INTRODUCTION TO PROBABILITY

 $\mathbf{b}\mathbf{y}$

Dimitri P. Bertsekas and John N. Tsitsiklis

CHAPTER 2

ADDITIONAL PROBLEM SOLUTIONS

For instructors only. Please do not distribute except for the needs of your class.

Problem 1.

Let X be the number of royal flushes that we get in n hands. We model X as a binomial random variable with parameters n and p=1/649740. Let A be the event of getting at least one royal flush in n hands. Then, A^c is the event of getting no royal flush with a probability $\mathbf{P}(A^c) = \mathbf{P}(X=0) = p_X(0) = \binom{n}{0} p^0 (1-p)^{n-0}$. Thus, $\mathbf{P}(A) = 1 - \mathbf{P}(A^c) = 1 - (1-p)^n$. Solving the inequality $1 - (1-p)^n \ge 1 - 1/e$, we get $n \ge 649744$. To understand why the threshold value of n is so close to 1/p, note that for large n, we have

$$(1 - 1/n)^n \approx 1/e,$$

so that $1 - (1 - p)^n \approx 1 - 1/e$ when $n \approx 1/p$ and p is small.

Problem 2.

A claim is first filed in year k with probability $0.05 \cdot (0.9)^{k-1}$, and the corresponding total premium is

$$1000 \cdot \left(1 + 0.9 + \dots + (0.9)^{k-1}\right) = 1000 \cdot \frac{1 - (0.9)^k}{1 - 0.9} = 10000 \left(1 - (0.9)^k\right).$$

Thus, the PMF of Y, the total premium paid up to and including the year when the first claim is filed, is

$$p_Y(y) = \begin{cases} 0.05 \cdot (0.9)^{k-1} & \text{if } y = 10000(1 - (0.9)^k), \ k = 1, 2, \dots, \\ 0 & \text{otherwise.} \end{cases}$$

Problem 3.

Let $Y = \max\{0, X\}$. By using the formula

$$p_Y(y) = \sum_{\{x \mid \max\{0, x\} = y\}} p_X(x),$$

we have

$$p_Y(y) = \begin{cases} 0 & \text{if } y < 0 \text{ or } b < y, \\ \frac{1-a}{1+b-a} & \text{if } y = 0, \\ \frac{1}{1+b-a} & \text{if } 0 < y \le b. \end{cases}$$

Let $Y = \min\{0, X\}$. Similarly, we have

$$p_Y(y) = \begin{cases} 0 & \text{if } 0 < y \text{ or } y < a, \\ \frac{1+b}{1+b-a} & \text{if } y = 0, \\ \frac{1}{1+b-a} & \text{if } a \le y < 0. \end{cases}$$

Problem 4.

(a) We must have $\sum_{x=-3}^{3} p_X(x) = 1$, so

$$K = \frac{1}{\sum_{x=-3}^{3} x^2} = \frac{1}{28}.$$

(b) Using the formula $p_Y(y) = \sum_{\{x \mid |x|=y\}} p_X(x)$, we obtain

$$p_Y(y) = \begin{cases} 2Kx^2 = \frac{x^2}{14} & \text{if } x = 1, 2, 3, \\ 0 & \text{otherwise.} \end{cases}$$

(c) If $y \ge 0$, $p_Y(y) = \sum_{\{x \mid |x|=y\}} p_X(x) = p_X(y) + p_X(-y)$. Otherwise $p_Y(y) = 0$.

Problem 5.

We have $\cos(k\pi) = 1$ for k: even and $\cos(k\pi) = -1$ for k: odd. Therefore

$$\mathbf{E}[Y] = \sum_{k=1}^{\infty} (-1)^k k \mathbf{P}(X = k) + \sum_{k=1}^{\infty} (-1)^k (-k) \mathbf{P}(X = -k) = 0.$$

where the last equality holds because, by the symmetry assumption, we have $\mathbf{P}(X=k) = \mathbf{P}(X=-k)$.

