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SECTION 7.1. Some Useful Inequalities

Problem 1. Let X be a random variable and let α be a positive constant. Show that

P
(
|X| ≥ c

)
≤

E
[
|X|α

]
cα

, for all c > 0.

Solution. We have

P
(
|X| ≥ c

)
= P

(
|X|α ≥ cα

)
≤

E
[
|X|α

]
cα

,

where the last inequality is the Markov inequality applied to the random variable |X|α.
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Problem 2.

(a) Given the information E[X] = 7 and var(X) = 9, use the Chebyshev inequality
to find a lower bound for the probability P(4 < X < 10).

(b) Find the smallest and the largest possible values of the probability P(4 < X <
10), given the mean and variance information from part (a).

Solution. (a) The Chebyshev inequality yields P
(
|X − 7| ≥ 3

)
≤ 9/32 = 1, which

implies the uninformative bound P(4 < X < 10) ≥ 0.

(b) We will show that P(4 < X < 10) can be as small as 0, and can be made arbitrarily
close to 1.

Consider a random variable that equals 4 with probability 1/2, and 10 with
probability 1/2. This random variable has mean 7 and variance 9, and P(4 < X <
10) = 0. Therefore, the lower bound from part (a) is the best possible.

Let us now fix a small positive number ε and another positive number c, and
consider a discrete random variable X with PMF

pX(x) =




0.5 − ε, if x = 4 + ε,
0.5 − ε, if x = 10 − ε,
ε, if x = 7 − c,
ε, if x = 7 + c.

This random variable has a mean of 7 (by symmetry). Its variance is

(0.5 − ε)(3 − ε)2 + (0.5 − ε)(3 − ε)2 + 2εc2,

anc can be made equal to 9 by suitably choosing c. For this random variable, we have
P(4 < X < 10) = 1 − 2ε, which can be made arbitrarily close to 1.

On the other hand, P(4 < X < 10) cannot be made equal to 1. Indeed, if this
probability was equal to 1, then we would have |X − 7| < 3, which would imply that
the variance is less than 9.
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Problem 3. Investigate whether the Chebyshev inequality is tight. That is, for every
µ, σ, and c ≥ σ, does there exist a random variable X with mean µ and standard
deviation σ such that

P
(
|X − µ| ≥ c

)
=

σ2

c2
?

Solution. Consider a random variable X with PMF

pX(x) =

{
p, if x = µ− c,
p, if x = µ + c,
1 − 2p, if x = µ.

The mean of X is µ. Its variance is 2pc2. This can be made equal to the given variance
σ2 by setting p = σ2/(2c2). For this random variable, we have

P
(
|X − µ| ≥ c

)
= 2p =

σ2

c2
,

and therefore the Chebyshev inequality is tight.
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Problem 4. Chernoff bound for a Poisson random variable. Let X be a
Poisson random variable with parameter λ.

(a) Show that for every s ≥ 0, we have

P(X ≥ k) ≤ eλ(es−1)e−sk.

(b) Assuming that k > λ, show that

P(X ≥ k) ≤ e−λ(eλ)k

kk
.

Solution. (a) As shown in Problem 1 in Chapter 7 of the text, or by a simple appli-
cation of the Markov inequality, we have

P(X ≥ k) ≤ e−skE[esX ] = eλ(es−1)e−sk,

where the last equality made use of the formula for the transform associated with a
Poisson random variable.

(b) The inequality of part (a) is true for every s ≥ 0. To find the tightest inequality, we
optimize with respect to s. By taking the derivative of the exponent, we find that the
derivative is zero when λes = k. Let us therefore use the bound of part (a) with the
particular choice of s that satisfies λes = k. Note that this value of s is positive under
the assumption that k > λ. Using the substitutions λes = k, e−s = λ/k, we obtain the
desired bound.
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SECTION 7.2. The Weak Law of Large Numbers

Problem 5. Bo assumes that X, the height in meters of any Canadian selected by
an equally likely choice among all Canadians, is a random variable with E[X] = h.
Because Bo is sure that no Canadian is taller than 3 meters, he decides to use 1.5
meters as a conservative value for the standard deviation of X. To estimate h, Bo uses
the average of the heights of n Canadians he selects at random.

