
APPENDIX C:

Measure Theoretic Issues

A general theory of stochastic dynamic programming must deal with the
formidable mathematical questions that arise from the presence of uncount-
able probability spaces. The purpose of this appendix is to motivate the
theory and to provide some mathematical background to the extent needed
for the development of Chapter 5. The research monograph by Bertsekas
and Shreve [BeS78] (freely available from the internet), contains a detailed
development of mathematical background and terminology on Borel spaces
and related subjects. We will explore here the main questions by means
of a simple two-stage example described in Section C.1. In Section C.2,
we develop a framework, based on universally measurable policies, for the
rigorous mathematical development of the standard DP results for this
example and for more general finite horizon models.

C.1 A TWO-STAGE EXAMPLE

Suppose that the initial state x0 is a point on the real line ⌘. Knowing
x0, we must choose a control u0 � ⌘. Then the new state x1 is generated
according to a transition probability measure p(dx1 | x0, u0) on the Borel
⌥-algebra of ⌘ (the one generated by the open sets of ⌘). Then, knowing
x1, we must choose a control u1 � ⌘ and incur a cost g(x1, u1), where g is
a real-valued function that is bounded either above or below. Thus a cost
is incurred only at the second stage.

A policy ⇧ = {µ0, µ1} is a pair of functions from state to control, i.e.,
if ⇧ is employed and x0 is the initial state, then u0 = µ0(x0), and if x1 is
the subsequent state, then u1 = µ1(x1). The expected value of the cost
corresponding to ⇧ when x0 is the initial state is given by

J⇤(x0) =
�

g
�
x1, µ1(x1)

⇥
p
�
dx1 | x0, µ0(x0)

⇥
. (C.1)
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We wish to find ⇧ to minimize J⇤(x0).
To formulate the problem properly, we must insure that the integral

in Eq. (C.1) is defined. Various su⇧cient conditions can be used for this;
for example it is su⇧cient that g, µ0, and µ1 be Borel measurable, and
that p(B | x0, u0) is a Borel measurable function of (x0, u0) for every Borel
set B (see [BeS78]). However, our aim in this example is to discuss the
necessary measure theoretic framework not only for the cost J⇤(x0) to be
defined, but also for the major DP-related results to hold. We thus leave
unspecified for the moment the assumptions on the problem data and the
measurability restrictions on the policy ⇧.

The optimal cost is

J*(x0) = inf
⇤

J⇤(x0),

where the infimum is over all policies ⇧ = {µ0, µ1} such that µ0 and µ1 are
measurable functions from ⌘ to ⌘ with respect to ⌥-algebras to be specified
later. Given ⇤ > 0, a policy ⇧ is ⇤-optimal if

J⇤(x0) ⌃ J*(x0) + ⇤, ⇣ x0 � ⌘.

A policy ⇧ is optimal if

J⇤(x0) = J*(x0), ⇣ x0 � ⌘.

The DP Algorithm

The DP algorithm for the preceding two-stage problem takes the form

J1(x1) = inf
u1⌃⌥

g(x1, u1), ⇣ x1 � ⌘, (C.2)

J0(x0) = inf
u0⌃⌥

�
J1(x1) p

�
dx1 | x0, u0), ⇣ x0 � ⌘, (C.3)

and assuming that

J0(x0) > ��, ⇣ x0 � ⌘, J1(x1) > ��, ⇣ x1 � ⌘,

the results we expect to be able to prove are:

R.1: There holds
J*(x0) = J0(x0), ⇣ x0 � ⌘.

R.2: Given any ⇤ > 0, there is an ⇤-optimal policy.

R.3: If µ⇥1(x1) and µ⇥0(x0) attain the infimum in the DP algorithm (C.2),
(C.3) for all x1 � ⌘ and x0 � ⌘, respectively, then ⇧⇥ = {µ⇥0, µ⇥1} is
optimal.
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We will see that to establish these results, we will need to address
two main issues:

(1) The cost function J⇤ of a policy ⇧, and the functions J0 and J1 pro-
duced by DP should be well-defined, with a mathematical framework,
which ensures that the integrals in Eqs. (C.1)-(C.3) make sense.