We have $\sin(k\pi) = 0$ for all integer k, so since X takes only integer values, we have that Y is equal to 0 with probability 1. Therefore, $\mathbf{E}[Y] = 0$.

Problem 6.

At any second the probability that a mosquito bit you is $0.5 \cdot 0.2 = 0.1$. So, the time T in seconds between successive bites is a geometric random variable with parameter p=0.1. It follows that $\mathbf{E}[T]=1/p=10$.

Problem 7.

(a) Let E be the event that Fischer wins the match. We can express E as

$$E = \bigcup_{n \ge 0} E_n,$$

where E_n is the event that each of the first n games is a draw and the (n+1)st game is won by Fischer. Since the E_n 's are disjoint, we obtain

$$\mathbf{P}(E) = \sum_{n \ge 0} \mathbf{P}(E_n) = \sum_{n \ge 0} (1 - p - q)^n p = \frac{p}{p + q}.$$

(b) Since the duration D of the match is a geometric random variable with parameter p+q, we obtain

$$p_D(d) = (1 - p - q)^{d-1}(p+q), \qquad d = 1, 2, \dots,$$

$$\mathbf{E}[D] = \frac{1}{p+q},$$

and

$$var(D) = \frac{1 - p - q}{(p+q)^2}.$$

Problem 8.

We know that the number of errors in n bits is a binomial random variable with parameters n and 1-p. Its expected value is n(1-p), so $\mathbf{E}[\text{number of errors}] \leq 10$ if $n(1-p) \leq 10$, or

$$p \ge 1 - \frac{10}{n}$$

Thus for n = 10,000, we must have $p \ge 0.999$.

Problem 9.

Let X_i be the value obtained by the *i*th contestant. The answers to (a) and (b) are obtained by symmetry.

- (a) 1/2.
- (b) 1/3.
- (c) We have

$$\mathbf{P}(N=n) = \mathbf{P}(X_1 \text{ is the smallest of the 1st } n-1, \text{ and}$$

 $X_n \text{ is the smallest of the 1st } n),$

so using the extension of the symmetry argument in (a) and (b), we have

$$\mathbf{P}(N=n) = \frac{1}{n-1} \cdot \frac{1}{n}, \qquad n = 2, 3, \dots$$

Thus,

$$\mathbf{P}(N > n) = 1 - \mathbf{P}(N \le n) = 1 - \sum_{k=2}^{n} \frac{1}{k(k-1)}.$$

Alternatively,

$$\mathbf{P}(N > n) = \mathbf{P}(X_1 \text{ is the smallest of 1st } n) = \frac{1}{n}.$$

(d) Using the result of part (c), we have for n > 1,

$$\mathbf{P}(N=n) = \mathbf{P}(N > n-1) - \mathbf{P}(N > n) = \frac{1}{n-1} - \frac{1}{n} = \frac{1}{n(n-1)}.$$

Thus,

$$\mathbf{E}[N] = \sum_{n=2}^{\infty} n\mathbf{P}(N=n) = \sum_{n=2}^{\infty} \frac{1}{n-1} = \infty.$$

Problem 10.

We prove the statement by reversing the order of summation:

$$\sum_{i=1}^{\infty} \mathbf{P}(N \ge i) = \sum_{i=1}^{\infty} \sum_{k=i}^{\infty} \mathbf{P}(N = k)$$
$$= \sum_{k=1}^{\infty} \sum_{i=1}^{k} \mathbf{P}(N = k)$$
$$= \sum_{k=1}^{\infty} k \mathbf{P}(N = k)$$

which is the required result.

Problem 11.

Using the formula $\text{var}(X) = \mathbf{E}[X^2] - \left(\mathbf{E}[X]\right)^2$, we have

$$\mathbf{E}[(X_1 + \dots + X_n)^2] = \operatorname{var}(X_1 + \dots + X_n) + (\mathbf{E}[X_1 + \dots + X_n])^2$$

$$= n\operatorname{var}(X_1) + (n\mathbf{E}[X_1])^2$$

$$= n\mathbf{E}[X_1^2] - n(\mathbf{E}[X_1])^2 + n^2(\mathbf{E}[X_1])^2$$

$$= n\mathbf{E}[X_1^2] + n(n-1)(\mathbf{E}[X_1])^2.$$

Thus, c = n and d = n(n-1).

