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SECTION 5.1. The Bernoulli Process

Problem 1. We are given a coin for which the probability of heads is p (0 < p < 1)
and the probability of tails is 1 — p. Consider a sequence of independent flips of the
coin.

(a) Let Y be the number of flips up to and including the flip on which the first head
occurs. Write down the PMF of Y.

(b) Let X be the number of heads that occur on any particular flip. Write down
E[X] and var(X).

(¢) Let K be the number of heads that occur on the first n flips of the coin. Determine
the PMF, mean, and variance of K.

(d) Given that a total of exactly six heads resulted from the first nine flips, what is
the conditional probability that both the first and seventh flips were tails?

(e) Let H be the number of heads that occur on the first twenty flips. Let C be the
event that a total of exactly ten heads resulted from the first eighteen flips. Find
E[H | C] and the conditional variance var(H | C).

Solution. (a) py(k)=(1-p)*'p k=1,2,...

(b) E[X] = p, var(X) = p(1 - p)

(c) pr (k) = (Z)pk(l —p)" % k=0,1,...,n, E[K]=np, var(K)=np(l-Dp).
(d) There are (2) 9-flip sequences with 6 heads. Out of these, there are (g) in which
the first and seventh flips are tails. The desired probability is (g)/(g) =1/12.

(e) We have E[H | C] = 10 + 2p and var(H |C) = 2p(1 — p).



Problem 2. At each trial of a game, Don and Greg flip biased coins, simultaneously
but independently. For each trial, the probability of heads is pp and pg for Don and
Greg, respectively.

(a) Given that the flips on a particular trial resulted in 2 heads, find the PMF of the
number of additional trials up to and including the next trial on which 2 heads
result.

(b) Given that the flips on a particular trial resulted in at least one head, find the
probability that Don flipped a head on that trial.

(c) Starting from a trial on which no heads result, find the probability that Don’s
next flip of a head will occur before Greg’s next flip of a head.

(d) Given that Don receives $d for each head he flips, and Greg receives $g for each
head he flips, find the transform associated with the total amount of money
earned by the two players during the first n trials.

Solution. (a) Each trial has probability pppc of resulting in two heads, independently
of other trials. Therefore, the number of trials until the first time that two heads are
obtained is geometric with parameter pppa, and

pam(m) = pope (1l — ppope)™ m=1,23,...

(b) The probability of at least one head is pp + pec — pppe. The probability that Don
flipped a head is pp. Using the definition of conditional probability, the answer is
PD
pp +Ppc — popG

(c) Let N be the trial at which heads was obtained for the first time. We are looking for
the probability that at trial N, Don’s coin resulted in heads, while Greg’s coin resulted
in tails. Let A be this event.

Let us first find P(A| N = k). The conditioning information tells us that there
is at least one head at trial k, and no heads before that. The information about what
happened in earlier trials is inconsequential, because different trials are independent.
Thus, we can just calculate the probability that Greg’s coin resulted in tails, given that

there was at least one head, and obtain

1—
P(A|N =k) = _po(l—-pe)
pp + PG — pppaG

By the total probability theorem,

oo
pp(1 —pc)
P(A) =Y P(N=kK)P(A|N=Fk)= :
(4) Z:j (V=R PAIN = k) = == "
(d) Let M be the total amount of money earned by Don and Greg in the first n trials.
Let D; and G; be the amount of money earned by Don and Greg, respectively, in the
ith trial, so that M = D1 + D2+ -+ Dy, + G1 + G2 + - - - + G,,. The transforms
associated with D; and G; are

Mp,(s)=1—pp +ppe™,  Ma,(s) =1 - pc +pce™.

Thus,
M (s) = [(1—pp +ppe*®)(1 - pe + pae™)]



Problem 3. [D] To cross a single lane of moving traffic, we require at least a duration
d. Successive car interarrival times are independently and identically distributed with
probability density function fr(t). If an interval between successive cars is longer than
d, we say that the interval represents a single opportunity to cross the lane. Assume
that car lengths are small relative to intercar spacing and that our experiment begins
the instant after the zeroth car goes by. Determine, in as simple form as possible,
expressions for the probability that:

(a) We can cross for the first time just before the nth car goes by.
(b) We shall have had exactly m opportunities by the instant the nth car goes by.

(¢) The occurrence of the mth opportunity is immediately followed by the arrival of
the nth car.

Solution. (a) Let p be the probability that a given interval is at least as large as d, so
that it represents a crossing opportunity (“success”). We have

p= /:o fr(t) dt.

In particular, the probability that the nth interval (before the nth car arrives) is at
least d is equal to p.

(b) Each interval corresponds to an independent trial with success probability p. Thus,
the probability of having exactly m successes in n trials is

<n>pm(1—p)"m, m=20,1,...,n.
m

(c) This is the probability that the mth success occurs at the nth trial and is given by
the Pascal PMF"



Problem 4. Let Y17 be a Pascal random variable of order 17. Find the numerical
values of a and b in the equation

ZPYN(Z) = Z <Z>pk(1 - p)(b—k)7

and explain.

Solution. The left-hand side is the probability that we need at least 42 trials to get
the 17th success. It is the same as the probability of having at most 16 successes in

the first 41 trials, which is
16
41 _
z(k)p'fu—prﬂ 3

k=0

and therefore, a = 16, b = 41.



Problem 5. [D] Fred is giving out samples of dog food. He makes calls door to door,
but he leaves a sample (one can) only on those calls for which the door is answered
and a dog is in residence. On any call the probability of the door being answered is
3/4, and the probability that any household has a dog is 2/3. Assume that the events
“Door answered” and “A dog lives here” are independent and also that the outcomes
of all calls are independent.

(a) Determine the probability that Fred gives away his first sample on his third call.

(b) Given that he has given away exactly four samples on his first eight calls, deter-
mine the conditional probability that Fred will give away his fifth sample on his
eleventh call.

(¢) Determine the probability that he gives away his second sample on his fifth call.

(d) Given that he did not give away his second sample on his second call, determine
the conditional probability that he will leave his second sample on his fifth call.

(e) We will say that Fred “needs a new supply” immediately after the call on which he
gives away his last can. If he starts out with two cans, determine the probability
that he completes at least five calls before he needs a new supply.

(f) If he starts out with exactly m cans, determine the expected value and variance
of Dy, the number of homes with dogs which he passes up (because of no answer)
before he needs a new supply.

Solution. For all but the last part of this problem, we may consider each call to be a
Bernoulli trial where the probability of success (door answered and dog in residence)
is given by p = (3/4) - (2/3) =1/2.

(a) Fred will give away his first sample on the third call if the first two calls are failures
and the third is a success. Since the trials are independent, the probability of
this sequence of events is simply (1 —p)(1 —p)p = 1/8.

(b) The event of interest requires failures on the ninth and tenth trials and a success
on the eleventh trial. For a Bernoulli process, the outcomes of these three trials
are independent of the results of any other trials and again our answer is (1 —

p)(L—pp=1/8.
(c) We desire the probability that Y2, the time to the second arrival, is equal to five
trials. We know that Y2 is a Pascal random variable, and we have

5—1 _ 4 1
pya(5) = <2_ 1)172(1—?)5 ?= 3-8

(d) Here we require the conditional probability that Y is equal to 5, given that it is
greater than 2. We have

Py, (5) _ _ Py (5)
P(YQ > 2) 1- py2(2)

5—1Y\ » 5-2
(21>p (1-p) s
1- @:ng(lp)o 3/4
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(e) The probability that Fred will complete at least five calls before he needs a new
supply is equal to the probability that Y is greater than or equal to 5. We have

P(Ya>5) =1 P(Ys<4)= _Z(;:DPQ(l—p)”—%.

