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1



SECTION 7.1. Some Useful Inequalities

Problem 1. Let X be a random variable and let « be a positive constant. Show that

P(\X|26)§M, for all ¢ > 0.

C(X

Solution. We have

E[x]"]

CQ

P(IX|>c) =P(|X]" > %) <

I

where the last inequality is the Markov inequality applied to the random variable | X|<.



Problem 2.

(a) Given the information E[X] = 7 and var(X) = 9, use the Chebyshev inequality
to find a lower bound for the probability P(4 < X < 10).

(b) Find the smallest and the largest possible values of the probability P(4 < X <
10), given the mean and variance information from part (a).

Solution. (a) The Chebyshev inequality yields P(|X — 7| > 3) < 9/3% = 1, which
implies the uninformative bound P(4 < X < 10) > 0.

(b) We will show that P(4 < X < 10) can be as small as 0, and can be made arbitrarily
close to 1.

Consider a random variable that equals 4 with probability 1/2, and 10 with
probability 1/2. This random variable has mean 7 and variance 9, and P(4 < X <
10) = 0. Therefore, the lower bound from part (a) is the best possible.

Let us now fix a small positive number ¢ and another positive number ¢, and
consider a discrete random variable X with PMF

0.5—¢ ifz=4+F¢,
0.5—¢, ifz=10—c¢,
€, ife="7-—c,
€, ifr=7+c.

px(z) =

This random variable has a mean of 7 (by symmetry). Its variance is
(0.5—€)(3—€)> + (0.5 — €)(3 — ) + 2ec?,

anc can be made equal to 9 by suitably choosing c. For this random variable, we have
P(4 < X < 10) = 1 — 2¢, which can be made arbitrarily close to 1.

On the other hand, P(4 < X < 10) cannot be made equal to 1. Indeed, if this
probability was equal to 1, then we would have |X — 7| < 3, which would imply that
the variance is less than 9.



Problem 3. Investigate whether the Chebyshev inequality is tight. That is, for every
u, o, and ¢ > o, does there exist a random variable X with mean p and standard

deviation o such that )

P(IX —pl > ) = 557

Solution. Consider a random variable X with PMF
P, ifo=pn—c
px(z) =4 p, if v =p+e,
1-2p, ifz=p.

The mean of X is p. Its variance is 2pc?. This can be made equal to the given variance
o2 by setting p = 0?/(2¢?). For this random variable, we have

P(X—pl>c)=2p=—5

and therefore the Chebyshev inequality is tight.



Problem 4. Chernoff bound for a Poisson random variable. Let X be a
Poisson random variable with parameter A.

(a) Show that for every s > 0, we have

P(X > k) <M Demsk,

(b) Assuming that k > A, show that

- k
e "(eN)

Solution. (a) As shown in Problem 1 in Chapter 7 of the text, or by a simple appli-

cation of the Markov inequality, we have

P(X > k) < 675kE[65X] — ex(e-‘71)6—5k7

where the last equality made use of the formula for the transform associated with a
Poisson random variable.

(b) The inequality of part (a) is true for every s > 0. To find the tightest inequality, we
optimize with respect to s. By taking the derivative of the exponent, we find that the
derivative is zero when Ae® = k. Let us therefore use the bound of part (a) with the
particular choice of s that satisfies Ae® = k. Note that this value of s is positive under
the assumption that & > A. Using the substitutions Ae® = k, e~° = A\/k, we obtain the
desired bound.



SECTION 7.2. The Weak Law of Large Numbers

Problem 5. Bo assumes that X, the height in meters of any Canadian selected by
an equally likely choice among all Canadians, is a random variable with E[X] = h.
Because Bo is sure that no Canadian is taller than 3 meters, he decides to use 1.5
meters as a conservative value for the standard deviation of X. To estimate h, Bo uses
the average of the heights of n Canadians he selects at random.

(a) Interms of h and Bo’s 1.5 meter bound for the standard deviation of X, determine
the expectation and standard deviation of H.

(b) Find as small a value of n as possible such that the standard deviation of Bo’s
estimator is guaranteed to be less than 0.01 meters.