Problem 12.

Since the outcomes of the games are independent, the joint PMF of L_1 and L_2 satisfies

$$p_{L_1,L_2}(m,n) = p_{L_1}(m) \cdot p_{L_2}(n).$$

The random variables L_1 and L_2 are identically distributed, and they have a geometric distribution shifted by 1:

$$\mathbf{P}(L_1 = m) = \mathbf{P}(L_2 = m) = (1 - p)^m \cdot p.$$

Therefore

$$p_{L_1,L_2}(m,n) = p_{L_1}(m) \cdot p_{L_2}(n) = (1-p)^{n+m} \cdot p^2.$$

Problem 13.

The probability of any set of class grades where x students get an A and y students get a B is $p^x q^y (1 - p - q)^{n-x-y}$. The number of possible such sets of class grades is equal to the number of partitions of the class in three groups of x, y, and n - x - y students, and is given by the multinomial coefficient

$$\binom{n}{x, y, n-x-y} = \frac{n!}{x!y!(n-x-y)!}.$$

Thus,

$$p_{X,Y}(x,y) = \begin{cases} \frac{n!}{x!y!(n-x-y)!} p^x q^y (1-p-q)^{n-x-y} & \text{if } x \geq 0, \ y \geq 0, \ x+y \leq n, \\ 0 & \text{otherwise.} \end{cases}$$

Problem 14.

(a) For $i=1,\ldots,250$, let U_i be the random variable taking the value 1 if the *i*th undergraduate student get an A, and 0 otherwise. Similarly, for $i=1,\ldots,50$, let G_i be the random variable taking the value 1 if the *i*th graduate student gets an A, and 0 otherwise. Let

$$U = \sum_{i=1}^{250} U_i, \qquad G = \sum_{i=1}^{50} G_i.$$

We have X = U + G. The random variables U and G are binomial with PMFs

$$p_U(u) = {250 \choose u} (1/3)^u (2/3)^{250-u}, \text{ for } u = 0, 1, \dots, 250,$$

and

$$p_G(g) = {50 \choose g} (1/2)^g (1/2)^{50-g}$$
, for $g = 0, 1, \dots, 50$.

If follows that

$$p_X(x) = \mathbf{P}(U + G = x)$$

$$= \sum_{u=0}^{250} \mathbf{P}(U = u) \mathbf{P}(U + G = x \mid U = u)$$

$$= \sum_{u=0}^{250} \mathbf{P}(U = u) \mathbf{P}(G = x - u).$$

Therefore,

$$p_X(x) = \sum_{u=\min\{0, x-50\}}^{x} {250 \choose u} (1/3)^u (2/3)^{250-u} {50 \choose x-u} (1/2)^{x-u} (1/2)^{50-x+u},$$

for $x=1,\ldots,300$ and $p_X(x)=0$ otherwise. If we evaluate $\sum_{x=0}^{300} x p_X(x)$ numerically, we end up with $\mathbf{E}[X]\approx 108.34$.

(b) We have

$$X = \sum_{i=1}^{250} U_i + \sum_{i=1}^{50} G_i,$$

and hence

$$\mathbf{E}[X] = \sum_{i=1}^{250} \mathbf{E}[U_i] + \sum_{i=1}^{50} \mathbf{E}[G_i]$$

$$= 250 \cdot \mathbf{P}(U_i = 1) + 50 \cdot \mathbf{P}(G_i = 1)$$

$$= 250 \cdot (1/3) + 50 \cdot (1/2)$$

$$\approx 108.34$$

Problem 15.

