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Problem 1.

Let X be the number of royal flushes that we get in n hands. We model X as a
binomial random variable with parameters n and p = 1/649740. Let A be the event
of getting at least one royal flush in n hands. Then, Ac is the event of getting no
royal flush with a probability P(Ac) = P(X = 0) = pX(0) =

(
n
0

)
p0(1 − p)n−0. Thus,

P(A) = 1 − P(Ac) = 1 − (1 − p)n. Solving the inequality 1 − (1 − p)n ≥ 1 − 1/e, we
get n ≥ 649744. To understand why the threshold value of n is so close to 1/p, note
that for large n, we have

(1 − 1/n)n ≈ 1/e,

so that 1 − (1 − p)n ≈ 1 − 1/e when n ≈ 1/p and p is small.
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Problem 2.

A claim is first filed in year k with probability 0.05 · (0.9)k−1, and the corresponding
total premium is

1000 ·
(
1 + 0.9 + · · · + (0.9)k−1

)
= 1000 · 1 − (0.9)k

1 − 0.9
= 10000

(
1 − (0.9)k

)
.

Thus, the PMF of Y , the total premium paid up to and including the year when the
first claim is filed, is

pY (y) =
{

0.05 · (0.9)k−1 if y = 10000(1 − (0.9)k), k = 1, 2, . . .,
0 otherwise.
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Problem 3.

Let Y = max{0, X}. By using the formula

pY (y) =
∑

{x | max{0,x}=y}

pX(x),

we have

pY (y) =




0 if y < 0 or b < y,
1−a

1+b−a
if y = 0,

1
1+b−a

if 0 < y ≤ b.

Let Y = min{0, X}. Similarly, we have

pY (y) =




0 if 0 < y or y < a,
1+b

1+b−a
if y = 0,

1
1+b−a

if a ≤ y < 0.
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Problem 4.

(a) We must have
∑3

x=−3
pX(x) = 1, so

K =
1∑3

x=−3
x2

=
1

28
.

(b) Using the formula pY (y) =
∑

{x | |x|=y} pX(x), we obtain

pY (y) =

{
2Kx2 = x2

14
if x = 1, 2, 3,

0 otherwise.

(c) If y ≥ 0, pY (y) =
∑

{x | |x|=y} pX(x) = pX(y) + pX(−y). Otherwise pY (y) = 0.
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Problem 5.

We have cos(kπ) = 1 for k: even and cos(kπ) = −1 for k: odd. Therefore

E[Y ] =

∞∑
k=1

(−1)kkP(X = k) +

∞∑
k=1

(−1)k(−k)P(X = −k) = 0.

where the last equality holds because, by the symmetry assumption, we have P(X =
k) = P(X = −k).

We have sin(kπ) = 0 for all integer k, so since X takes only integer values, we
have that Y is equal to 0 with probability 1. Therefore, E[Y ] = 0.
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Problem 6.

At any second the probability that a mosquito bit you is 0.5 · 0.2 = 0.1. So, the time
T in seconds between successive bites is a geometric random variable with parameter
p = 0.1. It follows that E[T ] = 1/p = 10.
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Problem 7.

(a) Let E be the event that Fischer wins the match. We can express E as

E =
⋃
n≥0

En,

where En is the event that each of the first n games is a draw and the (n + 1)st game
is won by Fischer. Since the En’s are disjoint, we obtain

P(E) =
∑
n≥0

P(En) =
∑
n≥0

(1 − p− q)np =
p

p + q
.

(b) Since the duration D of the match is a geometric random variable with parameter
p + q, we obtain

pD(d) = (1 − p− q)d−1(p + q), d = 1, 2, . . . ,

E[D] =
1

p + q
,

and

var(D) =
1 − p− q

(p + q)2
.
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Problem 8.

We know that the number of errors in n bits is a binomial random variable with
parameters n and 1 − p. Its expected value is n(1 − p), so E[number of errors] ≤ 10 if
n(1 − p) ≤ 10, or

p ≥ 1 − 10

n

Thus for n = 10, 000, we must have p ≥ 0.999.
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Problem 9.

Let Xi be the value obtained by the ith contestant. The answers to (a) and (b) are
obtained by symmetry.

(a) 1/2.

(b) 1/3.

(c) We have

P(N = n) = P(X1 is the smallest of the 1st n− 1, and

Xn is the smallest of the 1st n),

so using the extension of the symmetry argument in (a) and (b), we have

P(N = n) =
1

n− 1
· 1

n
, n = 2, 3, . . .

Thus,

P(N > n) = 1 − P(N ≤ n) = 1 −
n∑

k=2

1

k(k − 1)
.