(2) Since J0(x0) is easily seen to be a lower bound to J⇤(x0) for all x0

and ⇧ = {µ0, µ1}, the equality of J0 and J* will be ensured if the
class of policies has an ⇤-selection property, which guarantees that
the minima in Eqs. (C.2) and (C.3) can be nearly attained by µ1(x1)
and µ0(x0) for all x1 and x0, respectively.

To get a better sense of these issues, consider the following informal deriva-
tion of R.1:

J*(x0) = inf
⇤

J⇤(x0)

= inf
µ0

inf
µ1

�
g
�
x1, µ1(x1)

⇥
p
�
dx1 | x0, µ0(x0)

⇥
(C.4a)

= inf
µ0

� �
inf
µ1

g
�
x1, µ1(x1)

⇥�
p
�
dx1 | x0, µ0(x0)

⇥
(C.4b)

= inf
µ0

� �
inf
u1

g(x1, u1)
�

p
�
dx1 | x0, µ0(x0)

⇥

= inf
µ0

�
J1(x1) p

�
dx1 | x0, µ0(x0)

⇥
(C.4c)

= inf
u0

�
J1(x1) p(dx1 | x0, u0) (C.4d)

= J0(x0).

In order to make this derivation meaningful and mathematically rigorous,
the following points need to be justified:

(a) g and µ1 must be such that g
�
x1, µ1(x1)

⇥
can be integrated in a well-

defined manner in Eq. (C.4a).

(b) The interchange of infimization and integration in Eq. (C.4b) must
be legitimate.

(c) g must be such that the function

J1(x1) = inf
u1

g(x1, u1)

can be integrated in a well-defined manner in Eq. (C.4c).

We first discuss these points in the easier context where the state space is
essentially countable.
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Countable Space Problems

We observe that if for each (x0, u0), the measure p(dx1 | x0, u0) has count-
able support , i.e., is concentrated on a countable number of points, then for
a fixed policy ⇧ and initial state x0, the integral defining the cost J⇤(x0)
of Eq. (C.1) is defined in terms of (possibly infinite) summation. Simi-
larly, the DP algorithm (C.2), (C.3) is defined in terms of summation, and
the same is true for the integrals in Eqs. (C.4a)-(C.4d). Thus, there is no
need to impose measurability restrictions of any kind for the integrals to
make sense, and for the summations/integrations to be well-defined, it is
su⇧cient that g is bounded either above or below.

It can also be shown that the interchange of infimization and sum-
mation in Eq. (C.4b) is justified in view of the assumption

inf
u1

g(x1, u1) > ��, ⇣ x1 � ⌘.

To see this, for any ⇤ > 0, select µ̄1 : ⌘ ✏ ⌘ such that

g
�
x1, µ̄1(x1)

⇥
⌃ inf

u1
g(x1, u1) + ⇤, ⇣ x1 � ⌘. (C.5)

Then

inf
µ1

�
g
�
x1, µ1(x1)

⇥
p
�
dx1 | x0, µ0(x0)

⇥

⌃
�

g
�
x1, µ̄1(x1)

⇥
p
�
dx1 | x0, µ0(x0)

⇥

⌃
�

inf
u1

g(x1, u1) p
�
dx1 | x0, µ0(x0)

⇥
+ ⇤.

Since ⇤ > 0 is arbitrary, it follows that

inf
µ1

�
g
�
x1, µ1(x1)

⇥
p
�
dx1 | x0, µ0(x0)

⇥
⌃
�

inf
u1

g(x1, u1) p
�
dx1 | x0, µ0(x0)

⇥
.

The reverse inequality also holds, since for all µ1, we can write
�

inf
u1

g(x1, u1) p
�
dx1 | x0, µ0(x0)

⇥
⌃
�

g
�
x1, µ1(x1)

⇥
p
�
dx1 | x0, µ0(x0)

⇥
,

and then we can take the infimum over µ1. It follows that the interchange
of infimization and summation in Eq. (C.4b) is justified, with the ⇤-optimal
selection property of Eq. (C.5) being the key step in the proof.