Let D and b be the numbers of tickets demanded and bought, respectively. If S is the number of tickets sold, then $S = \min\{D, b\}$. The scalper's expected profit is

$$r(b) = \mathbf{E}[150S - 75b] = 150\mathbf{E}[S] - 75b.$$

We first find $\mathbf{E}[S]$. We assume that $b \leq 10$, since clearly buying more than the maximum number of demanded tickets, which is 10, cannot be optimal. We have

$$\begin{aligned} \mathbf{E}[S] &= \mathbf{E}[S \mid D \le b] \mathbf{P}(D \le b) + \mathbf{E}[S \mid D > b] \mathbf{P}(D > b) \\ &= \sum_{i=0}^{b} i \binom{10}{i} \left(\frac{1}{2}\right)^{10} + b \sum_{i=b+1}^{10} \binom{10}{i} \left(\frac{1}{2}\right)^{10} \\ &= \left(\frac{1}{2}\right)^{10} \left(\sum_{i=0}^{b} i \binom{10}{i} + b \sum_{i=b+1}^{10} \binom{10}{i}\right). \end{aligned}$$

Thus

$$r(b) = 150 \left(\frac{1}{2}\right)^{10} \left(\sum_{i=0}^{b} i \binom{10}{i} + b \sum_{i=b+1}^{10} \binom{10}{i}\right) - 75b.$$

A computer solution is now required to maximize the above expression over the range $0 \le b \le 10$.

Problem 16.

We first note that

$$P(X = k | X + Y = n) = \frac{P(X = k, X + Y = n)}{P(X + Y = n)}.$$

We have

$$\begin{aligned} \mathbf{P}(X = k, X + Y = n) &= \mathbf{P}(X = k, Y = n - k) \\ &= \mathbf{P}(X = k) \mathbf{P}(Y = n - k) \\ &= \begin{cases} p(1 - p)^{k - 1} p(1 - p)^{n - k - 1} & \text{if } k = 1, 2, \dots, n - 1, \ n \geq 2, \\ 0 & \text{otherwise,} \end{cases} \\ &= \begin{cases} p^2 (1 - p)^{n - 2} & \text{if } k = 1, 2, \dots, n - 1, \ n \geq 2, \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

We also have

$$\mathbf{P}(X+Y=n) = \sum_{\{(x,y) \mid x+y=n\}} \mathbf{P}(X=x,Y=y)$$

$$= \sum_{x=1}^{n-1} \mathbf{P}(X=x,Y=n-x)$$

$$= \begin{cases} \sum_{x=1}^{n-1} p(1-p)^{x-1} p(1-p)^{n-x-1} & \text{if } n \ge 2, \\ 0 & \text{otherwise,} \end{cases}$$

$$= \begin{cases} (n-1)p^2(1-p)^{n-2} & \text{if } n \ge 2, \\ 0 & \text{otherwise.} \end{cases}$$

The preceding equations yield

$$\mathbf{P}(X = k \mid X + Y = n) = \begin{cases} \frac{p^2(1-p)^{n-2}}{(n-1)p^2(1-p)^{n-2}} & \text{if } n \ge 2 \text{ and } k = 1, 2, \dots, n-1, \\ 0 & \text{otherwise,} \end{cases}$$
$$= \begin{cases} \frac{1}{n-1} & \text{if } n \ge 2 \text{ and } k = 1, 2, \dots, n-1, \\ 0 & \text{otherwise.} \end{cases}$$

For a more intuitive line of reasoning, consider the experiment in which we toss a biased coin with probability p of getting heads until we get the second head. Let X be the number of tosses up to and including the first head, and let Y be the number of coin tosses starting with the toss after the first head and up to and including the second head. Then X+Y is the number of coin tosses until we get exactly two heads, and $\mathbf{P}(X=k\,|\,X+Y=n)$ is the probability of getting a head on the kth toss given that it took exactly n tosses to get exactly two heads. This implies that the nth toss was a head and that the first through (n-1)st tosses contained exactly one head and the rest tails. Each of these tosses is equally likely to be the head. So the events X=k given that X+Y=n are equally likely as we vary k from 1 through n-1. Therefore

$$\mathbf{P}(X = k \mid X + Y = n) = \begin{cases} \frac{1}{n-1} & \text{if } n \ge 2 \text{ and } k = 1, 2, \dots, n-1, \\ 0 & \text{otherwise.} \end{cases}$$

Problem 17.