(a) In terms of h and Bo’s 1.5 meter bound for the standard deviation of X, determine
the expectation and standard deviation of H.

(b) Find as small a value of n as possible such that the standard deviation of Bo’s
estimator is guaranteed to be less than 0.01 meters.

(c) Bo would like to be 99% sure that his estimate is within 5 centimeters of the
true average height of Canadians. Using the Chebyshev inequality, calculate the
minimum value of n that will achieve this objective.

(d) If we agree that no Canadians are taller than three meters, why is it correct to
use 1.5 meters as an upper bound on the standard deviation for X, the height of
any Canadian selected at random?

Solution. (a) Let Xi be the height of the ith selected Canadian, and let H be the
estimated height. We have H = (X1 + X2 + · · · + Xn)/n, which yields

E[H] =
nE[X]

n
= h,

σH =
√

var(H) =

√
nvar(X)

n2
=

1.5√
n
.

(b) The stated condition translates to 1.5/
√
n < 0.01. We solve for n and obtain

n > 22, 500.

(c) We have

P
(
|H − E [H]| ≥ t

)
≤

(
σH

t

)2

,

or

P
(
|H − E [H]| ≤ t

)
≥ 1 −

(
σH

t

)2

.

We use the values t = 0.05, σH = 1.5/
√
n, together with the requirement

1 −
(
σH

t

)2

≥ 0.99,

to obtain

n ≥
(

1.5

0.05

)2 1

0.01
= 90, 000.

(d) The random variable X has an unknown distribution over the interval [0, 3]. The
variance of a random variable increases as its distribution becomes more spread out.
Thus, the maximal variance will be obtained if the random variable X can only take
the values 0 and 3. With such a distribution, and with p = P(X = 3), the variance

becomes E[X2]−
(
E[X]

)2
= 9p−9p2. This expression is largest when p = 1/2, yielding

a variance of 9/4 and a standard deviation of 3/2.

6



SECTION 7.3. Convergence in Probability

Problem 6. Let X1, X2, . . . be independent, identically distributed random variables
with E[X] = 2 and var(X)=9, and let Yi = Xi/2

i. We also define Tn and An to be the
sum and the sample mean, respectively, of the random variables Y1, . . . , Yn.

(a) Evaluate the mean and variance of Yn, Tn, and An.

(b) Does Yn converge in probability? If so, to what value?

(c) Does Tn converge in probability? If so, to what value?

(d) Does An converge in probability? If so, to what value?

Solution. (a) We have

E[Yn] = E[Xn] · 2−n = 21−n, var(Yn) = var(Xn) · 9 · 2−2n = 9 · 4−n,

E[Tn] = E[Y1 + · · · + Yn] = 2

n∑
i=1

0.5i = 2
0.5(1 − 0.5n)

1 − 0.5
= 2 − 0.5n−1,

var(Tn) = var(Y1 + · · · + Yn) = 9

n∑
i=1

4−n = 9

(
1
4

(
1 −

(
1
4

)n)
1 − 1

4

)
= 3

(
1 −

(
1

4

)n)
,

E [An] = E
[

1

n
Tn

]
=

1

n
E [Tn] =

2

n

(
1 −

(
1

2

)n)
,

var (An) = var
(

1

n
Tn

)
=

(
1

n

)2

var (Tn) =
3

n2

(
1 −

(
1

4

)n)
.

(b) Yes. As n increases, the expected value of Yn approaches 0, and the variance of Yn

approaches 0. By the Chebyshev inequality, Yn converges to 0, in probability.

(c) No. As n increases, more independent terms are being added, which increase the
variance of Tn and spread out its distribution.

