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Problem 1.

We have
P (B) = 1− P (Bc) = 1− 0.35 = 0.65.

Also, by rearranging the formula

P (A ∪B) = P (A) + P (B)− P (A ∩B),

we obtain

P (A ∩B) = P (A) + P (B)− P (A ∪B) = 0.55 + 0.65− 0.75 = 0.45.
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Problem 2.

The set A ∩ (A ∪ B)c is always empty, because it can be written as A ∩ Ac ∩ Bc or
Ø ∩Bc, since A ∩Ac = Ø.
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Problem 3.

(a) From de Morgan’s laws, we have

Ac ∩Bc = (A ∪B)c,

and by taking the complement of both sides the first equality follows. Also, from de
Morgan’s laws, we have

Ac ∪Bc = (A ∩B)c,

and by taking the complement of both sides the second equality follows.

(b) We have
A = {1, 3, 5}, B = {1, 2}.

Thus,
Ac ∩Bc = {2, 4, 6} ∩ {3, 4, 5, 6} = {4, 6},

(Ac ∩Bc)c = {1, 2, 3, 5},

A ∪B = {1, 2, 3, 5},

so the first equality is verified. Similarly,

Ac ∪Bc = {2, 4, 6} ∪ {3, 4, 5, 6} = {2, 3, 4, 5, 6},

(Ac ∪Bc)c = {1},

A ∩B = {1},

so the second equality is verified.
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Problem 4.

Let N(S) denote the number of elements is a finite set. From the corresponding Venn
Diagram [cf. Fig. 1.1(a)], we see that

N(A ∩B) = N(A) +N(B)−N(A ∪B).

Thus,
N(A ∩B) +N(A ∪B) = N(A) +N(B).
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Problem 5.

We have P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 1 − P(Ac) + P(B) − P(A ∩ B) =
1− 0.6 + 0.3− 0.2 = 0.5.
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Problem 6.

There are 12 possible outcomes,

(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3),

and each has probability 1/12. The required probabilities are obtained by counting the
number of outcomes that satisfy the corresponding criterion and dividing by 12. The
answers are: (a) 1/2. (b) 1/6. (c) 1/3.
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Problem 7.

Let P(S = k) = ak, where a is the constant of proportionality. Since the events
{S = k}, for k = 2, 3, . . . , 8, are disjoint and form a partition of the sample space, we
have

∑8

k=2
ak = 1 or

a =
1

2 + 3 + · · ·+ 8
=

1

35
.

The sums 2 and 8 can arise in only one way, (1,1) and (4,4), respectively, so

P(1, 1) = P(S = 2) =
2

35
, P(4, 4) = P(S = 8) =

8

35
.

The sums 3 and 7 can arise in two ways, so

P(2, 1) = P(1, 2) =
P(S = 3)

2
=

3

2 · 35
, P(3, 4) = P(4, 3) =

P(S = 7)

2
=

7

2 · 35
.

The sums 4 and 6 can arise in three ways, so

P(1, 3) = P(2, 2) = P(3, 1) =
P(S = 4)

3
=

4

3 · 35
,

P(2, 4) = P(3, 3) = P(4, 2) =
P(S = 6)

3
=

6

3 · 35
.

The sum 5 can arise in four ways, so

P(1, 4) = P(2, 3) = P(3, 2) = P(4, 1) =
P(S = 5)

4
=

5

4 · 35
.

The probability of getting doubles is

4∑

k=1

P(k, k) =
2

35
+

4

3 · 35
+

6

3 · 35
+

8

35
=

40

105
.
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Problem 8.

We claim that the optimal order is to play the weakest player second (the order in
which the other two opponents are played makes no difference). To see this, let pi
be the probability of winning against the opponent played in the ith turn. Then you
will win the tournament if you win against the 2nd player (prob. p2) and also you win
against at least one of the two other players [prob. p1 + (1 − p1)p3 = p1 + p3 − p1p3].
Thus the probability of winning the tournament is

p2(p1 + p3 − p1p3).

The order (1, 2, 3) is optimal if and only if the above probability is no less than the
probabilities corresponding to the two alternative orders:

p2(p1 + p3 − p1p3) ≥ p1(p2 + p3 − p2p3),

p2(p1 + p3 − p1p3) ≥ p3(p2 + p1 − p2p1).

It can be seen that the first inequality above is equivalent to p2 ≥ p1, while the second
inequality above is equivalent to p2 ≥ p3.

9



     

Problem 9.

Each of the events of interest can be described by a region in two-dimensional space,
where the horizontal axis is Alice’s number and the vertical axis is Bob’s number; see
the accompanying figure.