(f) Let the discrete random variable F' represent the number of failures before Fred
runs out of samples on his mth successful call. Since Yy, is the number of trials up
to and including the mth success, we have F' = Y,, — m. Given that Fred makes
Y. calls before he needs a new supply, we can regard each of the F' unsuccessful
calls as trials in another Bernoulli process where p’, the probability of a success
(a disappointed dog), is

p’ = P(dog lives there | Fred did not leave a sample)
1

1
+ + 3

NN
w | pojw |

| =
W =

]
W =

We define X to be a Bernoulli random variable with parameter p’. Then, the
number of dogs passed up before Fred runs out, D,,, is equal to the sum of F' Bernoulli
random variables each with p’ = 1/3. In other words,

Dy =X1+Xo+Xs+--+XrF

Note that D,, is a sum of a random number of independent random variables. We can
calculate its expectation and variance using the formulas

E[D,) = E[F|E[X],  var(Dn) = E[F]var(X) + (E[X])*var(F).

We note that

E[F] = E[Y,, —m] = % —m=m,
BX]=p =,
var(F) = var(L,, —m) = var(Lm,) = m(lp_Qp) = 2m,

var(X) = p/(1-p) = 2.

We therefore obtain



Problem 6. Alice and Bob alternate playing at the casino table. (Alice starts and
plays at odd times ¢ = 1,3,...; Bob plays at even times 7 = 2,4,....) At each time 1,
the net gain of whoever is playing is a random variable G; with the following PMF:

1/3, g=-2,
pc(g) =14 1/2, g=1,
1/6, g¢g=3.

Assume that the net gains at different times are independent. We refer to an outcome
of —2 as a “loss,” and an outcome of 1 or 3 as a “win.”

(a) They keep gambling until the first time where a loss by Bob immediately follows
a loss by Alice. Write down the PMF of the total number of rounds played. (A
round consists of two plays, one by Alice and then one by Bob.)

(b) Write down an expression for the transform of the net gain of Alice up to the
time of the first loss by Bob.

(c) Write down the PMF for Z, defined as the time at which Bob has his third loss.

(d) Let N be the number of rounds until each one of them has won at least once.
Find E[N].

Solution. (a) For each round, the probability that both Alice and Bob have a loss is
(1/3) - (1/3) = (1/9). Let X be the total number of rounds played until the first time
that both have a loss. Then, X is a geometric random variable, and its PMF is

) =0-p=(3) T (3), k=12

(b) Denote by Y; the gain from Alice’s ith game. Let Z be a random variable repre-
senting the total gain of Alice up to the time of the first loss by Bob. Thus,

Z=Yi+Ya+Ys+ -+ Yk,

where the random variable K indicates the number of games Bob played up to and
including his first loss (Alice will play exactly K games because she plays before Bob
in each round). The transform of Z is obtained by

Mz(S)ZMK(S) o ()
eS=My (s

Note that K is a geometric random variable with parameter p = 1/3. Therefore, the
transform of K is

s 1_s
pe 3¢
M = = .
x(5) 1—(1—ples 1-—2es
The transform of Y is
1 o0 1 5 13
My (s) = Ma(s) = 3¢ 2 —1—56 + 663 .
Hence,
1_s 1,1 _-—2s 1_s 1 _3s
Mi(s) = —2° _ _5(Ge T e
1— et lesmfe-aptenttens  1—3(3e72 + ge° + ges)
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(c) Consider the number of games, K3, that Bob played until his third loss. The random
variable K3 is a Pascal random variable, with PMF

prey (k) = (g_ D (é)s(g)w k=3,4,5,...

In this question, we are interested in another random variable Z defined as the time at
which Bob has his third loss. Note that Z = 2K3. Thus,

pz(z) = <(zé2_)1 1) (é)s(g)(m)ig 2=6,8,10,...

(d) Suppose we observe this gambling process, and let U be a random variable indicating
the number of rounds we see until at least one of them wins. Note that U is a geometric
random variable with parameter 1 — (1/3) - (1/3) = 8/9.

Consider another random variable V' representing the number of additional rounds
we have to observe until the other one wins. If both Alice and Bob win at Uth round,
then V' = 0. Otherwise, V is geometrically distributed with p = (1/2) 4+ (1/6) = (2/3).
Clearly, the number N of rounds until each one of them has won at least once is

N=U+V.
Thus,
E[N]=E[U + V] = E[U] + E[V]
SL + ( P(both win | at least one wins) + 2/% - P(one wins | at least one Wins))
_9 (2/3)-(2/3) | 3 2:(1/3)-(2/3)
Z40- 2
38 8/9 2 (8/9)
9,311
82 2 8

There is another approach to this problem. We partition the sample space into
three disjoint events:

Ai1: both win first round;
As: only one wins first round;
As: both lose first round.

By the total expectation theorem,

E[N] = E[N | A1]P(A1) + E[N | A2]P(A2) + E[N | A5]P(A3)

=1:(575) + (1 g)- (25-5) +0vEm-(5-5)

3

Solving for E[N], we obtain E[N] = 15/8.



Problem 7. Each night, the probability of a robbery attempt at the local warehouse
is 1/5. A robbery attempt is successful with probability 3/4, independent of other
nights. After any particular successful robbery, the robber celebrates by taking off
either the next 2 or 4 nights (with equal probability), during which time there will be
no robbery attempts. After that, the robber returns to his original routine.

(a) Let K be the number of robbery attempts up to (and including) the first successful
robbery. Find the PMF of K.

(b) Let D be the number of days until (and including) the second successful robbery,
including the days of celebration after the first robbery. Find the PMF of D, or
its transform (whichever you find more convenient).

During a successful robbery, the robber steals a random number of candy bars,
which is 1, 2, or 3, with equal probabilities. This number is independent for each
successful robbery and independent of everything else. No candy bars are stolen in
unsuccessful robberies.

(c) Let S be the number of candy bars collected in two successful robberies. Find
the PMF of S.

(d) Let @ be the number of candy bars collected in ten robbery attempts (whether
successful or not). Find the PMF of @, or its transform, whichever is easier.
Find the expectation and the variance of Q.

Solution. We define the following random variables:
X: the number of days up to and including the first successful robbery;
B: the number of candy bars stolen during a successful robbery;
C': the number of days of rest after a successful robbery.

Note that X is a geometric random variable with parameter 3/20 (the probability of
a successful robbery on a given night). Also, it is given that B is uniform over the set
{1,2, 3}, and that C' is uniform over the set {2,4}.

(a) Since the probability that any given robbery attempt succeeds is 3/4, the random
variable K is geometric with parameter p = 3/4. Thus,

_ 1\*13 3
pr (k) = (1—p)* 1p=(1) 1= fork=12..

(b) We will derive both the PMF and the transform of D, the number of days up to
and including the second successful robbery.

The PMF of D can be easily found by conditioning on C, the number of days
the robber rests after the first successful robbery (which only takes on values 2 or 4):

pp(d) = ppjc(d|C =2)P(C =2) + ppc(d|C =4)P(C =4),

where

d—3) (3 (17\%* /3
2 (L 2, ifd=4,5,6,..
pojc(d|C =2) = ( 1 )(20) (20) (20)’ ' el

0, otherwise.
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There must be at least one day before the rest period, since it follows a successful
robbery; similarly, there must be at least one day after the rest period. Thus we can
view the coefficient in the preceding formula as the number of ways to choose the
beginning of a four-day period in a block of d days. Then we multiply the probability
of the first success and the probability of d — 4 failures and finally the probability of
the second success at trial d. Similarly, we have:

d—5\ 3\ (17\%C /3
) (= 2, ifd=6,7,8..,
poic(d]|C =4) = ( 1 )(20) (20) (20) '

0, otherwise.

