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Problem 1.

Let X be the number of royal flushes that we get in » hands. We model X as a
binomial random variable with parameters n and p = 1/649740. Let A be the event
of getting at least one royal flush in n hands. Then, A° is the event of getting no
royal flush with a probability P(A°) = P(X = 0) = px(0) = (’S)po(l —p)""°. Thus,
P(A) =1—-P(A°) =1— (1 —p)". Solving the inequality 1 — (1 —p)" > 1 —1/e, we
get n > 649744. To understand why the threshold value of n is so close to 1/p, note
that for large n, we have
(1-1/n)" =~ 1/e,

so that 1 — (1 —p)" ~1—1/e when n =~ 1/p and p is small.



Problem 2.

A claim is first filed in year k with probability 0.05 - (0.9)*~!, and the corresponding
total premium is

1—(0.9)"

1000 (1+0.9+ -+ +(0.9)*7") = 1000 - ——— =

=10000(1 — (0.9)").

Thus, the PMF of Y, the total premium paid up to and including the year when the
first claim is filed, is

) k=1 e _ k _
py(y) = {0.05 (0.9) if y 1.0000(1 0.9%), k=1,2,...,
0 otherwise.



Problem 3.

Let Y = max{0, X}. By using the formula

we have

py (y) = px(z),

{ | max{0,a}=y}

0 ify<Oorb<y,
py(y) = Trre v =0,

Let Y = min{0, X }. Similarly, we have

0 if0<yory<a,
14b

py (y) = Trb—a ify =0,




Problem 4.
(a) We must have Zi:_spx (z) =1, so

(b) Using the formula py (y) = Z{I | |e|=y PX (z), we obtain

py(y) = 4 2Ka” = 2 itz =1,2,3,
0 otherwise.

(©) Iy >0, py(y) =3 (4| o=y PX (*) = px(y) + px(—y). Otherwise py (y) = 0.



Problem 5.
We have cos(kn) = 1 for k: even and cos(km) = —1 for k: odd. Therefore

BlY] =Y (-D)'P(X =k)+ > ()" (~k)P(X = —k) =0,
k=1 k=1

where the last equality holds because, by the symmetry assumption, we have P(X =
k)=P(X = —k).

We have sin(k7n) = 0 for all integer k, so since X takes only integer values, we
have that Y is equal to 0 with probability 1. Therefore, E[Y] = 0.



Problem 6.

At any second the probability that a mosquito bit you is 0.5-0.2 = 0.1. So, the time
T in seconds between successive bites is a geometric random variable with parameter
p = 0.1. It follows that E[T] = 1/p = 10.



Problem 7.
(a) Let E be the event that Fischer wins the match. We can express E as

E:LJEM

n>0

where E, is the event that each of the first n games is a draw and the (n + 1)st game
is won by Fischer. Since the FE,’s are disjoint, we obtain

P(E) =Y P(E)=> (1-p—qp=—1—

n>0 n>0 pta

(b) Since the duration D of the match is a geometric random variable with parameter
p + q, we obtain

pD(d):(l_p_q)d_l(p+q)7 d:1727"'7

BlD]=
p+q
and 1
-p—q
var D = .
D) (p+q)?



Problem 8.

We know that the number of errors in n bits is a binomial random variable with
parameters n and 1 — p. Its expected value is n(1 — p), so E[number of errors] < 10 if
n(l —p) <10, or

pzle
n

Thus for n = 10,000, we must have p > 0.999.



Problem 9.

Let X; be the value obtained by the ith contestant. The answers to (a) and (b) are
obtained by symmetry.

(a) 1/2.
(b) 1/3.
(c) We have

P(N =n) = P(X; is the smallest of the 1st n — 1, and
X, is the smallest of the 1st n),

so using the extension of the symmetry argument in (a) and (b), we have

P(N=n)= -l, n=23,...
n

Thus,

Alternatively,
1
P(N > n) = P(X; is the smallest of 1st n) = -

(d) Using the result of part (c), we have for n > 1,

P(N=n)=P(N>n—-1)-P(N>n)= 1.

Thus,
oo o0 1
E[N]:ZnP(N:n):Zn_l = 0.
n=2 n=2
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Problem 10.

We prove the statement by reversing the order of summation:

oo

S PWzi=) Y P(N=k)

i=1 i=1 k=1t

which is the required result.
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Problem 11.
Using the formula var(X) = E[X?] — (E[X])Q, we have

E[(X1+ -+ X0)?] = var(X1 + - + Xo) + (B[X1 + -+ X))

= nvar(X1) + (nE[X,])?
— nE[X?] - n(E[X1])” +n* (E[X1])’
= nE[X?] + n(n — 1)(E[X1])".