A B C

D AD

Note that the events A and A ∩ B are identical because A is a subset of B. We
are given that the probability of any event is proportional to its area. Since the sample
space has an area of 4, the probability of each event must be equal to its area divided
by 4 to satisfy the normalization axiom. We then obtain

P(A) =
25

36
, P(B) =

35

36
, P(A∩B) =

25

36
, P(C) = 0, P(D) =

5

6
, P(A∩D) =

41

72
.
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Problem 10.

Since the events A ∩ Bc and Ac ∩ B are disjoint, we have using the additivity axiom
repeatedly,

P
(
(A∩Bc)∪(Ac∩B)

)
= P(A∩Bc)+P(Ac∩B) = P(A)−P(A∩B)+P(B)−P(A∩B).
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Problem 11.

(a) We use the formulas P(A∪B) = P(A)+P(Ac∩B) and (A∪B∪C)c = Ac∩Bc∩Cc.
We have

P(A ∪B ∪ C ∪D) = P(A ∪B ∪ C) + P((A ∪B ∪ C)c ∩D)

= P(A ∪B ∪ C) + P(Ac ∩Bc ∩ Cc ∩D)

= P(A ∪B) + P((A ∪B)c ∩ C) + P(Ac ∩Bc ∩ Cc ∩D)

= P(A ∪B) + P(Ac ∩Bc ∩ C) + P(Ac ∩Bc ∩ Cc ∩D)

= P(A) + P(Ac ∩B) + P(Ac ∩Bc ∩ C) + P(Ac ∩Bc ∩ Cc ∩D).

(b) Use induction and verify the main induction step by emulating the derivation of
part (a).
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Problem 12.

Let A be the event that your friend searches disc 1 and finds nothing, and let Bi be the
event that your thesis is on disc i. Now note that for i 6= 1, we have P(A∩Bi) = P(Bi),
so that

P(Bi |A) =
P(A ∩Bi)

P(A)
=

P(Bi)

P(A)
=

0.25

1− 0.25 · 0.4 = 0.2777.

For i = 1, we have

P(Bi |A) =
P(A ∩Bi)

P(A)
.

Since P(A |Bi) = P(A ∩Bi)/P(Bi), we have

P(A ∩Bi) = P(Bi)P(A |Bi) = 0.25(1− 0.4).

Therefore,

P(Bi |A) =
0.25(1− 0.4)

1− 0.25 · 0.4 = 0.1666.
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Problem 13.

The probability of dialing correctly with less or equal to k tries is 1 minus the probability
of dialing incorrectly with k successive tries. The latter probability is

9

10

8

9
· · · 10− k

11− k ,

since 10−i
11−i is the conditional probability that the ith try is unsuccessful, given that the

preceding i − 1 tries are unsuccessful. Therefore, the desired number of tries is the
smallest number k ≥ 1 such that

9

10

8

9
· · · 10− k

11− k < 0.5.
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Problem 14.

(a) There are 6 possible outcomes that are doubles, so the probability of doubles is
6/36 = 1/6.

(b) The conditioning event (sum is 4 or less) consists of the 6 outcomes

{
(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)

}
,

2 of which are doubles, so the conditional probability of doubles is 2/6 = 1/3.

(c) There are 11 possible outcomes with at least one 6, namely, (6, 6), (6, i), and (i, 6),
for i = 1, 2, . . . , 5. The probability that at least one die is a 6 is 11/36.

(d) There are 30 possible outcomes where the dice land on different numbers. Out of
these, there are 10 outcomes in which at least one of the rolls is a 6. Thus, the desired
conditional probability is 10/30 = 1/3.
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Problem 15.

Let A be the event that the student is not overstressed, and let Ac be the event that
the student is in fact overstressed. Now let B be the event that the test results indicate
that the student is not overstressed. The desired probability, P(A |B), is found by
Bayes’ rule:

P(A |B) =
P(A)P(B |A)

P(A)P(B |A) + P(Ac)P(B |Ac) =
0.005 · 0.95

0.005 · 0.95 + 0.995 · 0.15
≈ 0.03.
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Problem 16.

Let Ai be the event corresponding to starting with trail i. We have

P(Ai) =
1

n
, i = 1, 2, . . . , n.

Let also B be the event of reaching the destination. We have

P(B |Ai) =
1

1 + i
, i = 1, 2, . . . , n.

Thus, by the total probability theorem, the probability of reaching the destination is

P(B) =

n∑

i=1

P(Ai)P(B |Ai) =
1

n

n∑

i=1

1

1 + i
.
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Problem 17.