We have thus shown that when the measure p(dx1 | x0, u0) has count-
able support, g is bounded either above or below, and J0(x0) > �� for
all x0 and J1(x1) > �� for all x1, the derivation of Eq. (C.4) is valid and
proves that the DP algorithm produces the optimal cost function J* (cf.
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property R.1). † A similar argument proves the existence of an ⇤-optimal
policy (cf. R.2); it uses the ⇤-optimal selection (C.5) for the second stage
and a similar ⇤-optimal selection for the first stage, i.e., the existence of a
µ̄0 : ⌘ ✏ ⌘ such that
�

J1(x1) p
�
dx1 | x0, µ̄0(x0)

⇥
⌃ inf

u0

�
J1(x1) p(dx1 | x0, u0) + ⇤. (C.6)

Also R.3 follows easily using the fact that there are no measurability re-
strictions on µ0 and µ1.

Approaches for Uncountable Space Problems

To address the case where p(dx1 | x0, u0) does not have countable support,
two approaches have been used. The first is to expand the notion of inte-
gration, and the second is to place appropriate measurability restrictions
on g, p, and {µ0, µ1}. Expanding the notion of integration is possible by
interpreting the integrals appearing in the preceding equations as outer
integrals. Since the outer integral can be defined for any function, mea-
surable or not, there is no need to impose any measurability assumptions,
and the arguments given above go through just as in the countable distur-
bance case. We do not discuss this approach further except to mention that
the book [BeS78] shows that the basic results for finite and infinite hori-
zon problems of perfect state information carry through within an outer
integration framework. However, there are inherent limitations in this ap-
proach centering around the pathologies of outer integration, as discussed
in [BeS78].

The second approach is to impose a suitable measurability structure
that allows the key proof steps of the validity of the DP algorithm. These
are:

(a) Properly interpreting the integrals in the definition (C.2)-(C.3) of the
DP algorithm and the derivation (C.4).

(b) The ⇤-optimal selection property (C.5), which in turn justifies the
interchange of infimization and integration in Eq. (C.4b).

To enable (a), the required properties of the problem structure must include
the preservation of measurability under partial minimization. In particu-
lar, it is necessary that when g is measurable in some sense, the partial
minimum function

J1(x1) = inf
u1

g(x1, u1)

† The condition that g is bounded either above or below may be replaced by

any condition that guarantees that the infinite sum/integral of J1 in Eq. (C.3)

is well-defined. Note also that if g is bounded below, then the assumption that

J0(x0) > �⌦ for all x0 and J1(x1) > �⌦ for all x1 is automatically satisfied.
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is also measurable in the same sense, so that the integration in Eq. (C.3) is
well-defined. It turns out that this is a major di⇧culty with Borel measur-
ability, which may appear to be a natural framework for formulating the
problem: J1 need not be Borel measurable even when g is Borel measurable.
For this reason it is necessary to pass to a larger class of measurable func-
tions, which is closed under the key operation of partial minimization (and
also under some other common operations, such as addition and functional
composition). †

One such class is lower semianalytic functions and the related class
of universally measurable functions, which will be the focus of the next
section. They are the basis for a problem formulation that enables a DP
theory as powerful as the one for problems where measurability is of no
concern (e.g., those where the state and control spaces are countable).

C.2 RESOLUTION OF THE MEASURABILITY ISSUES

The example of the preceding section indicates that if measurability re-
strictions are necessary for the problem data and policies, then measurable
selection and preservation of measurability under partial minimization, be-
come crucial parts of the analysis. We will discuss measurability frame-
works that are favorable in this regard, and to this end, we will use the
theory of Borel spaces.

Borel Spaces and Analytic Sets

Given a topological space Y , we denote by BY the ⌥-algebra generated by
the open subsets of Y , and refer to the members of BY as the Borel subsets
of Y . A topological space Y is a Borel space if it is homeomorphic to a
Borel subset of a complete separable metric space. The concept of Borel
space is quite broad, containing any “reasonable” subset of n-dimensional
Euclidean space. Any Borel subset of a Borel space is again a Borel space,
as is any homeomorphic image of a Borel space and any finite or countable

† It is also possible to use a smaller class of functions that is closed under the

same operations. This has led to the so-called semicontinuous models, where the

state and control spaces are Borel spaces, and g and p have certain semicontinu-

ity and other properties. These models are also analyzed in detail in the book

[BeS78] (Section 8.3). However, they are not as useful and widely applicable as

the universally measurable models we will focus on, because they involve assump-

tions that may be restrictive and/or hard to verify. By contrast, the universally

measurable models are simple and very general. They allow a problem formula-

tion that brings to bear the power of DP analysis under minimal assumptions.