Thus, c =n and d = n(n —1).
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Problem 12.

Since the outcomes of the games are independent, the joint PMF of L; and L» satisfies

PrLy,Ly (m7 n) =pr, (m) “pry(n).

The random variables L; and Lo are identically distributed, and they have a geometric
distribution shifted by 1:

Therefore
PL,, Lo (m7 n) =PL: (m) *PLy (n) = (1 - P

13



Problem 13.

The probability of any set of class grades where = students get an A and y students
get a B is p“¢Y(1 — p — ¢)" Y. The number of possible such sets of class grades is
equal to the number of partitions of the class in three groups of =, y, and n —x — y
students, and is given by the multinomial coefficient

n B n!
zy,n—z—y) zlyln-—z—y)
Thus,

pX Y(Q;7y) = { W'z—y)lpzqy(l e Za q)n7Z7y if x > 0,y>0,z4+y<n,
’ 0 otherwise.
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Problem 14.

(a) For i« = 1,...,250, let U; be the random variable taking the value 1 if the ith
undergraduate student get an A, and 0 otherwise. Similarly, for ¢ = 1,...,50, let G;
be the random variable taking the value 1 if the ith graduate student gets an A, and

0 otherwise. Let
250

50
U:ZUZ-, G= ZG
=1 1=1

We have X = U + G. The random variables U and G are binomial with PMF's
250 50—
pu(u) = ( y >(1/3)“(2/3)20° ¥, foru=0,1,...,250,

and

palg) = <5g0) (1/2)7(1/2)*°79, for g =0, 1,...,50.

If follows that
px(z) = P(U+G =)
250

:ZP PU+G=z|U=u)

250

ZP =u)P(G =2z —u).

Therefore,

x

u=min{0,z—50}

for x = 1,...,300 and px(z) = 0 otherwise. If we evaluate Zio_fo zpx () numerically,
we end up with E[X] ~ 108.34.
(b) We have
250
X = Z Ui + Z Gi,
and hence
250

E[X] = ZEU]JrZE

= 250-P(Ui = 1) +50-P(Gi = 1)
=250 (1/3) + 50 - (1/2)
~ 108.34
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Problem 15.

Let D and b be the numbers of tickets demanded and bought, respectively. If S is the
number of tickets sold, then S = min{D,b}. The scalper’s expected profit is

r(b) = E[1508 — 75b] = 150E[S] — 75b.

We first find E[S]. We assume that b < 10, since clearly buying more than the maximum
number of demanded tickets, which is 10, cannot be optimal. We have

Thus
10 b 10
r(b) = 150 (%) <Zi(1i0) +b Y (12.0>> — 75b.
i=0 i=b+1

A computer solution is now required to maximize the above expression over the range
0<b<10.
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Problem 16.
We first note that

P(X=kX+Y =n)

PX=k|X+Y=n=—Fx"v-n

We have
P(X=kX+Y=n)=P(X=kY =n—k)
=PX=kKPY =n—-k)

_Ip(l=p)*tp(l—p)" T ik =1,2,...,n—1, n>2,
0 otherwise,

:{pQ(l—p)n_z ifk=1,2,....,.n—1, n>2,
0 otherwise.

We also have

P(X+Y=n)= Y  P(X=zY=y)
{(z,y) |[z+y=n}

n—1
:ZP(X:x,Y:n—x)
z=1

n—1 T — n—r— :
_ I p(l=p)* (1 —p)" T ifn > 2,
0 otherwise,

_ { (n=1p*(1—p)"~? ifn>2,
0 otherwise.

The preceding equations yield

_pop ifn>2and k=1,2 n—1
P(XIK‘X—i-Y:n): (gnfl)pQ(l,p)an P =1,2,..., ,

otherwise,
{ﬁ ifn>2and k=1,2,...,n—1,
0 otherwise.

For a more intuitive line of reasoning, consider the experiment in which we toss
a biased coin with probability p of getting heads until we get the second head. Let X
be the number of tosses up to and including the first head, and let Y be the number
of coin tosses starting with the toss after the first head and up to and including the
second head. Then X + Y is the number of coin tosses until we get exactly two heads,
and P(X = k| X +Y = n) is the probability of getting a head on the kth toss given
that it took exactly n tosses to get exactly two heads. This implies that the nth toss
was a head and that the first through (n — 1)st tosses contained exactly one head and
the rest tails. Each of these tosses is equally likely to be the head. So the events X = k
given that X +Y = n are equally likely as we vary k from 1 through n — 1. Therefore

1 . _
P(X:k\XJrY:n):{ﬁ lfnZ?andk_l,Q,...,n—l,
0 otherwise.
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Problem 17.
We first note that

P(X=kX+Y+Z=n)

PX=k|X+Y 47 =n)= =5 s

We have
PX=kX4+Y+Z=n)=PX=kY+Z=n—-k)=PX=kKPY+Z=n—k).