(d) Yes. As n increases, the expected value of An approaches 0, and the variance of
An approaches 0. By the Chebyshev inequality, An converges to 0, in probability.

7



Problem 7. Suppose that a sequence Xn of random variables satisfies

lim
n→∞

E
[
|Xn − c|α

]
= 0,

where α is a positive number. Show that the sequence Xn converges to c in probability.

Solution. Using the Markov inequality, we have

P
(
|Xn − c| ≥ ε

)
= P

(
|Xn − c|α ≥ εα

)
≤

E
[
(Xn − c)α

]
εα

.

Taking the limit as n → ∞, we obtain

lim
n→∞

P
(
|Xn − c| ≥ ε

)
= 0,

which establishes convergence in probability.
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Problem 8. Consider a Poisson process, with mean arrival rate λ = 1, and let Xn be
the number of arrivals between time zero and n. Does Xn/n converge in probability?

Solution. Let Ai be the number of arrivals in the interval [i, i − 1). The random
variables Ai are independent, identically distributed, with finite variance. We have
Xn = A1 + · · · + An, so that Xn is the sample mean of the Ai. By the weak law of
large numbers, Xn/n converges to zero, in probability.
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Problem 9. Let X1, X2, . . . be independent, identically distributed random variables
with (unknown but finite) mean µ and positive variance. For i = 1, 2, . . ., let

Yi =
1

3
Xi +

2

3
Xi+1.

(a) Are the random variables Yi independent?

(b) Are they identically distributed?

(c) Let

Mn =
1

n

n∑
i=1

Yi.

Show that Mn converges to µ in probability.

Solution. (a) No. For example, suppose that the Xi have zero mean. Then,

E[Y1Y2] = E
[(

1

3
X1 +

2

3
X2

)(
1

3
X2 +

2

3
X3

)]
=

2

9
· E[X2

2 ] �= 0 = E[Y1] · E[Y2].

(b) Yes, because the joint distribution of Xi and Xi+1 is the same for all i.

(c) Note that E[Mn] = µ. One approach to the problem is to calculate the variance of
Mn and show that it converges to zero. Using the Chebyshev inequality, the convergence
of Mn to µ follows.

A simpler approach is to note that

Mn =
1

3
· 1

n

n∑
i=1

Xi +
2

3
· 1

n

n∑
i=1

Xi+1.

By the weak law of large numbers the first sum converges to µ/3 and the second to 2µ/3,
in probability. This readily implies that Mn converges to µ, in probability. (Rigorously
speaking, this makes use of the result of Problem 4 in Chapter 7 of the text: if two
sequences of random variables converge in probability, then their sum also converges
in probability to the sum of the two limits.)
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Problem 10. Let X1, X2, . . . be a sequence of independent random variables that are
uniformly distributed between 0 and 1. For every n, we let Yn be the median of the
values of X1, X2, . . . , X2n+1. [That is, we order X1, . . . , X2n+1 in increasing order and
let Yn be the (n+ 1)st element in this ordered sequence.] Show that that the sequence
Yn converges to 1/2, in probability.

Solution. Let us fix some ε > 0. We will show that P(Yn ≥ 0.5 + ε) converges to 0.
By symmetry, this will imply that P(Yn ≤ 0.5 − ε) also converges to zero, and it will
follow that Yn converges to 0.5, in probability.

For the event {Yn ≥ 0.5 + ε} to occur, we must have at least n + 1 of the
random variables X1, X2, . . . , X2n+1 to have a value of 0.5 + ε or larger. Let Zi be
a Bernoulli random variable which is equal to 1 if and only if Xi ≥ 0.5 + ε. Then,
the event {Yn ≥ 0.5 + ε} is the same as the event (Z1 + · · · + Z2n+1)/(2n + 1) ≥ 0.5.
Note that P(Zi = 1) = 0.5 − ε. By the weak law of large numbers, the sequence
(Z1 + · · · + Z2n+1)/(2n + 1) converges to 0.5 − ε. Therefore,