(c) Bo would like to be 99% sure that his estimate is within 5 centimeters of the
true average height of Canadians. Using the Chebyshev inequality, calculate the
minimum value of n that will achieve this objective.

(d) If we agree that no Canadians are taller than three meters, why is it correct to
use 1.5 meters as an upper bound on the standard deviation for X, the height of
any Canadian selected at random?

Solution. (a) Let X; be the height of the ith selected Canadian, and let H be the
estimated height. We have H = (X1 + X2 + - - - + X,)/n, which yields

E[H] = nEn[X] —h
OH = y\/var = M:E
= et = ) 15

(b) The stated condition translates to 1.5/y/n < 0.01. We solve for n and obtain
n > 22,500.

(c) We have
P(IH-EH)>0) < (),

2
P(|H-E[H]| <t >1—<—)
(1 -Bm| <t)>1- (%
We use the values t = 0.05, og = 1.5/y/n, together with the requirement
2
1- (UTH) > 0.99,

to obtain
1.5

21

= (0.05) 0.0 — 0000
(d) The random variable X has an unknown distribution over the interval [0, 3]. The
variance of a random variable increases as its distribution becomes more spread out.
Thus, the maximal variance will be obtained if the random variable X can only take
the values 0 and 3. With such a distribution, and with p = P(X = 3), the variance
becomes E[X?] — (E[X])2 = 9p—9p®. This expression is largest when p = 1/2, yielding
a variance of 9/4 and a standard deviation of 3/2.



SECTION 7.3. Convergence in Probability

Problem 6. Let X1, Xs,... be independent, identically distributed random variables
with E[X] = 2 and var(X)=9, and let ¥; = X, /2. We also define T}, and A,, to be the
sum and the sample mean, respectively, of the random variables Y1,...,Y,.

(a) Evaluate the mean and variance of Y, T, and A,.

(b) Does Y, converge in probability? If so, to what value?
(¢) Does T, converge in probability? If so, to what value?
(d) Does A, converge in probability? If so, to what value?

Solution. (a) We have
EY,]=E[X,]-27"=2"",  var(Y,) =var(X,)-9-272" =9.47"

BT = By 4 Y] =2 050 = 20050

i=1

=2-05""",

var (A,) = var (%Tn) = (%)2var (Tn) = % (1 - (i)n) )

(b) Yes. As n increases, the expected value of Y,, approaches 0, and the variance of Y,
approaches 0. By the Chebyshev inequality, Y,, converges to 0, in probability.

(c) No. As n increases, more independent terms are being added, which increase the
variance of T), and spread out its distribution.

(d) Yes. As n increases, the expected value of A,, approaches 0, and the variance of
A,, approaches 0. By the Chebyshev inequality, A, converges to 0, in probability.



Problem 7. Suppose that a sequence X,, of random variables satisfies

lim BE[|X, -] =0,

n—oo
where « is a positive number. Show that the sequence X,, converges to c in probability.

Solution. Using the Markov inequality, we have

E[(X, —¢)?] .

EOL

P(|Xn —c| > e) = P(\Xn —* > eo‘) <
Taking the limit as n — oo, we obtain

lim P(|X, —c| >¢€) =0,

n—o0

which establishes convergence in probability.



Problem 8. Consider a Poisson process, with mean arrival rate A = 1, and let X,, be
the number of arrivals between time zero and n. Does X, /n converge in probability?

Solution. Let A; be the number of arrivals in the interval [i,% — 1). The random
variables A; are independent, identically distributed, with finite variance. We have
X, = A1+ -+ Ay, so that X,, is the sample mean of the A;. By the weak law of
large numbers, X, /n converges to zero, in probability.



Problem 9. Let X, Xo,... be independent, identically distributed random variables

with (unknown but finite) mean p and positive variance. For i = 1,2,. .., let
1 2
Yi==-Xi4+ = Xit+1.
gtz

(a) Are the random variables Y; independent?
(b) Are they identically distributed?
(c) Let

Lo
Mn:E;Yi.

Show that M,, converges to p in probability.

Solution. (a) No. For example, suppose that the X; have zero mean. Then,

E[Y.Ys] = E [(éxl + gxz) (%Xg + gxg)] — % "E[X2] £ 0 = E[V] - E[Ya].