Alternatively,

P(N > n) = P(X1 is the smallest of 1st n) =
1

n
.

(d) Using the result of part (c), we have for n > 1,

P(N = n) = P(N > n− 1) − P(N > n) =
1

n− 1
− 1

n
=

1

n(n− 1)
.

Thus,

E[N ] =

∞∑
n=2

nP(N = n) =

∞∑
n=2

1

n− 1
= ∞.
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Problem 10.

We prove the statement by reversing the order of summation:

∞∑
i=1

P(N ≥ i) =

∞∑
i=1

∞∑
k=i

P(N = k)

=

∞∑
k=1

k∑
i=1

P(N = k)

=

∞∑
k=1

kP(N = k)

which is the required result.
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Problem 11.

Using the formula var(X) = E[X2] −
(
E[X]

)2
, we have

E
[
(X1 + · · · + Xn)2

]
= var(X1 + · · · + Xn) +

(
E[X1 + · · · + Xn]

)2

= nvar(X1) + (nE[X1])
2

= nE[X2
1 ] − n

(
E[X1]

)2
+ n2

(
E[X1]

)2

= nE[X2
1 ] + n(n− 1)

(
E[X1]

)2
.

Thus, c = n and d = n(n− 1).
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Problem 12.

Since the outcomes of the games are independent, the joint PMF of L1 and L2 satisfies

pL1,L2(m,n) = pL1(m) · pL2(n).

The random variables L1 and L2 are identically distributed, and they have a geometric
distribution shifted by 1:

P(L1 = m) = P(L2 = m) = (1 − p)m · p.

Therefore
pL1,L2(m,n) = pL1(m) · pL2(n) = (1 − p)n+m · p2.
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Problem 13.

The probability of any set of class grades where x students get an A and y students
get a B is pxqy(1 − p − q)n−x−y. The number of possible such sets of class grades is
equal to the number of partitions of the class in three groups of x, y, and n − x − y
students, and is given by the multinomial coefficient

(
n

x, y, n− x− y

)
=

n!

x!y!(n− x− y)!
.

Thus,

pX,Y (x, y) =
{

n!
x!y!(n−x−y)!

pxqy(1 − p− q)n−x−y if x ≥ 0, y ≥ 0, x + y ≤ n,
0 otherwise.
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Problem 14.

(a) For i = 1, . . . , 250, let Ui be the random variable taking the value 1 if the ith
undergraduate student get an A, and 0 otherwise. Similarly, for i = 1, . . . , 50, let Gi

be the random variable taking the value 1 if the ith graduate student gets an A, and
0 otherwise. Let

U =

250∑
i=1

Ui, G =

50∑
i=1

Gi.

We have X = U + G. The random variables U and G are binomial with PMFs

pU (u) =

(
250

u

)
(1/3)u(2/3)250−u, for u = 0, 1, . . . , 250,

and

pG(g) =

(
50

g

)
(1/2)g(1/2)50−g, for g = 0, 1, . . . , 50.

If follows that
pX(x) = P(U + G = x)

=

250∑
u=0

P(U = u)P(U + G = x |U = u)

=

250∑
u=0

P(U = u)P(G = x− u).

Therefore,

pX(x) =

x∑
u=min{0,x−50}

(
250

u

)
(1/3)u(2/3)250−u

(
50

x− u

)
(1/2)x−u(1/2)50−x+u,

for x = 1, . . . , 300 and pX(x) = 0 otherwise. If we evaluate
∑300

x=0
xpX(x) numerically,

we end up with E[X] ≈ 108.34.

(b) We have

X =

250∑
i=1

Ui +

50∑
i=1

Gi,

and hence

E[X] =

250∑
i=1

E[Ui] +

50∑
i=1

E[Gi]

= 250 · P(Ui = 1) + 50 · P(Gi = 1)

= 250 · (1/3) + 50 · (1/2)
≈ 108.34
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Problem 15.

Let D and b be the numbers of tickets demanded and bought, respectively. If S is the
number of tickets sold, then S = min{D, b}. The scalper’s expected profit is

r(b) = E[150S − 75b] = 150E[S] − 75b.

We first find E[S]. We assume that b ≤ 10, since clearly buying more than the maximum
number of demanded tickets, which is 10, cannot be optimal. We have

E[S] = E[S |D ≤ b]P(D ≤ b) + E[S |D > b]P(D > b)

=

b∑
i=0

i

(
10

i

)(
1

2

)10

+ b

10∑
i=b+1

(
10

i

)(
1

2

)10

=
(

1

2

)10

(
b∑

i=0

i

(
10

i

)
+ b

10∑
i=b+1

(
10

i

))
.