Also, P(C =2) =P(C =4) =1/2. So plugging into our expression for pp(d), we get

1/d—-3 3 .2,17 44 . _

2( | ><20> () ifd =45,
po(d) =9 1/d—3\ 3 3 17w 1[d=5\,3 2 17 4

5 50) (5n) 5 —) ()", ifd>

2( 1 >(20) (50 +2( 1 >(20) () =6

0 otherwise.

Alternatively, we can solve this problem using transforms. Note that D is the
sum of three independent random variables: Xi, the number of days until the first
successful robbery; C', the number of days of rest after the first success; and Xz, the
number of days from the end of the rest period until the second successful robbery. Since
D = X1+ C+ X2, and Xi, X2, and C' are independent, we find that the transform of
D is Mp(s) = [Mx(s)]>Mc(s). Now, X; and X are (independent) geometric random
variables with parameter 3/20 (the probability of a successful robbery). Again, C' is
equally likely to be 2 or 4. Thus, we conclude that

Mp(s) = (Mx(s))ch(s) = <%)2 (%e% + %e“) .

(c) Given a successful robbery, the PMF of Y is py(y) = 1/3, for y = 1,2,3, and
py (y) = 0, otherwise. The total number of candybars collected in 2 successful robberies
is S = Y1+ Ya, where Y1 and Y> are independent and identically distributed with PMF
py (y). Therefore, the PMF of S is

1/9, if s=2,6,

) 2/9, ifs=3,5,
Ps(9) =9 379 ifs—4

0, otherwise.

(d) Since the probability of a robbery attempt being successful is %, and since the
number of candy bars taken in a successful attempt is equally likely to be 1, 2, or 3,

we can view each attempt as resulting in B candy bars, with the following PMF for B:

_f1/4, ifb=0,1,2,3,
pu(b) = {O, otherwise.

11



In this case, finding the transform is much easier than finding the PMF. Since @ is the
sum of ten independent values of B, the transform is simply

Mo(s) = (Mg(s))" = <1+6++6> ,

Since Q =By + -+ BlO, we have E[Q] = E[Bl] + -4 E[Bl()} =10- E[B} = 15.
Similarly, using the independence of the B;, we see that var(Q) = var(Bi) + -+ +
var(Bio) = 10 - var(B) = 10 - (5/4) = 50/4.

12



Problem 8. A particular medical operation proves fatal in 1% of the cases. Find an
approximation to the probability that there will be at least 2 fatalities in 200 operations.

Solution. We could find an exact value by using the binomial probability mass func-
tion. A reasonable, and much more efficient method is to use the Poisson approximation
to the binomial, which tells us that for a binomial random variable with parameters n

and p, we have:
k

P(k successes) =~ e

-
where A = np. The desired probability is

P(2 or more fatalities) =1 — P(0 or 1 fatality)

1-— £€72 - 2—1672
0! 1

=.594
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Problem 9. You drive to work 5 days a week for a full year (50 weeks), and on any
given day, you get a traffic ticket with probability p = 0.02, independently of other
days. Let X be the total number of tickets you get in the year.

(a) What is the probability that the number of tickets you get is exactly equal to the
expected value of X7

(b) Calculate approximately the probability in (a), using a Poisson approximation.

(¢) The fine for a ticket is $10, or $20, or $50, with respective probabilities 0.5, 0.3,
and 0.2, and independently of other tickets. Find the mean and variance of the
total amount you pay for traffic tickets during the year?

(d) Suppose you do not know the probability p of getting a ticket, but you got 5
tickets during the year, and you estimate p by the sample mean
- 5
P=_—.
250
What is the range of possible values of p assuming that the difference between p
and the sample mean P is within 5 times the standard deviation of the sample
mean? (See Example 2.21 in the text for more detail on the use and properties
of the sample mean.)

Solution. (a) The random variable X has a binomial PMF, with parameters p = 0.02
and n = 250. The mean is E[X] = np = 250 - 0.02 = 5. The desired probability is

P(X =5) = (220) (0.02)%(0.98)**° = 0.177.

(b) The Poisson approximation has parameter A = np = 5, so the probability in (a) is
approximated by

(c) We have
250

E[Y] =) E[v],

where Y; is the amount of money you pay on the ith day. The PMF of Y; is

0.98, ify=0,

0.01, ify= 10,
0.006, if y = 20,
0.004, if y = 50.

PYi=y) =

The mean of Y is then
E[Y] =250 - E[Y;] = 250 - (0.01 - 10 + 0.006 - 20 4+ 0.004 - 50) = 250 - 0.42 = 105.
Using the independence of the random variables Y;, the variance of Y is
var(Y) = 250 - var(Y;) = 250 - (E[Yf] - (E[m)2>

=250 - (0.01 - 10> 4 0.006 - 20° + 0.004 - 50° — 0.42%) = 3305.9.

14



(d) The variance of the sample mean is

p(1 —p)
250

(cf. Example 2.21 in the text), so assuming that |[p — P| is within 5 times the standard
deviation, the possible values of p are those that satisfy p € [0, 1] and

25p(1 —p)

—0.02)% <
(p )= 755

Solving the quadratic inequality, we see that if P is assumed to be within 5 standard
deviations from the true mean, then p must be in the range (0.0029,0.124).

15



SECTION 5.2. The Poisson Process

Problem 10. A train bridge is constructed across a wide river. Trains arrive at the
bridge according to a Poisson process of rate A = 3 per day.

(a) If a train arrives on day 0, find the probability that there will be no trains on
days 1, 2, and 3.

(b) Find the probability that no trains arrive in the first 2 days, but 4 trains arrive
on the 4th day.

(c) Find the probability that it takes more than 2 days for the 5th train to arrive at
the bridge.

Solution. (a) The probability that there are no trains in 3 days is the probability that
the interarrival time is greater than 3, so the probability is: e~2 = .000123.

(b) The events that no trains arrive in the first 2 days, and 4 arrive on the 4th day
are independent, by the properties of the Poisson process. Therefore the probability of
both events occurring is the product of their probabilities, which is:

34
e 0. 6731 =1.543-107°

(c) The probability that the 5th train has not arrived by the second day is the proba-
bility that the sum of the first 5 interarrival times is greater than 2, which equals the
probability that there are at most 4 arrivals in the first 2 days, thus giving:

2 3 4
P(at most 4 arrivals in 2 days) = e~ ° (1 +6+ % + % + %) = .2851.

16



Problem 11. An amateur criminal is contemplating shoplifting from a store. Police
officers walk by the store according to a Poisson process of rate A per minute. If an
officer walks by while the crime is in progress, the criminal will be caught.

(a) If it takes the criminal ¢ seconds to commit the crime, find the probability that
the criminal will be caught.

(b) Repeat part (a) under the new assumption that the criminal will only be caught
if two police officers happen to walk by while the crime is in progress.

Solution. (a) The criminal will be caught if the first officer comes by in fewer than ¢
seconds. Since the time until the first arrival is exponentially distributed, the desired
probability is 1 — e~ .

(b) We are interested in the probability that the second arrival occurs before time ¢.
By integrating the Erlang PDF of order 2, this probability is 1 — e~ (At 4 1).

