classical Form of Exact PI

- (C): Convergence starting with any μ
- (SC): Convergence starting with a "regular" μ (not if "irregular" μ arise)
- (I), (D): Convergence fails

Optimistic/Modified PI (Combination of VI and PI)

- (C): Convergence starting with any μ
- (SC): Convergence starting with any μ after a major modification in the policy evaluation step: Solving an "optimal stopping" problem instead of a linear equation
- (D): Convergence starting with initial condition \bar{J}
- (I): Convergence may fail (special conditions required)

Asynchronous Optimistic/Modified PI (Combination of VI and PI)

- (C): Fails in the standard form. Works after a major modification
- (SC): Works after a major modification
- (D), (I): Convergence may fail (special conditions required)

Approximate J_{μ} and J^{*} within a subspace spanned by basis functions

- Aim for approximate versions of value iteration, policy iteration, and linear programming
- Simulation-based algorithms are common
- No mathematical model is necessary (a computer simulator of the controller system is sufficient)
- Very large and complex problems has been addressed

Case (C)

- A wide variety of results thanks to the underlying contraction property
- Approximate value iteration and Q-learning
- Approximate policy iteration, pure and optimistic/modified

Cases (C), (I), (D), (SC)

Hardly any results available

ffine Monotonic/Risk-Sensitive Models

Key idea: Introduce a "domain of regularity," $S \subset E(X)$

Definition: A policy μ is *S*-regular if

- $J_{\mu} \in S$ and is the only fixed point of \mathcal{T}_{μ} within S
- Starting function \overline{J} does not affect J_{μ} , i.e.

$$T^k_\mu J o J_\mu \qquad orall \, S$$

Typical Assumptions in Semicontractive Models

1st Set of Assumptions (Plus Additional Technicalities)

• There exists an *S*-regular policy and irregular policies are "bad": For each irregular μ and $J \in S$, there is at least one $x \in X$ such that

$$\limsup_{k\to\infty}(T^k_\mu J)(x)=\infty$$

2nd Set of Assumptions (Plus Additional Technicalities)

• There exists an *optimal* S-regular policy

Perturbation-Type Assumptions (Plus Additional Technicalities)

- There exists an *optimal* S-regular policy μ*
- If *H* is perturbed by an additive $\delta > 0$, each *S*-regular policy is also δ -*S*-regular (i.e., regular for the δ -perturbed problem), and every δ -*S*-irregular policy μ is "bad", i.e., there is at least one $x \in X$ such that

$$\limsup_{k\to\infty} (T^k_{\mu,\delta}J_{\mu^*,\delta})(x) = \infty$$

Semicontractive Example: Shortest Paths with Exponential Cost

Two policies: $J \equiv 1$; $S = \{J \mid J > 0\}$ or $S = \{J \mid J > 0\}$ or $S = \{J \mid J > J\}$ • Noncyclic μ : 2 \rightarrow 1 \rightarrow 0 (S-regular except when $S = \{J \mid J \geq \overline{J}\}$ and b < 0) $(T_{\mu}J)(1) = \exp(b), \qquad (T_{\mu}J)(2) = \exp(a)J(1)$ $J_{\mu}(1) = \exp(b), \qquad J_{\mu}(2) = \exp(a+b)$ • Cyclic $\bar{\mu}$: 2 \rightarrow 1 \rightarrow 2 (S-irregular except when $S = \{J \mid J \ge 0\}$ and a < 0) $(T_{\bar{\mu}}J)(1) = \exp(a)J(2), \qquad (T_{\bar{\mu}}J)(2) = \exp(a)J(1)$ $J_{\bar{\mu}}(1) = J_{\bar{\mu}}(2) = \lim_{k \to \infty} (\exp(a))^k$

Five Special Cases (Each Covered by a Different Theorem!)

a > 0: $J^*(1) = \exp(b)$, $J^*(2) = \exp(a + b)$, is the unique fixed point w/ J > 0(1st set of assumptions applies with $S = \{J \mid J > 0\}$)

• Set of fixed points of T is $\{J \mid J(1) = J(2) \le 0\}$

a = 0, b > 0: $J^*(1) = J^*(2) = 1$ (perturbation assumptions apply)

• Set of fixed points of T is $\{J \mid J(1) = J(2) \le \exp(b)\}$

 $a = 0, \ b = 0$: $J^*(1) = J^*(2) = 1$ (2nd set of assumptions applies with $S = \{J \mid J \ge \overline{J}\}$)

• Set of fixed points of T is $\{J \mid J(1) = J(2) \le 1\}$

a = 0, b < 0: $J^*(1) = J^*(2) = \exp(b)$ (perturbation assumptions apply)

• Set of fixed points of T is $\{J \mid J(1) = J(2) \le \exp(b)\}$

a < 0: $J^*(1) = J^*(2) = 0$ is the unique fixed point of T (contractive case)

Semicontractive Models

Affine Monotonic/Risk-Sensitive Models

An Example: Affine Monotonic/Risk-Sensitive Models

 T_{μ} is linear of the form $T_{\mu}J = A_{\mu}J + b_{\mu}$ with $b_{\mu} \ge 0$ and

 $J \geq 0 \qquad \Longrightarrow \qquad A_{\mu}J \geq 0$

 $S = \{J \mid 0 \le J\}$ or $S = \{J \mid 0 < J\}$ or S: J bounded above and away from 0

Special case I: Negative DP model, $\bar{J}(x) \equiv 0$, A_{μ} : Transition prob. matrix

Special case II: Multiplicative model w/ termination state 0, $\bar{J}(x) \equiv 1$

$$\begin{aligned} H(x, u, J) &= p_{x0}(u)g(x, u, 0) + \sum_{y \in X} p_{xy}(u)g(x, u, y)J(y) \\ A_{\mu}(x, y) &= p_{xy}(\mu(x))g(x, \mu(x), y), \qquad b_{\mu}(x) = p_{x0}(u)g(x, u, 0) \end{aligned}$$

Special case III: Exponential cost w/ termination state 0, $\overline{J}(x) \equiv 1$

$$A_{\mu}(x,y) = p_{xy}(\mu(x))\exp(h(x,\mu(x),y)), \ b_{\mu}(x) = p_{x0}(\mu(x))\exp(h(x,\mu(x),0))$$

μ is *S*-regular if and only if

$$\lim_{k\to\infty} (A^k_\mu J)(x) = 0, \qquad \sum_{m=0}^\infty (A^m_\mu b_\mu)(x) < \infty, \qquad \forall \ x\in X, \ J\in S$$

The 1st Set of Assumptions

- There exists an S-regular policy; also $\inf_{\mu:S-regular} J_{\mu} \in S$
- If μ : *S*-irregular, there is at least one $x \in X$ such that

$$\sum_{m=0}^{\infty} (A_{\mu}^{m} b_{\mu})(x) = \infty$$

· Compactness and continuity conditions hold

Notes:

- Value and (modified) policy iteration algorithms are valid
- State and control spaces need not be finite
- Related (but different) results are possible under alternative conditions

- Abstract DP is based on the connections of DP with fixed point theory
- Aims at unification and insight through abstraction
- Semicontractive models fill a conspicuous gap in the theory from the 60s-70s
- Affine monotonic is a natural and useful model
- Abstract DP models with approximations require more research
- Abstract DP models with restrictions, such as measurability of policies, require more research

Thank you!