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LECTURE 1

AN INTRODUCTION TO THE COURSE

LECTURE OUTLINE

• Convex and Nonconvex Optimization Problems

• Why is Convexity Important in Optimization

• Multipliers and Lagrangian Duality

• Min Common/Max Crossing Duality



OPTIMIZATION PROBLEMS

• Generic form:

minimize f(x)

subject to x ∈ C

Cost function f : ℜn 7→ ℜ, constraint set C, e.g.,

C = X ∩
{

x | h1(x) = 0, . . . , hm(x) = 0
}

∩
{

x | g1(x) ≤ 0, . . . , gr(x) ≤ 0
}

• Examples of problem classifications:

− Continuous vs discrete

− Linear vs nonlinear

− Deterministic vs stochastic

− Static vs dynamic

• Convex programming problems are those for
which f is convex and C is convex (they are con-
tinuous problems).

• However, convexity permeates all of optimiza-
tion, including discrete problems.



WHY IS CONVEXITY SO SPECIAL?

• A convex function has no local minima that are
not global

• A convex set has a nonempty relative interior

• A convex set is connected and has feasible di-
rections at any point

• A nonconvex function can be “convexified” while
maintaining the optimality of its global minima

• The existence of a global minimum of a convex
function over a convex set is conveniently charac-
terized in terms of directions of recession

• A polyhedral convex set is characterized in
terms of a finite set of extreme points and extreme
directions

• A real-valued convex function is continuous and
has nice differentiability properties

• Closed convex cones are self-dual with respect
to polarity

• Convex, lower semicontinuous functions are self-
dual with respect to conjugacy



CONVEXITY AND DUALITY

• A multiplier vector for the problem

minimize f(x) subject to g1(x) ≤ 0, . . . , gr(x) ≤ 0

is a µ∗ = (µ∗
1, . . . , µ

∗
r) ≥ 0 such that

inf
gj(x)≤0, j=1,...,r

f(x) = inf
x∈ℜn

L(x, µ∗)

where L is the Lagrangian function

L(x, µ) = f(x)+
r
∑

j=1

µjgj(x), x ∈ ℜn, µ ∈ ℜr.

• Dual function (always concave)

q(µ) = inf
x∈ℜn

L(x, µ)

• Dual problem: Maximize q(µ) over µ ≥ 0



KEY DUALITY RELATIONS

• Optimal primal value

f∗ = inf
gj(x)≤0, j=1,...,r

f(x) = inf
x∈ℜn

sup
µ≥0

L(x, µ)

• Optimal dual value

q∗ = sup
µ≥0

q(µ) = sup
µ≥0

inf
x∈ℜn

L(x, µ)

• We always have q∗ ≤ f∗ (weak duality - impor-
tant in discrete optimization problems).

• Under favorable circumstances (convexity in the
primal problem, plus ...):

− We have q∗ = f∗

− Optimal solutions of the dual problem are
multipliers for the primal problem

• This opens a wealth of analytical and computa-
tional possibilities, and insightful interpretations.

• Note that the equality of “sup inf” and “inf sup”
is a key issue in minimax theory and game theory.



MIN COMMON/MAX CROSSING DUALITY
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• All of duality theory and all of (convex/concave)
minimax theory can be developed/explained in
terms of this one figure.

• The machinery of convex analysis is needed to
flesh out this figure, and to rule out the excep-
tional/pathological behavior shown in (c).



EXCEPTIONAL BEHAVIOR

• If convex structure is so favorable, what is the
source of exceptional/pathological behavior [like
in (c) of the preceding slide]?

• Answer: Some common operations on convex
sets do not preserve some basic properties.

• Example: A linearly transformed closed con-
vex set need not be closed (contrary to compact
and polyhedral sets).

C = {(x1,x2) | x1 > 0, x2 >0, x1x2 ≥ 1}

x1

x2

• This is a major reason for the analytical difficul-
ties in convex analysis and pathological behavior
in convex optimization (and the favorable charac-
ter of polyhedral sets).



COURSE OUTLINE

1) Basic Concepts (4): Convex hulls. Closure,
relative interior, and continuity.
2) Convexity and Optimization (3): Direc-
tions of recession and existence of optimal solu-
tions.
3) Hyperplanes, Duality, and Minimax (3):
Hyperplanes. Min common/max crossing duality.
Saddle points and minimax theory.
4) Polyhedral Convexity (4): Polyhedral sets.
Extreme points. Polyhedral aspects of optimiza-
tion. Polyhedral aspects of duality. Linear pro-
gramming. Introduction to convex programming.
5) Conjugate Convex Functions (2): Support
functions. Conjugate operations.
6) Subgradients and Algorithms (4): Subgra-
dients. Optimality conditions. Classical subgra-
dient and cutting plane methods. Proximal algo-
rithms. Bundle methods.
7) Lagrangian Duality (2): Constrained opti-
mization duality. Separable problems. Conditions
for existence of dual solution. Conditions for no
duality gap.
8) Conjugate Duality (3): Fenchel duality the-
orem. Conic and semidefinite programming. Mono-
tropic programming. Exact penalty functions.



WHAT TO EXPECT FROM THIS COURSE

• Requirements: Homework and a term paper

• We aim:

− To develop insight and deep understanding
of a fundamental optimization topic

− To treat rigorously an important branch of
applied math, and to provide some appreci-
ation of the research in the field

• Mathematical level:

− Prerequisites are linear algebra (preferably
abstract) and real analysis (a course in each)

− Proofs will matter ... but the rich geometry
of the subject helps guide the mathematics

• Applications:

− They are many and pervasive ... but don’t
expect much in this course. The book by
Boyd and Vandenberghe describes a lot of
practical convex optimization models
(http://www.stanford.edu/ boyd/cvxbook.html)

− You can do your term paper on an applica-
tion area



A NOTE ON THESE SLIDES

• These slides are a teaching aid, not a text

• Don’t expect a rigorous mathematical develop-
ment

• The statements of theorems are fairly precise,
but the proofs are not

• Many proofs have been omitted or greatly ab-
breviated

• Figures are meant to convey and enhance ideas,
not to express them precisely

• The omitted proofs and a much fuller discus-
sion can be found in the “Convex Optimization”
textbook



LECTURE 2

LECTURE OUTLINE

• Convex sets and functions

• Epigraphs

• Closed convex functions

• Recognizing convex functions



SOME MATH CONVENTIONS

• All of our work is done in ℜn: space of n-tuples
x = (x1, . . . , xn)

• All vectors are assumed column vectors

• “′” denotes transpose, so we use x′ to denote a
row vector

• x′y is the inner product
∑n

i=1 xiyi of vectors x
and y

• ‖x‖ =
√
x′x is the (Euclidean) norm of x. We

use this norm almost exclusively

• See the textbook for an overview of the linear
algebra and real analysis background that we will
use



CONVEX SETS

Convex Sets Nonconvex Sets
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• A subset C of ℜn is called convex if

αx+ (1 − α)y ∈ C, ∀ x, y ∈ C, ∀ α ∈ [0, 1]

• Operations that preserve convexity

− Intersection, scalar multiplication, vector sum,
closure, interior, linear transformations

• Cones: Sets C such that λx ∈ C for all λ > 0
and x ∈ C (not always convex or closed)



CONVEX FUNCTIONS

a f(x) + (1 - a )f(y)

x y

C
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• Let C be a convex subset of ℜn. A function
f : C 7→ ℜ is called convex if

f
(

αx+(1−α)y
)

≤ αf(x)+(1−α)f(y), ∀ x, y ∈ C

• If f is a convex function, then all its level sets
{x ∈ C | f(x) ≤ a} and {x ∈ C | f(x) < a},
where a is a scalar, are convex.



EXTENDED REAL-VALUED FUNCTIONS

• The epigraph of a function f : X 7→ [−∞,∞] is
the subset of ℜn+1 given by

epi(f) =
{

(x,w) | x ∈ X, w ∈ ℜ, f(x) ≤ w
}

• The effective domain of f is the set

dom(f) =
{

x ∈ X | f(x) <∞
}

• We say that f is proper if f(x) <∞ for at least
one x ∈ X and f(x) > −∞ for all x ∈ X, and we
will call f improper if it is not proper.

• Note that f is proper if and only if its epigraph
is nonempty and does not contain a “vertical line.”

• An extended real-valued function f : X 7→
[−∞,∞] is called lower semicontinuous at a vec-
tor x ∈ X if f(x) ≤ lim infk→∞ f(xk) for every
sequence {xk} ⊂ X with xk → x.

• We say that f is closed if epi(f) is a closed set.



CLOSEDNESS AND SEMICONTINUITY

• Proposition: For a function f : ℜn 7→ [−∞,∞],
the following are equivalent:

(i) {x | f(x) ≤ a} is closed for every scalar a.

(ii) f is lower semicontinuous at all x ∈ ℜn.

(iii) f is closed.
f(x)

x

Epigraph epi(f)

γ

{x | f(x) ≤ γ}
0

• Note that:

− If f is lower semicontinuous at all x ∈ dom(f),
it is not necessarily closed

− If f is closed, dom(f) is not necessarily closed

• Proposition: Let f : X 7→ [−∞,∞] be a func-
tion. If dom(f) is closed and f is lower semicon-
tinuous at all x ∈ dom(f), then f is closed.



EXTENDED REAL-VALUED CONVEX FUNCTIONS
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• Let C be a convex subset of ℜn. An extended
real-valued function f : C 7→ [−∞,∞] is called
convex if epi(f) is a convex subset of ℜn+1.

• If f is proper, this definition is equivalent to

f
(

αx+(1−α)y
)

≤ αf(x)+(1−α)f(y), ∀ x, y ∈ C

• An improper closed convex function is very pe-
culiar: it takes an infinite value (∞ or −∞) at
every point.



RECOGNIZING CONVEX FUNCTIONS

• Some important classes of elementary convex
functions: Affine functions, positive semidefinite
quadratic functions, norm functions, etc.

• Proposition: Let fi : ℜn 7→ (−∞,∞], i ∈ I, be
given functions (I is an arbitrary index set).
(a) The function g : ℜn 7→ (−∞,∞] given by

g(x) = λ1f1(x) + · · · + λmfm(x), λi > 0

is convex (or closed) if f1, . . . , fm are convex (re-
spectively, closed).
(b) The function g : ℜn 7→ (−∞,∞] given by

g(x) = f(Ax)

where A is an m× n matrix is convex (or closed)
if f is convex (respectively, closed).
(c) The function g : ℜn 7→ (−∞,∞] given by

g(x) = sup
i∈I

fi(x)

is convex (or closed) if the fi are convex (respec-
tively, closed).



LECTURE 3

LECTURE OUTLINE

• Differentiable Convex Functions

• Convex and Affine Hulls

• Caratheodory’s Theorem

• Closure, Relative Interior, Continuity



DIFFERENTIABLE CONVEX FUNCTIONS

f(z)

f(x) + (z - x)'—f(x)

x z

• Let C ⊂ ℜn be a convex set and let f : ℜn 7→ ℜ
be differentiable over ℜn.

(a) The function f is convex over C iff

f(z) ≥ f(x) + (z− x)′∇f(x), ∀ x, z ∈ C

[Implies necessary and sufficient condition
for x∗ to minimize f over C: ∇f(x∗)′(x −
x∗) ≥ 0, ∀ x ∈ C.]

(b) If the inequality is strict whenever x 6= z,
then f is strictly convex over C, i.e., for all
α ∈ (0, 1) and x, y ∈ C, with x 6= y

f
(

αx+ (1 − α)y
)

< αf(x) + (1 − α)f(y)



TWICE DIFFERENTIABLE CONVEX FUNCTIONS

• Let C be a convex subset of ℜn and let f :
ℜn 7→ ℜ be twice continuously differentiable over
ℜn.

(a) If ∇2f(x) is positive semidefinite for all x ∈
C, then f is convex over C.

(b) If ∇2f(x) is positive definite for all x ∈ C,
then f is strictly convex over C.

(c) If C is open and f is convex over C, then
∇2f(x) is positive semidefinite for all x ∈ C.

Proof: (a) By mean value theorem, for x, y ∈ C

f(y) = f(x)+(y−x)′∇f(x)+ 1
2
(y−x)′∇2f

(

x+α(y−x)
)

(y−x)

for some α ∈ [0, 1]. Using the positive semidefi-
niteness of ∇2f , we obtain

f(y) ≥ f(x) + (y − x)′∇f(x), ∀ x, y ∈ C

From the preceding result, f is convex.

(b) Similar to (a), we have f(y) > f(x) + (y −
x)′∇f(x) for all x, y ∈ C with x 6= y, and we use
the preceding result.



CONVEX AND AFFINE HULLS

• Given a set X ⊂ ℜn:

• A convex combination of elements of X is a
vector of the form

∑m
i=1 αixi, where xi ∈ X, αi ≥

0, and
∑m

i=1 αi = 1.

• The convex hull of X, denoted conv(X), is the
intersection of all convex sets containing X (also
the set of all convex combinations from X).

• The affine hull of X, denoted aff(X), is the in-
tersection of all affine sets containing X (an affine
set is a set of the form x + S, where S is a sub-
space). Note that aff(X) is itself an affine set.

• A nonnegative combination of elements of X is
a vector of the form

∑m
i=1 αixi, where xi ∈ X and

αi ≥ 0 for all i.

• The cone generated by X, denoted cone(X), is
the set of all nonnegative combinations from X:

− It is a convex cone containing the origin.

− It need not be closed.

− If X is a finite set, cone(X) is closed (non-
trivial to show!)



CARATHEODORY’S THEOREM
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• Let X be a nonempty subset of ℜn.

(a) Every x 6= 0 in cone(X) can be represented
as a positive combination of vectors x1, . . . , xm

from X that are linearly independent.

(b) Every x /∈ X that belongs to conv(X) can
be represented as a convex combination of
vectors x1, . . . , xm from X such that x2 −
x1, . . . , xm − x1 are linearly independent.



PROOF OF CARATHEODORY’S THEOREM

(a) Let x be a nonzero vector in cone(X), and
let m be the smallest integer such that x has the
form

∑m
i=1 αixi, where αi > 0 and xi ∈ X for

all i = 1, . . . ,m. If the vectors xi were linearly
dependent, there would exist λ1, . . . , λm, with

m
∑

i=1

λixi = 0

and at least one of the λi is positive. Consider
m
∑

i=1

(αi − γλi)xi,

where γ is the largest γ such that αi −γλi ≥ 0 for
all i. This combination provides a representation
of x as a positive combination of fewer thanm vec-
tors ofX – a contradiction. Therefore, x1, . . . , xm,
are linearly independent.

(b) Apply part (a) to the subset of ℜn+1

Y =
{

(x, 1) | x ∈ X
}



AN APPLICATION OF CARATHEODORY

• The convex hull of a compact set is compact.

Proof: Let X be compact. We take a sequence
in conv(X) and show that it has a convergent sub-
sequence whose limit is in conv(X).

By Caratheodory, a sequence in conv(X) can

be expressed as
{

∑n+1
i=1 α

k
i x

k
i

}

, where for all k and

i, αk
i ≥ 0, xk

i ∈ X, and
∑n+1

i=1 α
k
i = 1. Since the

sequence

{

(αk
1 , . . . , α

k
n+1, x

k
1 , . . . , x

k
n+1)

}

is bounded, it has a limit point

{

(α1, . . . , αn+1, x1, . . . , xn+1)
}

,

which must satisfy
∑n+1

i=1 αi = 1, and αi ≥ 0,

xi ∈ X for all i. Thus, the vector
∑n+1

i=1 αixi,
which belongs to conv(X), is a limit point of the

sequence
{

∑n+1
i=1 α

k
i x

k
i

}

, showing that conv(X) is

compact. Q.E.D.



RELATIVE INTERIOR

• x is a relative interior point of C, if x is an
interior point of C relative to aff(C).

• ri(C) denotes the relative interior of C, i.e., the
set of all relative interior points of C.

• Line Segment Principle: If C is a convex set,
x ∈ ri(C) and x ∈ cl(C), then all points on the
line segment connecting x and x, except possibly
x, belong to ri(C).

S

Sa

x
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a ex

xa  = a x + (1 - a )x

C



ADDITIONAL MAJOR RESULTS

• Let C be a nonempty convex set.

(a) ri(C) is a nonempty convex set, and has the
same affine hull as C.

(b) x ∈ ri(C) if and only if every line segment in
C having x as one endpoint can be prolonged
beyond x without leaving C.

X

z1

0

C

z2

Proof: (a) Assume that 0 ∈ C. We choose m lin-
early independent vectors z1, . . . , zm ∈ C, where
m is the dimension of aff(C), and we let

X =

{

m
∑

i=1

αizi

∣

∣

∣

m
∑

i=1

αi < 1, αi > 0, i = 1, . . . ,m

}

(b) => is clear by the def. of rel. interior. Reverse:
take any x ∈ ri(C); use Line Segment Principle.



OPTIMIZATION APPLICATION

• A concave function f : ℜn 7→ ℜ that attains its
minimum over a convex set X at an x∗ ∈ ri(X)
must be constant over X.

aff(X)

x*
x

x

X

Proof: (By contradiction.) Let x ∈ X be such
that f(x) > f(x∗). Prolong beyond x∗ the line
segment x-to-x∗ to a point x ∈ X. By concavity
of f , we have for some α ∈ (0, 1)

f(x∗) ≥ αf(x) + (1 − α)f(x),

and since f(x) > f(x∗), we must have f(x∗) >
f(x) - a contradiction. Q.E.D.



LECTURE 4

LECTURE OUTLINE

• Review of relative interior

• Algebra of relative interiors and closures

• Continuity of convex functions

• Existence of optimal solutions - Weierstrass’
theorem

• Projection Theorem



RELATIVE INTERIOR: REVIEW

• Recall: x is a relative interior point of C, if x
is an interior point of C relative to aff(C)

• Three important properties of ri(C) of a convex
set C:

− ri(C) is nonempty

− Line Segment Principle: If x ∈ ri(C) and
x ∈ cl(C), then all points on the line seg-
ment connecting x and x, except possibly x,
belong to ri(C)

− Prolongation Lemma: If x ∈ ri(C) and x ∈
C, the line segment connecting x and x can
be prolonged beyond x without leaving C



CALCULUS OF RELATIVE INTERIORS: SUMMARY

• The relative interior of a convex set is equal to
the relative interior of its closure.