We first note that

$$P(X = k | X + Y + Z = n) = \frac{P(X = k, X + Y + Z = n)}{P(X + Y + Z = n)}.$$

We have

$$P(X = k, X + Y + Z = n) = P(X = k, Y + Z = n - k) = P(X = k)P(Y + Z = n - k).$$

We consider a coin with probability of a head equal to p, and we think of X as the number of tosses up to and including the first head, Y as the number of tosses following the first head up to and including the second head, and Z is the number of tosses following the second head up to and including the third head. Then $\{Y + Z = n - k\}$ is the event whereby the second head occurs on the (n - k)th toss. For this event to occur, we need to get two heads and n - k - 2 tails, and the second head must occur on toss n - k, but the first head could occur at any of the previous n - k - 1 tosses. Therefore,

$$\mathbf{P}(Y+Z=n-k) = (n-k-1)p^2(1-p)^{n-k-2}$$

Combining the preceding two equations, we obtain

$$\begin{aligned} \mathbf{P}(X = k, X + Y + Z = n) \\ &= \begin{cases} p(1-p)^{k-1}(n-k-1)p^2(1-p)^{n-k-2} & \text{if } k = 1, 2, \dots, n-2, \ n \geq 3, \\ 0 & \text{otherwise,} \end{cases} \\ &= \begin{cases} (n-k-1)p^3(1-p)^{n-3} & \text{if } k = 1, 2, \dots, n-2, \ n \geq 3, \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

Similarly, $\{X+Y+Z=n\}$ is the event whereby the third head occurs on the nth toss. For this to occur, we need to get 3 heads and n-3 tails. The third head must occur on the nth toss, but the first two heads could occur at any of the previous n-1 tosses. The number of ways two heads can occur in n-1 tosses is $\binom{n-1}{2}$. Therefore,

$$\mathbf{P}(X+Y+Z=n) = \binom{n-1}{2} p^3 (1-p)^{n-3} \qquad n \ge 3.$$

The preceding equations yield

$$\begin{split} \mathbf{P}(X = k \,|\, X + Y + Z = n) \\ &= \begin{cases} \frac{(n-k-1)p^3(1-p)^{n-3}}{\binom{n-1}{2}} p^3 (1-p)^{n-3} & \text{if } n \geq 3, \ k = 1, 2, \dots, n-2, \\ 0 & \text{otherwise,} \end{cases} \\ &= \begin{cases} \frac{2(n-k-1)}{(n-1)(n-2)} & \text{if } n \geq 3, \ k = 1, 2, \dots, n-2, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Another way of thinking about this problem is to realize that conditioned on the event $\{X+Y+Z=n\}$, we have a discrete uniform law. Each outcome in our new universe, $\{X+Y+Z=n\}$, requires 3 heads and n-3 tails, so its probability is

 $p^3(1-p)^{n-3}$. Since each outcome is equally likely, to compute $\mathbf{P}(X=k\,|\,X+Y+Z=n)$, we simply count the number of outcomes in the event $\{X=k\}\cap\{X+Y+Z=n\}$, and divide by the number of outcomes in the event $\{X+Y+Z=n\}$.

If the first head occurs on the kth toss and the third head occurs on the nth toss, the second head could occur at n-k-1 different tosses. So the number of outcomes in the event $\{X=k\}\cap\{X+Y+Z=n\}$ is n-k-1. The number of outcomes in the event $\{X+Y+Z=n\}$ is the number of ways to have the third head occur on the nth toss, so it is $\binom{n-1}{2}$. Therefore,

$$\mathbf{P}(X=k \mid X+Y+Z=n) = \frac{n-k-1}{\binom{n-1}{2}} = \frac{2(n-k-1)}{(n-1)(n-2)}.$$

Problem 18.