(b) Yes, because the joint distribution of X; and X;11 is the same for all s.

(c) Note that E[M,] = u. One approach to the problem is to calculate the variance of
M,, and show that it converges to zero. Using the Chebyshev inequality, the convergence
of M,, to u follows.

A simpler approach is to note that

1 1w 2 1
Mn:§~ﬁ;Xi+§-E;Xi+1.

By the weak law of large numbers the first sum converges to n/3 and the second to 2u/3,
in probability. This readily implies that M,, converges to p, in probability. (Rigorously
speaking, this makes use of the result of Problem 4 in Chapter 7 of the text: if two
sequences of random variables converge in probability, then their sum also converges
in probability to the sum of the two limits.)
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Problem 10. Let X;, Xo,... be a sequence of independent random variables that are
uniformly distributed between 0 and 1. For every n, we let Y,, be the median of the
values of X1, Xo,..., Xont1. [That is, we order Xq,..., Xon41 in increasing order and
let Y,, be the (n 4+ 1)st element in this ordered sequence.] Show that that the sequence
Y,, converges to 1/2, in probability.

Solution. Let us fix some € > 0. We will show that P(Y,, > 0.5 + €) converges to 0.
By symmetry, this will imply that P(Y;, < 0.5 — €) also converges to zero, and it will
follow that Y, converges to 0.5, in probability.

For the event {Y, > 0.5 4 €} to occur, we must have at least n + 1 of the
random variables X1, Xs,..., Xon,+1 to have a value of 0.5 + € or larger. Let Z; be
a Bernoulli random variable which is equal to 1 if and only if X; > 0.5 4+ €. Then,
the event {Y,, > 0.5 4 €} is the same as the event (Z1 + -+ + Zant1)/(2n + 1) > 0.5.
Note that P(Z; = 1) = 0.5 — e. By the weak law of large numbers, the sequence
(Z1 + -+ + Zan+1)/(2n 4 1) converges to 0.5 — e. Therefore,

P(Z1+“'+Zzn+1

> 0.
2n+1 _05)

converges to zero, which implies that P(Y, > 0.5 + ¢) also converges to zero.
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SECTION 7.4. The Central Limit Theorem

Problem 11. Uncle Henry has been having trouble keeping his weight constant.
In fact, at the end of each week, he notices that his weight has changed by a random
amount, uniformly distributed between —0.5 and 0.5 pounds. Assuming that the weight
change during any given week is independent of the weight change of any other week,
find the probability that Uncle Henry will gain or lose more than 3 pounds in the next
50 weeks.

Solution. We will use the Central Limit Theorem to compute the required probability.
Let X; be the amount Uncle Henry gains or loses in the ith week. We have

50 50
P(in >3> = 2P (ZXi>3>
i=1 i=1
50
—2_9P <ZX §3>
=1

50
S X —50-0 —50-
:22P< i=1 <3 50 0)

ov/50 — ov/50
=2—2P(Z < 1.4697)

~ 0.1416,

where Z is a standard normal random variable.

12



Problem 12. On any given flight, an airline’s goal is to fill the plane as much as
possible, without overbooking. If, on average, 10% of customers cancel their tickets,
all independently of each other, what is the probability that a particular flight will be
overbooked if the airline sells 320 tickets, for a plane that has maximum capacity 300
people? What is the probability that a plane with maximum capacity 150 people will
be overbooked if the airline sells 160 tickets?

Solution. Let N be the number of people that show up. The flight will be overbooked
if N > 300. We can use the normal approximation to the binomial to calculate this
probability:

P(301 < N < 320) = ® (3207288> B (301 — 288

5.367 5.367 ) =1 ®(2.4181) = 0.0078.

A similar computation for the smaller plane shows that the probability that the smaller
plane will be overbooked is

151 — 144

P(151<N<1 =1-¢
(151 < NV < 160) ( 3.794

) = 0.0329.
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Problem 13. Alex puts some pennies into a piggy-bank each day. The number
of pennies added on any given day is equally likely to be 1, 2, 3, 4, 5, or 6, and is
independent from day to day. Find an approximation to the probability that it takes
at least 80 days to collect 3 dollars.