P
(
Z1 + · · · + Z2n+1

2n + 1
≥ 0.5

)

converges to zero, which implies that P(Yn ≥ 0.5 + ε) also converges to zero.
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SECTION 7.4. The Central Limit Theorem

Problem 11. Uncle Henry has been having trouble keeping his weight constant.
In fact, at the end of each week, he notices that his weight has changed by a random
amount, uniformly distributed between −0.5 and 0.5 pounds. Assuming that the weight
change during any given week is independent of the weight change of any other week,
find the probability that Uncle Henry will gain or lose more than 3 pounds in the next
50 weeks.

Solution. We will use the Central Limit Theorem to compute the required probability.
Let Xi be the amount Uncle Henry gains or loses in the ith week. We have

P

(∣∣∣∣∣
50∑
i=1

Xi

∣∣∣∣∣ ≥ 3

)
= 2P

(
50∑
i=1

Xi ≥ 3

)

= 2 − 2P

(
50∑
i=1

Xi ≤ 3

)

= 2 − 2P

(∑50

i=1
Xi − 50 · 0
σ
√

50
≤ 3 − 50 · 0

σ
√

50

)
= 2 − 2P(Z ≤ 1.4697)

≈ 0.1416,

where Z is a standard normal random variable.
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Problem 12. On any given flight, an airline’s goal is to fill the plane as much as
possible, without overbooking. If, on average, 10% of customers cancel their tickets,
all independently of each other, what is the probability that a particular flight will be
overbooked if the airline sells 320 tickets, for a plane that has maximum capacity 300
people? What is the probability that a plane with maximum capacity 150 people will
be overbooked if the airline sells 160 tickets?

Solution. Let N be the number of people that show up. The flight will be overbooked
if N > 300. We can use the normal approximation to the binomial to calculate this
probability:

P(301 ≤ N ≤ 320) = Φ
(

320 − 288

5.367

)
− Φ

(
301 − 288

5.367

)
= 1 − Φ(2.4181) = 0.0078.

A similar computation for the smaller plane shows that the probability that the smaller
plane will be overbooked is

P(151 ≤ N ≤ 160) = 1 − Φ
(

151 − 144

3.794

)
= 0.0329.
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Problem 13. Alex puts some pennies into a piggy-bank each day. The number
of pennies added on any given day is equally likely to be 1, 2, 3, 4, 5, or 6, and is
independent from day to day. Find an approximation to the probability that it takes
at least 80 days to collect 3 dollars.

Solution. Let Xn be the number of pennies added on the nth day. We are interested in
the probability that

∑80

i=1
Xi ≤ 300). Using the central limit theorem approximation,

we have

P

(
80∑
i=1

Xi ≤ 300

)
= P

(∑80

i=1
Xi − 80 · 3.5√
(91/6)80

≤ 300 − 80 · 3.5√
(91/6)80

)

≈ P(Z ≤ 0.5748)

≈ 0.7157.
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Problem 14. Let X1, . . . , X10 be independent random variables, uniformly dis-
tributed over the unit interval [0, 1].

(a) Estimate P(X1 + · · · + X10 ≥ 7) using the Markov inequality.

(b) Repeat part (a) using the Chebyshev inequality.

(c) Repeat part (a) using the central limit theorem.

Solution. (a) To use the Markov inequality, let X =
∑10

i=1
Xi. Then,

E[X] = 10E[Xi] = 5,

and the Markov inequality yields

P(X ≥ 7) ≤ 5

7
= 0.7142.

(b) Using the Chebychev inequality, we find that

P(X ≥ 7) ≤ 1/3

1/3 + 4
= 0.076.

(c) Finally, using the Central Limit Theorem, we find that

P

(
10∑
i=1

Xi ≥ 7

)
= 1 − P

(
10∑
i=1

Xi ≤ 7

)

= 1 − P

(∑10

i=1
Xi − 5√

10/3
≤ 7 − 5√

10/3

)

= 0.1379.
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Problem 15. Let Sn be the number of successes in n independent Bernoulli trials,
where the probability of success in each trial is p = 1/2. Provide a numerical value for
the limit as n tends to infinity for each of the following three expressions.