17



Problem 12. The MIT soccer team needs at least 8 players to avoid forfeiting a
game. Assume that each player has some chance of getting injured for the season, but
her playing lifetime for a given season is exponentially distributed with parameter .
For simplicity, assume that the coach insists on only playing 8 players at a time, and
then replaces a player as soon as she gets hurt. Find:

(a) The expected time until the first substitution.

(b) The distribution of total time the team can play in a season, given that there are
n women on the team.

Solution. (a) We may view the time until a particular player is injured as the time
until the first arrival in a Poisson process of rate A. Since each player is independent,
and since we have 8 players, we have 8 independent Poisson processes of rate A. Thus,
we may view the time until any player is injured as the time until the first arrival in a
merged Poisson process, which has rate 8\. The expected time until the first arrival is
therefore

1
8-\
(b) The time until a next injury is exponential with rate 8\. The time T until a game

is forfeited is the time until there are 7 players left, i.e., the time until there are n — 7
injuries. This time has an Erlang distribution of order n — 7 and parameter 8\. Thus,

B (SA)n—7t(n—7)—le—8At
) = =Gy

t>0.
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Problem 13. A certain police officer stops cars for speeding. The number of red
sports cars she stops in one hour is a Poisson process with rate 4, while the number of
other cars she stops is a Poisson process with rate 1. Assume that these two processes
are independent of each other. Find the probability that this police officer stops at
least 2 ordinary cars before she stops 3 red sports cars.

Solution. The process of stopping cars is a Poisson process, obtained by merging
two independent Poisson processes Each time the police officer stops a car, there is a
4/(2 4 4) = 2/3 probability that it will be a red sports car. Therefore the probability
she stops at least 2 ordinary cars before stopping 2 sports cars is

1—P(she stops 3 sports cars before stopping 2 other cars)

SRORGIOR
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Problem 14. Consider two independent Poisson processes, with arrival rates a and
(3, respectively. Determine:

(a) The probability ¢ that the next three arrivals come from the same process.

(b) The PMF of N, the number of arrivals from the first process that occur before
the fourth arrival from the second process.

Solution. (a) Whenever an arrival occurs, it comes from the first Poisson process with
probability a/(a+ ), and this is independent from one arrival to the next. Therefore,
the probability that all three arrivals come from the same process is equal to

(ﬁ):(aiﬂ)?”

(b) The probability that N = n is the probability that out of the first n + 3 arrivals,
there were exactly n coming from the first process and that the (n + 4)th arrival was
from process 2. Thus,

_(n+3 1] * «@ " _
pN(Tl)—( 3 )(a—l—ﬁ) <o¢—|—ﬁ) R n=20,1,...

20



Problem 15. Suppose the waiting time until the next bus at a particular bus stop is
exponentially distributed with parameter A = 1/15. Suppose that a bus pulls out just
as you arrive at the stop. Find the probability that:

(a) You wait more than 15 minutes for a bus.
(b) You wait between 15 and 30 minutes for a bus.

C at are the probabilities in (a) an assuming the bus left 5 minutes before
Wh h babilities i d (b i he bus left 5 mi befi
you arrive?

Solution. (a) The probability that you wait more than 15 minutes is

/ iefa:/lf) do = _671/15
15 15

oo
=€

15

(b) The probability that you wait between 15 and 30 minutes is

30

1 B 30
/ e z/15 dr = —e x/15 _
15 15 15

(¢) The same as in (a) and (b), because of the memoryless property.
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Problem 16. A phone at a telephone exchange rings according to a Poisson process
of rate A. If 3 calls arrive in the first ninety minutes, find:

(a) The probability that all 3 calls arrived in the first 30 minutes.
(b) The probability that at least one arrived in the first 30 minutes.

Solution. (a) The arrival time of each of the three calls is uniformly distributed in the
interval of 90 minutes (see Problem 16 in Chapter 5 of the text). Furthermore, the three
arrival times are independent of each other. This follows intuitively from the definition
of the Poisson process: given that there was an arrival at some particular time, this
gives us no information on what may have happened at other times. Therefore the
probability that all three occur within the first 30 minutes is: (1/3)* = 1/27.

(b) The probability that at least one ocurs in the first 30 minutes is, by the same
reasoning as above, 1 — (8/27) = 19/27.
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Problem 17. The time to finish a problem set is exponentially distributed with
parameter A = 1/2.

(a) Find the probability that a particular problem set takes more than 2 hours to
finish.

(b) Given that you have been working on a problem set already for 7 hours, find
the probability that this problem set will take more than 9 hours total (i.e., two
hours more).

Solution. (a) This probability is

~1
/ —e " dr=1—¢".
2 2

(b) Using the memorylessness property of the exponential distribution, we see that the
conditional probability that the problem set will take more than 9 hours given that it
has already taken 7, is just the answer to part (a).
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Problem 18. Based on your understanding of the Poisson process, determine the
numerical values of a and b in the following expression and explain your reasoning.

0 \6,.5,—AT b ()\t)ke—,\t
/t D Dy e
k=a

Solution. The left-hand side is the probability that an Erlang random variable of order
6 and rate A is larger than ¢, i.e., the probability of at most 5 arrivals over an interval
of length t. The right-hand side is the probability that the number of arrivals in a
Poisson process with rate A, over an interval of length ¢, is between a and b (inclusive).
Thus, a =0 and b = 5.
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Problem 19. [D] A woman is seated beside a conveyor belt, and her job is to remove
certain items from the belt. She has a narrow line of vision and can get these items only
when they are right in front of her. She has noted that the probability that exactly &
of her items will arrive in a minute is given by
ok =2
pK(k):%7 k:071727"'7

and she assumes that the arrivals of her items constitute a Poisson process.

(a) If she wishes to sneak out to have a beer but will not allow the expected value
of the number of items she misses to be greater than 5, how much time may she
take?

(b) If she leaves for two minutes, what is the probability that she will miss exactly
two items the first minute and exactly one item the second minute?

(c) If she leaves for two minutes, what is the probability that she will miss a total of
exactly three items?

(d) The union has installed a bell which rings once a minute with precisely one-
minute intervals between gongs. If, between two successive gongs, more than
three items come along the belt, she will handle only three of them properly and
will destroy the rest. Under this system, what is the expected fraction of items
that will be destroyed?

Solution. (a) Item arrivals are a Poisson process with parameter A = 2 per minute.
The expected number of arrivals in ¢ minutes is equal to 2¢. For that number to be no
larger than 5, we need t < 2.5.

(b) Using independence of the arrivals in different one-minute intervals, the desired
probability is equal to
2%

2

pr(2)pr (1) =

(¢) The number of arrivals in a two-minute interval has a Poisson PMF with parameter
2\ = 4. Therefore, the probability of 3 arrivals in 2 minutes is

434
3

(d) The expected number of processed items in a one-minute interval is equal to

pr(1) +2px(2) + 3(px (3) + pr(4) +---)
=px (1) +2pk(2) + 3 — 3pk (0) — 3px (1) — 3pxk (2)
=3 —3px(0) — 2px (1) — px(2)
=3-9¢ %

Therefore, the expected number of unprocessed items is equal to
A=3+9e =09~ 1.

Since A = 2, this represents a fraction (9¢™2 — 1)/2 of the total.
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Problem 20. [D] Arrivals of certain events at points in time are known to constitute
a Poisson process, but it is not known which of two possible values of A, the average
arrival rate, describes the process. Our a priori estimate is that A = 2 or A = 4 with
equal probability. We observe the process for ¢ units of time and observe exactly k
arrivals. Given this information, determine the conditional probability that A = 2.
Check to see whether or not your answer is reasonable for some simple limiting values
for k and t.

