
Corrections and Notes for

CONVEX OPTIMIZATION ALGORITHMS

by Dimitri P. Bertsekas

Athena Scientific

Last Updated: 11/1/17

p. 11 (+4) Change “x2 ∈ ℜn” to “x2 ∈ ℜm”

p. 11 (-12) Change “at f at x” to “of f at x”

p. 11 (-3) Change “z ∈ ℜn” to “z ∈ ℜm”

p. 15 (-5) Change “S” to “S⊥”

p. 46 (+5) Change the statement and proof of Prop. 1.5.3 as follows:

Proposition 1.5.3: Let f : Y 7→ ℜ be a function defined on a sub-
set Y of ℜn, and let Xi, i = 1, . . . ,m, be closed subsets of Y with
nonempty intersection. Assume that f is Lipschitz continuous over Y
with constant L, and that for some scalar β > 0, we have

dist(x;X1 ∩ · · · ∩Xm) ≤ β

m
∑

i=1

dist(x;Xi), ∀ x ∈ Y.

Let c be a scalar such that c > βL. Then the set of minima of f over
∩m
i=1

Xi coincides with the set of minima of

f(x) + c

m
∑

i=1

dist(x;Xi)

over Y .

Proof: The proof is similar to the proof of Prop. 1.5.2, using the given
additional condition to modify the main inequality. Denote F (x) = f(x)+
c
∑m

i=1
dist(x;Xi) and X = X1 ∩ · · · ∩ Xm. For a vector x ∈ Y , let x̂i
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denote a vector of Xi that is at minimum distance from x, and let x̂ denote
a vector of X that is at minimum distance from x. If c > βL, we have for
all x ∈ Y ,

F (x) = f(x) + c

m
∑

i=1

‖x− x̂i‖

≥ f(x̂) +
(

f(x)− f(x̂)
)

+
c

β
‖x− x̂‖

≥ f(x̂) +

(

c

β
− L

)

‖x− x̂‖

≥ F (x̂),

with strict inequality if x 6= x̂. The proof now proceeds as in the proof of
Prop. 1.5.2. Q.E.D.

p. 92 (+8) For clarity change
“More specifically, instead of the gradient sum

sk =

m−1
∑

ℓ=0

∇fik−ℓ
(xk−ℓ),

in Eq. (2.35), these methods use

s̃k = ∇fik(xk)−∇fik(x̃k) +
m−1
∑

ℓ=0

∇fik−ℓ
(x̃k),

where x̃k is the most recent point where the full gradient has been calcu-
lated. To calculate s̃k one only needs to compute the difference of the two
gradients

∇fik(xk)−∇fik(x̃k)

and add it to the full gradient
∑m−1

ℓ=0
∇fik−ℓ

(x̃k).”
to
“For an example, instead of the gradient sum

sk =

m−1
∑

ℓ=0

∇fik−ℓ
(xk−ℓ),

in Eq. (2.35), such a method may use s̃k, updated according to

s̃k = ∇fik(xk)−∇fik(x̃k) + s̃k−1,

where s̃0 is the full gradient computed at the start of the current cycle,
and x̃k is the point at which this full gradient has been calculated. Thus
to obtain s̃k one only needs to compute the difference of the two gradients

∇fik(xk)−∇fik(x̃k)
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and add it to the current approximation of the full gradient s̃k−1.”

p. 113 (-13) Change “Lagrangian” to “Lagrangian method”

p. 206 (+13) Change “λ̃ ∈ ∂f(xλ̃)” to “λ̃ ∈ ∂f(x)”

p. 255 (-5) Change “−‖x1 − x2‖2” to “− 1

c
‖x1 − x2‖2”

p. 283 (+15) Change “(5.83)” to “(5.87)”

p. 283 (+18) Change “Ax = z” to “Ax+Bz = d”

p. 284 (+2) Change “λ1
k+1

” and “λm
k+1

” to “λ1
k” and “λm

k ”, respectively

p. 293 (+2) Change “Example 3.4” to “Section 3.4, Example 3.4”

p. 293 (+4) Change Eq. (5.107) and the following line to

λj
k+1

= λj
k +

c

mj

(

m
∑

i=1

Ajixi
k+1

− bj

)

