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Preface

There is no royal way to geometry
(Euclid to king Ptolemy of Alexandria)

Interest in convex optimization has become intense due to widespread ap-
plications in fields such as large-scale resource allocation, signal processing,
and machine learning. This book aims at an up-to-date and accessible de-
velopment of algorithms for solving convex optimization problems.

The book complements the author’s 2009 “Convex Optimization The-
ory” book, but can be read independently. The latter book focuses on
convexity theory and optimization duality, while the present book focuses
on algorithmic issues. The two books share mathematical prerequisites,
notation, and style, and together cover the entire finite-dimensional convex
optimization field. Both books rely on rigorous mathematical analysis, but
also aim at an intuitive exposition that makes use of visualization where
possible. This is facilitated by the extensive use of analytical and algorith-
mic concepts of duality, which by nature lend themselves to geometrical
interpretation.

To enhance readability, the statements of definitions and results of
the “theory book” are reproduced without proofs in Appendix B. Moreover,
some of the theory needed for the present book, has been replicated and/or
adapted to its algorithmic nature. For example the theory of subgradients
for real-valued convex functions is fully developed in Chapter 3. Thus the
reader who is already familiar with the analytical foundations of convex
optimization need not consult the “theory book” except for the purpose of
studying the proofs of some specific results.

The book covers almost all the major classes of convex optimization
algorithms. Principal among these are gradient, subgradient, polyhedral
approximation, proximal, and interior point methods. Most of these meth-
ods rely on convexity (but not necessarily differentiability) in the cost and
constraint functions, and are often connected in various ways to duality. I
have provided numerous examples describing in detail applications to spe-
cially structured problems. The reader may also find a wealth of analysis
and discussion of applications in books on large-scale convex optimization,
network optimization, parallel and distributed computation, signal process-
ing, and machine learning.

The chapter-by-chapter description of the book follows:

Chapter 1: Here we provide a broad overview of some important classes of
convex optimization problems, and their principal characteristics. Several

ix
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problem structures are discussed, often arising from Lagrange duality the-
ory and Fenchel duality theory, together with its special case, conic duality.
Some additional structures involving a large number of additive terms in
the cost, or a large number of constraints are also discussed, together with
their applications in machine learning and large-scale resource allocation.

Chapter 2: Here we provide an overview of algorithmic approaches, focus-
ing primarily on algorithms for differentiable optimization, and we discuss
their differences from their nondifferentiable convex optimization counter-
parts. We also highlight the main ideas of the two principal algorithmic
approaches of this book, iterative descent and approximation, and we illus-
trate their application with specific algorithms, reserving detailed analysis
for subsequent chapters.

Chapter 3: Here we discuss subgradient methods for minimizing a con-
vex cost function over a convex constraint set. The cost function may be
nondifferentiable, as is often the case in the context of duality and machine
learning applications. These methods are based on the idea of reduction
of distance to the optimal set, and include variations aimed at algorithmic
efficiency, such as ǫ-subgradient and incremental subgradient methods.

Chapter 4: Here we discuss polyhedral approximation methods for min-
imizing a convex function over a convex constraint set. The two main
approaches here are outer linearization (also called the cutting plane ap-
proach) and inner linearization (also called the simplicial decomposition
approach). We show how these two approaches are intimately connected
by conjugacy and duality, and we generalize our framework for polyhedral
approximation to the case where the cost function is a sum of two or more
convex component functions.

Chapter 5: Here we focus on proximal algorithms for minimizing a convex
function over a convex constraint set. At each iteration of the basic proxi-
mal method, we solve an approximation to the original problem. However,
unlike the preceding chapter, the approximation is not polyhedral, but
rather it is based on quadratic regularization, i.e., adding a quadratic term
to the cost function, which is appropriately adjusted at each iteration. We
discuss several variations of the basic algorithm. Some of these include
combinations with the polyhedral approximation methods of the preced-
ing chapter, yielding the class of bundle methods. Others are obtained
via duality from the basic proximal algorithm, including the augmented
Lagrangian method (also called method of multipliers) for constrained op-
timization. Finally, we discuss extensions of the proximal algorithm for
finding a zero of a maximal monotone operator, and a major special case:
the alternating direction method of multipliers, which is well suited for
taking advantage of the structure of several types of large-scale problems.