This analysis can in turn be used to prove more specific results based on special

characteristics of the model.
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Cartesian product of Borel spaces. Let Y and Z be Borel spaces, and
consider a function h : Y ✏ Z. We say that h is Borel measurable if
h�1(B) � BY for every B � BZ .

Borel spaces have a deficiency in the context of optimization: even in
the unit square, there exist Borel sets whose projections onto an axis are
not Borel subsets of that axis. In fact, this is the source of the di⇧culty
we mentioned earlier regarding Borel measurability in the DP context: if
g(x1, u1) is Borel measurable, the partial minimum function

J1(x1) = inf
u1

g(x1, u1)

need not be, because its level sets are defined in terms of projections of the
level sets of g as

⇤
x1 | J1(x1) < c

⌅
= P

⌥⇤
(x1, u1) | g(x1, u1) < c

⌅�
,

where c is a scalar and P (·) denotes projection on the space of x1. As an
example, take g to be the indicator of a Borel subset of the unit square
whose projection on the x1-axis is not Borel. Then J1 is the indicator
function of this projection, so it is not Borel measurable. This leads us to
the notion of an analytic set.

A subset A of a Borel space Y is said to be analytic if there exists
a Borel space Z and a Borel subset B of Y ⇤ Z such that A = projY (B),
where projY is the projection mapping from Y ⇤ Z to Y . It is clear that
every Borel subset of a Borel space is analytic.

Analytic sets have many interesting properties, which are discussed
in detail in [BeS78]. Some of these properties are particularly relevant to
DP analysis. For example, let Y and Z be Borel spaces. Then:

(i) If A � Y is analytic and h : Y ✏ Z is Borel measurable, then h(A)
is analytic. In particular, if Y is a product of Borel spaces Y1 and
Y2, and A � Y1 ⇤ Y2 is analytic, then projY1

(A) is analytic. Thus,
the class of analytic sets is closed with respect to projection, a critical
property for DP, which the class of Borel sets is lacking, as mentioned
earlier.

(ii) If A � Z is analytic and h : Y ✏ Z is Borel measurable, then h�1(A)
is analytic.

(iii) If A1, A2, . . . are analytic subsets of Y , then �⇧k=1 Ak and �⇧k=1 Ak

are analytic.

However, the complement of an analytic set need not be analytic, so the
collection of analytic subsets of Y need not be a ⌥-algebra.

Lower Semianalytic Functions

Let Y be a Borel space and let h : Y ✏ [��,�] be a function. We say
that h is lower semianalytic if the level set

{y � Y | h(y) < c}
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is analytic for every c � ⌘. The following proposition states that lower
analyticity is preserved under partial minimization, a key result for our
purposes. The proof follows from the preservation of analyticity of a subset
of a product space under projection onto one of the component spaces, as
in (i) above (see [BeS78], Prop. 7.47).

Proposition C.1: Let Y and Z be Borel spaces, and let h : Y ⇤Z ✏ 
[��,�] be lower semianalytic. Then h⇥ : Y ✏ [��,�] defined by

h⇥(y) = inf
z⌃Z

h(y, z)

is lower semianalytic.

By comparing the DP equation J1(x1) = infu1 g(x1, u1) [cf. Eq. (C.2)]
and Prop. C.1, we see how lower semianalytic functions can arise in DP. In
particular, J1 is lower semianalytic if g is. Let us also give two additional
properties of lower semianalytic functions that play an important role in
DP (for a proof, see [BeS78], Lemma 7.40).

Proposition C.2: Let Y be a Borel space, and let h : Y ✏ [��,�]
and l : Y ✏ [��,�] be lower semianalytic. Suppose that for every
y � Y , the sum h(y) + l(y) is defined, i.e., is not of the form ���.
Then h + l is lower semianalytic.

Proposition C.3: Let Y and Z be Borel spaces, let h : Y ✏ Z be
Borel measurable, and let l : Z ✏ [��,�] be lower semianalytic.
Then the composition l ⌅ h is lower semianalytic.