Solution. We have a Poisson process with an average arrival rate A which is equally
likely to be either 2 or 4. Thus,

We observe the process for ¢ time units and observe k arrivals. The conditional prob-
ability that A = 2 is, by definition

P(X =2 and k arrivals in time t)
P(k arrivals in time ¢)

P(A = 2]k arrivals in time ¢) =

Now, we know that

P()\ =2 and k arrivals in time t) = P(k arrivals in time ¢ | A = 2) - P(\ = 2)

_@pfe 1
k! 2"
Similarly,
P(A =2 and k arrivals in time ¢) = (475)1127?7415 . i
Thus,

(2t)Fe?t ( 1)

k! 2

P(A =2 | k arrivals in time t) =

(2t)ke=?t /1 (4t)ke=t /1
TR (5) e (5)
(Zt)k672t
- (Zt)ke—2t+(4t)ke—4t
B 1
T 14 2Ke2T"

To check whether this answer is reasonable, suppose t is large and k = 2t (observed
arrival rate equals 2). Then, P(A = 2|k arrivals in time ¢) approaches 1 as t goes to
oo. Similarly, if ¢ is large and k = 4¢ (observed arrival rate equals 4), then, P(A =
2| k arrivals in time ¢) approaches 0 as ¢ goes to co.
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Problem 21. [D] Let Ki,, Ko, ... be independent identically distributed geometric
random variables. Random variable R; is defined by

Ri:zi:Ki, i=1,2,....
j=1

If we eliminate arrivals number R, R2,... in a Poisson process, do the remaining
arrivals constitute a Poisson process?

Solution. We can think of the R; as the trial numbers at which a Bernoulli process
registers a success. Eliminating arrivals numbered R; is the same as using independent
Bernoulli trials to decide which arrivals are to be eliminated. As discussed in the text,
the resulting process is Poisson.
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Problem 22. Determine, in an efficient manner (without using integration by parts),
the fourth moment of a continuous random variable described by the probability density
function

43{1726_42

5 , z > 0.

fx(z)

Solution. We have

< 304 6! 40 6!
E(X") = * dv= [ ———dx= dz = :
S /O v Ix(@)de /0 2 W 44-2/0 o T a2

To see that the integral in the final step evaluates to 1, notice that the integrand
corresponds to an Erlang PDF of order seven.
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Problem 23. A room has two lamps that use bulbs of type A and B, respectively.
The lifetime, X, of any particular bulb of a particular type is a random variable,
independent of everything else, with the following PDF:

“r ifx>0
for type-A Bulbs: =qc 5 Bo="
or pe ulbs: fx(2) {0, otherwise;

3e7%", ifz >0
for type-B Bulbs: = ’ =
or ype ulbs: fx (x) {0, otherwise.

Both lamps are lit at time zero. Whenever a bulb is burned out it is immediately
replaced by a new bulb.

(a) What is the expected value of the number of type-B bulb failures until time ¢?
(b) What is the PDF of the time until the first failure of either bulb type?

(c) Find the expected value and variance of the time until the third failure of a
type-B bulb.

(d) Suppose that a type-A bulb has just failed. How long do we expect to wait until
a subsequent type-B bulb failure?
Solution. (a) This is the expected number of “arrivals” in a Poisson process with
parameter 3, and is equal to 3t.

(b) The process of bulb failures of either bulb type is obtained by merging two Poisson
processes. It is therefore Poisson with parameter 1 + 3 = 4. The time until the first
failure of either bulb type is exponentially distributed with parameter 4 and its PDF
is

4e™ t>0.

(¢) The time until the third failure of a type-B bulb is an Erlang random variable of
order 3, with parameter 3. Therefore, its mean and variance is equal to 1 and 1/3,
respectively.

(d) Using the fresh-start property, the time until the first subsequent type-B bulb
failure is exponentially distributed with parameter 3, and its expected value is 1/3.
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Problem 24. [D] Dave is taking a multiple-choice exam. You may assume that the
number of questions is infinite. Simultaneously, but independently, his conscious and
subconscious faculties are generating answers for him, each in a Poisson manner. (His
conscious and subconscious are always working on different questions.) Conscious re-
sponses are generated at a rate of \. responses per minute. Subconscious responses are
generated at a rate of \s responses per minute. Each conscious response is an indepen-
dent Bernoulli trial with probability p. of being correct. Similarly, each subconscious
response is an independent Bernoulli trial with probability ps of being correct. Dave
responds only once to each question, and you can assume that his time for recording
these conscious and subconscious responses is negligible.

(a) Determine px(k), the probability mass function for the number of conscious
responses Dave makes in an interval of ¢ minutes.

(b) If we pick any question to which Dave has responded, what is the probability
that his answer to that question:

(i) Represents a conscious response.
(ii) Represents a conscious correct response.

(c) If we pick an interval of ¢t minutes, what is the probability that in that inter-
val Dave will make exactly r conscious responses and exactly s subconscious
responses?

(d) Determine the transform for the probability density function for random variable
X, where X is the time from the start of the exam until Dave makes his first
conscious response which is preceded by at least one subconscious response.

(e) Determine the probability mass function for the total number of responses up to
and including his third conscious response.

(f) The papers are to be collected as soon as Dave has completed exactly n responses.
Determine:

(i) The expected number of questions he will answer correctly

(ii) The probability mass function for L, the number of questions he answers
correctly.

(g) Repeat part (f) for the case in which the exam papers are to be collected at the
end of a fixed interval of ¢ minutes.
Solution. (a) The random variable K has a Poisson PMF with parameter Act. There-
fore, for t > 0,
()\Ct)k e Aet

pr(k) = ——g—— k=0,12,....

(b) We have

: A
P(conscious response) = ﬁ7

P (conscious correct response) = P(conscious resp) - P(correct resp | conscious resp)

J— AC
Tt
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(c) Since the two conscious and subconscious responses are generated independently,
we have
P(r conscious responses and s subconscious responses)

= P(r conscious responses ) - P(s unconscious responses)

()\ct)re_’\ct ()\st)se_kst
r! ‘ s! ’

(d) Let X be the time from the start of the exam to the time of the first subconscious
response, and X, be the time from the first subconscious response to the time of the
next conscious response. Then X = X + X, and

Mx(s) = Mx,(s) - Mx,(s) = (A:\i s) (%) '

(e) Let “success” indicate a conscious response and “failure” indicate a subconscious
response. Then

P( success) = \ )J\:)\ ,  P( failure) = /\)\ﬁ

The total number of responses N up to and including the third success is the time until
the third arrival in a Bernoulli process, and is described by a Pascal PMF, so that

n—1 e 3 s n—3
pN(")( 2 )(AC+A5) (AC+AS) =R

(f) The probability p that a particular question is answered correctly is

PE N T

The expected number of questions answered correctly is np. Each question answered

can be viewed as an independent Bernoulli trial, with probability p of being successful.
Thus, the probability of [ correct answers is

0=(1) R+ ) (- (s o)
pry =) et P PRIV VI W ’

forl =0,1,...,n.

(g) Correct answers arrive as a Poisson process with rate Acpe + Asps. Therefore, the
expected number of correct answers is (Aepe + Asps)t, and the probability of [ correct

answers is L
At)'e”
pL(l):‘( )zf , 1=0,1,...,

where A = Aepe + Asps.
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Problem 25. There are two types of calls to the MIT Campus Patrol. Type A calls
(distress calls) arrive as a Poisson process with rate As. Type B calls (professors who
have lost their keys) arrive as an independent Poisson process with rate Ap. Let us fix
t to be 12 o’clock.