• The closure of the relative interior of a convex
set is equal to its closure.

• Relative interior and closure commute with
Cartesian product and inverse image under a lin-
ear transformation.

• Relative interior commutes with image under a
linear transformation and vector sum, but closure
does not.

• Neither relative interior nor closure commute
with set intersection.



CLOSURE VS RELATIVE INTERIOR

• Let C be a nonempty convex set. Then ri(C)
and cl(C) are “not too different for each other.”

• Proposition:

(a) We have cl(C) = cl
(

ri(C)
)

.

(b) We have ri(C) = ri
(

cl(C)
)

.

(c) Let C be another nonempty convex set. Then
the following three conditions are equivalent:

(i) C and C have the same rel. interior.

(ii) C and C have the same closure.

(iii) ri(C) ⊂ C ⊂ cl(C).

Proof: (a) Since ri(C) ⊂ C, we have cl
(

ri(C)
)

⊂
cl(C). Conversely, let x ∈ cl(C). Let x ∈ ri(C).
By the Line Segment Principle, we have αx+(1−
α)x ∈ ri(C) for all α ∈ (0, 1]. Thus, x is the limit
of a sequence that lies in ri(C), so x ∈ cl

(

ri(C)
)

.

x

x
C



LINEAR TRANSFORMATIONS

• Let C be a nonempty convex subset of ℜn and
let A be an m× n matrix.

(a) We have A · ri(C) = ri(A · C).

(b) We have A · cl(C) ⊂ cl(A ·C). Furthermore,
if C is bounded, then A · cl(C) = cl(A · C).

Proof: (a) Intuition: Spheres within C are mapped
onto spheres within A · C (relative to the affine
hull).

(b) We have A·cl(C) ⊂ cl(A·C), since if a sequence
{xk} ⊂ C converges to some x ∈ cl(C) then the
sequence {Axk}, which belongs to A ·C, converges
to Ax, implying that Ax ∈ cl(A · C).

To show the converse, assuming that C is
bounded, choose any z ∈ cl(A · C). Then, there
exists a sequence {xk} ⊂ C such that Axk → z.
Since C is bounded, {xk} has a subsequence that
converges to some x ∈ cl(C), and we must have
Ax = z. It follows that z ∈ A · cl(C). Q.E.D.

Note that in general, we may have

A · int(C) 6= int(A · C), A · cl(C) 6= cl(A · C)



INTERSECTIONS AND VECTOR SUMS

• Let C1 and C2 be nonempty convex sets.

(a) We have

ri(C1 + C2) = ri(C1) + ri(C2),

cl(C1) + cl(C2) ⊂ cl(C1 + C2)

If one of C1 and C2 is bounded, then

cl(C1) + cl(C2) = cl(C1 + C2)

(b) If ri(C1) ∩ ri(C2) 6= Ø, then

ri(C1 ∩ C2) = ri(C1) ∩ ri(C2),

cl(C1 ∩ C2) = cl(C1) ∩ cl(C2)

Proof of (a): C1 + C2 is the result of the linear
transformation (x1, x2) 7→ x1 + x2.

• Counterexample for (b):

C1 = {x | x ≤ 0}, C2 = {x | x ≥ 0}



CONTINUITY OF CONVEX FUNCTIONS

• If f : ℜn 7→ ℜ is convex, then it is continuous.

e1

xk

xk+1

0

yke3 e2

e4 zk

Proof: We will show that f is continuous at 0.
By convexity, f is bounded within the unit cube
by the maximum value of f over the corners of the
cube.

Consider sequence xk → 0 and the sequences
yk = xk/‖xk‖∞, zk = −xk/‖xk‖∞. Then

f(xk) ≤
(

1 − ‖xk‖∞
)

f(0) + ‖xk‖∞f(yk)

f(0) ≤ ‖xk‖∞
‖xk‖∞ + 1

f(zk) +
1

‖xk‖∞ + 1
f(xk)

Since ‖xk‖∞ → 0, f(xk) → f(0). Q.E.D.

• Extension to continuity over ri(dom(f)).



PARTIAL MINIMIZATION

• Let F : ℜn+m 7→ (−∞,∞] be a closed proper
convex function, and consider

f(x) = inf
z∈ℜm

F (x, z)

• 1st fact: If F is convex, then f is also convex.

• 2nd fact:

P
(

epi(F )
)

⊂ epi(f) ⊂ cl
(

P
(

epi(F )
)

)

,

where P (·) denotes projection on the space of (x,w),
i.e., for any subset S of ℜn+m+1, P (S) =

{

(x,w) |
(x, z, w) ∈ S

}

.

• Thus, if F is closed and there is structure guar-
anteeing that the projection preserves closedness,
then f is closed.

• ... but convexity and closedness of F does not
guarantee closedness of f .



PARTIAL MINIMIZATION: VISUALIZATION

• Connection of preservation of closedness under
partial minimization and attainment of infimum
over z for fixed x.

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)



LOCAL AND GLOBAL MINIMA

• Consider minimizing f : ℜn 7→ (−∞,∞] over a
set X ⊂ ℜn

• x is feasible if x ∈ X ∩ dom(f)

• x∗ is a (global) minimum of f over X if x∗ is
feasible and f(x∗) = infx∈X f(x)

• x∗ is a local minimum of f over X if x∗ is a
minimum of f over a set X ∩ {x | ‖x− x∗‖ ≤ ǫ}
Proposition: If X is convex and f is convex,
then:

(a) A local minimum of f over X is also a global
minimum of f over X.

(b) If f is strictly convex, then there exists at
most one global minimum of f over X.

a f(x*) + (1 - a )f(x)

x

f(ax* +  (1- a )x)

x x*

f(x)



EXISTENCE OF OPTIMAL SOLUTIONS

• The set of minima of a proper f : ℜn 7→
(−∞,∞] is the intersection of its nonempty level
sets

• Note: The intersection of a nested sequence of
nonempty compact sets is compact

• Conclusion: The set of minima of f is nonempty
and compact if the level sets of f are compact

Weierstrass’ Theorem: The set of minima of f
over X is nonempty and compact if X is closed,
f is lower semicontinuous over X, and one of the
following conditions holds:

(1) X is bounded.

(2) Some set
{

x ∈ X | f(x) ≤ γ
}

is nonempty
and bounded.

(3) For every sequence {xk} ⊂ X s. t. ‖xk‖ →
∞, we have limk→∞ f(xk) = ∞. (Coercivity
property).

Proof: In all cases the level sets of f ∩X are
compact. Q.E.D.



PROJECTION THEOREM

• Let C be a nonempty closed convex set in ℜn.

(a) For every z ∈ ℜn, there exists a unique min-
imum of ‖z − x‖ over all x ∈ C (called the
projection of z on C).

(b) x∗ is the projection of z if and only if

(x− x∗)′(z − x∗) ≤ 0, ∀ x ∈ C

(c) The projection operation is nonexpansive,
i.e.,

‖x∗1 − x∗2‖ ≤ ‖z1 − z2‖, ∀ z1, z2 ∈ ℜn,

where x∗1 and x∗2 are the projections on C of
z1 and z2, respectively.



LECTURE 5

LECTURE OUTLINE

• Recession cones

• Directions of recession of convex functions

• Applications to existence of optimal solutions



RECESSION CONE OF A CONVEX SET

• Given a nonempty convex set C, a vector y is
a direction of recession if starting at any x in C
and going indefinitely along y, we never cross the
relative boundary of C to points outside C:

x+ αy ∈ C, ∀ x ∈ C, ∀ α ≥ 0

0

x + a y

x

Convex Set C

Recession Cone RC

y

• Recession cone of C (denoted by RC): The set
of all directions of recession.

• RC is a cone containing the origin.



RECESSION CONE THEOREM

• Let C be a nonempty closed convex set.

(a) The recession cone RC is a closed convex
cone.

(b) A vector y belongs to RC if and only if there
exists a vector x ∈ C such that x + αy ∈ C
for all α ≥ 0.

(c) RC contains a nonzero direction if and only
if C is unbounded.

(d) The recession cones of C and ri(C) are equal.

(e) If D is another closed convex set such that
C ∩D 6= Ø, we have

RC∩D = RC ∩RD

More generally, for any collection of closed
convex sets Ci, i ∈ I, where I is an arbitrary
index set and ∩i∈ICi is nonempty, we have

R∩i∈ICi = ∩i∈IRCi



PROOF OF PART (B)

x

z1 = x + y

z2

z3

x
_

x + y
_

x + y1
_ x + y2

_ x + y3
_

C

• Let y 6= 0 be such that there exists a vector
x ∈ C with x + αy ∈ C for all α ≥ 0. We fix
x ∈ C and α > 0, and we show that x+ αy ∈ C.
By scaling y, it is enough to show that x+ y ∈ C.

Let zk = x + ky for k = 1, 2, . . ., and yk =
(zk − x)‖y‖/‖zk − x‖. We have

yk

‖y‖ =
‖zk − x‖
‖zk − x‖

y

‖y‖+
x − x

‖zk − x‖ ,
‖zk − x‖
‖zk − x‖ → 1,

x − x

‖zk − x‖ → 0,

so yk → y and x+ yk → x+ y. Use the convexity
and closedness of C to conclude that x+ y ∈ C.



LINEALITY SPACE

• The lineality space of a convex set C, denoted by
LC , is the subspace of vectors y such that y ∈ RC

and −y ∈ RC :

LC = RC ∩ (−RC)

• Decomposition of a Convex Set: Let C be a
nonempty convex subset of ℜn. Then,

C = LC + (C ∩ L⊥
C).

Also, if LC = RC , the component C ∩L⊥
C is com-

pact (this will be shown later).

C

0

S

S

C∩S

x

y

z



DIRECTIONS OF RECESSION OF A FUNCTION

• Some basic geometric observations:

− The “horizontal directions” in the recession
cone of the epigraph of a convex function f
are directions along which the level sets are
unbounded.

− Along these directions the level sets
{

x |
f(x) ≤ γ

}

are unbounded and f is mono-
tonically nondecreasing.

• These are the directions of recession of f .

γ

epi(f)

Level Set Vγ = {x | f(x) ≤ γ}

“Slice” {(x,γ) | f(x) ≤ γ}

Recession
Cone of f

0



RECESSION CONE OF LEVEL SETS

• Proposition: Let f : ℜn 7→ (−∞,∞] be a closed
proper convex function and consider the level sets
Vγ =

{

x | f(x) ≤ γ
}

, where γ is a scalar. Then:

(a) All the nonempty level sets Vγ have the same
recession cone, given by

RVγ =
{

y | (y, 0) ∈ Repi(f)

}

(b) If one nonempty level set Vγ is compact, then
all nonempty level sets are compact.

Proof: For all γ for which Vγ is nonempty,

{

(x, γ) | x ∈ Vγ

}

= epi(f) ∩
{

(x, γ) | x ∈ ℜn
}

The recession cone of the set on the left is
{

(y, 0) |
y ∈ RVγ

}

. The recession cone of the set on the
right is the intersection of Repi(f) and the reces-
sion cone of

{

(x, γ) | x ∈ ℜn
}

. Thus we have

{

(y, 0) | y ∈ RVγ

}

=
{

(y, 0) | (y, 0) ∈ Repi(f)

}

,

from which the result follows.



RECESSION CONE OF A CONVEX FUNCTION

• For a closed proper convex function f : ℜn 7→
(−∞,∞], the (common) recession cone of the nonempty
level sets Vγ =

{

x | f(x) ≤ γ
}

, γ ∈ ℜ, is the re-

cession cone of f , and is denoted by Rf .

0

Level Sets of Convex
Function f

Recession Cone Rf

• Terminology:

− y ∈ Rf : a direction of recession of f .

− Lf = Rf ∩ (−Rf ): the lineality space of f .

− y ∈ Lf : a direction of constancy of f .

− Function rf : ℜn 7→ (−∞,∞] whose epi-
graph is Repi(f): the recession function of
f .

• Note: rf (y) is the “asymptotic slope” of f in the
direction y. In fact, rf (y) = limα→∞ ∇f(x+αy)′y
if f is differentiable. Also, y ∈ Rf iff rf (y) ≤ 0.



DESCENT BEHAVIOR OF A CONVEX FUNCTION

f(x + αy)

α

f(x)

(a)

f(x + αy)

α

f(x)

(b)

f(x + αy)

α

f(x)

(c)

f(x + αy)

α

f(x)

(d)

f(x + αy)

α

f(x)

(e)

f(x + αy)

α

f(x)

(f)

• y is a direction of recession in (a)-(d).

• This behavior is independent of the starting
point x, as long as x ∈ dom(f).



EXISTENCE OF SOLUTIONS - BOUNDED CASE

Proposition: The set of minima of a closed proper
convex function f : ℜn 7→ (−∞,∞] is nonempty
and compact if and only if f has no nonzero di-
rection of recession.

Proof: Let X∗ be the set of minima, let f∗ =
infx∈ℜn f(x), and let {γk} be a scalar sequence
such that γk ↓ f∗. Note that

X∗ = ∩∞
k=0

{

x | f(x) ≤ γk

}

If f has no nonzero direction of recession,
the sets

{

x | f(x) ≤ γk

}

are nonempty, compact,
and nested, so X∗ is nonempty and compact.

Conversely, we have

X∗ =
{

x | f(x) ≤ f∗
}

,

so if X∗ is nonempty and compact, all the level
sets of f are compact and f has no nonzero direc-
tion of recession. Q.E.D.



SPECIALIZATION/GENERALIZATION

• Important special case: Minimize a real-
valued function f : ℜn 7→ ℜ over a nonempty
set X. Apply the preceding proposition to the
extended real-valued function

f̃(x) =
{

f(x) if x ∈ X,
∞ otherwise.

• Optimal solution set is nonempty and compact
iff X and f have no common nonzero direction of
recession

• Set intersection issues are fundamental and play
an important role in several seemingly unrelated
optimization contexts

• Directions of recession play an important role
in set intersection theory (see the next lecture)

• This theory generalizes to nonconvex sets (we
will not cover this)



LECTURE 6

LECTURE OUTLINE

• Nonemptiness of closed set intersections

• Existence of optimal solutions

• Linear and Quadratic Programming

• Preservation of closure under linear transforma-
tion

• Preservation of closure under partial minimiza-
tion



THE ROLE OF CLOSED SET INTERSECTIONS

• A fundamental question: Given a sequence
of nonempty closed sets {Ck} in ℜn with Ck+1 ⊂
Sk for all k, when is ∩∞

k=0Ck nonempty?

• Set intersection theorems are significant in at
least three major contexts, which we will discuss
in what follows:

1. Does a function f : ℜn 7→ (−∞,∞] attain
a minimum over a set X? This is true iff the
intersection of the nonempty level sets

{

x ∈ X |
f(x) ≤ γk

}

is nonempty.

2. If C is closed and A is a matrix, is AC closed?
Special case:

− If C1 and C2 are closed, is C1 + C2 closed?

3. If F (x, z) is closed, is f(x) = infz F (x, z)
closed? (Critical question in duality theory.) Can
be addressed by using the relation

P
(

epi(F )
)

⊂ epi(f) ⊂ cl
(

P
(

epi(F )
)

)

where P (·) is projection on the space of (x,w).



ASYMPTOTIC DIRECTIONS

• Given nested sequence {Ck} of closed convex
sets, {xk} is an asymptotic sequence if

xk ∈ Ck, xk 6= 0, k = 0, 1, . . .

‖xk‖ → ∞,
xk

‖xk‖
→ d

‖d‖
where d is a nonzero common direction of recession
of the sets Ck.

• {xk} is called retractive if for some k, we have

xk − d ∈ Ck, ∀ k ≥ k.

x0

x1
x2

x3

x4 x5

0
d

Asymptotic Direction

Asymptotic Sequence



RETRACTIVE SEQUENCES

• A nested sequence {Ck} of closed convex sets
is retractive if all its asymptotic sequences are re-
tractive.

• Intersections and Cartesian products of retrac-
tive set sequences are retractive.

• A closed halfspace (viewed as a sequence with
identical components) is retractive.

• A polyhedral set is retractive. Also the vec-
tor sum of a convex compact set and a retractive
convex set is retractive.

• Nonpolyhedral cones and level sets of quadratic
functions need not be retractive.

x0

x1

x2

S0

S2

S1

0

d

(a)

S0

S1

S2

x0

x1

x20

d

(b)



SET INTERSECTION THEOREM I

• If {Ck} is retractive, then ∩∞
k=0 Ck is nonempty.

• Key proof ideas:

(a) The intersection ∩∞
k=0 Ck is empty iff the se-

quence {xk} of minimum norm vectors of Ck

is unbounded (so a subsequence is asymp-
totic).

(b) An asymptotic sequence {xk} of minimum
norm vectors cannot be retractive, because
such a sequence eventually gets closer to 0
when shifted opposite to the asymptotic di-
rection.

x0

x1
x2

x3

x4 x5

0
d

Asymptotic Direction

Asymptotic Sequence



SET INTERSECTION THEOREM II

• Let {Ck} be a nested sequence of nonempty
closed convex sets, and X be a retractive set such
that all the sets Sk = X ∩ Ck are nonempty. As-
sume that

RX ∩R ⊂ L,

where

R = ∩∞
k=0RCk

, L = ∩∞
k=0LCk

Then {Sk} is retractive and ∩∞
k=0 Sk is nonempty.

• Special case: X = ℜn, R = L.

Proof: The set of common directions of recession
of Sk is RX ∩ R. For any asymptotic sequence
{xk} corresponding to d ∈ RX ∩R:

(1) xk − d ∈ Ck (because d ∈ L)

(2) xk − d ∈ X (because X is retractive)

So {Sk} is retractive.