Solution. Let X,, be the number of pennies added on the nth day. We are interested in
the probability that Zfil X; < 300). Using the central limit theorem approximation,
we have

80 80
%0 X, —80-3.5 —80.3.
P ZXig?»OO _p Yo §300 80- 3.5
— \/(91/6)80 \/(91/6)80
~ P(Z < 0.5748)
~ 0.7157.
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Problem 14. Let Xi,...,X10 be independent random variables, uniformly dis-
tributed over the unit interval [0, 1].

(a) Estimate P(X1 + --- 4+ X109 > 7) using the Markov inequality.
(b) Repeat part (a) using the Chebyshev inequality.
(¢) Repeat part (a) using the central limit theorem.

Solution. (a) To use the Markov inequality, let X = 2221 X;. Then,
E[X] = 10E[X,] = 5,
and the Markov inequality yields

P(X >7) <2 =0.7142.

| ot

(b) Using the Chebychev inequality, we find that

P(x>7) < —L3 o076

~1/3+4

(c) Finally, using the Central Limit Theorem, we find that

10 10
P (ZX»'?) =1-P (ZXZ-<7>
i=1 i=1

—1_-P Z;ilXi75 < 7-5
£/10/3 T 4/10/3

= 0.1379.
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Problem 15. Let S, be the number of successes in n independent Bernoulli trials,
where the probability of success in each trial is p = 1/2. Provide a numerical value for
the limit as n tends to infinity for each of the following three expressions.

(a) P(2 —10< 8, < % +10).
(0) P(5— 35 < S <5+ 15).
() P(§ -9 <S8 <5 +7).

Solution. (a) The central limit theorem suggests that

n n 20 20
P(2-10<S,<2410)nd (2 )-a(-=2),
(3-10<s.<5+10) (\/ﬁ) < \/ﬁ)

which converges to zero as n — co.
(b) The limit is one, by the weak law of large numbers.

(c) By the central limit theorem,
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Problem 16. The adult population of Nowhereville consists of 300 males and 196
females. Each male (respectively, female) has a probability of 0.4 (respectively, 0.5)
of casting a vote in the local elections, independently of everyone else. Find a good
numerical approximation for the probability that more males than females cast a vote.

Solution. Let M and F be the number of males and females, respectively, that cast a
vote. We need to find P(M > N), i.e., P(M — N > 0). The central limit theorem does
not apply directly to the random variable M — N. However, the central limit theorem
implies that M and N are well approximated by normal random variables. So, M — N
is the difference of two independent approximately normal random variables. Since the
difference of two normal random variables is itself normal, it follows that M — N is
approximately normal.
The mean and variance of M — N are found by

E[M — N] =300-0.4+196-0.5 = 120 — 98 = 22,

var(M — N) = var(M) + var(N) =300-0.4-0.6 + 196 - 0.5 - 0.5 = 121.

Thus, the standard deviation of M — N is 11. Let Z be a standard normal random
variable. Using the central limit theorem approximation, we obtain

P(M,N>0):P(w>,22>

11 11
~P(Z>-2)
=0.9772.

A slightly more refined estimate is obtained by expressing the event of interest
as P(M — N >1/2). We then have

P(M — N > 1/2):P<w >_21.5)

11 T
~P(Z > —1.95)
= 0.974.
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SECTION 7.5. The Strong Law of Large Numbers

Problem 17. Let X, Xs,... be a sequence of independent identically distributed
random variables with finite mean and variance. Show that the sequence Y,, = X, /n
converges to zero, with probability 1.

Solution. Let ¢ = E[X?], which has been assumed to be finite. We observe that

oo oo
Cc
B> V=) <o
n
n=1 n=1

(See Problem 14 in Chapter 7 of the text for a discussion of why the expectation and
the summation can be interchanged.) Therefore, ZZOII Y;?2 < oo (with probability 1).
It follows that Y2 converges to zero, with probability 1, which implies that ¥, also
converges to zero, with probability 1.