Thus

r(b) = 150
(

1

2

)10

(
b∑

i=0

i

(
10

i

)
+ b

10∑
i=b+1

(
10

i

))
− 75b.

A computer solution is now required to maximize the above expression over the range
0 ≤ b ≤ 10.
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Problem 16.

We first note that

P(X = k |X + Y = n) =
P(X = k,X + Y = n)

P(X + Y = n)
.

We have

P(X = k,X + Y = n) = P(X = k, Y = n− k)

= P(X = k)P(Y = n− k)

=

{
p(1 − p)k−1p(1 − p)n−k−1 if k = 1, 2, . . . , n− 1, n ≥ 2,
0 otherwise,

=
{
p2(1 − p)n−2 if k = 1, 2, . . . , n− 1, n ≥ 2,
0 otherwise.

We also have

P(X + Y = n) =
∑

{(x,y) | x+y=n}

P(X = x, Y = y)

=

n−1∑
x=1

P(X = x, Y = n− x)

=

{∑n−1

x=1
p(1 − p)x−1p(1 − p)n−x−1 if n ≥ 2,

0 otherwise,

=
{

(n− 1)p2(1 − p)n−2 if n ≥ 2,
0 otherwise.

The preceding equations yield

P(X = k |X + Y = n) =

{
p2(1−p)n−2

(n−1)p2(1−p)n−2 if n ≥ 2 and k = 1, 2, . . . , n− 1,

0 otherwise,

=
{

1
n−1

if n ≥ 2 and k = 1, 2, . . . , n− 1,
0 otherwise.

For a more intuitive line of reasoning, consider the experiment in which we toss
a biased coin with probability p of getting heads until we get the second head. Let X
be the number of tosses up to and including the first head, and let Y be the number
of coin tosses starting with the toss after the first head and up to and including the
second head. Then X + Y is the number of coin tosses until we get exactly two heads,
and P(X = k |X + Y = n) is the probability of getting a head on the kth toss given
that it took exactly n tosses to get exactly two heads. This implies that the nth toss
was a head and that the first through (n− 1)st tosses contained exactly one head and
the rest tails. Each of these tosses is equally likely to be the head. So the events X = k
given that X + Y = n are equally likely as we vary k from 1 through n− 1. Therefore

P(X = k |X + Y = n) =
{

1
n−1

if n ≥ 2 and k = 1, 2, . . . , n− 1,
0 otherwise.
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Problem 17.

We first note that

P(X = k |X + Y + Z = n) =
P(X = k,X + Y + Z = n)

P(X + Y + Z = n)
.

We have

P(X = k,X +Y +Z = n) = P(X = k, Y +Z = n− k) = P(X = k)P(Y +Z = n− k).

We consider a coin with probability of a head equal to p, and we think of X as the
number of tosses up to and including the first head, Y as the number of tosses following
the first head up to and including the second head, and Z is the number of tosses
following the second head up to and including the third head. Then {Y + Z = n− k}
is the event whereby the second head occurs on the (n − k)th toss. For this event to
occur, we need to get two heads and n − k − 2 tails, and the second head must occur
on toss n − k, but the first head could occur at any of the previous n − k − 1 tosses.
Therefore,

P(Y + Z = n− k) = (n− k − 1)p2(1 − p)n−k−2

Combining the preceding two equations, we obtain

P(X = k,X + Y + Z = n)

=

{
p(1 − p)k−1(n− k − 1)p2(1 − p)n−k−2 if k = 1, 2, . . . , n− 2, n ≥ 3,
0 otherwise,

=
{

(n− k − 1)p3(1 − p)n−3 if k = 1, 2, . . . , n− 2, n ≥ 3,
0 otherwise.

Similarly, {X + Y + Z = n} is the event whereby the third head occurs on the
nth toss. For this to occur, we need to get 3 heads and n−3 tails. The third head must
occur on the nth toss, but the first two heads could occur at any of the previous n− 1
tosses. The number of ways two heads can occur in n− 1 tosses is

(
n−1

2

)
. Therefore,

P(X + Y + Z = n) =

(
n− 1

2

)
p3(1 − p)n−3 n ≥ 3.

The preceding equations yield

P(X = k |X + Y + Z = n)

=

{
(n−k−1)p3(1−p)n−3

(n−1
2 )

p3(1 − p)n−3 if n ≥ 3, k = 1, 2, . . . , n− 2,

0 otherwise,

=
{

2(n−k−1)
(n−1)(n−2)

if n ≥ 3, k = 1, 2, . . . , n− 2,
0 otherwise.