EXISTENCE OF OPTIMAL SOLUTIONS

• Let X and f : ℜn 7→ (−∞,∞] be closed convex
and such that X∩dom(f) 6= Ø. The set of minima
of f over X is nonempty under any one of the
following two conditions:

(1) RX ∩Rf = LX ∩ Lf .

(2) RX ∩Rf ⊂ Lf , and X is polyhedral.

Proof: Follows by writing

Set of Minima = X∩ (Nonempty Level Sets of f)

and by applying the preceding set intersection the-
orem. Q.E.D.



EXISTENCE OF OPTIMAL SOLUTIONS: EXAMPLE

(a)
(b)

0 x1

x2

Level Sets of 
Convex Function f

Constancy Space Lf

X

0 x1

x2

Level Sets of 
Convex Function f

Constancy Space Lf

X

• Here f(x1, x2) = ex1 .

• In (a), X is polyhedral, and the minimum is
attained.

• In (b),

X =
{

(x1, x2) | x2
1 ≤ x2

}

We have RX ∩Rf ⊂ Lf , but the minimum is not
attained (X is not polyhedral).



LINEAR AND QUADRATIC PROGRAMMING

• Theorem: Let

f(x) = x
′
Qx+c

′
x, X = {x | a

′
jx+bj ≤ 0, j = 1, . . . , r},

where Q is symmetric positive semidefinite. If the
minimal value of f over X is finite, there exists a
minimum of f over X.

Proof: (Outline) Follows by writing

Set of Minima = X∩ (Nonempty Level Sets of f)

and by verifying the condition RX ∩R ⊂ L of the
preceding set intersection theorem, where R and
L are the sets of common recession and lineality
directions of the sets

{x | x′Qx+ c′x ≤ γk}

and
γk ↓ f∗ = inf

x∈X
f(x).

Q.E.D.



CLOSURE UNDER LINEAR TRANSFORMATIONS

• Let C be a nonempty closed convex, and let A
be a matrix with nullspace N(A).

(a) AC is closed if RC ∩N(A) ⊂ LC .

(b) A(X ∩ C) is closed if X is a polyhedral set
and

RX ∩RC ∩N(A) ⊂ LC ,

Proof: (Outline) Let {yk} ⊂ AC with yk → y.
We prove ∩∞

k=0Sk 6= Ø, where Sk = C ∩Nk, and

Nk = {x | Ax ∈Wk}, Wk =
{

z | ‖z−y‖ ≤ ‖yk−y‖
}

C

AC

y

x

ykyk+1

Wk

Sk

Nk

• Special Case: AX is closed if X is polyhedral.



CONVEX “QUADRATIC” SET INTERSECTIONS

• Consider {Ck} given by

Ck =
{

x | x′Qx+ a′x+ b ≤ wk

}

,

where wk ↓ 0. Let

X =
{

x | x′Qjx+ a′jx+ bj ≤ 0, j = 1, . . . , r
}

,

be such that X ∩Ck is nonempty for all k. Then,
the intersection X ∩

(

∩∞
k=0Ck

)

is nonempty.

• Key idea: For the intersection X ∩
(

∩∞
k=0Ck

)

to
be empty, there must exist a “critical asymptote”.

S2

Sk1

d: “Critical Asymptote”



A RESULT ON QUADRATIC MINIMIZATION

• Let
f(x) = x′Qx+ c′x,

X = {x | x′Rjx+ a′jx+ bj ≤ 0, j = 1, . . . , r},

whereQ and Rj are positive semidefinite matrices.
If the minimal value of f over X is finite, there
exists a minimum of f of over X.

Proof: Follows by writing

Set of Minima = X∩ (Nonempty Level Sets of f)

and by applying the “quadratic” set intersection
theorem. Q.E.D.

• Transformations of “Quadratic” Sets: If C is
specified by convex quadratic inequalities, the set
AC is closed.

Proof: Follows by applying the “quadratic” set
intersection theorem, similar to the earlier case.
Q.E.D.



PARTIAL MINIMIZATION THEOREM

• Let F : ℜn+m 7→ (−∞,∞] be a closed proper
convex function, and consider f(x) = infz∈ℜm F (x, z).

• Each of the major set intersection theorems
yields a closedness result. The simplest case is
the following:

• Preservation of Closedness Under Com-
pactness: If there exist x ∈ ℜn, γ ∈ ℜ such that
the set

{

z | F (x, z) ≤ γ
}

is nonempty and compact, then f is convex, closed,
and proper. Also, for each x ∈ dom(f), the set of
minima of F (x, ·) is nonempty and compact.

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)



LECTURE 7

LECTURE OUTLINE

• Hyperplane separation

• Nonvertical hyperplanes

• Min common and max crossing problems



HYPERPLANES

Positive Halfspace
{x | a'x ≥ b}

a

Negative Halfspace
{x | a'x ≤ b}

x

Hyperplane
{x | a'x = b} = {x | a'x = a'x}  

_

_

• A hyperplane is a set of the form {x | a′x = b},
where a is nonzero vector in ℜn and b is a scalar.

• We say that two sets C1 and C2 are separated

by a hyperplane H = {x | a′x = b} if each lies in a
different closed halfspace associated with H, i.e.,

either a′x1 ≤ b ≤ a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2,

or a′x2 ≤ b ≤ a′x1, ∀ x1 ∈ C1, ∀ x2 ∈ C2

• If x belongs to the closure of a set C, a hyper-
plane that separates C and the singleton set {x}
is said be supporting C at x.



VISUALIZATION

• Separating and supporting hyperplanes:

a C2

C1

(a)

a

C

(b)

x

• A separating {x | a′x = b} that is disjoint from
C1 and C2 is called strictly separating:

a′x1 < b < a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2

(b)(a)

C2 = {(ξ1,ξ2) | ξ1 > 0, ξ2 >0, ξ1ξ2 ≥ 1}

C1 = {(ξ1,ξ2) | ξ1 ≤ 0}

a

C1

C2
x2

x1

x



SUPPORTING HYPERPLANE THEOREM

• Let C be convex and let x be a vector that is
not an interior point of C. Then, there exists a
hyperplane that passes through x and contains C
in one of its closed halfspaces.

x3
x2

x1

x0

a2

a1

a0

C

x2 x1

x0

x

x3

Proof: Take a sequence {xk} that does not be-
long to cl(C) and converges to x. Let x̂k be the
projection of xk on cl(C). We have for all x ∈
cl(C)

a′kx ≥ a′kxk, ∀ x ∈ cl(C), ∀ k = 0, 1, . . . ,

where ak = (x̂k − xk)/‖x̂k − xk‖. Let a be a limit
point of {ak}, and take limit as k → ∞. Q.E.D.



SEPARATING HYPERPLANE THEOREM

• Let C1 and C2 be two nonempty convex subsets
of ℜn. If C1 and C2 are disjoint, there exists a
hyperplane that separates them, i.e., there exists
a vector a 6= 0 such that

a′x1 ≤ a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2.

Proof: Consider the convex set

C1 − C2 = {x2 − x1 | x1 ∈ C1, x2 ∈ C2}

Since C1 and C2 are disjoint, the origin does not
belong to C1 − C2, so by the Supporting Hyper-
plane Theorem, there exists a vector a 6= 0 such
that

0 ≤ a′x, ∀ x ∈ C1 − C2,

which is equivalent to the desired relation. Q.E.D.



STRICT SEPARATION THEOREM

• Strict Separation Theorem: Let C1 and C2

be two disjoint nonempty convex sets. If C1 is
closed, and C2 is compact, there exists a hyper-
plane that strictly separates them.

(b)(a)

C2 = {(ξ1,ξ2) | ξ1 > 0, ξ2 >0, ξ1ξ2 ≥ 1}

C1 = {(ξ1,ξ2) | ξ1 ≤ 0}

a

C1

C2
x2

x1

x

Proof: (Outline) Consider the set C1−C2. Since
C1 is closed and C2 is compact, C1 −C2 is closed.
Since C1 ∩ C2 = Ø, 0 /∈ C1 − C2. Let x1 − x2

be the projection of 0 onto C1 − C2. The strictly
separating hyperplane is constructed as in (b).

• Note: Any conditions that guarantee closed-
ness of C1 − C2 guarantee existence of a strictly
separating hyperplane. However, there may exist
a strictly separating hyperplane without C1 − C2

being closed.



ADDITIONAL THEOREMS

• Fundamental Characterization: The clo-
sure of the convex hull of a set C ⊂ ℜn is the
intersection of the closed halfspaces that contain
C.

• We say that a hyperplane properly separates C1

and C2 if it separates C1 and C2 and does not fully
contain both C1 and C2.

a

C2

C1Separating
hyperplane

(b)(a)

a

C2

C1

Separating
hyperplane

• Proper Separation Theorem: Let C1 and
C2 be two nonempty convex subsets of ℜn. There
exists a hyperplane that properly separates C1 and
C2 if and only if

ri(C1) ∩ ri(C2) = Ø



MIN COMMON / MAX CROSSING PROBLEMS

• We introduce a pair of fundamental problems:

• Let M be a nonempty subset of ℜn+1

(a) Min Common Point Problem: Consider all
vectors that are common to M and the (n+
1)st axis. Find one whose (n + 1)st compo-
nent is minimum.

(b) Max Crossing Point Problem: Consider “non-
vertical” hyperplanes that containM in their
“upper” closed halfspace. Find one whose
crossing point of the (n + 1)st axis is maxi-
mum.

0

Min Common Point w*

Max Crossing Point q*

M

w

0

M

Max Crossing Point q*

Min Common Point w*w

uu

• We first need to study “nonvertical” hyper-
planes.



NONVERTICAL HYPERPLANES

• A hyperplane in ℜn+1 with normal (µ, β) is
nonvertical if β 6= 0.

• It intersects the (n+1)st axis at ξ = (µ/β)′u+w,
where (u,w) is any vector on the hyperplane.

(µ,β)

w

uNonvertical
Hyperplane

(µ,0)

Vertical
Hyperplane

(u,w)
__

(µ/β)' u  + w
__

0

• A nonvertical hyperplane that contains the epi-
graph of a function in its “upper” halfspace, pro-
vides lower bounds to the function values.

• The epigraph of a proper convex function does
not contain a vertical line, so it appears plausible
that it is contained in the “upper” halfspace of
some nonvertical hyperplane.



NONVERTICAL HYPERPLANE THEOREM

• Let C be a nonempty convex subset of ℜn+1

that contains no vertical lines. Then:

(a) C is contained in a closed halfspace of a non-
vertical hyperplane, i.e., there exist µ ∈ ℜn,
β ∈ ℜ with β 6= 0, and γ ∈ ℜ such that
µ′u+ βw ≥ γ for all (u,w) ∈ C.

(b) If (u,w) /∈ cl(C), there exists a nonvertical
hyperplane strictly separating (u,w) and C.

Proof: Note that cl(C) contains no vert. line [since
C contains no vert. line, ri(C) contains no vert.
line, and ri(C) and cl(C) have the same recession
cone]. So we just consider the case: C closed.

(a) C is the intersection of the closed halfspaces
containing C. If all these corresponded to vertical
hyperplanes, C would contain a vertical line.

(b) There is a hyperplane strictly separating (u,w)
and C. If it is nonvertical, we are done, so assume
it is vertical. “Add” to this vertical hyperplane a
small ǫ-multiple of a nonvertical hyperplane con-
taining C in one of its halfspaces as per (a).



LECTURE 8

LECTURE OUTLINE

• Min Common / Max Crossing problems

• Weak duality

• Strong duality

• Existence of optimal solutions

• Minimax problems

0

Min Common Point w*

Max Crossing Point q*

M

w

0

M

Max Crossing Point q*

Min Common Point w*w

uu



WEAK DUALITY

• Optimal value of the min common problem

w∗ = inf
(0,w)∈M

w

• Math formulation of the max crossing problem:
Focus on hyperplanes with normals (µ, 1) whose
crossing point ξ satisfies

ξ ≤ w + µ′u, ∀ (u,w) ∈M

Max crossing problem is to maximize ξ subject to
ξ ≤ inf(u,w)∈M{w + µ′u}, µ ∈ ℜn, or

maximize q(µ)
△
= inf

(u,w)∈M
{w + µ′u}

subject to µ ∈ ℜn.

• Weak Duality: For all (u,w) ∈M and µ ∈ ℜn,

q(µ) = inf
(u,w)∈M

{w + µ′u} ≤ inf
(0,w)∈M

w = w∗,

so maximizing over µ ∈ ℜn, we obtain q∗ ≤ w∗.

• Note that q is concave and upper-semicontinuous.



STRONG DUALITY

• Question: Under what conditions do we have
q∗ = w∗ and the supremum in the max crossing
problem is attained?

0

(a)

Min Common Point w*

Max Crossing Point q*

M

0

(b)

M

_
M

Max Crossing Point q*

Min Common Point w*
w w

u

0

(c)

S

_
M

M
Max Crossing Point q*

Min Common Point w*

w

u

u



DUALITY THEOREMS

• Assume that w∗ <∞ and that the set

M =
{

(u, w) | there exists w with w ≤ w and (u, w) ∈ M
}

is convex.

• Min Common/Max Crossing Theorem I: We
have q∗ = w∗ if and only if for every sequence
{

(uk, wk)
}

⊂ M with uk → 0, there holds w∗ ≤
lim infk→∞ wk.

• Min Common/Max Crossing Theorem II: As-
sume in addition that −∞ < w∗ and that the set

D =
{

u | there exists w ∈ ℜ with (u,w) ∈M}

contains the origin in its relative interior. Then
q∗ = w∗ and there exists µ such that q(µ) = q∗.
Furthermore, the set {µ | q(µ) = q∗} is nonempty
and compact if and only if D contains the origin
in its interior.

• Min Common/Max Crossing Theorem III: In-
volves polyhedral assumptions, and will be devel-
oped later.



PROOF OF THEOREM I

• Assume that q∗ = w∗. Let
{

(uk, wk)
}

⊂ M be
such that uk → 0. Then,

q(µ) = inf
(u,w)∈M

{w+µ′u} ≤ wk+µ′uk, ∀ k, ∀ µ ∈ ℜn

Taking the limit as k → ∞, we obtain q(µ) ≤
lim infk→∞ wk, for all µ ∈ ℜn, implying that

w∗ = q∗ = sup
µ∈ℜn

q(µ) ≤ lim inf
k→∞

wk

Conversely, assume that for every sequence
{

(uk, wk)
}

⊂ M with uk → 0, there holds w∗ ≤
lim infk→∞ wk. If w∗ = −∞, then q∗ = −∞, by
weak duality, so assume that −∞ < w∗. Steps of
the proof:

(1) M does not contain any vertical lines.

(2) (0, w∗ − ǫ) /∈ cl(M) for any ǫ > 0.

(3) There exists a nonvertical hyperplane strictly
separating (0, w∗ − ǫ) and M . This hyper-
plane crosses the (n + 1)st axis at a vector
(0, ξ) with w∗ − ǫ ≤ ξ ≤ w∗, so w∗ − ǫ ≤
q∗ ≤ w∗. Since ǫ can be arbitrarily small, it
follows that q∗ = w∗.



PROOF OF THEOREM II

• Note that (0, w∗) is not a relative interior point
of M . Therefore, by the Proper Separation Theo-
rem, there exists a hyperplane that passes through
(0, w∗), contains M in one of its closed halfspaces,
but does not fully contain M , i.e., there exists
(µ, β) such that

βw∗ ≤ µ′u+ βw, ∀ (u,w) ∈M,

βw∗ < sup
(u,w)∈M

{µ′u+ βw}

Since for any (u,w) ∈ M , the set M contains the
halfline

{

(u,w) | w ≤ w
}

, it follows that β ≥ 0. If
β = 0, then 0 ≤ µ′u for all u ∈ D. Since 0 ∈ ri(D)
by assumption, we must have µ′u = 0 for all u ∈ D
a contradiction. Therefore, β > 0, and we can
assume that β = 1. It follows that

w∗ ≤ inf
(u,w)∈M

{µ′u+ w} = q(µ) ≤ q∗

Since the inequality q∗ ≤ w∗ holds always, we
must have q(µ) = q∗ = w∗.



MINIMAX PROBLEMS

Given φ : X × Z 7→ ℜ, where X ⊂ ℜn, Z ⊂ ℜm

consider
minimize sup

z∈Z
φ(x, z)

subject to x ∈ X

and
maximize inf

x∈X
φ(x, z)

subject to z ∈ Z.

• Some important contexts:

− Worst-case design. Special case: Minimize
over x ∈ X

max
{

f1(x), . . . , fm(x)
}

− Duality theory and zero sum game theory
(see the next two slides)

• We will study minimax problems using the min
common/max crossing framework



CONSTRAINED OPTIMIZATION DUALITY

• For the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r

introduce the Lagrangian function

L(x, µ) = f(x) +
r
∑

j=1

µjgj(x)

• Primal problem (equivalent to the original)

min
x∈X

sup
µ≥0

L(x, µ) =







f(x) if g(x) ≤ 0,

∞ otherwise,

• Dual problem

max
µ≥0

inf
x∈X

L(x, µ)

• Key duality question: Is it true that

sup
µ≥0

inf
x∈ℜn

L(x, µ) = inf
x∈ℜn

sup
µ≥0

L(x, µ)



ZERO SUM GAMES

• Two players: 1st chooses i ∈ {1, . . . , n}, 2nd
chooses j ∈ {1, . . . ,m}.
• If moves i and j are selected, the 1st player
gives aij to the 2nd.

• Mixed strategies are allowed: The two players
select probability distributions

x = (x1, . . . , xn), z = (z1, . . . , zm)

over their possible moves.

• Probability of (i, j) is xizj , so the expected
amount to be paid by the 1st player

x′Az =
∑

i,j

aijxizj

where A is the n×m matrix with elements aij .

