Corrections and Notes for CONVEX OPTIMIZATION ALGORITHMS

by Dimitri P. Bertsekas Athena Scientific

Last Updated: 11/1/17

p. 11 (+4) Change "x₂ ∈ ℜⁿ" to "x₂ ∈ ℜ^m"
p. 11 (-12) Change "at f at x" to "of f at x"
p. 11 (-3) Change "z ∈ ℜⁿ" to "z ∈ ℜ^m"
p. 15 (-5) Change "S" to "S[⊥]"
p. 46 (+5) Change the statement and proof of Prop. 1.5.3 as follows:

Proposition 1.5.3: Let $f: Y \mapsto \Re$ be a function defined on a subset Y of \Re^n , and let X_i , $i = 1, \ldots, m$, be closed subsets of Y with nonempty intersection. Assume that f is Lipschitz continuous over Y with constant L, and that for some scalar $\beta > 0$, we have

$$\operatorname{dist}(x; X_1 \cap \dots \cap X_m) \leq \beta \sum_{i=1}^m \operatorname{dist}(x; X_i), \quad \forall x \in Y.$$

Let c be a scalar such that $c > \beta L$. Then the set of minima of f over $\bigcap_{i=1}^{m} X_i$ coincides with the set of minima of

$$f(x) + c \sum_{i=1}^{m} \operatorname{dist}(x; X_i)$$

over Y.

Proof: The proof is similar to the proof of Prop. 1.5.2, using the given additional condition to modify the main inequality. Denote $F(x) = f(x) + c \sum_{i=1}^{m} \operatorname{dist}(x; X_i)$ and $X = X_1 \cap \cdots \cap X_m$. For a vector $x \in Y$, let \hat{x}_i

denote a vector of X_i that is at minimum distance from x, and let \hat{x} denote a vector of X that is at minimum distance from x. If $c > \beta L$, we have for all $x \in Y$,

$$F(x) = f(x) + c \sum_{i=1}^{m} ||x - \hat{x}_i||$$

$$\geq f(\hat{x}) + (f(x) - f(\hat{x})) + \frac{c}{\beta} ||x - \hat{x}||$$

$$\geq f(\hat{x}) + \left(\frac{c}{\beta} - L\right) ||x - \hat{x}||$$

$$\geq F(\hat{x}),$$

with strict inequality if $x \neq \hat{x}$. The proof now proceeds as in the proof of Prop. 1.5.2. **Q.E.D.**

p. 92 (+8) For clarity change

"More specifically, instead of the gradient sum

$$s_k = \sum_{\ell=0}^{m-1} \nabla f_{i_{k-\ell}}(x_{k-\ell}),$$

in Eq. (2.35), these methods use

$$\tilde{s}_k = \nabla f_{i_k}(x_k) - \nabla f_{i_k}(\tilde{x}_k) + \sum_{\ell=0}^{m-1} \nabla f_{i_{k-\ell}}(\tilde{x}_k),$$

where \tilde{x}_k is the most recent point where the full gradient has been calculated. To calculate \tilde{s}_k one only needs to compute the difference of the two gradients

$$\nabla f_{i_k}(x_k) - \nabla f_{i_k}(\tilde{x}_k)$$

and add it to the full gradient $\sum_{\ell=0}^{m-1} \nabla f_{i_{k-\ell}}(\tilde{x}_k)$." to

"For an example, instead of the gradient sum

$$s_k = \sum_{\ell=0}^{m-1} \nabla f_{i_{k-\ell}}(x_{k-\ell}),$$

in Eq. (2.35), such a method may use \tilde{s}_k , updated according to

$$\tilde{s}_k = \nabla f_{i_k}(x_k) - \nabla f_{i_k}(\tilde{x}_k) + \tilde{s}_{k-1},$$

where \tilde{s}_0 is the full gradient computed at the start of the current cycle, and \tilde{x}_k is the point at which this full gradient has been calculated. Thus to obtain \tilde{s}_k one only needs to compute the difference of the two gradients

$$\nabla f_{i_k}(x_k) - \nabla f_{i_k}(\tilde{x}_k)$$

and add it to the current approximation of the full gradient \tilde{s}_{k-1} ."

- p. 113 (-13) Change "Lagrangian" to "Lagrangian method"
- **p. 206 (+13)** Change " $\tilde{\lambda} \in \partial f(x_{\tilde{\lambda}})$ " to " $\tilde{\lambda} \in \partial f(x)$ "
- **p. 255 (-5)** Change " $-\|\overline{x}_1-\overline{x}_2\|^2$ " to " $-\frac{1}{c}\|\overline{x}_1-\overline{x}_2\|^2$ "
- **p. 283 (+15)** Change "(5.83)" to "(5.87)"
- **p. 283 (+18)** Change "Ax = z" to "Ax + Bz = d"
- **p. 284 (+2)** Change " λ_{k+1}^1 " and " λ_{k+1}^m " to " λ_k^1 " and " λ_k^m ", respectively
- p. 293 (+2) Change "Example 3.4" to "Section 3.4, Example 3.4"
- **p. 293** (+4) Change Eq. (5.107) and the following line to

$$\lambda_{k+1}^{j} = \lambda_{k}^{j} + \frac{c}{m_{j}} \left(\sum_{i=1}^{m} A_{ji} x_{k+1}^{i} - b^{j} \right), \qquad j = 1, \dots, r, \qquad (5.107)$$

where A_{ji} , b^j , and r are the components and row dimension of A_i and b, respectively, and m_j is the number of