Chapter 6: Here we discuss a variety of algorithmic topics that sup-
plement our discussion of the descent and approximation methods of the
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preceding chapters. We first discuss gradient projection methods and vari-
ations with extrapolation that have good complexity properties, including
Nesterov’s optimal complexity algorithm. These were developed for differ-
entiable problems, and can be extended to the nondifferentiable case by
means of a smoothing scheme. Then we discuss a number of combinations
of gradient, subgradient, and proximal methods that are well suited for
specially structured problems. We pay special attention to incremental
versions for the case where the cost function consists of the sum of a large
number of component terms. We also describe additional methods, such
as the classical block coordinate descent approach, the proximal algorithm
with a nonquadratic regularization term, and the ǫ-descent method. We
close the chapter with a discussion of interior point methods.

Our lines of analysis are largely based on differential calculus-type
ideas, which are central in nonlinear programming, and on concepts of hy-
perplane separation, conjugacy, and duality, which are central in convex
analysis. A traditional use of duality is to establish the equivalence and
the connections between a pair of primal and dual problems, which may in
turn enhance insight and enlarge the set of options for analysis and compu-
tation. The book makes heavy use of this type of problem duality, but also
emphasizes a qualitatively different, algorithm-oriented type of duality that
is largely based on conjugacy. In particular, some fundamental algorithmic
operations turn out to be dual to each other, and whenever they arise in
various algorithms they admit dual implementations, often with significant
gains in insight and computational convenience. Some important examples
are the duality between the subdifferentials of a convex function and its
conjugate, the duality of a proximal operation using a convex function and
an augmented Lagrangian minimization using its conjugate, and the dual-
ity between outer linearization of a convex function and inner linearization
of its conjugate. Several interesting algorithms in Chapters 4-6 admit dual
implementations based on these pairs of operations.

The book contains a fair number of exercises, many of them sup-
plementing the algorithmic development and analysis. In addition a large
number of theoretical exercises (with carefully written solutions) for the“the-
ory book,” together with other related material, can be obtained from the
book’s web page http://www.athenasc.com/convexalgorithms.html, and
the author’s web page http://web.mit.edu/dimitrib/www/home.html. The
MIT OpenCourseWare site http://ocw.mit.edu/index.htm, also provides
lecture slides and other relevant material.

The mathematical prerequisites for the book are a first course in
linear algebra and a first course in real analysis. A summary of the relevant
material is provided in Appendix A. Prior exposure to linear and nonlinear
optimization algorithms is not assumed, although it will undoubtedly be
helpful in providing context and perspective. Other than this background,
the development is self-contained, with proofs provided throughout.
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The present book, in conjunction with its “theory” counterpart may
be used as a text for a one-semester or two-quarter convex optimization
course; I have taught several variants of such a course at MIT and else-
where over the last fifteen years. Still the book may not provide all of the
convex optimization material an instructor may wish for, and it may need
to be supplemented by works that aim primarily at specific types of con-
vex optimization models, or address more comprehensively computational
complexity issues. I have added representative citations for such works,
which, however, are far from complete in view of the explosive growth of
the literature on the subject.

The book may also be used as a supplementary source for nonlinear
programming classes that are primarily focused on classical differentiable
nonconvex optimization material (Kuhn-Tucker theory, Newton-like and
conjugate direction methods, interior point, penalty, and augmented La-
grangian methods). For such courses, it may provide a nondifferentiable
convex optimization component.

I was fortunate to have several outstanding collaborators in my re-
search on various aspects of convex optimization: Vivek Borkar, Jon Eck-
stein, Eli Gafni, Xavier Luque, Angelia Nedić, Asuman Ozdaglar, John
Tsitsiklis, Mengdi Wang, and Huizhen (Janey) Yu. Substantial portions of
our joint research have found their way into the book. In addition, I am
grateful for interactions and suggestions I received from several colleagues,
including Leon Bottou, Steve Boyd, Tom Luo, Steve Wright, and particu-
larly Mark Schmidt and Lin Xiao who read with care major portions of the
book. I am also very thankful for the valuable proofreading of parts of the
book by Mengdi Wang and Huizhen (Janey) Yu, and particularly by Ivan
Pejcic who went through most of the book with a keen eye. I developed
the book through convex optimization classes at MIT over a fifteen-year
period, and I want to express appreciation for my students who provided
continuing motivation and inspiration.

Finally, I would like to mention Paul Tseng, a major contributor
to numerous topics in this book, who was my close friend and research
collaborator on optimization algorithms for many years, and whom we
unfortunately lost while he was still at his prime. I am dedicating the book
to his memory.

Dimitri P. Bertsekas
dimitrib@mit.edu
January 2015