• Each player optimizes his choice against the
worst possible selection by the other player. So

− 1st player minimizes maxz x′Az

− 2nd player maximizes minx x′Az



MINIMAX INEQUALITY

• We always have

sup
z∈Z

inf
x∈X

φ(x, z) ≤ inf
x∈X

sup
z∈Z

φ(x, z)

[for every z ∈ Z, write

inf
x∈X

φ(x, z) ≤ inf
x∈X

sup
z∈Z

φ(x, z)

and take the sup over z ∈ Z of the left-hand side].

• This is called the minimax inequality . When
it holds as an equation, it is called the minimax

equality .

• The minimax equality need not hold in general.

• When the minimax equality holds, it often leads
to interesting interpretations and algorithms.

• The minimax inequality is often the basis for
interesting bounding procedures.



LECTURE 9

LECTURE OUTLINE

• Min-Max Problems

• Saddle Points

• Min Common/Max Crossing for Min-Max

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Given φ : X × Z 7→ ℜ, where X ⊂ ℜn, Z ⊂ ℜm

consider
minimize sup

z∈Z
φ(x, z)

subject to x ∈ X

and
maximize inf

x∈X
φ(x, z)

subject to z ∈ Z.

• Minimax inequality (holds always)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ inf
x∈X

sup
z∈Z

φ(x, z)



SADDLE POINTS

Definition: (x∗, z∗) is called a saddle point of φ
if

φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗), ∀ x ∈ X, ∀ z ∈ Z

Proposition: (x∗, z∗) is a saddle point if and only
if the minimax equality holds and

x∗ ∈ arg min
x∈X

sup
z∈Z

φ(x, z), z∗ ∈ arg max
z∈Z

inf
x∈X

φ(x, z) (*)

Proof: If (x∗, z∗) is a saddle point, then

inf
x∈X

sup
z∈Z

φ(x, z) ≤ sup
z∈Z

φ(x∗, z) = φ(x∗, z∗)

= inf
x∈X

φ(x, z∗) ≤ sup
z∈Z

inf
x∈X

φ(x, z)

By the minimax inequality, the above holds as an
equality throughout, so the minimax equality and
Eq. (*) hold.

Conversely, if Eq. (*) holds, then

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

φ(x, z∗) ≤ φ(x∗, z∗)

≤ sup
z∈Z

φ(x∗, z) = inf
x∈X

sup
z∈Z

φ(x, z)

Using the minimax equ., (x∗, z∗) is a saddle point.



VISUALIZATION

x

z

Curve of maxima

Curve of minima

φ(x,z)

Saddle point
(x*,z*)

^φ(x(z),z)

φ(x,z(x))^

The curve of maxima φ(x, ẑ(x)) lies above the
curve of minima φ(x̂(z), z), where

ẑ(x) = arg max
z

φ(x, z), x̂(z) = arg min
x
φ(x, z)

Saddle points correspond to points where these
two curves meet.



MIN COMMON/MAX CROSSING FRAMEWORK

• Introduce perturbation function p : ℜm 7→
[−∞,∞]

p(u) = inf
x∈X

sup
z∈Z

{

φ(x, z) − u′z
}

, u ∈ ℜm

• Apply the min common/max crossing frame-
work with M = epi(p)

• Note that w∗ = inf supφ. We will show that:

− Convexity in x implies that M is a convex
set.

− Concavity in z implies that q∗ = sup inf φ.

M = epi(p)

u

supzinfx φ(x,z)

= max crossing value q*

w

infx supzφ(x,z)

= min common value w*

(a)

0

M = epi(p)

u

supzinfx φ(x,z)

= max crossing value q*

w

infx supzφ(x,z)

= min common value w*

(b)

0

q(µ)
q(µ)

(µ,1)

(µ,1)



IMPLICATIONS OF CONVEXITY IN X

Lemma 1: Assume that X is convex and that
for each z ∈ Z, the function φ(·, z) : X 7→ ℜ is
convex. Then p is a convex function.

Proof: Let

F (x, u) =

{

supz∈Z

{

φ(x, z) − u′z
}

if x ∈ X,
∞ if x /∈ X.

Since φ(·, z) is convex, and taking pointwise supre-
mum preserves convexity, F is convex. Since

p(u) = inf
x∈ℜn

F (x, u),

and partial minimization preserves convexity, the
convexity of p follows from the convexity of F .
Q.E.D.



THE MAX CROSSING PROBLEM

• The max crossing problem is to maximize q(µ)
over µ ∈ ℜn, where

q(µ) = inf
(u,w)∈epi(p)

{w + µ
′
u} = inf

{(u,w)|p(u)≤w}
{w + µ

′
u}

= inf
u∈ℜm

{

p(u) + µ
′
u
}

Using p(u) = infx∈X supz∈Z

{

φ(x, z) − u′z
}

, we
obtain

q(µ) = inf
u∈ℜm

inf
x∈X

sup
z∈Z

{

φ(x, z) + u′(µ− z)
}

• By setting z = µ in the right-hand side,

inf
x∈X

φ(x, µ) ≤ q(µ), ∀ µ ∈ Z

Hence, using also weak duality (q∗ ≤ w∗),

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
µ∈ℜm

q(µ) = q∗

≤ w∗ = p(0) = inf
x∈X

sup
z∈Z

φ(x, z)



IMPLICATIONS OF CONCAVITY IN Z

Lemma 2: Assume that for each x ∈ X, the
function rx : ℜm 7→ (−∞,∞] defined by

rx(z) =

{

−φ(x, z) if z ∈ Z,
∞ otherwise,

is closed and convex. Then

q(µ) =

{

infx∈X φ(x, µ) if µ ∈ Z,
−∞ if µ /∈ Z.

Proof: (Outline) From the preceding slide,

inf
x∈X

φ(x, µ) ≤ q(µ), ∀ µ ∈ Z

We show that q(µ) ≤ infx∈X φ(x, µ) for all µ ∈ Z
and q(µ) = −∞ for all µ /∈ Z, by considering
separately the two cases where µ ∈ Z and µ /∈ Z.

First assume that µ ∈ Z. Fix x ∈ X, and for
ǫ > 0, consider the point

(

µ, rx(µ)−ǫ
)

, which does
not belong to epi(rx). Since epi(rx) does not con-
tain any vertical lines, there exists a nonvertical
strictly separating hyperplane ...



MINIMAX THEOREM I

Assume that:

(1) X and Z are convex.

(2) p(0) = infx∈X supz∈Z φ(x, z) <∞.

(3) For each z ∈ Z, the function φ(·, z) is convex.

(4) For each x ∈ X, the function −φ(x, ·) : Z 7→
ℜ is closed and convex.

Then, the minimax equality holds if and only if
the function p is lower semicontinuous at u = 0.

Proof: The convexity/concavity assumptions guar-
antee that the minimax equality is equivalent to
q∗ = w∗ in the min common/max crossing frame-
work. Furthermore, w∗ < ∞ by assumption, and
the set M [equal to M and epi(p)] is convex.

By the 1st Min Common/Max Crossing The-
orem, we have w∗ = q∗ iff for every sequence
{

(uk, wk)
}

⊂ M with uk → 0, there holds w∗ ≤
lim infk→∞ wk. This is equivalent to the lower
semicontinuity assumption on p:

p(0) ≤ lim inf
k→∞

p(uk), for all {uk} with uk → 0



MINIMAX THEOREM II

Assume that:

(1) X and Z are convex.

(2) p(0) = infx∈X supz∈Z φ(x, z) > −∞.

(3) For each z ∈ Z, the function φ(·, z) is convex.

(4) For each x ∈ X, the function −φ(x, ·) : Z 7→
ℜ is closed and convex.

(5) 0 lies in the relative interior of dom(p).

Then, the minimax equality holds and the supre-
mum in supz∈Z infx∈X φ(x, z) is attained by some
z ∈ Z. [Also the set of z where the sup is attained
is compact if 0 is in the interior of dom(p).]

Proof: Apply the 2nd Min Common/Max Cross-
ing Theorem.



EXAMPLE I

• Let X =
{

(x1, x2) | x ≥ 0
}

and Z = {z ∈ ℜ |
z ≥ 0}, and let

φ(x, z) = e−
√

x1x2 + zx1,

which satisfy the convexity and closedness assump-
tions. For all z ≥ 0,

inf
x≥0

{

e−
√

x1x2 + zx1

}

= 0,

so supz≥0 infx≥0 φ(x, z) = 0. Also, for all x ≥ 0,

sup
z≥0

{

e−
√

x1x2 + zx1

}

=

{

1 if x1 = 0,
∞ if x1 > 0,

so infx≥0 supz≥0 φ(x, z) = 1.

epi(p)

u

p(u)

1

0

p(u) = inf
x≥0

sup
z≥0

{

e−
√

x1x2 + z(x1 − u)
}

=

{

∞ if u < 0,
1 if u = 0,

0 if u > 0,



EXAMPLE II

• Let X = ℜ, Z = {z ∈ ℜ | z ≥ 0}, and let

φ(x, z) = x+ zx2,

which satisfy the convexity and closedness assump-
tions. For all z ≥ 0,

inf
x∈ℜ

{x+ zx2} =

{

−1/(4z) if z > 0,
−∞ if z = 0,

so supz≥0 infx∈ℜ φ(x, z) = 0. Also, for all x ∈ ℜ,

sup
z≥0

{x+ zx2} =

{

0 if x = 0,
∞ otherwise,

so infx∈ℜ supz≥0 φ(x, z) = 0. However, the sup is
not attained.

u

p(u)

0

epi(p)

p(u) = inf
x∈ℜ

sup
z≥0

{x + zx2 − uz}

=

{

−√
u if u ≥ 0,

∞ if u < 0.



SADDLE POINT ANALYSIS

• The preceding analysis suggests the importance
of the perturbation function

p(u) = inf
x∈ℜn

F (x, u),

where

F (x, u) =

{

supz∈Z

{

φ(x, z) − u′z
}

if x ∈ X,
∞ if x /∈ X.

It suggests a two-step process to establish the min-
imax equality and the existence of a saddle point:

(1) Show that p is closed and convex, thereby
showing that the minimax equality holds by
using the first minimax theorem.

(2) Verify that the infimum of supz∈Z φ(x, z) over
x ∈ X, and the supremum of infx∈X φ(x, z)
over z ∈ Z are attained, thereby showing
that the set of saddle points is nonempty.



SADDLE POINT ANALYSIS (CONTINUED)

• Step (1) requires two types of assumptions:

(a) Convexity/concavity/semicontinuity conditions
of Minimax Theorem I (so the min com-
mon/max crossing framework applies).

(b) Conditions for preservation of closedness by
the partial minimization in

p(u) = inf
x∈ℜn

F (x, u)

• Step (2) requires that either Weierstrass’ The-
orem can be applied, or else one of the conditions
for existence of optimal solutions developed so far
is satisfied.



SAMPLE THEOREM

• Assume convexity/concavity/semicontinuity of
Φ. Consider the functions

t(x) =

{

supz∈Z φ(x, z) if x ∈ X,
∞ if x /∈ X,

and

r(z) =
{− infx∈X φ(x, z) if z ∈ Z,
∞ if z /∈ Z.

Assume that they are proper.

• If the level sets of t are compact, the minimax
equality holds, and the min over x of

sup
z∈Z

φ(x, z)

[which is t(x)] is attained.

• If the level sets of t and r are compact, the set
of saddle points is nonempty and compact.



SADDLE POINT THEOREM

Assume the convexity/concavity/semicontinuity con-
ditions, and that any one of the following holds:

(1) X and Z are compact.

(2) Z is compact and there exists a vector z ∈ Z
and a scalar γ such that the level set

{

x ∈
X | φ(x, z) ≤ γ

}

is nonempty and compact.

(3) X is compact and there exists a vector x ∈ X
and a scalar γ such that the level set

{

z ∈
Z | φ(x, z) ≥ γ

}

is nonempty and compact.

(4) There exist vectors x ∈ X and z ∈ Z, and a
scalar γ such that the level sets

{

x ∈ X | φ(x, z) ≤ γ
}

,
{

z ∈ Z | φ(x, z) ≥ γ
}

,

are nonempty and compact.

Then, the minimax equality holds, and the set of
saddle points of φ is nonempty and compact.
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• Extreme points

• Polar cones and polar cone theorem

• Polyhedral and finitely generated cones

• Farkas Lemma, Minkowski-Weyl Theorem

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• The main convexity concepts so far have been:

− Closure, convex hull, affine hull, rel. interior

− Directions of recession and set intersection
theorems

− Preservation of closure under linear transfor-
mation and partial minimization

− Existence of optimal solutions

− Hyperplanes, min common/max crossing du-
ality, and application in minimax

• We now introduce new concepts with important
theoretical and algorithmic implications: extreme
points, polyhedral convexity, and related issues.



EXTREME POINTS

• A vector x is an extreme point of a convex set
C if x ∈ C and x does not lie strictly within a line
segment contained in C.

Extreme
Points

Extreme
Points

Extreme
Points

(a) (b) (c)

Proposition: Let C be closed and convex. If H
is a hyperplane that contains C in one of its closed
halfspaces, then every extreme point of C ∩H is
also an extreme point of C.

z
x

y

C

H

Extreme
points of C∩H

Proof: If x ∈ C ∩ H is a nonextreme

point of C, it lies strictly within a line
segment [y, z] ⊂ C. If y belongs in the

open upper halfspace of H, then z must

belong to the open lower halfspace of
H - contradiction since H supports C.

Hence y, z ∈ C ∩ H, implying that x is

a nonextreme point of C ∩ H.



PROPERTIES OF EXTREME POINTS I

Krein-Milman Theorem: A convex and com-
pact set is equal to the convex hull of its extreme
points.

Proof: By convexity, the given set contains the
convex hull of its extreme points.

Next show the reverse, i.e, every x in a com-
pact and convex set C can be represented as a
convex combination of extreme points of C.

Use induction on the dimension of the space.
The result is true in ℜ. Assume it is true for all
convex and compact sets in ℜn−1. Let C ⊂ ℜn

and x ∈ C.

x x2xx1

C

H1

H2

If x is another point in C, the points

x1 and x2 shown can be represented as

convex combinations of extreme points
of the lower dimensional convex and com-

pact sets C∩H1 and C∩H2, which are

also extreme points of C, by the pre-
ceding theorem.



PROPERTIES OF EXTREME POINTS II

Proposition: A closed convex set has at least one
extreme point if and only if it does not contain a
line.

Proof: If C contains a line, then this line trans-
lated to pass through an extreme point is fully
contained in C (use the Recession Cone Theorem)
- impossible.

Conversely, we use induction on the dimen-
sion of the space to show that if C does not contain
a line, it must have an extreme point. True in ℜ,
so assume it is true in ℜn−1, where n ≥ 2. We
will show it is true in ℜn.

Since C does not contain a line, there must
exist points x ∈ C and y /∈ C. Consider the rela-
tive boundary point x.

xxy

C

H

The set C∩H lies in an (n−1)-dimensional
space and does not contain a line, so it

contains an extreme point. By the pre-

ceding proposition, this extreme point
must also be an extreme point of C.



CHARACTERIZATION OF EXTREME POINTS

Proposition: Consider a polyhedral set

P =
{

x | a′jx ≤ bj , j = 1, . . . , r
}

,

where aj and bj are given vectors and scalars.

(a) A vector v ∈ P is an extreme point of P if
and only if the set

Av =
{

aj | a′jv = bj , j ∈ {1, . . . , r}
}

contains n linearly independent vectors.

(b) P has an extreme point if and only if the
set {aj | j = 1, . . . , r} contains n linearly
independent vectors.

(a) (b)

a1

a2
a3

a1

a2

v v

PP

a3

a5 a5

a4a4



PROOF OUTLINE

If the set Av contains fewer than n linearly inde-
pendent vectors, then the system of equations

a′jw = 0, ∀ aj ∈ Av

has a nonzero solution w. For small γ > 0, we
have v + γw ∈ P and v − γw ∈ P , thus showing
that v is not extreme. Thus, if v is extreme, Av

must contain n linearly independent vectors.
Conversely, assume that Av contains a sub-

set Āv of n linearly independent vectors. Suppose
that for some y ∈ P , z ∈ P , and α ∈ (0, 1), we
have v = αy + (1 − α)z. Then, for all aj ∈ Āv,

bj = a′jv = αa′jy+(1−α)a′jz ≤ αbj+(1−α)bj = bj

Thus, v, y, and z are all solutions of the system
of n linearly independent equations

a′jw = bj , ∀ aj ∈ Āv

Hence, v = y = z, implying that v is an extreme
point of P .



POLAR CONES

• Given a set C, the cone given by

C∗ = {y | y′x ≤ 0, ∀ x ∈ C},

is called the polar cone of C.

0
C∗

C
a1

a2

(a)

C

a1

0
C∗

a2

(b)

• C∗ is a closed convex cone, since it is the inter-
section of closed halfspaces.

• Note that

C∗ =
(

cl(C)
)∗

=
(

conv(C)
)∗

=
(

cone(C)
)∗

• Special case: If C is a subspace, C∗ = C⊥. In
this case, we have (C∗)∗ = (C⊥)⊥ = C.



POLAR CONE THEOREM

• For any cone C, we have (C∗)∗ = cl
(

conv(C)
)

.
If C is closed and convex, we have (C∗)∗ = C.

If C

0

t C∗

d ẑ

y z

‖z − ẑ‖

Proof: Consider the case where C is closed and
convex. For any x ∈ C, we have x′y ≤ 0 for all
y ∈ C∗, so that x ∈ (C∗)∗, and C ⊂ (C∗)∗.

To prove that (C∗)∗ ⊂ C, we show that for
any z ∈ ℜn and its projection on C, call it ẑ, we
have z − ẑ ∈ C∗, so if z ∈ (C∗)∗, the geometry
shown in the figure [(angle between z and z − ẑ)
< π/2] is impossible, and we must have z− ẑ = 0,
i.e., z ∈ C.



POLARS OF POLYHEDRAL CONES

• A cone C ⊂ ℜn is polyhedral , if

C = {x | a′jx ≤ 0, j = 1, . . . , r},

where a1, . . . , ar are some vectors in ℜn.