(a) P
(
n
2
− 10 ≤ Sn ≤ n

2
+ 10

)
.

(b) P
(
n
2
− n

10
≤ Sn ≤ n

2
+ n

10

)
.

(c) P
(
n
2
−

√
n

2
≤ Sn ≤ n

2
+

√
n

2

)
.

Solution. (a) The central limit theorem suggests that

P
(
n

2
− 10 ≤ Sn ≤ n

2
+ 10

)
≈ Φ

(
20√
n

)
− Φ

(
− 20√

n

)
,

which converges to zero as n → ∞.

(b) The limit is one, by the weak law of large numbers.

(c) By the central limit theorem,

P

(
n

2
−

√
n

2
≤ Sn ≤ n

2
+

√
n

2

)
≈ Φ(1) − Φ(−1) = 0.6826.
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Problem 16. The adult population of Nowhereville consists of 300 males and 196
females. Each male (respectively, female) has a probability of 0.4 (respectively, 0.5)
of casting a vote in the local elections, independently of everyone else. Find a good
numerical approximation for the probability that more males than females cast a vote.

Solution. Let M and F be the number of males and females, respectively, that cast a
vote. We need to find P(M > N), i.e., P(M −N > 0). The central limit theorem does
not apply directly to the random variable M −N . However, the central limit theorem
implies that M and N are well approximated by normal random variables. So, M −N
is the difference of two independent approximately normal random variables. Since the
difference of two normal random variables is itself normal, it follows that M − N is
approximately normal.

The mean and variance of M −N are found by

E[M −N ] = 300 · 0.4 + 196 · 0.5 = 120 − 98 = 22,

var(M −N) = var(M) + var(N) = 300 · 0.4 · 0.6 + 196 · 0.5 · 0.5 = 121.

Thus, the standard deviation of M − N is 11. Let Z be a standard normal random
variable. Using the central limit theorem approximation, we obtain

P(M −N > 0) = P
(
M −N − 22

11
> −22

11

)
≈ P(Z ≥ −2)

= 0.9772.

A slightly more refined estimate is obtained by expressing the event of interest
as P(M −N ≥ 1/2). We then have

P(M −N ≥ 1/2) = P
(
M −N − 22

11
≥ −21.5

11

)
≈ P(Z ≥ −1.95)

= 0.974.
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SECTION 7.5. The Strong Law of Large Numbers

Problem 17. Let X1, X2, . . . be a sequence of independent identically distributed
random variables with finite mean and variance. Show that the sequence Yn = Xn/n
converges to zero, with probability 1.

Solution. Let c = E[X2
i ], which has been assumed to be finite. We observe that

E

[
∞∑

n=1

Y 2
n

]
=

∞∑
n=1

c

n2
< ∞.

(See Problem 14 in Chapter 7 of the text for a discussion of why the expectation and
the summation can be interchanged.) Therefore,

∑∞
n=1

Y 2
n < ∞ (with probability 1).

It follows that Y 2
n converges to zero, with probability 1, which implies that Yn also

converges to zero, with probability 1.
For a second approach, let Mn = (X1 + · · · + Xn)/n. From the strong law of

large numbers, we know that Mn converges to the mean µ of the Xi, with probability
1, and so does Mn−1 = (X1 + · · · + Xn−1)/(n− 1). Note that

Mn · n

n− 1
=

X1 + · · · + Xn

n
· n

n− 1
.

Since n/(n − 1) converges to 1, we obtain that nMn/(n − 1) also converges to µ. We
now observe that

Mn−1 −Mn · n

n− 1
=

Xn

n− 1
.