- **p. 298 (+8)** Change " $z \in \Re^n$ " to " $z \in \Re^m$ "
- **p. 299 (-5)** Change " λcv " to " $\lambda + cv$ "
- **p. 300 (-6)** Change " f_1 (or f_2 , respectively)" to " f_2 (or f_1 , respectively)"
- **p. 308 (-9)** Change " $y \in \Re^n$ " to " $y \in X$ "

p. 314 (+9 to +22) Replace the part of the proof starting just after the equation $\phi(x) = f(x) - \frac{\sigma}{2} ||x||^2$. and ending just before the statement "Using the expression (6.25) ..." with the following:

We will show that $\nabla \phi$, which is given by

$$\nabla\phi(x) = \nabla f(x) - \sigma x, \qquad (6.25)$$

is Lipschitz continuous with constant $L - \sigma$. To this end, based on the equivalence of statements (i) and (v) of Exercise 6.1, it is sufficient to show that

$$\left(\nabla\phi(x) - \nabla\phi(y)\right)'(x-y) \le (L-\sigma)\|x-y\|^2, \quad \forall x, y \in \Re^n,$$

or, using the expression (6.25) for $\nabla \phi$,

$$\left(\nabla f(x) - \nabla f(y) - \sigma(x - y)\right)'(x - y) \le (L - \sigma) \|x - y\|^2, \qquad \forall \ x, y \in \Re^n.$$

This relation is equivalently written as

$$\left(\nabla f(x) - \nabla f(y)\right)'(x-y) \le L \|x-y\|^2, \quad \forall x, y \in \Re^n,$$

and is true by (iii) of part (a).

Having shown that $\nabla \phi$ is Lipschitz continuous with constant $L - \sigma$, we apply (ii) of part (a) to the function ϕ and obtain

$$\left(\nabla\phi(x) - \nabla\phi(y)\right)'(x-y) \ge \frac{1}{L-\sigma} \left\|\nabla\phi(x) - \nabla\phi(y)\right\|^2.$$

p. 316 (-17) Change " $\nabla f(\overline{x}) = 0$ " to "the optimality condition $\nabla f(\overline{x})'(x - \overline{x}) \ge 0$, for all $x \in X$ "

- **p. 318 (-13)** Change " β^m " to " $\sigma\beta^m$ "
- **p. 323** (+7) Change "gradient [cf. Eq. (6.6)]" to "gradient within \Re^n "
- **p. 323 (+12)** Change " $\beta_k \in (0, 1)$ " to " $\beta_k \in [0, 1)$ "
- **p. 323 (-11)** Change " $\theta_0 = \theta_1 \in (0, 1]$ " to " $\theta_{-1} = \theta_0 = 1$ "

p. 323 (-10) In Eq. (6.33) add the additional condition $\theta_k \leq 2/(k+2)$, which is used in the proof of Prop. 6.2.1 [p. 326, (-16)]. So Eq. (6.33) should now read

$$\frac{1-\theta_{k+1}}{\theta_{k+1}^2} \le \frac{1}{\theta_k^2}, \qquad \theta_k \le \frac{2}{k+2}, \qquad k = 0, 1, \dots.$$
(6.33)

p. 323 (-1) Change " $x_{k+1} = P_X(x_k - \alpha \nabla f(x_k))$," to " $x_{k+1} = P_X(y_k - \alpha \nabla f(y_k))$,"

p. 324 (-8) Change " ∇f satisfies the Lipschitz condition (6.6)" to " ∇f is Lipschitz continuous within \Re^n with Lipschitz constant L,"

p. 336 (-16) Change " $x \in \Re^n$ " to " $x \in \Re^m$ "

p. 365 (-5) Change the statement of Prop. 6.4.9 in accordance with the correction to Prop. 1.5.3.

- **p. 383 (+10)** Change "whwew" to "where"
- p. 428 (-19) Change "3.3" to "Section 3.3"

p. 437 (+13) Change "Note:" to "Notes: If Eq. (6.238) holds with $\gamma = 1$ it holds for all $\gamma \in (1, 2)$, so this exercise shows arbitrarily fast superlinear convergence for the case of a sharp minimum, even when X^* contains multiple points (cf. Exercise 6.4)."

- **p. 461 (+7)** Change " $\beta_k \ge 0$, $\gamma_k > 0$ " to " $0 \le \beta_k$, $0 < \gamma_k \le 1$ "
- **p. 471 (-12)** Change "dom(f)" to " \Re^n "
- p. 485 (-7,-8) Erase these two lines

p. 488 (+8) Change "By the Conjugacy Theorem [Prop. 1.6.1(c)] C^* is equal to $\operatorname{cl} \delta_C$. Thus the polar cone of C^* is $\operatorname{cl}(C)$." to "By the Conjugacy Theorem [Prop. 1.6.1(d)], the polar cone of C^* is $\operatorname{cl}(C)$."

p. 511 (+3) Change " $z \in \Re^n$ " to " $z \in \Re^m$ "