(a) What is the expected length of the interval that ¢ belongs to? (That is, the
interval from the last event before ¢ until the first event after ¢.)

(b) What is the probability that ¢ belongs to an AA interval? (That is, the first
event before, as well as the first event after time ¢ are both of type A.)

(c) Let ¢ be a constant. What is the probability that between t and ¢ + ¢, we have
exactly two events, one of type A, followed by one of type B?

Solution. (a) Events arrive as a Poisson process with rate A = A4 +Ag. The expected
time until the next event is 1/, and by looking at the process backwards (and noting
that a Poisson process run backwards is also Poisson), the expected time since the last
event is also 1/X. Thus, the answer is 2/).

(b) Each event is of type A independent of any other event, and with probability Aa/A.
Thus, the answer is A4 /A%

(c) This is the probability that there are exactly two arrivals in a Poisson process with
rate A, which is e=*¢(\c)?/2, times the probability AaAz/A? that the arrivals are of
the specified types.

32



Problem 26. [D] The interarrival times for cars passing a checkpoint are independent
random variables with PDF

fot) = {Qth, t>0,

0, otherwise,

where the interarrival times are measured in minutes. The successive values of the du-
rations of these interarrival times are recorded on small computer cards. The recording
operation occupies a negligible time period following each arrival. Each card has space
for three entries. As soon as a card is filled, it is replaced by the next card.

(a) Determine the mean and the third moment of the interarrival times.

(b) Given that no car has arrived in the last four minutes, determine the PMF for
random variable K, the number of cars to arrive in the next six minutes.

(c) Determine the PDF, the expected value, and the transform for the total time
required to use up the first dozen computer cards.

(d) Consider the following two experiments:

(i) Pick a card at random from a group of completed cards and note the total
time, U, the card was in service. Find E[U] and o7 .

(ii) Come to the corner at a certain time. When the card in use at the time
of your arrival is completed, note the total time it was in service (the time
from the start of its service to its completion). Call this time V. Determine
E[V] and o

(e) Given that the computer card presently in use contains exactly two entries and
also that it has been in service for exactly 0.5 minute, determine the PDF for the
remaining time until the card is completed.

Solution. (a) An interarrival time 7 is an exponential random variable with parameter
A = 2. Therefore, E[T] =1/X =1/2, and

RPN 2.3) [ 243 % 3
E[T?] :/ 2e 2t = { / dt = <.
) 2 ) 3! 4

The last equality was obtained because the integrand is an Erlang PDF of order 4, and
therefore this integral is equal to 1.

(b) The Poisson process is memoryless, and thus the history of events in the previous
4 minutes does not affect px (k). So, the number of arrivals in the next 6 minutes
corresponds to the number of arrivals in a Poisson process with rate A = 2,and

(12)’66712

prc(k) ==, k=0,12...

(c) Let D denote the total time to use up the first dozen computer cards, so that
D=X1+Xo+ X3+ + Xz,

where the X; are independent exponentially distributed random variables with param-
eter A = 2. Therefore D has an Erlang PDF of order 36, and

_ @%@ _ _ _(-2)"
fold) = "=—c5——, d20, E[D]=36E[Ni] =18  Mp(s) = (8+2) :
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(d)(i) Choosing a card at random is the same as choosing some integer N and recording
the sum of the interarrival times of cars N, N + 1, N + 2. The selection of N is
independent of the interarrival times of the various cars. Therefore, the conditional
distribution of the sum of these interarrival times is the same for every value n of NV,
and is an Erlang PDF of order 3. It follows that the expected value is 3/\ = 3/2 and
the variance is 3/\% = 3/4.

(d)(ii) For the particular card that was picked, let So be the time that this card started
service, and let S1, S2, S3 be the arrival times within the service operation, with service
ending at time Ss3. Let ¢t be the time that you arrived to observe the process.

Suppose that So < t < Si. Then, the service time of a card can be split into
intervals of length t—So, S1—t, S2—51, S3—S51. The length of each one of these intervals
is an independent exponentially distributed random variable. (See the discussion of
random incidence in Section 5.3, and Problem 24 in the text.) Therefore, the service
time S3 — Sp has an Erlang PDF of order 4. For the other possible cases, i.e., Sp <
S1 < t< Sy < S3and Sp < S1 < S2 <t < Ss, the same conclusion is reached. it
follows that the mean of S3 — So is 4/A = 4/2 = 2 and its variance is 4/A* = 1.

(e) The Poisson process is memoryless so any event during some interval of time is
independent of all events within a previous non-overlapping interval of time. Therefore,
the remaining time until the next arrival (which is also the time that the card is
completed) is still described by the same exponential PDF, 2¢~2t for t > 0.
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Problem 27.

(a) Shuttles depart from New York to Boston every hour on the hour. Passengers
arrive according to a Poisson process of rate A per hour. Find the expected
number of passengers on a shuttle. (Ignore issues of limited seating.)

(b) Now, and for the rest of this problem, suppose that the shuttles are not op-
erating on a deterministic schedule, but rather their interdeparture times are
exponentially distributed with rate u per hour, and independent of the process
of passenger arrivals. Find the PMF of the number shuttle departures in one
hour.

(c) Let us define an “event” in the airport to be either the arrival of a passenger, or
the departure of a plane. Find the expected number of “events” that occur in
one hour.

(d) If a passenger arrives at the gate, and sees 2\ people waiting, find his/her ex-
pected time to wait until the next shuttle.

(e) Find the PMF of the number of people on a shuttle.

Solution. (a) The number of people that arrive within an hour is Poisson-distributed
with parameter A, and its expected value is A.

(b) If the interarrival times for the shuttles are exponentially distributed, then shuttle
departures form a Poisson process of rate p. Thus, the number of departures in one
hour has a Poisson PMF with parameter pu.

(c) Here, we are merging two independent Poisson processes, which results in a Poisson
process of rate p + A. Therefore, the expected number of “events” occurring in one
hour will be p + A.

(d) The number of people waiting conveys some information on the time since the
last departure. On the other hand, because of memorylessness of the exponential
distribution, this number is independent from the time until the next departure. Thus,
the expected waiting time is just 1/u, irrespective of how many people are waiting.

(e) This is essentially the same problem as Problem 21 in the text. Every event at the
airport has probability A/(A+u) of being a passenger arrival (“failure”) and probability
/(A + p) of being a shuttle departure (“success”). Furthermore, different events are
independent. The number of passengers on a shuttle is the number of failures until the
first success and is distributed as K — 1, where K is a geometric random variable with
parameter p/(A + p). Thus, the PMF of the number of people on the shuttle is

A i m
— — ), k=0,1,...
</\+u> </\+u>
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Problem 28. Type A, B, and C items are placed in a common buffer, each type arriv-
ing as part of an independent Poisson process with average arrival rates, respectively,
of a, b, and c items per minute.

For the first four parts of this problem, assume the buffer is discharged immedi-
ately whenever it contains a total of ten items.

(a) What is the probability that, of the first ten items to arrive at the buffer, only
the first and one other are type A?

(b) What is the probability that any particular discharge of the buffer contains five
times as many type A items as type B items?

(c) Determine the PDF, expectation, and variance of the total time between consec-
utive discharges of the buffer.

(d) Determine the probability that during a particular five minute interval there
exactly two arrivals of each type.