‘We consider a coin with probability of a head equal to p, and we think of X as the
number of tosses up to and including the first head, Y as the number of tosses following
the first head up to and including the second head, and Z is the number of tosses
following the second head up to and including the third head. Then {Y + Z =n — k}
is the event whereby the second head occurs on the (n — k)th toss. For this event to
occur, we need to get two heads and n — k — 2 tails, and the second head must occur
on toss n — k, but the first head could occur at any of the previous n — k — 1 tosses.
Therefore,

PY+Z=n—k)=(n—-k—-1)p°1—p)" "2

Combining the preceding two equations, we obtain

P(X=kX+Y+Z=n)
_{mlmklmklm%1m”k2 ifk=1,2...,n—2, n>3,

0 otherwise,
:{mfkfnﬁugpwﬁ ifk=1,2,...,n—2, n>3,
0 otherwise.

Similarly, {X +Y + Z = n} is the event whereby the third head occurs on the
nth toss. For this to occur, we need to get 3 heads and n — 3 tails. The third head must
occur on the nth toss, but the first two heads could occur at any of the previous n — 1
tosses. The number of ways two heads can occur in n — 1 tosses is (”;1). Therefore,

P(X+Y+Z:n):<n51>p3(1—p)"3 n>3.

The preceding equations yield
PX=k|X+Y+Z=n)

("2")

(k=P p)" 72 301 =3 if gy >3 k=1,2,...,n— 2,
0 otherwise,

2(n—k—1) . o
:{(n—l)(n_Q)_ ifn>3, k=1,2,...,n—2,
0 otherwise.

Another way of thinking about this problem is to realize that conditioned on
the event {X +Y + Z = n}, we have a discrete uniform law. Each outcome in our
new universe, {X + Y + Z = n}, requires 3 heads and n — 3 tails, so its probability is
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p*(1—p)" 3. Since each outcome is equally likely, to compute P(X = k| X4+Y +Z = n),
we simply count the number of outcomes in the event {X =k} N{X +Y + Z = n},
and divide by the number of outcomes in the event {X +Y + Z = n}.

If the first head occurs on the kth toss and the third head occurs on the nth toss,
the second head could occur at n — k — 1 different tosses. So the number of outcomes
in the event {X =k} N{X +Y +Z =n} is n —k — 1. The number of outcomes in the
event {X +Y 4+ Z = n} is the number of ways to have the third head occur on the nth
toss, so it is (";1) Therefore,

P(X:Ic|X+Y—|—Z:n):n_k_1: 2(n—k—1)

(n)  (-Dm-2)
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Problem 18.

We are given that
_[1/4 ifk=1,2,3,4,
pr(k) = {O otherwise,

and 1/k if 1 k
k _ { un=1...,K,
pn | k(n|k) 0 otherwise.

(a) Applying the equation

pN,K('Tl, k) =DPN| K(n | k)pK(k)7
we obtain
_J1/4k ifk=1,2,3,4dandn=1,...,k,
pNJ((nvk)‘* .
0 otherwise.

(b) The marginal PMF py(n) is given by

4

pr(n) =) prc(n k) =) 1/4k,
k

k=n
or
1/44+1/8+1/1241/16 =25/48 ifn =1,
1/8 +1/12+1/16 = 13/48 ifn=2,
py(n) =4 1/12+1/16 = 7/48 if n =3,
1/16 = 3/48 if n =4,
0 otherwise.
(c) We have
6/13 if k=2,
pn.k (2, k) 4/13 ifk=3
k|2) === = )
priv(k12) =705 3/13 ifk = 4,
0 otherwise.

(d) Let A be the event 2 <N< 3. We first find the conditional PMF of K given A. We
have P(K = k. A)
PK | A(k) = W,

P(A) = py(2) + oy (3) = 15,
if k=2,
if k=3,
if k=4,
otherwise,

)

—_

=

Il

ke

N

N

I

Oal,_.;l,_pﬂl»—t

+ +
sl-5l~

and finally

if k=2,
if k=23,
if k=4,
otherwise.

prja(k) =

< Blevgles



The conditional PMF of K given A is symmetric around k = 3, so
E[K | A] =3.
The conditional variance of K given A is given by

var( | A) = B[(K — E[K | A})?| A] (234204 (1-32="2.