We are given that

$$p_K(k) = \begin{cases} 1/4 & \text{if } k = 1, 2, 3, 4, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$p_{N \mid K}(n \mid k) = \begin{cases} 1/k & \text{if } n = 1, \dots, k, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Applying the equation

$$p_{N,K}(n,k) = p_{N+K}(n|k)p_K(k),$$

we obtain

$$p_{N,K}(n,k) = \begin{cases} 1/4k & \text{if } k = 1, 2, 3, 4 \text{ and } n = 1, \dots, k, \\ 0 & \text{otherwise.} \end{cases}$$

(b) The marginal PMF $p_N(n)$ is given by

$$p_N(n) = \sum_k p_{N,K}(n,k) = \sum_{k=n}^4 1/4k,$$

or

$$p_N(n) = \begin{cases} 1/4 + 1/8 + 1/12 + 1/16 = 25/48 & \text{if } n = 1, \\ 1/8 + 1/12 + 1/16 = 13/48 & \text{if } n = 2, \\ 1/12 + 1/16 = 7/48 & \text{if } n = 3, \\ 1/16 = 3/48 & \text{if } n = 4, \\ 0 & \text{otherwise} \end{cases}$$

(c) We have

$$p_{K \mid N}(k \mid 2) = \frac{p_{N,K}(2,k)}{p_N(2)} = \begin{cases} 6/13 & \text{if } k = 2, \\ 4/13 & \text{if } k = 3, \\ 3/13 & \text{if } k = 4, \\ 0 & \text{otherwise} \end{cases}$$

(d) Let A be the event $2 \le N \le 3$. We first find the conditional PMF of K given A. We have

$$p_{K \mid A}(k) = \frac{\mathbf{P}(K = k, A)}{\mathbf{P}(A)},$$

$$\mathbf{P}(A) = p_N(2) + p_N(3) = \frac{5}{12},$$

$$\mathbf{P}(K=k,A) = \begin{cases} \frac{1}{8} & \text{if } k = 2, \\ \frac{1}{12} + \frac{1}{12} & \text{if } k = 3, \\ \frac{1}{16} + \frac{1}{16} & \text{if } k = 4, \\ 0 & \text{otherwise} \end{cases}$$

and finally

$$p_{K|A}(k) = \begin{cases} \frac{3}{10} & \text{if } k = 2, \\ \frac{2}{5} & \text{if } k = 3, \\ \frac{3}{10} & \text{if } k = 4, \\ 0 & \text{otherwise} \end{cases}$$

The conditional PMF of K given A is symmetric around k = 3, so

$$\mathbf{E}[K \,|\, A] = 3.$$

The conditional variance of K given A is given by

$$var(K \mid A) = \mathbf{E} \left[(K - \mathbf{E}[K \mid A])^2 \mid A \right] = \frac{3}{10} \cdot (2 - 3)^2 + \frac{2}{5} \cdot 0 + \frac{3}{10} \cdot (4 - 3)^2 = \frac{3}{5}.$$

(e) We are given that $\mathbf{E}[C_i] = 30$, where C_i is the cost of book i. Let T be the total cost, so that $T = C_1 + \ldots + C_N$. We find $\mathbf{E}[T]$ by using the total expectation theorem:

$$\begin{split} \mathbf{E}[T] &= \mathbf{E}[T \mid N = 1]p_N(1) + \mathbf{E}[T \mid N = 2]p_N(2) + \mathbf{E}[T \mid N = 3]p_N(3) \\ &+ \mathbf{E}[T \mid N = 4]p_N(4) \\ &= \mathbf{E}[C_1]p_N(1) + \mathbf{E}[C_1 + C_2]p_N(2) + \mathbf{E}[C_1 + C_2 + C_3]p_N(3) \\ &+ \mathbf{E}[C_1 + C_2 + C_3 + C_4]p_N(4) \\ &= \mathbf{E}[C_i]p_N(1) + 2\mathbf{E}[C_i]p_N(2) + 3\mathbf{E}[C_i]p_N(3) + 4\mathbf{E}[C_i]p_N(4) \\ &= 30 \cdot \frac{25}{48} + 60 \cdot \frac{13}{48} + 90 \cdot \frac{7}{48} + 120 \cdot \frac{1}{16} \\ &= 52.5. \end{split}$$

Problem 19.