For the rest of this problem, a different rule is used for discharging the buffer:
namely, the buffer is discharged immediately whenever it contains a total of three type
A items.

(e) Determine the PDF, expectation, and variance of the total time between consec-
utive discharges of the buffer.

(f) For an observer arriving at a random time, long after the process began, obtain
the PDFs of:

(i) U, the time until the arrival of the next item at the buffer input
(ii) V, the time until the next discharge of the buffer

Solution. (a) The three independent Poisson processes can be merged into one Poisson
process with an arrival rate of a + b + ¢ items per minute. Any arrival in the merged
process has probability P(A) = a/(a + b + ¢) of coming from process A, independently
of other arrivals. Thus, for each arrival we have an independent Bernoulli trial that
determines whether it is type A or not. Hence the probability that the first item is
type A, and exactly one of the next items is type A, is

P(A) (f)P(A)(l ~P(A) = (?)P(A)Q(l ~P(4)*,

(b) The are two ways for there to be 5 times as many type A items as type B items.
One possibility is that there are 5 type A items, 1 type B item, and 4 type C items.
The probability of this event is

10!
501141

P(A)"P(B)P(C)",

where
a b c

_— PB)= —— P(C)= ——.
a+b+c’ (B) a+b+c’ ©) a+b+c

The other possibility is that there are 0 type A items, 0 type B items, and 10 type C
items. The probability of this event is P(C)'°. The desired probability is obtained by
adding the probabilities of the two possibilities.

P(A) =

36



(c) The total time between consecutive discharges is an Erlang random variable of order
10 and parameter a + b + ¢, with PDF

(a +b+ C)IOth—(a+b+c)t
9!

pT(t) = 5 t 2 0.

The mean and variance are E[T] = 10/(a + b+ ¢) and var(T) = 10/(a + b + c)? re-
spectively.

(d) The probability of exactly two arrivals of type A in 5 minutes is found from the
Poisson PMF and is (5a)?e™°7/2, and similarly for the other types. Since the different
types correspond to independent Poisson processes, the probability of interest is the
product

(5a)%e5*  (5b)%e™® (5¢)%e™%¢  (125abc)’e~P(atbte)

2 2 2 8
(e) The total time between consecutive discharges is an Erlang random variable of order
3 and parameter a, with PDF

3,2 —at
a“t’e
T 120

The mean and variance are 3/a and 3/ a?, respectively.

(f)(i) Since the arrival of items is a Poisson process, the PDF for the time until the
next arrival is an exponential PDF with parameter a + b + ¢. Hence,

pu(u) = (a+ b+ c)e” arbron u > 0.

(f)(ii) There is an equal probability that the observer arrives before the first arrival
of a type A item, between the first and second arrivals of type A items, or between
the second and third arrivals of type A items. We thus use the “divide and conquer”
strategy.

If the observation is made before the first type A arrival, then V is a third order
Erlang random variable with parameter a. If the observation is made between the first
and second type A arrivals, then V is a second order Erlang random variable with
parameter a. If the observation is made after the second type A arrival, then V is an
exponential random variable with parameter a. Thus,

_ 1a®v?e™ ™ 1 5 _aw
= — + —a“ve

1 _
3o T3 —|—§ae o, v > 0.

pv(v)
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Problem 29. Let 71,7 (respectively, S) be exponential random variables with
parameter A (respectively, u). We assume that all three of these random variables are
independent. Derive an expression for the expected value of min{7T; + 1>, S}.

Solution. We view the random variables 717, T, and S as interarrival times in two
independent Poisson processes with rates A and u, respectively. We are interested in
the expected value of the time Z until either the first process has had two arrivals or
the second process has had an arrival.

The expected time until the first arrival is 1/(A + p). With probability g/ (A + )
this arrival comes from the second process and we are done. If it comes from the first
process, we have to wait until an arrival from either process. The expected additional
waiting time is 1/(\ + p). Using the total expectation theorem, we obtain

_ 1A 1
Tt Atp Ap

E[Z]
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Problem 30. Let Y be exponentially distributed with parameter A\;. Let Z; be
Erlang of order k. with parameter A2. Assume that Y and Z; are independent. Let
My, = max{Y, Zx}. Find a recursive formula for E[M}], in terms of E[My_1].

Solution. We proceed as in Problem 17 in the text. Consider two independent Poisson
processes with rates A1 and A2, respectively. We interpret Y as the first arrival time
in the first process and Zi as the kth arrival time in the second process. Let T be the
first time at which one of the processes registers an arrival. Since the merged process is
Poisson with rate A1 + A2, we have E[T] = 1/(A1+ A2). There are two cases to consider.

(i) The arrival at time T' comes from the first process; this happens with probability
A1/(A1+ A2). In this case, we have to wait an additional time S until the second
process registers k arrivals. This additional time S is Erlang of order k, with
parameter A2, and its expected value is k/As.

(ii) The arrival at time 7" comes from the second process; this happens with probabil-
ity A2/(A1 4+ A2) = 1/3. In this case, the additional time S we have to wait is the
time until the first process registers an arrival and the second process registers
k — 1 arrivals. Thus, E[S] = E[M}_1]. Putting everything together, we have

D N S
AFA2 o A+ A A A+ A

Emax{Y, Z}] = “E[Mj-1],

which is the desired recursion.
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Problem 31. Consider the random variable Z = X — Y, where X and Y are
independent and exponentially distributed with parameter .

(a) Find the PDF of Z by conditioning on the events {X < Y} and {X > Y}, and
using an interpretation in terms of Poisson arrivals.

(b) Repeat part (a) for the case where X and Y are independent and exponentially
distributed, but with different parameters Ax and Ay.

Solution. (a) We interpret X and Y as the first arrival times in two independent
Poisson processes with the same rate A\. Let Z =Y — X. With probability 1/2, the
first process has the first arrival (X < Y). Then, Y — X is the remaining time until
the second process registers an arrival. By the fresh-start property, Z =Y — X has an
exponential distribution:

frixevy(z) =e 7, z>0.

By a symmetrical argument, with probability 1/2, the first arrival comes from the
second process and —Z = X — Y has an exponential distribution:

fZ|{X2Y}(Z) = e>‘z7 2z <0.

Thus,

f2(2) = P(X <Y) fz1ix<v1(2) + P(X > Y) friix<vy(2) = %ewzy

(b) For the general case of different parameters, the argument is similar, except that
P(X ZY) =Ax/(Ax + Av).

Furthermore, conditioned on X <Y, Z is exponential with parameter \y; conditioned
on Y < X, Z is the negative of an exponential with parameter Ax. It follows that

)‘Y —Axz
— X >0
Ax + Ay xe b E=D
fz(z) = \
X Ay z
— A Y 0.
Ax + Ay ve o 7<
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Problem 32. [D] Al makes cigars, placing each cigar on a constant-velocity conveyor
belt as soon as it is finished. Bo packs the cigars into boxes of four cigars each, placing
each box back on the belt as soon as it is filled. The time Al takes to construct any
particular cigar is, believe it or not, an independent exponential random variable with
an expected value of five minutes.

(a) Let K be the number of cigars that Al makes in ¢ minutes. Determine P4 (k,t),
the probability that Al makes exactly k cigars in ¢ minutes. Determine the mean
and variance of K as a function of ¢.

(b) Determine the probability density function fr(t), where T is the interarrival time
(measured in minutes) between placing successive cigars on the conveyor belt.

(¢) Determine Pg(r,t), the probability that Bo places exactly r boxes of cigars back
on the belt during an interval of ¢ minutes.