Universal Measurability

To address questions relating to the definition of the integrals appearing in
the DP algorithm, we must discuss the measurability properties of lower
semianalytic functions. In addition to the Borel ⌥-algebra BY mentioned
earlier, there is the universal ⌥-algebra UY , which is the intersection of all
completions of BY with respect to all probability measures. Thus, E � UY

if and only if, given any probability measure p on (Y,BY ), there is a Borel
set B and a p-null set N such that E = B �N . Clearly, we have BY � UY .
It is also true that every analytic set is universally measurable (for a proof,
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see [BeS78], Corollary 7.42.1), and hence the ⌥-algebra generated by the
analytic sets, called the analytic ⌥-algebra, and denoted AY , is contained
in UY :

BY � AY � UY .

Let X, Y , and Z be Borel spaces, and consider a function h : Y ✏ Z.
We say that h is universally measurable if h�1(B) � UY for every B � BZ .
It can be shown that if U � Z is universally measurable and h is universally
measurable, then h�1(U) is also universally measurable. As a result, if
g : X ✏ Y , h : Y ✏ Z are universally measurable functions, then the
composition (g ⌅ h) : X ✏ Z is universally measurable.

We say that h : Y ✏ Z is analytically measurable if h�1(B) � AY

for every B � BZ . It can be seen that every lower semianalytic function is
analytically measurable, and in view of the inclusion AY � UY , it is also
universally measurable.

Integration of Lower Semianalytic Functions

If p is a probability measure on (Y,BY ), then p has a unique extension to a
probability measure p̄ on (Y,UY ). We write simply p instead of p̄ and

◆
hdp

in place of
◆

hdp̄. In particular, if h is lower semianalytic, then
◆

hdp is
interpreted in this manner.

Let Y and Z be Borel spaces. A stochastic kernel q(dz | y) on Z given
Y is a collection of probability measures on (Z,BZ) parameterized by the
elements of Y . If for each Borel set B � BZ , the function q(B | y) is Borel
measurable (universally measurable) in y, the stochastic kernel q(dz | y)
is said to be Borel measurable (universally measurable, respectively). The
following proposition provides another basic property for the DP context
(for a proof, see [BeS78], Props. 7.46 and 7.48). †

† We use here a definition of integral of an extended real-valued function

that is always defined as an extended real number (see also Appendix A). In

particular. for a probability measure p, the integral of an extended real-valued

function f , with positive and negative parts f+ and f�, is defined as

�
fdp =

�
f+dp�

�
f�dp,

where we adopts the rule ⌦ � ⌦ = ⌦ for the case where
◆

f+dp = ⌦ and◆
f�dp = ⌦. With this expanded definition, the integral of an extended real-

valued function is always defined as an extended real number (consistently also

with Appendix A).
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Proposition C.4: Let Y and Z be Borel spaces, and let q(dz | y) be
a stochastic kernel on Z given Y . Let also h : Y ⇤Z ✏ [��,�] be a
function.

(a) If q is Borel measurable and h is lower semianalytic, then the
function l : Y ✏ [��,�] given by

l(y) =
�

Z
h(y, z)q(dz | y)

is lower semianalytic.

(b) If q is universally measurable and h is universally measurable,
then the function l : Y ✏ [��,�] given by

l(y) =
�

Z
h(y, z)q(dz | y)

is universally measurable.

Returning to the DP algorithm (C.2)-(C.3) of Section C.1, note that
if the cost function g is lower semianalytic and bounded either above or
below, then the partial minimum function J1 given by the DP Eq. (C.2)
is lower semianalytic (cf. Prop. C.1), and bounded either above or below,
respectively. Furthermore, if the transition kernel p(dx1 | x0, u0) is Borel
measurable, then the integral�

J1(x1) p
�
dx1 | x0, u0) (C.7)

is a lower semianalytic function of (x0, u0) (cf. Prop. C.4), and in view of
Prop. C.1, the same is true of the function J0 given by the DP Eq. (C.3),
which is the partial minimum over u0 of the expression (C.7). Thus, with
lower semianalytic g and Borel measurable p, the integrals appearing in
the DP algorithm make sense.