(S )

-3
10

(e) We are given that E[C;] = 30, where C; is the cost of book i. Let T be the total
cost, so that T'=C1+...+ Cn. We find E[T] by using the total expectation theorem:

E[T] =E[T'|N =1]pn(1) + E[T'| N = 2]pn(2) + E[T'| N = 3]pn(3)
+E[T|N = 4]pn(4)
= E[Ci]pn (1) + E[C1 + C2]pn(2) + E[C1 + C2 + C3]pn(3)
+ E[C1 4+ C2 4+ C5 + Culpn(4)
= E[Ci]pn (1) + 2E[Ci]pn (2) + 3E[Ci]pn (3) + 4E[Ci]pn (4)
25 13 7 1

=30 32 +60- 2490 12 +120- o

= 52.5.
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Problem 19.

(a) Let A be the event that he got a total of three pens. The event A corresponds to
getting 1 pen in one of the trips and 2 in the other, or 3 pens in the first trip. So

(b) Let B be the event that he visited the supply room twice on the given day. Then,

p(B|a) = 2B0A) _ (1/3)A/3) +A/3)A/3) _ 2

P(A) (5/9) 5
(c) We have
BN =Y nPy(n) =25 +3:2+4- 245 5 =2,
and .
E[N|C] =) nPyc(n)
—4.P(N=4|N>3)+5-P(N=5|N>3)
29 1Y
e eam T e+ am)
13
~ 3
(d) We have

E[N?[C] =) n*Py|c(n)

=4*.P(N=4|N>3)+5 P(N=5|N >3)

2 1
/9 152 /9

Gy Gy R Oy )

=19.
Uisng also the result from part (c), E[N | C] = 13/3, we obtain

1 2
oXjc=19— (33) =0.2222.

(e) Let C; be the event that he gets more that three pens on the ith day. Noting that
the C;’s are independent, we obtain

P 160- —IGPC-— 2 116—3‘16
Ne) -Ilren- (G+3)" o
=1 =1
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(f) Let N; be the total number of pens he gets in the ith day, let X = Zil N;, and let
D = ﬂfil C;. Noting that conditional on D, the N;’s are still independent and that
DN; | D = PN, | C;, We obtain

16 16
oX iD= 0%, 0= 0% o, =16-02222 =3.5552.

i=1 i=1
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Problem 20.

Let A be the event that your detection programs lead you to the correct conclusion
about your computer. Let V be the event that your computer has a virus, and let V¢
be the event that your computer does not have a virus. We have

P(A) =P(V)P(A|V) + P(VE)P(A|VE),

and P(A|V) and P(A|V°) can be found using the binomial PMF. Thus we have

9
+ <ﬁ) (0.8)" - (02)" + <g> -(0.8)'%-(0.2)°

= 0.7899.

P(A|V) = (12> -(0.8)? - (0.2)* + G(Q)) -(0.8)'%.(0.2)*

using a similar calculation, we find that P(A|V°) = 0.9742, so that

P(A) =0.65-0.7899 + 0.35 - 0.9742 = 0.8544.
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Problem 21.
(a) Let L; be the event that Joe played the lottery on week i, and let W; be the event
that he won on week i. The desired probability is

P(Wi | Li)P(Li) _ (1-qp _p—pq
(WelL)P(Li) + P(We [ LHP(LE)  (1—gp+1-(1—p) 1-pg

P(Li| W) = 5

(b) Conditioned on X, the random variable Y is binomial

prixtyla) = { (a0 —o= o<y <z,
0 otherwise.

(c) Since X has a binomial PMF, we have

px.y(z,y) = py | x(y|z)px ()

_ { (B (1= ()p"(1—p"™™ f0<y<az<n,
0 otherwise.

(d) Using the result from part (c), we could compute the marginal py using the formula

pY(y) = ZPX,Y(% Y),

but the algebra is messy. An easier method is based on the fact that Y is just the sum
of n independent Bernoulli random variables, each having a probability pq of being 1.
Therefore Y has a binomial PMF:

py(y) = { (3) ()" (1 = pg) "™ i 0<y<mn,
0 otherwise.

(e) We have

px v (o) = )

($)a (=)= (2)p* (1—p) (")

= { (2)(pa)¥ 1—pg)(»—¥)
0

0<y<z<mn,

otherwise.

(f) From part (a), we know the probability P(L; | W) that Joe played the lottery on
week 4 given that he did not win in that week. For each of the n — y weeks when Joe
did not win, there are z — y weeks when he played. Thus, X conditioned on Y =y is
binomial with parameters n —y and P(L; | W{) = (p — pq)/(1 — pq):

px|v(@ly) = { o) (=) (=) () o<y<as<n,
0 otherwise.

After some algebraic manipulation, the answer to (e) can be shown equal to the above.
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