• A cone C ⊂ ℜn is finitely generated , if

C =







x
∣

∣

∣
x =

r
∑

j=1

µjaj , µj ≥ 0, j = 1, . . . , r







= cone
(

{a1, . . . , ar}
)

,

where a1, . . . , ar are some vectors in ℜn.

(a)

a1

0

a3
a2

a1

0

a3
a2

(b)



FARKAS-MINKOWSKI-WEYL THEOREMS

Let a1, . . . , ar ∈ ℜn.

(a) (Farkas’ Lemma) We have

(

{y | a′jy ≤ 0, j = 1, . . . , r}
)∗

= cone
(

{a1, . . . , ar}
)

(There is also a version of this involving sets
described by linear equality as well as in-
equality constraints.)

(b) (Minkowski-Weyl Theorem) A cone is poly-
hedral if and only if it is finitely generated.

(c) (Minkowski-Weyl Representation) A set P is
polyhedral if and only if

P = conv
(

{v1, . . . , vm}
)

+ C,

for a nonempty finite set of vectors {v1, . . . , vm}
and a finitely generated cone C.



PROOF OUTLINE

•
{

y | a′jy ≤ 0, j = 1, . . . , r
}

is closed

• cone({a1, . . . , ar}) is closed,because it is the re-
sult of a linear transformation A applied to the
polyhedral set {µ | µ ≥ 0,

∑r
j=1 µj = 1}, where A

is the matrix with columns a1, . . . , ar.

• By the definition of polar cone

(

cone({a1, . . . , ar})
)∗

=
{

y | a
′
jy ≤ 0, j = 1, . . . , r

}

.

• By the Polar Cone Theorem

((

cone({a1, . . . , ar})
)∗)∗

=
({

y | a
′
jy ≤ 0, j = 1, . . . , r

})∗

so by closedness

cone({a1, . . . , ar}) =
({

y | a
′
jy ≤ 0, j = 1, . . . , r

})∗
.

Q.E.D.

• Proofs of (b), (c) will be given in the next lec-
ture.
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• Proofs of Minkowski-Weyl Theorems

• Polyhedral aspects of optimization

• Linear programming and duality

• Integer programming

−−−−−−−−−−−−−−−−−−−−−−−−−−
Recall some of the facts of polyhedral convexity:

• Polarity relation between polyhedral and finitely
generated cones

{x | a′jx ≤ 0, j = 1, . . . , r} = cone
(

{a1, . . . , ar}
)∗

• Farkas’ Lemma

{x | a′jx ≤ 0, j = 1, . . . , r}∗ = cone
(

{a1, . . . , ar}
)

• Minkowski-Weyl Theorem: a cone is polyhedral
iff it is finitely generated.

• A corollary (essentially) to be shown:

Polyhedral set P = conv
(

{v1, . . . , vm}
)

+RP

for some finite set of vectors {v1, . . . , vm}.



MINKOWSKI-WEYL PROOF OUTLINE

• Step 1: Show cone
(

{a1, . . . , ar}
)

is polyhedral.

• Step 2: Use Step 1 and Farkas to show that
{x | a′jx ≤ 0, j = 1, . . . , r} is finitely generated.

• Proof of Step 1: Assume first that a1, . . . , ar

span ℜn. Given b /∈ cone
(

{a1, . . . , ar}
)

,

Pb = {y | b′y ≥ 1, a′jy ≤ 0, j = 1, . . . , r}

is nonempty and has at least one extreme point y.

0
e y

r b

{a1,

s. a2

). Sin
6, Pb

Halfspace
{x | y

′
x ≤ 0}

∈ cone
(

{a1, . . . , ar}
)

,

{x | a′

jx ≤ 0, j = 1, . . . , r},

• Show that b′y = 1 and {aj | a′jy = 0} contains
n− 1 linearly independent vectors. The halfspace
{x | y′x ≤ 0}, contains cone

(

{a1, . . . , ar}
)

, and
does not contain b. Consider the intersection of all
such halfspaces as b ranges over cone

(

{a1, . . . , ar}
)

.



POLYHEDRAL REPRESENTATION PROOF

• We “lift the polyhedral set into a cone”. Let

P =
{

x | a′jx ≤ bj , j = 1, . . . , r
}

,

P̂ =
{

(x,w) | 0 ≤ w, a′jx ≤ bjw, j = 1, . . . , r
}

and note that P =
{

x | (x, 1) ∈ P̂
}

.

0

1

P

w

P̂

x

• By Minkowski-Weyl, P̂ is finitely generated, so

P̂ =







(x,w)
∣

∣

∣ x =
m
∑

j=1

µjvj , w =
m
∑

j=1

µjdj , µj ≥ 0







.

We have dj ≥ 0 for all j, since w ≥ 0 for all

(x,w) ∈ P̂ . Let J+ = {j | dj > 0}, J0 = {j | dj =
0}.



PROOF CONTINUED

• By replacing µj by µj/dj for all j ∈ J+,

P̂ =







(x, w)

∣

∣

∣
x =

∑

j∈J+∪J0

µjvj , w =
∑

j∈J+

µj , µj ≥ 0







Since P =
{

x | (x, 1) ∈ P̂
}

, we obtain

P =







x
∣

∣

∣ x =
∑

j∈J+∪J0

µjvj ,
∑

j∈J+

µj = 1, µj ≥ 0







Thus,

P = conv
(

{vj | j ∈ J
+}
)

+







∑

j∈J0

µjvj

∣

∣

∣
µj ≥ 0, j ∈ J

0







• To prove that the vector sum of conv
(

{v1, . . . , vm}
)

and a finitely generated cone is a polyhedral set,
we reverse the preceding argument. Q.E.D.



POLYHEDRAL CALCULUS

• The intersection and Cartesian product of poly-
hedral sets is polyhedral.

• The image of a polyhedral set under a linear
transformation is polyhedral: To show this, let
the polyhedral set P be represented as

P = conv
(

{v1, . . . , vm}
)

+ cone
(

{a1, . . . , ar}
)

,

and let A be a matrix. We have

AP = conv
(

{Av1, . . . , Avm}
)

+cone
(

{Aa1, . . . , Aar}
)

.

It follows that AP has a Minkowski-Weyl repre-
sentation, and hence it is polyhedral.

• The vector sum of polyhedral sets is polyhedral
(since vector sum operation is a special type of
linear transformation).



POLYHEDRAL FUNCTIONS

• A function f : ℜn 7→ (−∞,∞] is polyhedral if
its epigraph is a polyhedral set in ℜn+1.

• Note that every polyhedral function is closed,
proper, and convex.

Theorem: Let f : ℜn 7→ (−∞,∞] be a con-
vex function. Then f is polyhedral if and only if
dom(f) is a polyhedral set, and

f(x) = max
j=1,...,m

{a′jx+ bj}, ∀ x ∈ dom(f),

for some aj ∈ ℜn and bj ∈ ℜ.

Proof: Assume that dom(f) is polyhedral and f
has the above representation. We will show that
f is polyhedral. The epigraph of f is

epi(f) =
{

(x,w) | x ∈ dom(f)
}

∩
{

(x,w) | a′jx+ bj ≤ w, j = 1, . . . ,m
}

.

Since the two sets on the right are polyhedral,
epi(f) is also polyhedral. Hence f is polyhedral.



PROOF CONTINUED

• Conversely, if f is polyhedral, its epigraph is
polyhedral and can be represented as the inter-
section of a finite collection of closed halfspaces of
the form

{

(x,w) | a′jx + bj ≤ cjw
}

, j = 1, . . . , r,
where aj ∈ ℜn, and bj , cj ∈ ℜ.

• Since for any (x,w) ∈ epi(f), we have (x,w +
γ) ∈ epi(f) for all γ ≥ 0, it follows that cj ≥
0, so by normalizing if necessary, we may assume
without loss of generality that either cj = 0 or
cj = 1. Letting cj = 1 for j = 1, . . . ,m, and
cj = 0 for j = m + 1, . . . , r, where m is some
integer,

epi(f) =
{

(x,w) | a′jx+ bj ≤ w, j = 1, . . . ,m,

a′jx+ bj ≤ 0, j = m+ 1, . . . , r
}

.

Thus

dom(f) =
{

x | a′jx+ bj ≤ 0, j = m+ 1, . . . , r
}

,

f(x) = max
j=1,...,m

{a′jx+ bj}, ∀ x ∈ dom(f)

Q.E.D.



OPERATIONS ON POLYHEDRAL FUNCTIONS

• The preceding representation of polyhedral func-
tions can be used to derive various properties.

• The sum of polyhedral functions is polyhedral
(provided their domains have a point in common).

• If g is polyhedral and A is a matrix, the function
f(x) = g(Ax) is polyhedral.

• Let F be a polyhedral function of (x, z). Then
the function f obtained by the partial minimiza-
tion

f(x) = inf
z∈ℜm

F (x, z), x ∈ ℜn,

is polyhedral (assuming it is proper).



EXTREME POINTS AND CONCAVE MIN.

• Let C be a closed and convex set that has at
least one extreme point. A concave function f :
C 7→ ℜ that attains a minimum over C attains
the minimum at some extreme point of C.

x*

C

(a)

C∩H1∩H2

C

x*

(c)

C

x*

C∩H1

(b)

Proof (abbreviated): If a minimum x∗ belongs
to ri(C) [see Fig. (a)], f must be constant over C,
so it attains a minimum at an extreme point of
C. If x∗ /∈ ri(C), there is a hyperplane H1 that
supports C and contains x∗.

If x∗ ∈ ri(C ∩H1) [see (b)], then f must be
constant over C ∩H1, so it attains a minimum at
an extreme point C ∩ H1. This optimal extreme
point is also an extreme point of C. If x∗ /∈ ri(C ∩
H1), there is a hyperplane H2 supporting C ∩H1

through x∗. Continue until an optimal extreme
point is obtained (which must also be an extreme
point of C).



FUNDAMENTAL THEOREM OF LP

• Let P be a polyhedral set that has at least
one extreme point. Then, if a linear function is
bounded below over P , it attains a minimum at
some extreme point of P .

Proof: Since the cost function is bounded below
over P , it attains a minimum. The result now
follows from the preceding theorem. Q.E.D.

• Two possible cases in LP: In (a) there is an
extreme point; in (b) there is none.

(a) (b)

P

Level sets of f

P



LINEAR PROGRAMMING DUALITY

• Primal problem (optimal value = f∗):

minimize c′x

subject to a′jx ≥ bj , j = 1, . . . , r,

where c and a1, . . . , ar are vectors in ℜn.

• Dual problem (optimal value = q∗):

maximize b′µ

subject to
r
∑

j=1

ajµj = c, µj ≥ 0, j = 1, . . . , r

• f∗ = minx maxµ≥0 L and q∗ = maxµ≥0 minx L,
where L(x, µ) = c′x+

∑r
j=1 µj(bj − a′jx)

• Duality Theorem:

(a) If either f∗ or q∗ is finite, then f∗ = q∗ and
both problems have optimal solutions.

(b) If f∗ = −∞, then q∗ = −∞.

(c) If q∗ = ∞, then f∗ = ∞.

Proof: Use weak duality (q∗ ≤ f∗) and Farkas’
Lemma (see next slide).



LINEAR PROGRAMMING DUALITY PROOF

Cone D
(Translated to x*)

Feasible
Set

x*a1
a2

c = µ1a1 + µ2a2* *

Assume f∗: finite, and let x∗ be a primal optimal
solution (it exists because f∗ is finite). Let J be
the set of indices j with a′jx

∗ = bj . Then, c′y ≥ 0
for all y in the cone D = {y | a′jy ≥ 0, ∀ j ∈ J}.
By Farkas’,

c =
r
∑

j=1

µ∗
jaj , µ∗

j ≥ 0, ∀ j ∈ J, µ∗
j = 0, ∀ j /∈ J.

Take inner product with x∗:

c′x∗ =
r
∑

j=1

µ∗
jaj

′x∗ =
r
∑

j=1

µ∗
j bj = b′µ∗.

This, together with q∗ ≤ f∗, implies that q∗ = f∗

and that µ∗ is optimal.



INTEGER PROGRAMMING

• Consider a polyhedral set

P = {x | Ax = b, c ≤ x ≤ d},

where A is m × n, b ∈ ℜm, and c, d ∈ ℜn. As-
sume that all components of A and b, c, and d are
integer.

• Question: Under what conditions do the ex-
treme points of P have integer components?

Definition: A square matrix with integer com-
ponents is unimodular if its determinant is 0, 1,
or -1. A rectangular matrix with integer compo-
nents is totally unimodular if each of its square
submatrices is unimodular.

Theorem: If A is totally unimodular, all the ex-
treme points of P have integer components.

• Most important special case: Linear network
optimization problems (with “single commodity”
and no “side constraints”), where A is the, so-
called, arc incidence matrix of a given directed
graph.
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• Theorems of the Alternative - LP Applications

• Hyperplane proper polyhedral separation

• Min Common/Max Crossing Theorem under
polyhedral assumptions

*********************************

• Primal problem (optimal value = f∗):

minimize c′x

subject to a′jx ≥ bj , j = 1, . . . , r,

where c and a1, . . . , ar are vectors in ℜn.

• Dual problem (optimal value = q∗):

maximize b′µ

subject to

r
∑

j=1

ajµj = c, µj ≥ 0, j = 1, . . . , r.

• Duality: q∗ = f∗ (if finite) and solutions exist



LP OPTIMALITY CONDITIONS

Proposition: A pair of vectors (x∗, µ∗) form a
primal and dual optimal solution pair if and only
if x∗ is primal-feasible, µ∗ is dual-feasible, and

µ∗
j (bj − a′jx

∗) = 0, ∀ j = 1, . . . , r. (1)

Proof: If x∗ is primal-feasible and µ∗ is dual-
feasible, then

b′µ∗ =
r
∑

j=1

bjµ∗
j +



c−
r
∑

j=1

ajµ∗
j





′

x∗

= c′x∗ +
r
∑

j=1

µ∗
j (bj − a′jx

∗).

(2)

Thus, if Eq. (1) holds, we have b′µ∗ = c′x∗, and
weak duality implies optimality of x∗ and µ∗.

Conversely, if (x∗, µ∗) are an optimal pair,
then x∗ is primal-feasible, µ∗ is dual-feasible, and
by the duality theorem, b′µ∗ = c′x∗. From Eq.
(2), we obtain Eq. (1). Q.E.D.



THEOREMS OF THE ALTERNATIVE

• We consider conditions for feasibility, strict fea-
sibility, and boundedness of systems of linear in-
equalities

• Example: Farkas’ lemma which states that the
system Ax = c, x ≥ 0 has a solution if and only if

A′y ≤ 0 ⇒ c′y ≤ 0.

• Can be stated as a “theorem of the alternative”,
i.e., exactly one of the following two holds:

(1) The system Ax = c, x ≥ 0 has a solution

(2) The system A′y ≤ 0, c′y > 0 has no solution

• Another example: Gordan’s Theorem which
states that for any nonzero vectors a1, . . . , ar, ex-
actly one of the following two holds:

(1) There exists x s.t. a′1x < 0, . . . , a′rx < 0

(2) There exists µ = (µ1, . . . , µr) s.t. µ 6= 0, µ ≥
0, and

µ1a1 + · · · + µrar = 0



GORDAN’S THEOREM

• Geometrically,
(

cone
(

{a1, . . . , ar}
))∗

has nonempty

interior iff cone
(

{a1, . . . , ar}
)

contains a line

a1
a20,

a1

a2

0,

x

• Gordan’s Theorem - Generalized: Let A
be an m×n matrix and b be a vector in ℜm. The
following are equivalent:

(i) There exists x ∈ ℜn such that Ax < b.

(ii) For every µ ∈ ℜm,

µ ≥ 0, A′µ = 0, µ′b ≤ 0 ⇒ µ = 0

(iii) Any polyhedral set of the form

{µ | A′µ = c, µ′b ≤ d, µ ≥ 0} ,

where c ∈ ℜn and d ∈ ℜ, is compact.



PROOF OF GORDAN’S THEOREM

• Application of Min Common/Max Crossing with

M =
{

(u,w) | w ≥ 0, Ax−b ≤ u for some x ∈ ℜn
}

0 u

w

0 u

w

(µ, 1)

(µ, 1)

w M w M

D = {u | Ax − b ≤ u for some x} D = {u | Ax − b ≤ u for some x}

• Condition (i) of G. Th. is equivalent to 0 being
an interior point of the projection of M

D = {u | Ax− b ≤ u for some x ∈ ℜn}

• Condition (ii) of G. Th. is equivalent to the max
crossing solution set being nonempty and com-
pact, or 0 being the only max crossing solution

• Condition (ii) of G. Th. is also equivalent to

Recession Cone of {µ | A′µ = c, µ′b ≤ d, µ ≥ 0} = {0}
which is equivalent to Condition (iii) of G. Th.



STIEMKE’S TRANSPOSITION THEOREM

• The most general theorem of the alternative for
linear inequalities is Motzkin’s Theorem (involves
a mixture of equalities, inequalities, and strict in-
equalities).

• It can be proved again using min common/max
crossing. A special case is the following:

• Stiemke’s Transposition Theorem: Let A
be an m× n matrix, and let c be a vector in ℜm.
The system

Ax = c, x > 0

has a solution if and only if

A′µ ≥ 0 and c′µ ≤ 0 ⇒ A′µ = 0 and c′µ = 0

N(A)

x1

x2

R(A )
0



LP: STRICT FEASIBILITY - COMPACTNESS

• We say that the primal linear program is strictly

feasible if there exists a primal-feasible vector x
such that a′jx > bj for all j = 1, . . . , r.

• We say that the dual linear program is strictly

feasible if there exists a dual-feasible vector µ with
µ > 0.

Proposition: Consider the primal and dual lin-
ear programs, and assume that their common op-
timal value is finite. Then:

(a) The dual optimal solution set is compact if
and only if the primal problem is strictly fea-
sible.

(b) Assuming that the set {a1, . . . , ar} contains
n linearly independent vectors, the primal
optimal solution set is compact if and only
if the dual problem is strictly feasible.