Let B be the event that Bob tossed more heads. Let X be the event that after each has
tossed n of their coins, Bob has more heads than Alice, let Y be the event that under
the same conditions, Alice has more heads than Bob, and let Z be the event that they
have the same number of heads. Since the coins are fair, we have P(X) = P(Y ), and
also P(Z) = 1−P(X)−P(Y ). Furthermore, we see that

P(B |X) = 1, P(B |Y ) = 0, P(B |Z) =
1

2
.

Now we have, using the theorem of total probability,

P(B) = P(X) ·P(B |X) + P(Y ) ·P(B |Y ) + P(Z) ·P(B |Z)

= P(X) +
1

2
·P(Z)

=
1

2
·
(
P(X) + P(Y ) + P(Z)

)

=
1

2
.

as required. What is happening here is that Alice’s probability of more heads than Bob
is less than 1/2, so Bob has an advantage. However, the probability of equal number of
heads is positive, and when added to Alice’s probability of more heads, it gives 1/2.
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Problem 18.

Let Ai be the event that bit i was on the tape and Bj be the event that bit j was
detected. We want to find P(A1 |B1). Using Bayes’ rule, we get

P(A1 |B1) =
P(A1)P(B1 |A1)

P(A0)P(B1 |A0) + P(A1)P(B1 |A1)

=
0.5 · 0.85

0.5 · 0.1 + 0.5 · 0.85

≈ 0.89.
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Problem 19.

The probability that the customer receives service 3 out of 4 times is given by the
binomial formula: (

4

3

)
·
(

3

4

)3

·
(

1

4

)
=

27

64
.
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Problem 20.

Let pi and qi be respectively the probability and the area of face i. We have

pi =
qi∑6

j=1
qj
, i = 1, . . . , 6.

Thus the probability that we get doubles is

6∑

i=1

p2
i =

∑6

i=1
q2
i(∑6

j=1
qj
)2 =

2(1.5)2 + 2(0.4)2 + 2(0.4 · 1.5)2

(
2(1.5) + 2(0.4) + 2(0.4 · 1.5)

)2 = 0.2216.
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Problem 21.

For convenience, we will number each of the parking spaces. We will draw a sequential
probability tree to illustrate the sample space:

Mary

1

2

N

1/N
1/N

1/N

Tom

2

N

1/(N-1)

1/(N-1)

1

3

N

1/(N-1)
1/(N-1)

1/(N-1)

1

N-1

1/(N-1)

1/(N-1)

Mary can choose any of the n parking spaces. She has a probability of 1/n of selecting
any particular space. Tom can choose any of the remaining n − 1 spaces and has a
probability of 1/(n − 1) of choosing any particular space (other than the one Mary
chose).

There are n(n−1) leaves on the tree, and each leaf is equally likely to occur. When
we look at the leaves on the branches where Mary does not choose spaces 1, 2, n − 1,
or n, we see that 4 leaves on each of these branches is in our event (two spaces on each
side of Mary’s car). When Mary chooses spaces 2 or n− 1, there are three such leaves
(one space on one side and two on the other side). When Mary chooses spaces 1 or
n, there are only two such leaves (she is at one end or the other of the parking lot).
Therefore, the probability that they are parked within two spaces of each other is:

P(A) =
(4)(n− 4) + (3)(2) + (2)(2)

n(n− 1)
=

4n− 6

n(n− 1)

Note that for n = 2 and n = 3, P(A) = 1, as expected.
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Problem 22.

There are two stages to the experiment: the selection of the two coins and the tossing
of the coins. There are three different ways that two coins can be selected: the 1st and
2nd, the 1st and 3rd, and the 2nd and 3rd. Each of these pairs are equally likely to be
selected. For each pair, the tosses have four possible outcomes: (heads, heads), (heads,
tails), (tails, heads), (tails, tails). The sample space can be described as in the figure:

1/3

1/3

1 & 2

1/3

1 & 3

heads, tails

tails, heads
(1/2)p

(1/2)(1-p)

white, red(1/2)(1-p)

(1/2)p

tails, tails

heads, heads

2 & 3

heads, tails

tails, heads

heads, heads

tails, tails

p(1-p)

(1-p)p

(1-p)(1-p)

pp

blue, red

blue, blue

red, blue

red, red

heads, tails

tails, heads
(1/2)p

(1/2)(1-p)

white, red(1/2)(1-p)

(1/2)p heads, heads

tails, tails white, blue

blue, blue

blue, red
white, blue

blue, blue

blue, red

*

*

*

*
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The probability that the sides that land face up are the same is then:

P(same) = P
(
(blue,blue)

)
+ P

(
(red,red)

)

=
1

3

{
1

2
(1− p) +

1

2
(1− p) + p2 + (1− p)2

}

=
1

3
(2p2 − 3p+ 2).