Another way of thinking about this problem is to realize that conditioned on
the event {X + Y + Z = n}, we have a discrete uniform law. Each outcome in our
new universe, {X + Y + Z = n}, requires 3 heads and n− 3 tails, so its probability is
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p3(1−p)n−3. Since each outcome is equally likely, to compute P(X = k |X+Y +Z = n),
we simply count the number of outcomes in the event {X = k} ∩ {X + Y + Z = n},
and divide by the number of outcomes in the event {X + Y + Z = n}.

If the first head occurs on the kth toss and the third head occurs on the nth toss,
the second head could occur at n− k − 1 different tosses. So the number of outcomes
in the event {X = k} ∩ {X + Y +Z = n} is n− k− 1. The number of outcomes in the
event {X +Y +Z = n} is the number of ways to have the third head occur on the nth
toss, so it is

(
n−1

2

)
. Therefore,

P(X = k |X + Y + Z = n) =
n− k − 1(

n−1
2

) =
2(n− k − 1)

(n− 1)(n− 2)
.
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Problem 18.

We are given that

pK(k) =
{

1/4 if k = 1, 2, 3, 4,
0 otherwise,

and

pN |K(n | k) =
{

1/k if n = 1, . . . , k,
0 otherwise.

(a) Applying the equation

pN,K(n, k) = pN |K(n | k)pK(k),

we obtain

pN,K(n, k) =
{

1/4k if k = 1, 2, 3, 4 and n = 1, . . . , k,
0 otherwise.

(b) The marginal PMF pN (n) is given by

pN (n) =
∑
k

pN,K(n, k) =

4∑
k=n

1/4k,

or

pN (n) =




1/4 + 1/8 + 1/12 + 1/16 = 25/48 if n = 1,
1/8 + 1/12 + 1/16 = 13/48 if n = 2,
1/12 + 1/16 = 7/48 if n = 3,
1/16 = 3/48 if n = 4,
0 otherwise.

(c) We have

pK |N (k | 2) =
pN,K(2, k)

pN (2)
=




6/13 if k = 2,
4/13 if k = 3,
3/13 if k = 4,
0 otherwise.

(d) Let A be the event 2 ≤N≤ 3. We first find the conditional PMF of K given A. We
have

pK |A(k) =
P(K = k,A)

P(A)
,

P(A) = pN (2) + pN (3) =
5

12
,

P(K = k,A) =




1
8

if k = 2,
1
12

+ 1
12

if k = 3,
1
16

+ 1
16

if k = 4,
0 otherwise,

and finally

pK |A(k) =




3
10

if k = 2,
2
5

if k = 3,
3
10

if k = 4,
0 otherwise.
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The conditional PMF of K given A is symmetric around k = 3, so

E[K |A] = 3.

The conditional variance of K given A is given by

var(K |A) = E
[
(K − E[K |A])2 |A

]
=

3

10
· (2 − 3)2 +

2

5
· 0 +

3

10
· (4 − 3)2 =

3

5
.

(e) We are given that E[Ci] = 30, where Ci is the cost of book i. Let T be the total
cost, so that T = C1 + . . .+CN . We find E[T ] by using the total expectation theorem:

E[T ] = E[T |N = 1]pN (1) + E[T |N = 2]pN (2) + E[T |N = 3]pN (3)

+ E[T |N = 4]pN (4)

= E[C1]pN (1) + E[C1 + C2]pN (2) + E[C1 + C2 + C3]pN (3)

+ E[C1 + C2 + C3 + C4]pN (4)

= E[Ci]pN (1) + 2E[Ci]pN (2) + 3E[Ci]pN (3) + 4E[Ci]pN (4)

= 30 · 25

48
+ 60 · 13

48
+ 90 · 7

48
+ 120 · 1

16

= 52.5.

21



Problem 19.

(a) Let A be the event that he got a total of three pens. The event A corresponds to
getting 1 pen in one of the trips and 2 in the other, or 3 pens in the first trip. So

P(A) =
1

3
· 1

3
+

1

3
· 1

3
+

1

3
=

5

9
.

(b) Let B be the event that he visited the supply room twice on the given day. Then,

P(B |A) =
P(B ∩A)

P(A)
=

(1/3)(1/3) + (1/3)(1/3)

(5/9)
=

2

5
.