Since the two sequences on the left-hand side converge to µ, with probability 1, the
difference Xn/(n − 1) must also converge to zero with probability 1, from which it
follows that Xn/n converges to zero with probability 1.
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Problem 18. Let X1, X2, . . . be independent identically distributed random variables
with mean 5, variance 9, and such that P(Xn = 0) > 0. For each of the following ways
of defining Zn, determine whether the sequence Zn converges with probability 1, and
if it does, identify the limit.

(a) Zn = (X1 + · · · + Xn)/n.

(b) Zn = (X1 + · · · + Xn − 5n)/
√
n.

(c) Zn = (X2
1 + · · · + X2

n)/n.

(d) Zn = X1X2 · · ·Xn.

(e) Zn = (X1X2 + X2X3 + · · · + Xn−1Xn)/n.

Solution. (a) Yes, by the strong law of large numbers.

(b) No. By the central limit theorem, the distribution of Zn converges to a normal
distribution.

(c) Yes, by the strong law of large numbers applied to the random variables X2
i .

(d) Yes. Since P(Xn = 0) > 0, there will be some n for which Xn = 0, which implies
that the sequence Zn eventually settles to zero.

(e) Yes. Use the strong law of large numbers to argue that the two sequences Un =
(X1X2 + X3X4 + X2n−1X2n)/n and Vn = (X2X3 + X4X5 + X2nX2n+1)/n converge.
The sequence Zn is obtained by combining terms from the above two sequences, and
must also converge. For example, we have Z2n+1 = n(Un + Vn)/(2n + 1). Since
Un + Vn converges, and since n/(2n+ 1) converges, we obtain that Z2n+1 converges as
n increases. A similar argument can be used to show that the even part, Z2n, of the
sequence also converges to the same limit.
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Problem 19. The fortune Xn of a gambler evolves as Xn = ZnXn−1, where the Zn

are independent identically distributed random variables with PMF

pZ(z) =

{
1/3, for z = 3,
2/3, for z = 1/3.

Assume that X0 = 1.

(a) Show that the expected fortune E[Xn] converges to infinity as n increases.

(b) Show that the actual fortune Xn converges to 0 with probability 1.

Solution. (a) We have

E[Zi] = 3 · 1

3
+

1

3
· 2

3
=

11

9
.

Furthermore,

E[Xn] = E[Z1 · · ·Zn] = E[Z1] · · ·E[Zn] =
(

11

9

)n

,

which converges to infinity.

(b) We have

log3 Xn = log3 +

n∑
i=1

log3 Zi

and

E[log3 Zi] =
1

3
· 1 +

2

3
· (−1) = −1

3
.

By the strong law of large numbers, applied to the sequence log3 Zn, the sequence
(log3 Xn)/n converges to −1/3, with probability 1. This implies that log3 Xn converges
to −∞, with probability 1, and, therefore, Xn converges to zero.

What is happening here is the following. The random variable Xn approaches 0
with probability 1. However, at each time n there is a small (and diminishing with n)
probability that Xn takes a very large value, which makes the expectation E[Xn] grow
to infinity.
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Problem 20. Consider a Poisson process with arrival rate λ = 1. We divide the
infinite time axis into disjoint intervals of length 1, 1/2, 1/3, 1/4, etc., so that the
kth interval has length 1/k. These intervals are getting smaller, but their total length
is infinite because

∑∞
k=1

1/k = ∞. Let Zk be the number of arrivals during the kth
interval. Does the sequence Zk converge in probability (and if so, to what)? Does
the sequence Zk converge with probability 1 (and if so, to what)? Provide a brief
justification.

Solution. We note that Zk is a Poisson random variable with parameter 1/k. Using
the Markov inequality,

P
(
|Zk| ≥ ε

)
≤ E[Zk]

ε
=

1

kε
.

For every ε > 0, this converges to 0, and therefore Zk converges to zero in probability.
However, the sequence Zk does not converge with probability 1. Indeed, since

arrivals keep occurring as time goes to infinity, it follows that for every k0 there is
always a k > k0 such that Zk > 0.
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