Proof: (a) Apply Gordan’s Theorem.

(b) Apply Stiemke’s Transposition Theorem.



PROPER POLYHEDRAL SEPARATION

• Recall that two convex sets C and P such that

ri(C) ∩ ri(P ) = Ø

can be properly separated, i.e., by a hyperplane
that does not contain both C and P .

• If P is polyhedral and the slightly stronger con-
dition

ri(C) ∩ P = Ø

holds, then the properly separating hyperplane
can be chosen so that it does not contain the non-
polyhedral set C while it may contain P .

C
P

Separating
hyperplane

a

P

Separating
hyperplane

aC
P

Separating
hyperplane

a

C

On the left, the separating hyperplane can be cho-
sen so that it does not contain C. On the right
where P is not polyhedral, this is not possible.



MIN C/MAX C TH. III - POLYHEDRAL

• Consider the min common and max crossing
problems, and assume the following:

(1) −∞ < w∗.

(2) The set M has the form

M = M̃ −
{

(u, 0) | u ∈ P
}

,

where P : polyhedral and M̃ : convex.

(3) We have
ri(D̃) ∩ P 6= Ø,

where

D̃ =
{

u | there exists w ∈ ℜ with (u,w) ∈ M̃}

Then q∗ = w∗, andQ∗, the set of optimal solutions
of the max crossing problem, is a nonempty subset
of R∗

P , the polar cone of the recession cone of P .

• Also, Q∗ is compact if int(D̃) ∩ P 6= Ø.



PROOF OF MIN C/MAX C TH. III

• Consider the disjoint convex sets

(µ, β)

= 0} u

u v

C1

C2

M̃

w
∗

C1 =
{

(u, v) | v > w for some (u, w) ∈ M̃
}

C2 =
{

(u, w∗) | u ∈ P
}

• Since C2 is polyhedral, there exists a separat-
ing hyperplane not containing C1, i.e., a (µ, β) 6=
(0, 0)

βw∗ + µ′z ≤ βv + µ′x, ∀ (x, v) ∈ C1, ∀ z ∈ P

inf
(x,v)∈C1

{

βv + µ′x
}

< sup
(x,v)∈C1

{

βv + µ′x
}

Since (0, 1) is a direction of recession of C1, we see
that β ≥ 0. Because of the relative interior point
assumption, β 6= 0, so we may assume that β = 1.



PROOF (CONTINUED)

• Hence,

w∗ + µ′z ≤ inf
(u,v)∈C1

{v + µ′u}, ∀ z ∈ P, (1)

which in particular implies that µ′d ≤ 0 for all d
in the recession cone of P . Hence µ belongs to the
polar of this recession cone.

From Eq. (1), we also obtain

w∗ ≤ inf
(u,v)∈C1, z∈P

{

v + µ′(u− z)
}

= inf
(u,v)∈M̃−P

{v + µ′u}

= inf
(u,v)∈M

{v + µ′u}

= q(µ)

Using q∗ ≤ w∗ (weak duality), we have q(µ) =
q∗ = w∗.

The proof of compactness of Q∗ if int(D̃) ∩
P 6= Ø is similar to the one of the nonpolyhedral
MC/MC Theorem. Q.E.D.



MIN C/MAX C TH. III - A SPECIAL CASE

• Consider the min common and max crossing
problems, and assume that:

(1) The set M is defined in terms of a convex
function f : ℜm 7→ (−∞,∞], an r ×m ma-
trix A, and a vector b ∈ ℜr:

M =
{

(u, w) | for some (x, w) ∈ epi(f), Ax − b ≤ u
}

(2) There is an x ∈ ri(dom(f)) s. t. Ax− b ≤ 0.

Then q∗ = w∗ and there is a µ ≥ 0 with q(µ) = q∗.

• We have M = M̃ −
{

(z, 0) | z ≤ 0
}

, where

M̃ =
{

(Ax− b, w) | (x,w) ∈ epi(f)
}

• AlsoM = M ≈ epi(p), where p(u) = infAx−b≤u f(x).

• We have w∗ = p(0) = infAx−b≤0 f(x).

= 0}= 0} = x

epi(f)
w is u

) w

= 0}
u

= 0}
u

w∗

Θ θ

) w

w (µ, 1)

) q(µ)

M = epi(p)

= 0}
u

= 0}
u

M̃

w∗

Θ θ

) w
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• Nonlinear Farkas Lemma

• Application to convex programming

−−−−−−−−−−−−−−−−−−−−−−−−−−
We have now completed:

• The basic convexity theory, including hyper-
plane separation, and polyhedral convexity

• The basic theory of existence of optimal so-
lutions, min common/max crossing duality, mini-
max theory, polyhedral/linear optimization

• There remain three major convex optimization
topics in our course:

− Convex/nonpolyhedral optimization

− Conjugate convex functions (an algebraic form
of min common/max crossing)

− The theory of subgradients and associated
convex optimization algorithms

• In this lecture, we overview the first topic (we
will revisit it in more detail later)



MIN C/MAX C TH. III - A SPECIAL CASE

• Recall the linearly constrained optimization prob-
lem min common/max crossing framework:

(1) The set M is defined in terms of a convex
function f : ℜm 7→ (−∞,∞], an r ×m ma-
trix A, and a vector b ∈ ℜr:

M =
{

(u, w) | for some (x, w) ∈ epi(f), Ax − b ≤ u
}

(2) There is an x ∈ ri(dom(f)) s. t. Ax− b ≤ 0.

Then q∗ = w∗ and there is a µ ≥ 0 with q(µ) = q∗.

• We haveM = epi(p), where p(u) = infAx−b≤u f(x).

• We have w∗ = p(0) = infAx−b≤0 f(x).

• The max crossing problem is to maximize over
µ ∈ ℜr the (dual) function q given by

q(µ) = inf
(u,w)∈epi(p)

{w + µ′u} = inf
{(u,w)|p(u)≤w}

{w + µ′u}

= inf
u∈ℜm

{

p(u) + µ′u
}

= inf
u∈ℜr

inf
Ax−b≤u

{

f(x) + µ′u
}

,

and finally

q(µ) =

{

infx∈ℜn

{

f(x) + µ′(Ax− b)
}

if µ ≥ 0,
−∞ otherwise.



NONLINEAR FARKAS’ LEMMA

• Let C ⊂ ℜn be convex, and f : C 7→ ℜ and
gj : C 7→ ℜ, j = 1, . . . , r, be convex functions.
Assume that

f(x) ≥ 0, ∀ x ∈ C with g(x) ≤ 0

Let

Q∗ =
{

µ | µ ≥ 0, f(x) + µ′g(x) ≥ 0, ∀ x ∈ C
}

.

Then:

(a) Q∗ is nonempty and compact if and only if
there exists a vector x ∈ C such that gj(x) <
0 for all j = 1, . . . , r.

(b) Q∗ is nonempty if the functions gj , j = 1, . . . , r,
are affine and there exists a vector x ∈ ri(C)
such that g(x) ≤ 0.

• Reduces to Farkas’ Lemma if C = ℜn, and f
and gj are linear.

• Part (b) follows from the preceding theorem.



VISUALIZATION OF NONLINEAR FARKAS’ L.

0

{(g(x),f(x) | x ∈ C}

(a)

(µ,1)

{(g(x),f(x) | x ∈ C}

0

{(g(x),f(x) | x ∈ C}

0

(c)(b)

(µ,1)

• Assuming that for all x ∈ C with g(x) ≤ 0, we
have f(x) ≥ 0 (plus the other interior/rel. interior
point condition).

• The lemma asserts the existence of a nonverti-
cal hyperplane in ℜr+1, with normal (µ, 1), that
passes through the origin and contains the set

{(

g(x), f(x)
)

| x ∈ C
}

in its positive halfspace.

• Figures (a) and (b) show examples where such a
hyperplane exists, and figure (c) shows an example
where it does not.

• In Fig. (a) there exists a point x ∈ C with
g(x) < 0.



PROOF OF NONLINEAR FARKAS’ LEMMA

• Apply Min Common/Max Crossing to

M =
{

(u,w) | there is x ∈ C s. t. g(x) ≤ u, f(x) ≤ w
}

• Note that M is equal to M and is formed as
the union of positive orthants translated to points
(

(g(x), f(x)
)

, x ∈ C.

• Under condition (1), Min Common/Max Cross-
ing Theorem II applies: we have

D =
{

u | there exists w ∈ ℜ with (u,w) ∈M
}

and 0 ∈ int(D), because
(

(g(x), f(x)
)

∈M .

(0,w*)

(µ∗,1 )

w

u

M = {(u,w) | there is an x ∈ C such that g(x) ≤ u, f(x) ≤ w}

{(g(x),f(x)) | x ∈ C}

D



EXAMPLE

g(x)

f(x)
f(x)

g(x)

g(x) ≤ 0

• Here C = ℜ, f(x) = x. In the example on the
left, g is given by g(x) = e−x − 1, while in the
example on the right, g is given by g(x) = x2.

• In both examples, f(x) ≥ 0 for all x such that
g(x) ≤ 0.

• On the left, condition (1) of the Nonlinear
Farkas Lemma is satisfied, and for µ∗ = 1, we
have

f(x) + µ∗g(x) = x+ e−x − 1 ≥ 0, ∀ x ∈ ℜ

• On the right, condition (1) is violated, and
for every µ∗ ≥ 0, the function f(x) + µ∗g(x) =
x+ µ∗x2 takes negative values for x negative and
sufficiently close to 0.



CONVEX PROGRAMMING

Consider the problem

minimize f(x)

subject to x ∈ C, gj(x) ≤ 0, j = 1, . . . , r
}

where C ⊂ ℜn is convex, and f : C 7→ ℜ and
gj : C 7→ ℜ are convex. Assume f∗: finite.

• Consider the Lagrangian function

L(x, µ) = f(x) + µ′g(x),

and the minimax problem involving L(x, µ), over
x ∈ C and µ ≥ 0. Note f∗ = infx∈C supµ≥0 L(x, µ).

• Consider the dual function

q(µ) = inf
x∈C

L(x, µ)

and the dual problem of maximizing q(µ) subject
to µ ∈ ℜr.

• The dual optimal value, q∗ = supµ≥0 q(µ), sat-
isfies q∗ ≤ f∗ (this is just sup inf L ≤ inf supL).



DUALITY THEOREM

• Assume that f and gj are closed, and the func-
tion t : C 7→ (−∞,∞] given by

t(x) = sup
µ≥0

L(x, µ) =

{

f(x) if g(x) ≤ 0, x ∈ C,
∞ otherwise,

has compact level sets. Then f∗ = q∗ and the
set of primal optimal solutions is nonempty and
compact.

Proof: We have

f∗ = inf
x∈C

t(x) = inf
x∈C

sup
µ≥0

L(x, µ)

= sup
µ≥0

inf
x∈C

L(x, µ) = sup
µ≥0

q(µ) = q∗,

where inf and sup can be interchanged because
a minimax theorem applies (t has compact level
sets).

• The set of primal optimal solutions is the set of
minima of t, and is nonempty and compact since
t has compact level sets. Q.E.D.



EXISTENCE OF DUAL OPTIMAL SOLUTIONS

• Replace f(x) by f(x)−f∗ and apply the Nonlin-
ear Farkas’ Lemma. Then, under the assumptions
of the lemma, there exist µ∗

j ≥ 0, such that

f∗ ≤ f(x) +

r
∑

j=1

µ∗
jgj(x), ∀ x ∈ C

• It follows that

f∗ ≤ inf
x∈C

{

f(x)+µ∗′g(x)
}

≤ inf
x∈C, g(x)≤0

f(x) = f∗.

Thus equality holds throughout, and we have

f∗ = inf
x∈C







f(x) +
r
∑

j=1

µ∗
jgj(x)







= q(µ∗)

• Hence f∗ = q∗ and µ∗ is a dual optimal solution

• Note that we have use two different approaches
to establish q∗ = f∗:

− Based on minimax theory (applies even if
there is no dual optimal solution).

− Based on the Nonlinear Farkas’ Lemma (guar-
antees that there is a dual optimal solution).



OPTIMALITY CONDITIONS

• We have q∗ = f∗, and the vectors x∗ and µ∗ are
optimal solutions of the primal and dual problems,
respectively, iff x∗ is feasible, µ∗ ≥ 0, and

x∗ ∈ arg min
x∈C

L(x, µ∗), µ∗
jgj(x∗) = 0, ∀ j.

(1)
Proof: If q∗ = f∗, and x∗, µ∗ are optimal, then

f∗ = q∗ = q(µ∗) = inf
x∈C

L(x, µ∗) ≤ L(x∗, µ∗)

= f(x∗) +
r
∑

j=1

µ∗
jgj(x∗) ≤ f(x∗),

where the last inequality follows from µ∗
j ≥ 0 and

gj(x∗) ≤ 0 for all j. Hence equality holds through-
out above, and (1) holds.

Conversely, if x∗, µ∗ are feasible, and (1) holds,

q(µ∗) = inf
x∈C

L(x, µ∗) = L(x∗, µ∗)

= f(x∗) +

r
∑

j=1

µ∗
jgj(x∗) = f(x∗),

so q∗ = f∗, and x∗, µ∗ are optimal. Q.E.D.



QUADRATIC PROGRAMMING DUALITY

• Consider the quadratic program

minimize 1
2x

′Qx+ c′x

subject to Ax ≤ b,

where Q is positive definite symmetric, and A, b,
and c are given matrix/vectors.

• Dual function:

q(µ) = inf
x∈ℜn

{ 1
2x

′Qx+ c′x+ µ′(Ax− b)}

The infimum is attained for x = −Q−1(c + A′µ),
and, after substitution and calculation,

q(µ) = − 1
2µ

′AQ−1A′µ−µ′(b+AQ−1c)− 1
2c

′Q−1c

• The dual problem, after a sign change, is

minimize 1
2µ′Pµ+ t′µ

subject to µ ≥ 0,

where P = AQ−1A′ and t = b+AQ−1c.

• The dual has simpler constraints and perhaps
smaller dimension.



LECTURE 14

LECTURE OUTLINE

• Convex conjugate functions

• Conjugacy theorem

• Examples

• Support functions
***********************************************

• Given f and its epigraph consider the function

Nonvertical hyperplanes supporting epi(f)

7→ Crossing points of vertical axis

h(y) = sup
x∈ℜn

{

x′y − f(x)
}

, y ∈ ℜn.

infx∈ℜn

{

f(x) − x′y
}

= −h(y)

y x

) Slope = y

x 0

(−y, 1)

f(x)



CONJUGATE FUNCTIONS

• For any f : ℜn 7→ [−∞,∞], its conjugate convex

function is defined by

h(y) = sup
x∈ℜn

{

x′y − f(x)
}

, y ∈ ℜn

f(x) = (c/2)x2

f(x) = |x|

h(y) = (1/2c)y2

f(x) = αx − β

y x

y x

y x

= y

= y

= y

h(y) =

{

0 if |y| ≤ 1
∞ if |y| > 1

h(y) =

{

β if y = α

∞ if y $= α

β/α

β

β α

α −1 1 1

) Slope = α

x 0

x 0

x 0x 0

x 0

x 0



CONJUGATE OF CONJUGATE

• From the definition

h(y) = sup
x∈ℜn

{

x′y − f(x)
}

, y ∈ ℜn,

note that h is convex and closed .

• Reason: epi(h) is the intersection of the epigraphs
of the convex and closed functions

hx(y) = x′y − f(x)

as x ranges over ℜn.

• Consider the conjugate of the conjugate:

f̃(x) = sup
y∈ℜn

{

y′x− h(y)
}

, x ∈ ℜn.

• f̃ is convex and closed.

• Important fact/Conjugacy theorem: If f
is closed convex proper, then f̃ = f .



CONJUGACY THEOREM - VISUALIZATION

h(y) = sup
x∈ℜn

{

x′y − f(x)
}

, y ∈ ℜn

f̃(x) = sup
y∈ℜn

{

y′x− h(y)
}

, x ∈ ℜn

• If f is closed convex proper, then f̃ = f .

infx∈ℜn

{

f(x) − x′y
}

= −h(y)

y x

) Slope = y

x 0

f̃(x) = sup
y∈ℜn

{

y′x − h(y)
}

y′x − h(y)

f(x)
(−y, 1)



EXTENSION TO NONCONVEX FUNCTIONS

• Let f : ℜn 7→ [−∞,∞] be any function.

• Define f̂ : ℜn 7→ [−∞,∞], the convex closure of

f , as the function that has as epigraph the closure
of the convex hull if epi(f) [also the smallest closed
and convex set containing epi(f)].

• The conjugate of the conjugate of f is f̂ , as-
suming f̂(x) > −∞ for all x.

• A counterexample (with closed convex but im-
proper f) showing the need for the assumption:

f(x) =

{

∞ if x > 0,
−∞ if x ≤ 0.

We have

h(y) = ∞, ∀ y ∈ ℜn,

f̃(x) = −∞, ∀ x ∈ ℜn.

But the convex closure of f is f̂ = f so f̂ 6= f̃ .



CONJUGACY THEOREM

• Let f : ℜn 7→ (−∞,∞] be a function, let f̂ be
its convex closure, let h be its convex conjugate,
and consider the conjugate of h,

f̃(x) = sup
y∈ℜn

{

y′x− h(y)
}

, x ∈ ℜn

(a) We have

f(x) ≥ f̃(x), ∀ x ∈ ℜn

(b) If f is convex, then properness of any one of
f , h, and f̃ implies properness of the other
two.

(c) If f is closed proper and convex, then

f(x) = f̃(x), ∀ x ∈ ℜn

(d) If f̂(x) > −∞ for all x ∈ ℜn, then

f̂(x) = f̃(x), ∀ x ∈ ℜn



MIN COMMON/MAX CROSSING I

• Let f : ℜn 7→ (−∞,∞] be a function, and con-
sider the min common/max crossing framework
corresponding to

M = M = epi(f)

• From the figure it follows that the crossing value
function is

q(µ) = inf
(u,w)∈epi(f)

{w+µ′u} = inf
{(u,w)|f(u)≤w}

{w+µ′u}

and finally

q(µ) = inf
u∈ℜn

{

f(u)+µ′u
}

= − sup
u∈ℜn

{

(−µ)′u−f(u)
}

.