Note that in the example of Section C.1, there is no cost incurred in
the first stage of the system operation. When such a cost, call it g0(x0, u0),
is introduced, the expression minimized in the DP Eq. (C.3) becomes

g0(x0, u0) +
�

J1(x1) p
�
dx1 | x0, u0),

which is still a lower semianalytic function of (x0, u0), provided g0 is lower
semianalytic and the sum above is not of the form ��� for any (x0, u0)
(Prop. C.2). Also, for alternative models defined in terms of a system func-
tion rather than a stochastic kernel (e.g., the total cost model of Chapter
1), Prop. C.3 provides some of the necessary machinery to show that the
functions generated by the DP algorithm are lower semianalytic.
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Universally Measurable Selection

The preceding discussion has shown that if g is lower semianalytic, and
p is Borel measurable, the DP algorithm (C.2)-(C.3) is well-defined and
produces lower semianalytic functions J1 and J0. However, this does not
by itself imply that J0 is equal to the optimal cost function J*. For this
it is necessary that the chosen class of policies has the ⇤-optimal selection
property (C.5). It turns out that universally measurable policies have this
property.

The following is the key selection theorem given in a general form,
which also addresses the question of existence of optimal policies that can
be obtained from the DP algorithm (for a proof, see [BeS78], Prop. 7.50).
The theorem shows that if any functions µ̄1 : ⌘  ⌘ and µ̄0 : ⌘  ⌘ can
be found such that µ̄1(x1) and µ̄0(x0) attain the respective minima in Eqs.
(C.2) and (C.3), for every x1 and x0, then µ̄1 and µ̄0 can be chosen to be
universally measurable, the DP algorithm yields the optimal cost function
and ⇧ = (µ̄0, µ̄1) is optimal, provided that g is lower semianalytic and the
integral in Eq. (C.3) is a lower semianalytic function of (x0, u0).

Proposition C.5: (Measurable Selection Theorem) Let Y and
Z be Borel spaces and let h : Y ⇤Z ✏ [��,�] be lower semianalytic.
Define h⇥ : Y ✏ [��,�] by

h⇥(y) = inf
z⌃Z

h(y, z),

and let

I =
⇤
y � Y | there exists a zy � Z for which h(y, zy) = h⇥(y)

⌅
,

i.e., I is the set of points y for which the infimum above is attained. For
any ⇤ > 0, there exists a universally measurable function � : Y ✏ Z
such that

h
�
y,�(y)

⇥
= h⇥(y), ⇣ y � I,

h
�
y,�(y)

⇥
⌃
�

h⇥(y) + ⇤, ⇣ y /� I with h⇥(y) > ��,
�1/⇤, ⇣ y /� I with h⇥(y) = ��.

Universal Measurability Framework: A Summary

In conclusion, the preceding discussion shows that in the two-stage example
of Section C.1, the measurability issues are resolved in the following sense:
the DP algorithm (C.2)-(C.3) is well-defined, produces lower semianalytic
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functions J1 and J0, and yields the optimal cost function (as in R.1), and
furthermore there exist ⇤-optimal and possibly exactly optimal policies (as
in R.2 and R.3), provided that:

(a) The stage cost function g is lower semianalytic; this is needed to show
that the function J1 of the DP Eq. (C.2) is lower semianalytic and
hence also universally measurable (cf. Prop. C.1). The more “nat-
ural” Borel measurability assumption on g implies lower analyticity
of g, but will not keep the functions J1 and J0 produced by the DP
algorithm within the domain of Borel measurability. This is because
the partial minimum operation on Borel measurable functions takes
us outside that domain (cf. Prop. C.1).

(b) The stochastic kernel p is Borel measurable. This is needed in order
for the integral in the DP Eq. (C.3) to be defined as a lower semi-
analytic function of (x0, u0) (cf. Prop. C.4). In turn, this is used to
show that the function J0 of the DP Eq. (C.3) is lower semianalytic
(cf. Prop. C.1).

(c) The control functions µ0 and µ1 are allowed to be universally mea-
surable, and we have J0(x0) > �� for all x0 and J1(x1) > �� for
all x1. This is needed in order for the calculation of Eq. (C.4) to go
through (using the measurable selection property of Prop. C.5), and
show that the DP algorithm produces the optimal cost function (cf.
R.1). It is also needed (using again Prop. C.5) in order to show the
associated existence of solutions results (cf. R.2 and R.3).