, j = 1, . . . , r, (5.107)

where Aji, bj , and r are the components and row dimension of Ai and b,
respectively, and mj is the number of

p. 298 (+8) Change “z ∈ ℜn” to “z ∈ ℜm”

p. 299 (-5) Change “λ− cv” to “λ+ cv”

p. 300 (-6) Change “f1 (or f2, respectively)” to “f2 (or f1, respectively)”

p. 308 (-9) Change “y ∈ ℜn” to “y ∈ X”

p. 314 (+9 to +22) Replace the part of the proof starting just after
the equation φ(x) = f(x) − σ

2
‖x‖2. and ending just before the statement

“Using the expression (6.25) ...” with the following:

We will show that ∇φ, which is given by

∇φ(x) = ∇f(x)− σx, (6.25)

is Lipschitz continuous with constant L − σ. To this end, based on the
equivalence of statements (i) and (v) of Exercise 6.1, it is sufficient to show
that

(

∇φ(x) −∇φ(y)
)′
(x− y) ≤ (L− σ)‖x− y‖2, ∀ x, y ∈ ℜn,

or, using the expression (6.25) for ∇φ,

(

∇f(x)−∇f(y)− σ(x − y)
)′
(x− y) ≤ (L− σ)‖x− y‖2, ∀ x, y ∈ ℜn.

This relation is equivalently written as

(

∇f(x)−∇f(y)
)′
(x− y) ≤ L‖x− y‖2, ∀ x, y ∈ ℜn,
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and is true by (iii) of part (a).
Having shown that ∇φ is Lipschitz continuous with constant L − σ,

we apply (ii) of part (a) to the function φ and obtain

(

∇φ(x) −∇φ(y)
)′
(x − y) ≥

1

L− σ

∥

∥∇φ(x) −∇φ(y)
∥

∥

2
.

p. 316 (-17) Change “∇f(x) = 0” to “the optimality condition∇f(x)′(x−
x) ≥ 0, for all x ∈ X”

p. 318 (-13) Change “βm” to “σβm”

p. 323 (+7) Change “gradient [cf. Eq. (6.6)]” to “gradient within ℜn”

p. 323 (+12) Change “βk ∈ (0, 1)” to “βk ∈ [0, 1)”

p. 323 (-11) Change “θ0 = θ1 ∈ (0, 1]” to “θ−1 = θ0 = 1”

p. 323 (-10) In Eq. (6.33) add the additional condition θk ≤ 2/(k + 2),
which is used in the proof of Prop. 6.2.1 [p. 326, (-16)]. So Eq. (6.33) should
now read

1− θk+1

θ2k+1

≤
1

θ2k
, θk ≤

2

k + 2
, k = 0, 1, . . . . (6.33)

p. 323 (-1) Change “xk+1 = PX

(

xk − α∇f(xk)
)

,” to “xk+1 = PX

(

yk −

α∇f(yk)
)

,”

p. 324 (-8) Change “∇f satisfies the Lipschitz condition (6.6)” to “∇f is
Lipschitz continuous within ℜn with Lipschitz constant L,”

p. 336 (-16) Change “x ∈ ℜn” to “x ∈ ℜm”

p. 365 (-5) Change the statement of Prop. 6.4.9 in accordance with the
correction to Prop. 1.5.3.

p. 383 (+10) Change “whwew” to “where”

p. 428 (-19) Change “3.3” to “Section 3.3”

p. 437 (+13) Change “Note:” to “Notes: If Eq. (6.238) holds with γ = 1
it holds for all γ ∈ (1, 2), so this exercise shows arbitrarily fast superlinear
convergence for the case of a sharp minimum, even when X∗ contains
multiple points (cf. Exercise 6.4).”

p. 461 (+7) Change “βk ≥ 0, γk > 0” to “0 ≤ βk, 0 < γk ≤ 1”

p. 471 (-12) Change “dom(f)” to “ℜn”

p. 485 (-7,-8) Erase these two lines

p. 488 (+8) Change “By the Conjugacy Theorem [Prop. 1.6.1(c)] C∗ is
equal to cl δC . Thus the polar cone of C∗ is cl(C).” to “By the Conjugacy
Theorem [Prop. 1.6.1(d)], the polar cone of C∗ is cl(C).”

p. 511 (+3) Change “z ∈ ℜn” to “z ∈ ℜm”
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