• Thus q(µ) = −h(−µ) where h: conjugate of f

infx∈ℜn

{

f(x) − x′y
}

= −h(y)

y x

) Slope = y

x 0

(−y, 1)

f(x)



MIN COMMON/MAX CROSSING I

• Let f : ℜn 7→ (−∞,∞] be a function, and con-
sider the min common/max crossing framework
corresponding to

M = M = epi(f)

• From the figure it follows that the crossing value
function is

q(µ) = inf
(u,w)∈epi(f)

{w+µ′u} = inf
{(u,w)|f(u)≤w}

{w+µ′u}

and finally

q(µ) = inf
u∈ℜn

{

f(u)+µ′u
}

= − sup
u∈ℜn

{

(−µ)′u−f(u)
}

.

• Thus q(µ) = −h(−µ) where h: conjugate of f

infx∈ℜn

{

f(x) − x′y
}

= −h(y)

y x

) Slope = y

x 0

(−y, 1)

f(x)



MIN COMMON/MAX CROSSING II

• For M = epi(f), we have

q∗ = f̃(0) ≤ f(0) = w∗,

where f̃ is the double conjugate of f .

• To see this, note that w∗ = f(0), and that by
using the relation h(y) = −q(−y) just shown, we
have

f̃(0) = sup
y∈ℜn

{

−h(y)
}

= sup
y∈ℜn

q(−y)

= sup
µ∈ℜn

q(µ)

= q∗

• Conclusion: There is no duality gap (q∗ = w∗)
if and only if f(0) = f̃(0), which is true if f is
closed proper convex (Conjugacy Theorem).

• Note: Convexity of f plus f(0) = f̃(0) is the
essential assumption of Min Common/Max Cross-
ing Theorem I.



CONJUGACY AND MINIMAX

• Consider the minimax problem involving φ :
X × Z 7→ ℜ with x ∈ X and z ∈ Z.

• The min common/max crossing framework in-
volves M = epi(p), where

p(u) = inf
x∈X

sup
z∈Z

{

φ(x, z) − u′z
}

, u ∈ ℜm.

• We have in general

sup
z∈Z

inf
x∈X

φ(x, z) ≤ q∗

= p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z),

where p̃ is the double conjugate of p.

• The rightmost inequality holds as an equation
if p is closed proper convex.

• The leftmost inequality holds as an equation if
φ is concave and u.s.c. in z. It turns out that

p̃(0) = sup
z∈Z

inf
x∈X

{

−r̃x(z)
}

where r̃x is the double conjugate of −φ(x, ·).



CONJUGACY AND MINIMAX

• Consider the minimax problem involving φ :
X × Z 7→ ℜ with x ∈ X and z ∈ Z.

• The min common/max crossing framework in-
volves M = epi(p), where

p(u) = inf
x∈X

sup
z∈Z

{

φ(x, z) − u′z
}

, u ∈ ℜm.

• We have in general

sup
z∈Z

inf
x∈X

φ(x, z) ≤ q∗

= p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z),

where p̃ is the double conjugate of p.

• The rightmost inequality holds as an equation
if p is closed proper convex.

• The leftmost inequality holds as an equation if
φ is concave and u.s.c. in z. It turns out that

p̃(0) = sup
z∈ℜm

inf
x∈X

{

−r̃x(z)
}

where r̃x is the double conjugate of −φ(x, ·).



A FEW EXAMPLES

• Logarithmic/exponential conjugacy

• lp and lq norm conjugacy, where 1
p + 1

q = 1

f(x) =
1

p

n
∑

i=1

|xi|p, h(y) =
1

q

n
∑

i=1

|yi|q

• Conjugate of a strictly convex quadratic

f(x) =
1

2
x′Qx+ a′x+ b,

h(y) =
1

2
(y − a)′Q−1(y − a) − b.

• Conjugate of a function obtained by invertible
linear transformation/translation of a function p

f(x) = p
(

A(x− c)
)

+ a′x+ b,

h(y) = q
(

(A′)−1(y − a)
)

+ c′y + d,

where q is the conjugate of p and d = −(c′a+ b).



SUPPORT FUNCTIONS

• Conjugate of indicator function δX of set X

σX(y) = sup
x∈X

y′x

is called the support function of X.

• epi(σX) is a closed convex cone.

• The sets X, cl(X), conv(X), and cl
(

conv(X)
)

all have the same support function (by the conju-
gacy theorem).

• To determine σX(y) for a given vector y, we
project the set X on the line determined by y,
we find x̂, the extreme point of projection in the
direction y, and we scale by setting

σX(y) = ‖x̂‖ · ‖y‖

0

y

X

σX(y)/‖y‖

x̂



EXAMPLES OF SUPPORT FUNCTIONS I

Indicator Functions Support Functions

α

α

α β

Slope = β

Slope = α

Slope = α

Slope = α

x 0

x 0

x 0

x 0

x 0

x 0

x y

x y

x y

x

x

x

• The support function of the unionX = ∪r
j=1Xj :

σX(y) = sup
x∈X

y′x = max
j=1,...,r

sup
x∈Xi

y′x = max
j=1,...,r

σXj
(y).

• The support function of the convex hull of
X = ∪r

j=1Xj is the same.



EXAMPLES OF SUPPORT FUNCTIONS II

• The support function of a bounded ellipsoid
X =

{

x | (x− x)′Q(x− x) ≤ b
}

:

σX(y) = y′x+ (b y′Q−1y)
1/2

, ∀ y ∈ ℜn

• The support function of a cone C: If y′x ≤ 0
for all x ∈ C, i.e., y ∈ C∗, we have σC(y) = 0,
since 0 is a closure point of C. On the other hand,
if y′x > 0 for some x ∈ C, we have σC(y) = ∞,
since C is a cone and therefore contains αx for all
α > 0. Thus,

σC(y) =

{

0 if y ∈ C∗,
∞ if y /∈ C∗,

i.e., the support function of C is equal to the in-
dicator function of C∗ (⇒ Polar Cone Theorem).



LECTURE 15

LECTURE OUTLINE

• Properties of convex conjugates and support
functions
***********************************************

• Conjugate of f : h(y) = supx∈ℜn

{

x′y − f(x)
}

infx∈ℜn

{

f(x) − x′y
}

= −h(y)

y x

) Slope = y

x 0

(−y, 1)

f(x)

• Conjugacy Theorem: The conjugate of the
conjugate of a proper convex function f is the clo-
sure of f .

• Support function of set X = Conjugate of its
indicator function



SUPPORT FUNCTIONS/POLYHEDRAL SETS I

• Consider the Minkowski-Weyl representation of
a polyhedral set

X = conv
(

{v1, . . . , vm}
)

+ cone
(

{d1, . . . , dr}
)

• The support function is

σX(y) = sup
x∈X

y′x

= sup
α1,...,αm,β1,...,βr≥0
∑

m

i=1
αi=1







m
∑

i=1

αiv′iy +
r
∑

j=1

βjd′jy







=

{

maxi=1,...,m v′iy if d′jy ≤ 0, j = 1, . . . , r,

∞ otherwise.

• Hence, the support function of a polyhedral set
is a polyhedral function.



SUPPORT FUNCTIONS/POLYHEDRAL SETS II

• Consider f , h, and epi(f). We have

h(y) = sup
x∈ℜn

{

x′y − f(x)
}

= sup
(x,w)∈epi(f)

{x′y − w}

= σepi(f)(y,−1)

• If f is polyhedral, epi(f) is a polyhedral set, so
σepi(f) is a polyhedral function, so h is a polyhe-
dral function.

• Conclusion: Conjugates of polyhedral functions
are polyhedral.



POSITIVELY HOMOGENEOUS FUNCTIONS

• A function f : ℜn 7→ [−∞,∞] is positively

homogeneous if its epigraph is a cone, i.e.,

f(γx) = γ f(x), ∀ γ > 0, ∀ x ∈ ℜn

x 0

(−x, 1)

γ σ(y)
}

y

• A support function is closed, proper, convex,
and positively homogeneous.

• Converse Result: The closure of a proper, con-
vex, and positively homogeneous function σ is the
support function of the closed convex set

X =
{

x | y′x ≤ σ(y), ∀ y ∈ ℜn
}



CONES RELATING TO SETS AND FUNCTIONS

• Cones associated with a convex set C:

− Polar cone, recession cone, generated cone,
epigraph of support function

• Cones associated with a convex function f are
the cones associated with its epigraph, which among
others, give rise to:

− The recession function of f and the closed
function generated by f [function whose epi-
graph is the closure of the cone generated by
epi(f)]

rf (x)

n (gen f)(x)

0 x

f(x) h(y)

x y0−2 −1/4 11/2

2 Slope = 1

2 Slope = 1/2

Slope = −2

1 Slope = −1/4

• The cones of a function f are epigraphs of sup-
port functions of sets associated with f .



FORMULAS FOR DOMAIN, LEVEL SETS, ETC I

• Support Function of Domain: Let f : ℜn 7→
(−∞,∞] be a proper convex function, and let h
be its conjugate.

(a) The support function of dom(f) is the reces-
sion function of h.

(b) If f is closed, the support function of dom(h)
is the recession function of f .

rf (x)

n (gen f)(x)

0 x

f(x) h(y)

x y0−2 −1/4 11/2

2 Slope = 1

2 Slope = 1/2

Slope = −2

1 Slope = −1/4



FORMULAS FOR DOMAIN, LEVEL SETS, ETC II

• Support Function of 0-Level Set: Let f :
ℜn 7→ (−∞,∞] be a closed proper convex function
and let h be its conjugate.

(a) If the level set
{

y | h(y) ≤ 0
}

is nonempty,
its support function is the closed function
generated by f .

(b) If the level set
{

x | f(x) ≤ 0
}

is nonempty,
its support function is the closed function
generated by h.

rf (x)

n (gen f)(x)

0 x

f(x) h(y)

x y0−2 −1/4 11/2

2 Slope = 1

2 Slope = 1/2

Slope = −2

1 Slope = −1/4

• This can be used to characterize any nonempty
level set of a closed convex function: add a con-
stant to the function and convert the level set to
a 0-level set.



RECESSION CONE/DOMAIN OF SUPPORT FN

• Let C be a nonempty convex set in ℜn.

(a) The polar cone of C is the 0-level set of σC :

C∗ =
{

y | σC(y) ≤ 0
}

.

(b) If C is closed, the recession cone of C is equal
to the polar cone of the domain of σC :

RC =
(

dom(σC)
)∗
.

0

C RC =
(

dom(σC)
)

∗

R∗

C
= dom(σC)



CALCULUS OF CONJUGATE FUNCTIONS

• Example: (Linear Composition) Consider
F (x) = f(Ax), where f is closed proper convex,
and A is a matrix.

• If h is the conjugate of f , we have

f(Ax) = sup
y

{

x′A′y − h(y)
}

= sup
{(y,z)|A′y=z}

{

x′z − h(y)
}

= sup
z

{

x′z − inf
A′y=z

h(y)

}

so F is the conjugate of H given by

H(z) = inf
A′y=z

h(y)

called the image function of h under A′.

• Hence the conjugate of F is the closure of H,
provided F is proper [true iff R(A)∩dom(f) 6= Ø].

• Issues of preservation of closedness under partial
minimization [N(A′) ∩Rh ⊂ Lh ⇒ H is closed].



CONJUGATE OF A SUM OF FUNCTIONS

• Let fi : ℜn 7→ (−∞,∞], i = 1, . . . ,m, be closed
proper convex functions, and let hi be their con-
jugates. Let F (x) = f1(x)+ · · ·+ fm(x). We have

F (x) =
m
∑

i=1

sup
yi

{

x′yi − hi(yi)
}

= sup
y1,...,ym

{

x′
m
∑

i=1

yi −
m
∑

i=1

hi(yi)

}

= sup
{(y1,...,ym,z)|

∑

m

i=1
yi=z}

{

x′z −
m
∑

i=1

hi(yi)

}

= sup
z

{

x′z − inf
∑

m

i=1
yi=z

m
∑

i=1

hi(yi)

}

so F is the conjugate of H given by

H(z) = inf
∑

m

i=1
yi=z

m
∑

i=1

hi(yi)

called the infimal convolution of h1, . . . , hm.

• Hence the conjugate of F is the closure of H,
provided F is proper [true iff ∩m

i=1dom(fi) 6= Ø].



CLOSEDNESS OF IMAGE FUNCTION

• We view the image function

H(y) = inf
A′z=y

h(z)

as the result of partial minimization with respect
to z of a function of (z, y).

• We use the results on preservation of closedness
under partial minimization

− The image function is closed and the infi-
mum is attained for all y ∈ dom(H) if h is
closed and every direction of recession of h
that belongs to N(A′) is a direction along
which h is constant.

• This condition can be translated to an alterna-
tive and more useful condition involving the rela-
tive interior of the domain of the conjugate of h.
In particular, we can show that the condition is
true if and only if

R(A) ∩ ri
(

dom(f)
)

6= Ø

• Similar analysis for infimal convolution.
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LECTURE OUTLINE

• Subgradients

• Calculus of subgradients

***********************************************

• Conjugate of f : h(y) = supx∈ℜn

{

x′y − f(x)
}

infx∈ℜn

{

f(x) − x′y
}

= −h(y)

y x

) Slope = y

x 0

(−y, 1)

f(x)

• Conjugacy Theorem: If f is closed proper con-
vex, it is equal to its double conjugate f̃ .



SUBGRADIENTS

• Let f : ℜn 7→ (−∞,∞] be a convex function.
A vector g ∈ ℜn is a subgradient of f at a point
x ∈ dom(f) if

f(z) ≥ f(x) + (z − x)′g, ∀ z ∈ ℜn

• g is a subgradient if and only if

f(z) − z′g ≥ f(x) − x′g, ∀ z ∈ ℜn

so g is a subgradient at x if and only if the hyper-
plane in ℜn+1 that has normal (−g, 1) and passes
through

(

x, f(x)
)

supports the epigraph of f .

0

(−g, 1)

f(z)

(

x, f(x)
)

z

• The set of all subgradients at x is the subdiffer-

ential of f at x, denoted ∂f(x).



EXAMPLES OF SUBDIFFERENTIALS

• If f is differentiable, then ∂f(x) = {∇f(x)}.
Proof: If g ∈ ∂f(x), then

f(x+ z) ≥ f(x) + g′z, ∀ z ∈ ℜn.

Apply this with z = γ
(

∇f(x)−g
)

, γ ∈ ℜ, and use
1st order Taylor series expansion to obtain

γ‖∇f(x) − g‖2 ≥ o(γ), ∀ γ ∈ ℜ

• Some examples:

!"#$%&%'#'

(

!!"#$

(

)

*%)

#

!"#$%&%+,#-(.%")/0$"#0%*%)$1

( )*%) #

!!"#$

( )*%) #

#

∂f(x)

∂f(x)

-1
0 x x

xx

f(x) = max
{

0, (1/2)(x2
− 1)

}

f(x) = |x|

1

1

1-1

-1

-10

0

0



EXISTENCE OF SUBGRADIENTS

• Note the connection with min common/max
crossing [M = epi(fx), fx(z) = f(x+ z) − f(x)].

0

(−g, 1)

f(z)

(

x, f(x)
)

z

0

z

(−g, 1)

Epigraph of f

Translated

Epigraph of f

Translated

Translated

fx(z)

• Let f : ℜn 7→ (−∞,∞] be a proper convex
function. For every x ∈ ri

(

dom(f)),

∂f(x) = S⊥ +G,

where:

− S is the subspace that is parallel to the affine
hull of dom(f)

− G is a nonempty and compact set.

• Furthermore, ∂f(x) is nonempty and compact
if and only if x is in the interior of dom(f).



EXAMPLE: SUBDIFFERENTIAL OF INDICATOR

• Let C be a convex set, and δC be its indicator
function.

• For x /∈ C, ∂δC(x) = Ø, by convention.

• For x ∈ C, we have g ∈ ∂δC(x) iff

δC(z) ≥ δC(x) + g′(z − x), ∀ z ∈ C,

or equivalently g′(z − x) ≤ 0 for all z ∈ C. Thus
∂δC(x) is the normal cone of C at x, denoted
NC(x):

NC(x) =
{

g | g′(z − x) ≤ 0, ∀ z ∈ C
}

.

• Example: For the case of a polyhedral set

P = {x | a′ix ≤ bi, i = 1, . . . ,m},

we have

NP (x) =

{

{0} if x ∈ int(P ),
cone

(

{ai | a′ix = bi}
)

if x /∈ int(P ).



FENCHEL INEQUALITY

• Let f : ℜn 7→ (−∞,∞] be proper convex and
let h be its conjugate. Using the definition of con-
jugacy, we have Fenchel’s inequality :

x′y ≤ f(x) + h(y), ∀ x ∈ ℜn, y ∈ ℜn.

• Proposition: The following two relations are
equivalent for a pair of vectors (x, y):

(i) x′y = f(x) + h(y).

(ii) y ∈ ∂f(x).

If f is closed, (i) and (ii) are equivalent to

(iii) x ∈ ∂h(y).

f(x) h(y)

x x y

−2
0 0

Epigraph of f Epigraph of h

(−x, 1)
(−y, 1)



MINIMA OF CONVEX FUNCTIONS

• Application: Let f be closed convex and let
X∗ be the set of minima of f over ℜn. Then:

(a) X∗ = ∂h(0).

(b) X∗ is nonempty if 0 ∈ ri
(

dom(h)
)

.

(c) X∗ is nonempty and compact if and only if
0 ∈ int

(

dom(h)
)

.

• Proof: (a) From the subgradient inequality,

x∗ minimizes f iff 0 ∈ ∂f(x∗),

which is true if and only if

x∗ ∈ ∂h(0),

so X∗ = ∂h(0).