Setting this equal to 29
96

and solving the quadratic equation for p yields p = 5/8 or
p = 7/8.
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Problem 23.

Let Q be the event that someone is qualified, Qc the event that someone is unqualified,
and A the event that the 20 questions correctly determine whether the candidate is
qualified or not. Using the total probability theorem, we have

P(A) = P(Q)P(A |Q) + P(Qc)P(A |Qc)

= q

20∑

i=15

(
20

i

)
pi(1− p)20−i + (1− q)

20∑

i=6

(
20

i

)
pi(1− p)20−i.
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Problem 24.

The number of jurors that make the “wrong” decision can be modeled as a binomial
random variable with parameters n = 7 and p = .2. The jury as a whole will make the
wrong decision if 4, 5, 6, or 7 jurors make the wrong decision. Denote these events by
A, B, C, D, respectively. Since these events are mutually exclusive, the probability of
their union is the sum of their probabilities, so

P(Jury Error) = P(A) + P(B) + P(C) + P(D)

=

(
7

4

)
(0.2)4 · (0.8)3 +

(
7

5

)
(0.2)5 · (0.8)2

+

(
7

6

)
(0.2)6 · (0.8)1 +

(
7

7

)
(0.2)7 · (0.8)0

= 0.033.
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Problem 25.

The probability that persons 1 and 2 both roll a particular face is 1/n2. Therefore,

P(A12) = P(A13) = P(A23) =
n

n2
=

1

n
.

Similarly, we also have

P(A12 ∩A13) = P(all players roll the same face) =
n

n3
=

1

n2
,

so P(A12∩A13) = P(A12) ·P(A13). Hence A12 and A13 are independent, and the same
is true of any other pair from the events A12, A13, and A23. However, A12, A13, and
A23 are not independent. In particular, if A12 and A13 occur, then A13 also occurs.
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Problem 26.

By definition, ∨(A |B) is equal to

P(A |B)

P(Ac |B)
=

P(A ∩B)/P(B)

P(Ac ∩B)/P(B)
=

P(A ∩B)

P(Ac ∩B)
=

P(B |A)P(A)

P(B |Ac)P(Ac)
= L(B |A) ∨ (A).
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Problem 27.

Let A be the event that May is lucky on the current day, and let Bm,n be the event that
m wins and n losses have occurred so far. We assume independence of the results of
different spins/plays. Then we have, using the odds formula of the preceding problem
and the binomial formula,

∨(A |Bm,n)

∨(A)
= L(Bm,n |A) =

P(Bm,n |A)

P(Bm,n |Ac)
=

(
m+n
m

)
pmL (1− pL)n(

m+n
m

)
pmU (1− pU )n

=

(
pL
pU

)m(
1− pL
1− pU

)n

From this formula, a convenient recursive algorithm is obtained. After m+ n plays, in
which m wins and n losses occurred, we have

∨(A |Bm+1,n) = ∨(A |Bm,n)
pL
pU
, if she wins in the next play,

∨(A |Bm,n+1) = ∨(A |Bm,n)
1− pL
1− pU

, if she loses in the next play.

The initial condition is ∨(A |B0,0) is equal to the initial (unconditional) odds ∨(A)
(which May knows by assumption).
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Problem 28.

The events A and B are independent if and only if P(A)P(B) = P(A ∩ B) = P(A),
where the last equality follows from the fact that A ⊂ B. This can be the case if and
only if P(A) = 0 or P(B) = 1.
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Problem 29.

The answer is no. Consider two tosses of a fair coin. The events A = {HH,TT},
B = {HH,HT}, C = {HH,TH} satisfy the independence assumptions in the problem
statement. On the other hand,

P(A |B ∪ C) =
1

3
6= 1

2
= P(A),

and A is not independent of B ∪ C.
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Problem 30.

To prove independence, we must show that

P
(
A ∩ (B ∪ C)

)
= P(A) ·P(B ∪ C).

Using the identity
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),

we obtain

P
(
A ∩ (B ∪ C)

)
= P

(
(A ∩B) ∪ (A ∩ C)

)

= P(A ∩B) + P(A ∩ C)−P
(
(A ∩B) ∩ (A ∩ C)

)

= P(A ∩B) + P(A ∩ C)−P(A ∩B ∩ C).

The independence of A, B, and C implies that

P(A ∩B) = P(A)P(B),

P(A ∩ C) = P(A)P(C),

P(A ∩B ∩ C) = P(A)P(B)P(C).