(c) We have

E[N ] =

5∑
n=2

nPN (n) = 2 · 1

9
+ 3 · 5

9
+ 4 · 2

9
+ 5 · 1

9
=

10

3
,

and

E[N |C] =

5∑
n=4

nPN |C(n)

= 4 · P(N = 4 |N > 3) + 5 · P(N = 5 |N > 3)

= 4 · 2/9

(2/9) + (1/9)
+ 5 · 1/9

(2/9) + (1/9)

=
13

3
.

(d) We have

E[N2 |C] =

5∑
n=4

n2PN |C(n)

= 42 · P(N = 4 |N > 3) + 52 · P(N = 5 |N > 3)

= 42 · 2/9

(2/9) + (1/9)
+ 52 · 1/9

(2/9) + (1/9)

= 19.

Uisng also the result from part (c), E[N |C] = 13/3, we obtain

σ2
N |C = 19 −

(
13

3

)2

= 0.2222.

(e) Let Ci be the event that he gets more that three pens on the ith day. Noting that
the Ci’s are independent, we obtain

P

(
16⋂
i=1

Ci

)
=

16∏
i=1

P(Ci) =
(

2

9
+

1

9

)16

= 3−16.
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(f) Let Ni be the total number of pens he gets in the ith day, let X =
∑16

i=1
Ni, and let

D =
⋂16

i=1
Ci. Noting that conditional on D, the Ni’s are still independent and that

pNi |D = pNi |Ci
, we obtain

σ2
X |D =

16∑
i=1

σ2
Ni |D =

16∑
i=1

σ2
Ni |Ci

= 16 · 0.2222 = 3.5552.
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Problem 20.

Let A be the event that your detection programs lead you to the correct conclusion
about your computer. Let V be the event that your computer has a virus, and let V c

be the event that your computer does not have a virus. We have

P(A) = P(V )P(A |V ) + P(V c)P(A |V c),

and P(A |V ) and P(A |V c) can be found using the binomial PMF. Thus we have

P(A |V ) =

(
12

9

)
· (0.8)9 · (0.2)3 +

(
12

10

)
· (0.8)10 · (0.2)2

+

(
12

11

)
· (0.8)11 · (0.2)1 +

(
12

12

)
· (0.8)12 · (0.2)0

= 0.7899.

using a similar calculation, we find that P(A |V c) = 0.9742, so that

P(A) = 0.65 · 0.7899 + 0.35 · 0.9742 = 0.8544.
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Problem 21.

(a) Let Li be the event that Joe played the lottery on week i, and let Wi be the event
that he won on week i. The desired probability is

P(Li |W c
i ) =

P(W c
i |Li)P(Li)

P(W c
i |Li)P(Li) + P(W c

i |Lc
i )P(Lc

i )
=

(1 − q)p

(1 − q)p + 1 · (1 − p)
=

p− pq

1 − pq
.

(b) Conditioned on X, the random variable Y is binomial

pY |X(y |x) =
{(

x
y

)
qy(1 − q)(x−y) if 0 ≤ y ≤ x,

0 otherwise.

(c) Since X has a binomial PMF, we have

pX,Y (x, y) = pY |X(y |x)pX(x)

=
{(

x
y

)
qy(1 − q)(x−y)

(
n
x

)
px(1 − p)(n−x) if 0 ≤ y ≤ x ≤ n,

0 otherwise.

(d) Using the result from part (c), we could compute the marginal pY using the formula

pY (y) =

n∑
x=y

pX,Y (x, y),

but the algebra is messy. An easier method is based on the fact that Y is just the sum
of n independent Bernoulli random variables, each having a probability pq of being 1.
Therefore Y has a binomial PMF:

pY (y) =
{(

n
y

)
(pq)y(1 − pq)(n−y) if 0 ≤ y ≤ n,

0 otherwise.

(e) We have

pX |Y (x | y) =
pX,Y (x, y)

pY (y)

=

{
(xy)q

y(1−q)(x−y)(nx)p
x(1−p)(n−x)

(ny)(pq)y(1−pq)(n−y) 0 ≤ y ≤ x ≤ n,

0 otherwise.

(f) From part (a), we know the probability P(Li |W c
i ) that Joe played the lottery on

week i given that he did not win in that week. For each of the n− y weeks when Joe
did not win, there are x− y weeks when he played. Thus, X conditioned on Y = y is
binomial with parameters n− y and P(Li |W c

i ) = (p− pq)/(1 − pq):

pX |Y (x | y) =

{(
n−y
x−y

) (
p−pq
1−pq

)x−y (
1 − p−pq

1−pq

)(x−y) (
n
x

)
0 ≤ y ≤ x ≤ n,

0 otherwise.

After some algebraic manipulation, the answer to (e) can be shown equal to the above.
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