(d) Determine the probability density function fs(s) where S is the interarrival time
(measured in minutes) between placing successive boxes of cigars on the conveyor
belt.

(e) If we arrive at a certain point in time, long after the process began, determine
the PDF fgr(r), where R is the duration of our wait until we see a box of cigars.

Solution. Let V be the time to construct any particular cigar. Since the times
to construct a cigar are independent and exponentially distributed, we have a Poisson
process with rate A = 1/E[V] = 0.2.

(a) We have, for any ¢ > 0,

k —0.2t
Pa(k,t) = %, k=0,1,....

Also,

E[K]=M=02t, ok =X =02t

(b) The random variable T is the interarrival time in a Poisson process and is thus
exponentially distributed:

fr(t) =022 r>0.

(c) Let A; be the event Bo has ¢ cigars at the start of the ¢-minute period. We have,
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for any ¢t > 0,
Pg(r,t) = P(Bo packs r boxes in ¢ minutes)
3
= Z P(A;)P(Bo packs r boxes in ¢ minutes | 4;)
i=0

3
= Z P(A;)P(Bo receives between 4r — ¢ and 4r — i + 3 cigars, inclusive)

=0
3 4r—i+3

=3 P(A) Y Pa(kT)
1=0 k=4r—q

_ %(PA(ALT —3,T) + 2Pa(4r — 2,T) + 3Pa(4r — 1,T) + 4Pa(4r, T)

+3Pa(4r +1,T) +2Ps(4r +2,7) +PA(4r+3,T)), r=0,1,....

(d) The interarrival time for boxes is the same as the time until the fourth arrival of a
cigar, and has an Erlang PDF of order 4, with parameter 0.2:

(0.2)4836_0'25

fs(s) = 30 ,  s2>0.
(e) Using the events A; defined in part (c), we have
3 3
Fr(r) = P(A)fra, (r| A) = > P(A) fry_, (o),
i=0 i=0

where Ya_; has an Erlang PDF of order 4 — ¢ and parameter A = 0.2. Thus,

4,3 —0.2r 3,2 —0.2r 2, —0.2r
Fa(r) = 1 ((0.2) r’e n (0.2)°r%e n (0.2)re

—0.2r
4 3! 2! 1 +(02)e ) 720
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Problem 33. [D] All ships travel at the same speed through a wide canal. Eastbound
ships arrive as a Poisson process with an arrival rate of Ag ships per day. Westbound
ships arrive as an independent Poisson process with an arrival rate of Ay ships per
day. An indicator at a point in the canal is always pointing in the direction of travel
of the most recent ship to pass. Each ship takes ¢ days to traverse the canal.

(a) What is the probability that the next ship passing by the indicator causes it to
change its direction?

(b) What is the probability that an eastbound ship will see no westbound ships
during its eastward journey through the canal?

(c) If we begin observing at an arbitrary time, determine the probability mass func-
tion of the total number of ships we observe up to and including the seventh
eastbound ship we see.

(d) If we begin observing at an arbitrary time, determine the PDF of the time until
we see the seventh eastbound ship.

(e) Given that the pointer is pointing west:
(i) What is the probability that the next ship to pass it will be westbound?
(i) What is the PDF of the remaining time until the pointer changes direction?

Solution. (a) This is the probability that a westbound ship passed last (making the
indicator point west) times the probability an eastbound ship will pass next, plus the
probability an eastbound ship passed last (making the indicator point east) times the
probability a westbound ship is next, and is equal to

() G) (i) ) =2 on
A +Aw/ \AE + Aw Ae+Adw/ A +Adw/ T (As+Aw)?’

(b) Suppose that an eastbound ship enters the canal at time to. This ship will meet
any westbound ship that entered the canal between times to — ¢t and to + t. Thus, the
desired probability is the probability that there are no westbound ship arrivals during
an interval of length 2t, and using the Poisson PMF, it is equal to

w2t
e "W

(c) We view each ship arrival as an independent trial, and each eastbound ship as a
success. Each trial is a success with probability

p=Ae/(AE + Aw).

We are interested in the PMF of the number of trials until the seventh success. This
is a Pascal PMF of order seven, with parameter p, of the form

(kgl>p7(1p)k7’ k:7’87"'

(d) The time until we see the seventh eastbound ship is an Erlang random variable of
order 7, with parameter Ag, of the form
)\EtGekat

T t>0.
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(e) (i) The direction of the next ship does not depend on the previous ships. Therefore,
this is just the probability Aw /(Ag + Aw ) that the next ship is westbound.

(ii) The pointer will change directions on the next arrival of an eastbound ship. The
time until an eastbound ship arrives is an exponential random variable with parameter

Mg, and its PDF is
Ape Bt t>0.
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Problem 34. We are given the following statistics about the number of children in a
typical family in a small village. There are 100 families. 10 families have no children,
40 have 1, 30 have 2, 10 have 3, 10 have 4.

(a) If you pick a family at random, what is the expected number of children in that
family?

(b) If you pick a child at random (each child is equally likely), what is the expected
number of children in that child’s family (including the picked child)?

(¢) Generalize your approach from part (b) to the case where a fraction py of the
families has k children, and provide a formula.

Solution. (a) Let K be the number of children in a randomly selected family. We
have

10 40 30 10 10 17
EK]=— 04— 14+ — 24+ — 34— -4=_"
K1= 156 " 100 "' * 700 2+ 700 2T 100 10

(b) A child picked at random is more likely to be in a large family than a small one. So,
the probability law for the number of children in the family that includes the randomly
selected child must place more weight on larger families. This objective is accomplished
by weighting the probability law for the number of children in a randomly selected
family by the number of children in the family. Let W be the number of children in
the family of the randomly selected child. The PMF of W must be proportional to
wpr (w). For the PMF to sum to 1, we need to normalize by dividing by > wpk (w),
which is the same as E[W]. Therefore,

_ pr(w)
and
1-(4/10) 4 _
o 1 YT
2-(3/10) 6 B
T 1 YT
pw(w)=< 3-1/10 3
= 75 w = 37
17/10 ~ 17
4.1/10 4
o i T
0, otherwise.

Using this probability law, we can calculate the expected number of children in the
family of the randomly selected child as



(c) Generalizing from part (b), we have

E(W] = prw(w)
wpK
- Z E[K
_ kpx (k)
= ; k- BIK]

_ E[K7]
~ E[K]’

where the third equality is obtained by observing that w is just a “dummy variable”
that runs through the same values as k.
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Problem 35. Consider a Poisson process of rate A\. Let N be the number of arrivals
in (0,¢], and let M be the number of arrivals in [0, ¢ + s].

(a) Find the joint PMF of N and M.
(b) Find E[NM].

Solution. (a) The event {M = m, N = n} occurs when {N = n} and {M — N =
m—n}. That is, from [0, ] there have to be n arrivals, and after ¢ but prior to t+s there
have to be m — n arrivals. Since the interval [0, ¢] is disjoint from the interval (¢, ¢+ s],
the numbers of arrivals in each are independent and have a Poisson distribution with
rate A. Symbolically,

()\t)”e_)‘t:| [(/\s)m "e _)‘S]

pn.m(n,m) = py(n)pu iy (m|n) = [ ] m =)l

(b) We rewrite E[NM] as

E[NM] =E[N(M — N) + N?]
= E[N]E[M — N] + E[N?]

Mt

At

As) + [Var(N) + E[N]Q]

= (A0)(
= (A)(As) + At + (A1)

where the second equality is obtained using the independence of N and N — M.
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