It follows that

P
(
A ∩ (B ∪ C)

)
= P(A)P(B) + P(A)P(C)−P(A)P(B)P(C)

= P(A)
(
P(B) + P(C)−P(B)P(C)

)

= P(A)P(B ∪ C).
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Problem 31.

(a) Let A be the event that all 20 cars tested are good. We are asked to find P(K =
0 |A). Using Bayes’ rule, we have

P(K = 0 |A) =
P(K = 0)P(A |K = 0)∑9

i=0
P(K = i)P(A |K = i)

.

It is given that P(K = i) = 1/10 for all i. To compute P(A |K = i), we condition
on the event of exactly i lemons, and reason as follows. The first selected car has
probability (100− i)/100 of being good. Having succeeded in the first selection, we are
left with 99 cars out of which i are lemons; thus, the second selected car has probability
(99 − i)/99 of being good. Continuing similarly, and using the multiplication rule, we
obtain

P(A |K = i) =
(100− i)(99− i) · · · (81− i)

100 · 99 · 81
,

from which we can then obtain P(K = 0 |A).

(b) We use the exact same argument as in part (a), except that we need to recalculate
P(A |K = i). Since the cars are chosen with replacement, we are dealing with 20
independent Bernoulli trials. The probability of finding a good car in any one trial is
(100− i)/100. The probability of finding good cars in all 20 trials is

P(A | k = i) =
(

100− i
100

)20

,

from which we can then obtain P(K = 0 |A).
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Problem 32.

Think of lining up the jelly beans, by first placing the red ones, then the orange ones,
etc. We also place 5 dividers to indicate where one color ends and another starts.
(Note that two dividers can be adjacent if there are no jelly beans of some color.) By
considering both jelly beans and dividers, we see that there is a total of 105 positions.
Choosing the number of jelly beans of each color is the same as choosing the positions
of the dividers. Thus, there are

(
105
5

)
possibilities, and this is the number of possible

jars.
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Problem 33.

(a) We have

P(An) =

(
6n

n

)(
1

6

)n (5

6

)6n−n
,

and

P(Bn) =

6n∑

k=n

(
6n

k

)(
1

6

)k (5

6

)6n−k
.

Both P(An) and P(Bn) change with n.

(b) P(An) converges to 0 as n→∞, while P(Bn) converges to a steady-state value as
n→∞.
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Problem 34.

(a) The number of outcomes that leads to a sum of 11 is the number of outcomes of
the first two rolls that lead to a sum greater than or equal to 11− 6 = 5 and less than
or equal to 11 − 1 = 10. The number of outcomes of the first two rolls that leads to
sum less than 5 or greater than 10 is 9. So the desired probability is

62 − 9

63
.

(b) The number of outcomes that leads to a sum of 12 is the number of outcomes of
the first two rolls that lead to a sum greater or equal to 12 − 6 = 6 and less than or
equal to 12− 1 = 11. The number of outcomes of the first two rolls that leads to sum
less than 6 or greater than 11 is 11. So the desired probability is

62 − 11

63
.

(c) Each of the sums 9 and 10 can be obtained in six distinct ways:

9 = 1 + 2 + 6 = 1 + 3 + 5 = 1 + 4 + 4 = 2 + 2 + 5 = 2 + 3 + 4 = 3 + 3 + 3,

10 = 1 + 3 + 6 = 1 + 4 + 5 = 2 + 2 + 6 = 2 + 3 + 5 = 2 + 4 + 4 = 3 + 3 + 4.

However, the number of outcomes that sum to 9 is 25, while the number of outcomes
that sum to 10 is 27. Thus, a sum of 10 has probability 27/63 and is more frequent
than a sum of 9, which has probability 25/63.
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Problem 35.

(a) 225.

(b) First note that under this rule, each match will be stopped after a number of games
ranging from 13 to 25. If a match will be stopped at the k’th game with player 1 having
13 points, then the last game was a win and k − 13 of the previous games was a loss.
So, there are

(
k−1
k−13

)
matches that ends at the k’th game with player 1 having a score

of 13. Taking player 2 into consideration and summing over k, we obtain

2

25∑

k=13

(
k − 1

k − 13

)

possible distinct score sequences.
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Problem 36.

(a) The word “children” consists of 8 distinct letters, so the number of arrangements
is the same as the number of possible permutations, namely 8!.
(b) In the word “bookkeeper”, the letters “b”, “o”, “k”, “e”, “p”, and “r” appear 1,
2, 2, 3, 1, and 1 times respectively. Arguing exactly as in the text the number of
distinguishable rearrangements is

10!

3! 2! 2!
.
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