Extension to General Finite-Horizon DP

Let us now extend our analysis to an N -stage model with state xk and
control uk that take values in Borel spaces X and U , respectively. We
assume stochastic/transition kernels pk(dxk+1 | xk, uk), which are Borel
measurable, and stage cost functions gk : X ⇤ U ✏ (��,�], which are
lower semianalytic and bounded either above or below. † Furthermore, we
allow policies ⇧ = {µ0, . . . , µN�1} that are randomized: each component
µk is a universally measurable stochastic kernel µk(duk | xk) from X to U .
If for every xk and k, µk(duk | xk) assigns probability 1 to a single control
uk, ⇧ is said to be nonrandomized .

Each policy ⇧ and initial state x0 define a unique probability measure
with respect to which gk(xk, uk) can be integrated to produce the expected
value of gk. The sum of these expected values for k = 0, . . . , N � 1, is the
cost J⇤(x0). It is convenient to write this cost in terms of the following

† Note that since gk may take the value ⌦, constraints of the form uk ↵
Uk(xk) may be implicitly introduced by letting gk(xk, uk) = ⌦ when uk /↵
Uk(xk).
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DP-like backwards recursion (see [BeS78], Section 8.1):

J⇤,N�1(xN�1) =
�

gN�1(xN�1, uN�1)µN�1(duN�1 | xN�1),

J⇤,k(xk) =
�  

gk(xk, uk) +
�

J⇤,k+1(xk+1) pk(dxk+1 | xk, uk)
⌦

µk(duk | xk), k = 0, . . . , N � 2.

The function obtained at the last step is the cost of ⇧ starting at x0:

J⇤(x0) = J⇤,0(x0).

We can interpret J⇤,k(xk) as the expected cost-to-go starting from xk at
time k, and using ⇧. Note that by Prop. C.4, the functions J⇤,k are all
universally measurable.

The DP algorithm is given by

JN�1(xN�1) = inf
uN�1⌃U

gN�1(xN�1, uN�1), ⇣ xN�1,

Jk(xk) = inf
uk⌃U

↵
gk(xk, uk) +

�
Jk+1(xk+1) pk

�
dxk+1 | xk, uk)

�
, ⇣ xk, k.

By essentially replicating the analysis of the two-stage example, we can
show that the integrals in the above DP algorithm are well-defined, and
that the functions JN�1, . . . , J0 are lower semianalytic.

It can be seen from the preceding expressions that we have for all
policies ⇧

Jk(xk) ⌃ J⇤,k(xk), ⇣ xk, k = 0, . . . , N � 1.

To show equality within ⇤ ⌥ 0 in the above relation, we may use the
measurable selection theorem (Prop. C.5), assuming that

Jk(xk) > ��, ⇣ xk, k,

so that ⇤-optimal universally measurable selection is possible in the DP
algorithm. In particular, define ⇧ = {µ0, . . . , µN�1} such that µk : X ✏ U
is universally measurable, and for all xk and k,

gk

�
xk, µk(xk)

⇥
+
�

Jk+1(xk+1) pk

�
dxk+1 | xk, µk(xk)

⇥
⌃ Jk(xk) +

⇤

N
.

(C.8)
Then, we can show by induction that

Jk(xk) ⌃ J⇤,k(xk) ⌃ Jk(xk) +
(N � k)⇤

N
, ⇣ xk, k = 0, . . . , N � 1,
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and in particular, for k = 0,

J0(x0) ⌃ J⇤(x0) ⌃ J0(x0) + ⇤, ⇣ x0.

and hence also
J*(x0) = inf

⇤
J⇤(x0) = J0(x0).

Thus, the DP algorithm produces the optimal cost function, and via the
approximate minimization of Eq. (C.8), an ⇤-optimal policy. Similarly,
if the infimum is attained for all xk and k in the DP algorithm, then
there exists an optimal policy. Note that both the ⇤-optimal and the exact
optimal policies can be taken be nonrandomized.

The assumptions of Borel measurability of the stochastic kernels,
lower semianalyticity of the costs per stage, and universally measurable
policies, are the basis for the framework adopted by Bertsekas and Shreve
[BeS78], which provides a comprehensive analysis of finite and infinite hori-
zon total cost problems. There is also additional analysis in [BeS78] on
problems of imperfect state information, as well as various refinements
of the measurability framework just described. Among others, these re-
finements involve analytically measurable policies, and limit measurable
policies (measurable with respect to the, so-called, limit ⌥-algebra, the
smallest ⌥-algebra that has the properties necessary for a DP theory that
is comparably powerful to the one for the universal ⌥-algebra).