(a) Let A be the event that he got a total of three pens. The event A corresponds to getting 1 pen in one of the trips and 2 in the other, or 3 pens in the first trip. So

$$\mathbf{P}(A) = \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} = \frac{5}{9}.$$

(b) Let B be the event that he visited the supply room twice on the given day. Then,

$$\mathbf{P}(B \mid A) = \frac{\mathbf{P}(B \cap A)}{\mathbf{P}(A)} = \frac{(1/3)(1/3) + (1/3)(1/3)}{(5/9)} = \frac{2}{5}.$$

(c) We have

$$\mathbf{E}[N] = \sum_{n=2}^{5} n\mathbf{P}_{N}(n) = 2 \cdot \frac{1}{9} + 3 \cdot \frac{5}{9} + 4 \cdot \frac{2}{9} + 5 \cdot \frac{1}{9} = \frac{10}{3},$$

and

$$\mathbf{E}[N \mid C] = \sum_{n=4}^{5} n \mathbf{P}_{N \mid C}(n)$$

$$= 4 \cdot \mathbf{P}(N = 4 \mid N > 3) + 5 \cdot \mathbf{P}(N = 5 \mid N > 3)$$

$$= 4 \cdot \frac{2/9}{(2/9) + (1/9)} + 5 \cdot \frac{1/9}{(2/9) + (1/9)}$$

$$= \frac{13}{3}.$$

(d) We have

$$\mathbf{E}[N^{2} \mid C] = \sum_{n=4}^{5} n^{2} \mathbf{P}_{N \mid C}(n)$$

$$= 4^{2} \cdot \mathbf{P}(N = 4 \mid N > 3) + 5^{2} \cdot \mathbf{P}(N = 5 \mid N > 3)$$

$$= 4^{2} \cdot \frac{2/9}{(2/9) + (1/9)} + 5^{2} \cdot \frac{1/9}{(2/9) + (1/9)}$$

$$= 19.$$

Uisng also the result from part (c), $\mathbf{E}[N \mid C] = 13/3$, we obtain

$$\sigma_{N \mid C}^2 = 19 - \left(\frac{13}{3}\right)^2 = 0.2222.$$

(e) Let C_i be the event that he gets more that three pens on the *i*th day. Noting that the C_i 's are independent, we obtain

$$\mathbf{P}\left(\bigcap_{i=1}^{16} C_i\right) = \prod_{i=1}^{16} \mathbf{P}(C_i) = \left(\frac{2}{9} + \frac{1}{9}\right)^{16} = 3^{-16}.$$

(f) Let N_i be the total number of pens he gets in the ith day, let $X = \sum_{i=1}^{16} N_i$, and let $D = \bigcap_{i=1}^{16} C_i$. Noting that conditional on D, the N_i 's are still independent and that $p_{N_i \mid D} = p_{N_i \mid C_i}$, we obtain

$$\sigma_{X \mid D}^2 = \sum_{i=1}^{16} \sigma_{N_i \mid D}^2 = \sum_{i=1}^{16} \sigma_{N_i \mid C_i}^2 = 16 \cdot 0.2222 = 3.5552.$$

Problem 20.