For a second approach, let M, = (X1 + --- 4+ X»)/n. From the strong law of
large numbers, we know that M,, converges to the mean u of the X;, with probability
1, and so does Mp—1 = (X1 + -+ Xn-1)/(n — 1). Note that

n—1 n n—1"

M, -

Since n/(n — 1) converges to 1, we obtain that nM,/(n — 1) also converges to u. We

now observe that
no_ Xn

n—1 n-1

Mn—l - Mn .
Since the two sequences on the left-hand side converge to p, with probability 1, the

difference X, /(n — 1) must also converge to zero with probability 1, from which it
follows that X, /n converges to zero with probability 1.
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Problem 18. Let X, Xs,... be independent identically distributed random variables
with mean 5, variance 9, and such that P(X,, = 0) > 0. For each of the following ways
of defining Z,, determine whether the sequence Z,, converges with probability 1, and
if it does, identify the limit.

() Zn=(X1+4+-+ Xyn)/n.
(b) Zn = (X1 + -+ Xn — 5n)//n.
(¢) Zn=(X{+ -+ X2)/n.
(d) Zn=X1X2+ Xn.
(€) Zn = (X1 Xa + Xo X5+ + Xn_1X,)/n.
Solution. (a) Yes, by the strong law of large numbers.

(b) No. By the central limit theorem, the distribution of Z, converges to a normal
distribution.

(c) Yes, by the strong law of large numbers applied to the random variables X2

(d) Yes. Since P(X, = 0) > 0, there will be some n for which X,, = 0, which implies
that the sequence Z,, eventually settles to zero.

(e) Yes. Use the strong law of large numbers to argue that the two sequences U, =
(X1X2 + X3X4 + inleQn)/n and V,, = (X2X3 + X4 X5 + XQnX2n+1)/n converge.
The sequence Z,, is obtained by combining terms from the above two sequences, and
must also converge. For example, we have Zan+1 = n(U, + V,,)/(2n + 1). Since
Un + Vi, converges, and since n/(2n + 1) converges, we obtain that Zs,41 converges as
n increases. A similar argument can be used to show that the even part, Za,, of the
sequence also converges to the same limit.
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Problem 19. The fortune X,, of a gambler evolves as X,, = Z,, X,,_1, where the Z,
are independent identically distributed random variables with PMF

po(z) = { 1/3, for z =3,

2/3, for z=1/3.
Assume that Xg = 1.
(a) Show that the expected fortune E[X,,] converges to infinity as n increases.
(b) Show that the actual fortune X, converges to 0 with probability 1.
Solution. (a) We have

1 1 2 11
E[Z]=3.-+-.2 =2
[2:] =3 3 + 3 3
Furthermore,
11\"
E[X,] = B[z Z,) =BlZ1]- - ElZ] = () .
which converges to infinity.
(b) We have
logy X, = logs + Z logs Z;
i=1
and ] 9 .

By the strong law of large numbers, applied to the sequence logs Z,, the sequence
(logs X5)/n converges to —1/3, with probability 1. This implies that log; X, converges
to —oo, with probability 1, and, therefore, X,, converges to zero.

What is happening here is the following. The random variable X,, approaches 0
with probability 1. However, at each time n there is a small (and diminishing with n)
probability that X, takes a very large value, which makes the expectation E[X,] grow
to infinity.
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Problem 20. Consider a Poisson process with arrival rate A = 1. We divide the
infinite time axis into disjoint intervals of length 1, 1/2, 1/3, 1/4, etc., so that the
kth interval has length 1/k. These intervals are getting smaller, but their total length
is infinite because Z:i1 1/k: = 00. Let Zi be the number of arrivals during the kth
interval. Does the sequence Zj converge in probability (and if so, to what)? Does
the sequence Zj converge with probability 1 (and if so, to what)? Provide a brief
justification.

Solution. We note that Zj is a Poisson random variable with parameter 1/k. Using

the Markov inequality,

E[Z] _ 1
P(|Zk| > €) < % =

For every e > 0, this converges to 0, and therefore Zj converges to zero in probability.

However, the sequence Z; does not converge with probability 1. Indeed, since
arrivals keep occurring as time goes to infinity, it follows that for every ko there is
always a k > ko such that Z, > 0.
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