Let A be the event that your detection programs lead you to the correct conclusion about your computer. Let V be the event that your computer has a virus, and let V^c be the event that your computer does not have a virus. We have

$$\mathbf{P}(A) = \mathbf{P}(V)\mathbf{P}(A \mid V) + \mathbf{P}(V^c)\mathbf{P}(A \mid V^c),$$

and $\mathbf{P}(A \mid V)$ and $\mathbf{P}(A \mid V^c)$ can be found using the binomial PMF. Thus we have

$$\mathbf{P}(A \mid V) = \begin{pmatrix} 12 \\ 9 \end{pmatrix} \cdot (0.8)^9 \cdot (0.2)^3 + \begin{pmatrix} 12 \\ 10 \end{pmatrix} \cdot (0.8)^{10} \cdot (0.2)^2$$

$$+ \begin{pmatrix} 12 \\ 11 \end{pmatrix} \cdot (0.8)^{11} \cdot (0.2)^1 + \begin{pmatrix} 12 \\ 12 \end{pmatrix} \cdot (0.8)^{12} \cdot (0.2)^0$$

$$= 0.7899.$$

using a similar calculation, we find that $\mathbf{P}(A \,|\, V^c) = 0.9742$, so that

$$\mathbf{P}(A) = 0.65 \cdot 0.7899 + 0.35 \cdot 0.9742 = 0.8544.$$

Problem 21.

(a) Let L_i be the event that Joe played the lottery on week i, and let W_i be the event that he won on week i. The desired probability is

$$\mathbf{P}(L_i \mid W_i^c) = \frac{\mathbf{P}(W_i^c \mid L_i)\mathbf{P}(L_i)}{\mathbf{P}(W_i^c \mid L_i)\mathbf{P}(L_i) + \mathbf{P}(W_i^c \mid L_i^c)\mathbf{P}(L_i^c)} = \frac{(1-q)p}{(1-q)p + 1 \cdot (1-p)} = \frac{p - pq}{1 - pq}.$$

(b) Conditioned on X, the random variable Y is binomial

$$p_{Y\mid X}(y\mid x) = \begin{cases} \binom{x}{y}q^y(1-q)^{(x-y)} & \text{if } 0\leq y\leq x,\\ 0 & \text{otherwise.} \end{cases}$$

(c) Since X has a binomial PMF, we have

$$p_{X,Y}(x,y) = p_{Y|X}(y|x)p_X(x)$$

$$= \begin{cases} \binom{x}{y}q^y(1-q)^{(x-y)}\binom{n}{x}p^x(1-p)^{(n-x)} & \text{if } 0 \le y \le x \le n, \\ 0 & \text{otherwise.} \end{cases}$$

(d) Using the result from part (c), we could compute the marginal p_Y using the formula

$$p_Y(y) = \sum_{x=y}^{n} p_{X,Y}(x,y),$$

but the algebra is messy. An easier method is based on the fact that Y is just the sum of n independent Bernoulli random variables, each having a probability pq of being 1. Therefore Y has a binomial PMF:

$$p_Y(y) = \begin{cases} \binom{n}{y} (pq)^y (1 - pq)^{(n-y)} & \text{if } 0 \le y \le n, \\ 0 & \text{otherwise.} \end{cases}$$

(e) We have

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

$$= \begin{cases} \frac{\binom{x}{y}q^y(1-q)^{(x-y)}\binom{n}{x}p^x(1-p)^{(n-x)}}{\binom{n}{y}(pq)^y(1-pq)^{(n-y)}} & 0 \le y \le x \le n, \\ 0 & \text{otherwise.} \end{cases}$$

(f) From part (a), we know the probability $\mathbf{P}(L_i \mid W_i^c)$ that Joe played the lottery on week i given that he did not win in that week. For each of the n-y weeks when Joe did not win, there are x-y weeks when he played. Thus, X conditioned on Y=y is binomial with parameters n-y and $\mathbf{P}(L_i \mid W_i^c) = (p-pq)/(1-pq)$:

$$p_{X\mid Y}(x\mid y) = \begin{cases} \binom{n-y}{x-y} \left(\frac{p-pq}{1-pq}\right)^{x-y} \left(1 - \frac{p-pq}{1-pq}\right)^{(x-y)} \binom{n}{x} & 0 \leq y \leq x \leq n, \\ 0 & \text{otherwise.} \end{cases}$$

After some algebraic manipulation, the answer to (e) can be shown equal to the above.