(b) ∂h(0) is nonempty if 0 ∈ ri
(

dom(h)
)

.

(c) ∂h(0) is nonempty and compact if and only if
0 ∈ int

(

dom(h)
)

. Q.E.D.



EXAMPLE: SUBDIFF. OF SUPPORT FUNCTION

• Consider the support function σC of a nonempty
set C at a vector y.

• To calculate ∂σC(y), we introduce the function

r(y) = σC(y + y), y ∈ ℜn.

• We have ∂σC(y) = ∂r(0), so ∂σC(y) is equal to
the set of minima over ℜn of the conjugate of r.

• The conjugate of r is supy∈ℜn{y′x− r(y)}, or

sup
y∈ℜn

{y′x− σC(y + y)} = δ(x) − y′x,

where δ is the indicator function of cl
(

conv(C)
)

.

• Hence ∂σC(y) is equal to the set of minima of
δ(x) − y′x, or equivalently the set of maxima of
y′x over x ∈ cl

(

conv(C)
)

.



EXAMPLE: SUBDIFF. OF POLYHEDRAL FN

• Let

f(x) = max{a′1x+ b1, . . . , a′rx+ br}.

• For a fixed x ∈ ℜn, consider

Ax =
{

j | a′jx+ bj = f(x)
}

and the function r(x) = max
{

a′jx | j ∈ Ax

}

.

f(x)

x0

Epigraph of f

(−g, 1)

x x0

(−g, 1)
r(x)

• It is easily shown that ∂f(x) = ∂r(0).

• Since r is the support function of the finite set
{aj | j ∈ Ax}, we see that

∂f(x) = ∂r(0) = conv
(

{aj | j ∈ Ax}
)
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LECTURE OUTLINE

• Subdifferential of sum, chain rule

• Optimality conditions

• Directional derivatives

• Algorithms: Subgradient methods

***********************************************

• Let f : ℜn 7→ (−∞,∞] be a convex function.
A vector g is a subgradient of f at x ∈ dom(f) if

f(z) ≥ f(x) + (z − x)′g, ∀ z ∈ ℜn

0

(−g, 1)

f(z)

(

x, f(x)
)

z

• Recall: y ∈ ∂f(x) iff f(x) + h(y) = x′y (from
Fenchel inequality)



CHAIN RULE

• Let f : ℜm 7→ (−∞,∞] be proper convex, and
A be a matrix. Consider F (x) = f(Ax).

• Claim: If R(A) ∩ ri
(

dom(f)
)

6= Ø, then

∂F (x) = A′∂f(Ax).

• This condition guarantees that the conjugate of
F is the image function

H(y) = inf
A′z=y

h(y)

where h is the conjugate of f , and the infimum is
attained for all y ∈ dom(H).

Proof: We have y ∈ ∂F (x) iff F (x)+H(y) = x′y,
or iff there exists a vector z such that A′z = y and
F (x) + h(y) = x′A′y, or

f(Ax) + h(y) = x′A′y.

Therefore, y ∈ ∂F (x) iff for some z such that
A′z = y, we have z ∈ ∂f(Ax). Q.E.D.



SUM OF FUNCTIONS

• Let fi : ℜn 7→ (−∞,∞], i = 1, . . . ,m, be proper
convex functions, and let

f = f1 + · · · + fm.

• Assume that

∩m
1=1ri

(

dom(fi)
)

6= Ø.

• Then

∂f(x) = ∂f1(x) + · · · + ∂fm(x), ∀ x ∈ ℜn.

• Extension: If for some k, the functions fi, i =
1, . . . , k, are polyhedral, it is sufficient to assume

(

∩k
i=1 dom(fi)

)

∩
(

∩m
i=k+1 ri

(

dom(fi)
)

)

6= Ø.

• Showing ∂f(x) ⊃ ∂f1(x)+ · · ·+∂fm(x) is easy.
For the reverse, we can use infimal convolution
theory (as in the case of the chain rule).



EXAMPLE: SUBDIFF. OF POLYHEDRAL FN

• Let
f(x) = p(x) + δP (x),

where P is a polyhedral set, δP is its indicator
function, and p is the real-valued polyhedral func-
tion

p(x) = max{a′1x+ b1, . . . , a′rx+ br}

with a1, . . . , ar ∈ ℜn and b1, . . . , br ∈ ℜ.

• We have

∂f(x) = ∂p(x) +NP (x),

so for x ∈ P , ∂f(x) is a polyhedral set and the
above is its Minkowski-Weyl representation.

• ∂p(x) is the convex hull of the “active” aj .

• NP (x) is the normal cone of P at x, (cone gen-
erated by normals to “active” halfspaces).



CONSTRAINED OPTIMALITY CONDITION

• Let f : ℜn 7→ (−∞,∞] be proper convex, let X
be a convex subset of ℜn, and assume that one of
the following four conditions holds:

(i) ri
(

dom(f)
)

∩ ri(X) 6= Ø.

(ii) f is polyhedral and dom(f) ∩ ri(X) 6= Ø.

(iii) X is polyhedral and ri
(

dom(f)
)

∩X 6= Ø.

(iv) f and X are polyhedral, and dom(f) ∩X 6= Ø.

Then, a vector x∗ minimizes f over X iff there
exists g ∈ ∂f(x∗) such that −g belongs to the
normal cone NX(x∗), i.e.,

g′(x− x∗) ≥ 0, ∀ x ∈ X.

Proof: x∗ minimizes

F (x) = f(x) + δX(x)

if and only if 0 ∈ ∂F (x∗). Use the formula for
subdifferential of sum. Q.E.D.



DIRECTIONAL DERIVATIVES

• Directional derivative of a proper convex f :

f ′(x; d) = lim
α↓0

f(x+ αd) − f(x)

α
, x ∈ dom(f), d ∈ ℜn

α

Slope: f ′(x; d)

1
α0

f(x + αd)

Slope: f(x+αd)−f(x)
α

f(x)

• The ratio

f(x+ αd) − f(x)

α

is monotonically nonincreasing as α ↓ 0 and con-
verges to f ′(x; d).

• For all x ∈ ri
(

dom(f)
)

, f ′(x; ·) is the support
function of ∂f(x).



ALGORITHMS: SUBGRADIENT METHOD

• Problem: Minimize convex function f : ℜn 7→
ℜ over a closed convex set X.

• Iterative descent idea has difficulties in the ab-
sence of differentiability of f .

• Subgradient method:

xk+1 = PX(xk − αkgk),

where gk is any subgradient of f at xk, αk is a
positive stepsize, and PX(·) is projection on X.

M

mk

mk + sgk

m*

Level sets of q

mk+1 =PM
 (mk + s gk)

Level sets of f

X
xk

xk − αkgk

xk+1 = PX(xk − αkgk)

x∗



KEY PROPERTY OF SUBGRADIENT METHOD

• For a small enough stepsize αk, it reduces the
Euclidean distance to the optimum.

M

mk

mk + s kgk

mk+1 =PM
 (mk + s kgk)

m*

< 90
o

Level sets of qLevel sets of f X

xk

x∗

xk+1 = PX(xk − αkgk)

xk − αkgk

< 90◦

• Proposition: Let {xk} be generated by the
subgradient method. Then, for all y ∈ X and k:

‖xk+1−y‖2 ≤ ‖xk−y‖2−2αk

(

f(xk)−f(y)
)

+α
2
k‖gk‖

2

and if f(y) < f(xk),

‖xk+1 − y‖ < ‖xk − y‖,

for all αk such that

0 < αk <
2
(

f(xk) − f(y)
)

‖gk‖2
.



CONVERGENCE MECHANISM

• Assume constant stepsize: αk ≡ α

• If ‖gk‖ ≤ c for some constant c and all k,

‖xk+1−x∗‖2 ≤ ‖xk−x∗‖2−2α
(

f(xk)−f(x∗)
)

+α2c2

so the distance to the optimum decreases if

0 < α <
2
(

f(xk) − f(x∗)
)

c2

or equivalently, if xk does not belong to the level
set

{

x
∣

∣

∣ f(x) < f(x∗) +
αc2

2

}

Optimal Solution

Set

Level Set {! | q(!) ! q* - sC2/2}

!"

Level set
t

{

x | f(x) ≤ f∗ + αc2/2
}

Optimal solution set

t x0



STEPSIZE RULES

• Constant Stepsize: αk ≡ α.

• Diminishing Stepsize: αk → 0,
∑

k αk = ∞
• Dynamic Stepsize:

αk =
f(xk) − fk

c2

where fk is an estimate of f∗:

− If fk = f∗, makes progress at every iteration.
If fk < f∗ it tends to oscillate around the
optimum. If fk > f∗ it tends towards the
level set {x | f(x) ≤ fk}.

− fk can be adjusted based on the progress of
the method.

• Example of dynamic stepsize rule:

fk = min
0≤j≤k

f(xj) − δk,

and δk is updated according to

δk+1 =

{

ρδk if f(xk+1) ≤ fk,
max

{

βδk, δ
}

if f(xk+1) > fk,

where δ > 0, β < 1, and ρ ≥ 1 are fixed constants.



SAMPLE CONVERGENCE RESULTS

• Let f = infk≥0 f(xk), and assume that for some
c, we have

c ≥ sup
k≥0

{

‖g‖ | g ∈ ∂f(xk)
}

.

• Proposition: Assume that αk is fixed at some
positive scalar α. Then:

(a) If f∗ = −∞, then f = f∗.

(b) If f∗ > −∞, then

f ≤ f∗ +
αc2

2
.

• Proposition: If αk satisfies

lim
k→∞

αk = 0,
∞
∑

k=0

αk = ∞,

then f = f∗.

• Similar propositions for dynamic stepsize rules.

• Many variants ...
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LECTURE OUTLINE

• Cutting plane methods

• Proximal minimization algorithm

• Proximal cutting plane algorithm

• Bundle methods

***********************************************

• Consider minimization of a convex function f :
ℜn 7→ ℜ, over a closed convex set X.

• We assume that at each x ∈ X, a subgradient
g of f can be computed.

• We have

f(z) ≥ f(x) + g′(z − x), ∀ z ∈ ℜn,

so each subgradient defines a plane (a linear func-
tion) that approximates f from below.

• The idea of the cutting plane method is to build
an ever more accurate approximation of f using
such planes.



CUTTING PLANE METHOD

• Start with any x0 ∈ X. For k ≥ 0, set

xk+1 ∈ arg min
x∈X

Fk(x),

where

Fk(x) = max
{

f(x0)+(x−x0)′g0, . . . , f(xk)+(x−xk)′gk

}

and gi is a subgradient of f at xi.

x0 0 x1x2x3

f(x)

) X

X x

f(x0) + (x − x0)′g0

f(x1) + (x − x1)′g1

x x∗

• Note that Fk(x) ≤ f(x) for all x, and that
Fk(xk+1) increases monotonically with k. These
imply that all limit points of xk are optimal.



CONVERGENCE AND TERMINATION

• We have for all k

Fk(xk+1) ≤ f∗ ≤ min
i≤k

f(xi)

• Termination when mini≤k f(xi)−Fk(xk+1) comes
to within some small tolerance.

• For f polyhedral, we have finite termination
with an exactly optimal solution.

x0 0 x1x2x3

f(x)

) X

X x

f(x0) + (x − x0)′g0

f(x1) + (x − x1)′g1

x x∗

• Instability problem: The method can make
large moves that deteriorate the value of f .



VARIANTS

• Variant I: Simultaneously with f , construct
polyhedral approximations to X.

• Variant II: Central cutting plane methods

x0 0 x1x2

f(x)

) X

X x

f(x0) + (x − x0)′g0

f(x1) + (x − x1)′g1

x x∗

f̃2

al pa Central pair (x2, w2)

Set S1

F1(x)

• Variant III: Proximal methods - to be dis-
cussed next.



PROXIMAL/BUNDLE METHODS

• Aim to reduce the instability problem at the
expense of solving a more difficult subproblem.

• A general form:

xk+1 ∈ arg min
x∈X

{

Fk(x) + pk(x)
}

Fk(x) = max
{

f(x0)+(x−x0)′g0, . . . , f(xk)+(x−xk)′gk

}

pk(x) =
1

2ck
‖x− yk‖2

where ck is a positive scalar parameter.

• We refer to pk(x) as the proximal term, and to
its center yk as the proximal center .

f(x)

X x
xk+1 x

∗
) yk

Fk(x)

γk − pk(x)

γk



PROXIMAL MINIMIZATION ALGORITHM

• Starting point for analysis: A general algorithm
for convex function minimization

xk+1 ∈ arg min
x∈ℜn

{

f(x) +
1

2ck
‖x− xk‖2

}

− f : ℜn 7→ (−∞,∞] is closed proper convex

− ck is a positive scalar parameter

− x0 is arbitrary starting point

γk

γk −
1

2ck

‖x − xk‖2

f(x)

X xxk+1xk x
∗

f(xk)

• Convergence mechanism:

γk = f(xk+1) +
1

2ck
‖xk+1 − xk‖2 < f(xk).

Cost improves by at least 1
2ck

‖xk+1 − xk‖2, and
this is sufficient to guarantee convergence.



RATE OF CONVERGENCE I

• Role of penalty parameter ck:

f(x)

X xxk+1xk x
∗

xk+2

f(x)

X x
xk+1

xk x
∗xk+2

• Role of growth properties of f near optimal
solution set:

f(x)

X xxk+1xk x
∗

xk+2

f(x)

X xxk+1
xk x

∗

xk+2



RATE OF CONVERGENCE II

• Assume that for some scalars β > 0, δ > 0, and
α ≥ 1,

f∗ + β
(

d(x)
)α ≤ f(x), ∀ x ∈ ℜn with d(x) ≤ δ

where
d(x) = min

x∗∈X∗
‖x− x∗‖

i.e., growth of order α from optimal solution
set X∗.

• If α = 2 and limk→∞ ck = c̄, then

lim sup
k→∞

d(xk+1)

d(xk)
≤ 1

1 + βc̄

linear convergence.

• If 1 < α < 2, then

lim sup
k→∞

d(xk+1)
(

d(xk)
)1/(α−1)

<∞

superlinear convergence.



FINITE CONVERGENCE

• Assume growth order α = 1:

f∗ + βd(x) ≤ f(x), ∀ x ∈ ℜn,

e.g., f is polyhedral.

f(x)

X x
X∗

f∗

f∗ + βd(x)

Slope βSlope β

• Method converges finitely (in a single step for
c0 sufficiently large).

f(x)

X x

f(x)

X xx
∗

x0x0 x1 x2 = x
∗



PROXIMAL CUTTING PLANE METHODS

• Same as proximal minimization algorithm, but
f is replaced by a cutting plane approximation Fk:

xk+1 ∈ arg min
x∈X

{

Fk(x) +
1

2ck
‖x− xk‖2

}

where

Fk(x) = max
{

f(x0)+(x−x0)′g0, . . . , f(xk)+(x−xk)′gk

}

• Drawbacks:

(a) Hard stability tradeoff: For large enough
ck and polyhedral X, xk+1 is the exact min-
imum of Fk over X in a single minimization,
so it is identical to the ordinary cutting plane
method. For small ck convergence is slow.

(b) The number of subgradients used in Fk

may become very large; the quadratic
program may become very time-consuming.

• These drawbacks motivate algorithmic variants,
called bundle methods .



BUNDLE METHODS

• Allow a proximal center yk 6= xk:

xk+1 ∈ arg min
x∈X

{

Fk(x) + pk(x)
}

Fk(x) = max
{

f(x0)+(x−x0)′g0, . . . , f(xk)+(x−xk)′gk

}

pk(x) =
1

2ck
‖x− yk‖2

• Null/Serious test for changing yk: For some
fixed β ∈ (0, 1)

yk+1 =

{

xk+1 if f(yk) − f(xk+1) ≥ βδk,
yk if f(yk) − f(xk+1) < βδk,

δk = f(yk) −
(

Fk(xk+1) + pk(xk+1)
)

> 0

Serious Step

δk

f(yk) − f(xk+1)

X x) yk yk+1 = xk+1

f(x)
δk

Fk(x)

f(yk) − f(xk+1)

X x) yk yk+1 = xk+1

Null Step

f(x)

δk

Fk(x)

f(yk) − f(xk+1)

X xxk+1x) yk = yk+1



LECTURE 19

LECTURE OUTLINE

• Descent methods for convex/nondifferentiable
optimization

• Steepest descent method

• ǫ-subdifferential

• ǫ-descent methods

***********************************************

• Consider minimization of a convex function f :
ℜn 7→ ℜ, over a closed convex set X.

• A basic iterative descent idea is to generate a
sequence {xk} with

f(xk+1) < f(xk)

(unless xk is optimal).

• If f is differentiable, we can use the gradient
method

xk+1 = xk − αk∇f(xk)

where αk is a sufficiently small stepsize.



STEEPEST DESCENT DIRECTION

• Consider unconstrained minimization of convex
f : ℜn 7→ ℜ.

• A descent direction d at x is one for which
f ′(x; d) < 0, where

f ′(x; d) = lim
α↓0

f(x+ αd) − f(x)

α
= sup

g∈∂f(x)

d′g

is the directional derivative.

• Can decrease f by moving from x along descent
direction d by small stepsize α.

• Direction of steepest descent solves the problem

minimize f ′(x; d)

subject to ‖d‖ ≤ 1

• Interesting fact: The steepest descent direc-
tion is −g∗, where g∗ is the vector of minimum
norm in ∂f(x):

min
‖d‖≤1

f ′(x; d) = min
‖d‖≤1

max
g∈∂f(x)

d′g = max
g∈∂f(x)

min
‖d‖≤1

d′g

= max
g∈∂f(x)

(

−‖g‖
)

= − min
g∈∂f(x)

‖g‖



STEEPEST DESCENT METHOD

• Start with any x0 ∈ ℜn.

• For k ≥ 0, calculate −gk, the steepest descent
direction at xk and set

xk+1 = xk − αkgk

• Difficulties:

− Need the entire ∂f(xk) to compute gk.

− Serious convergence issues due to disconti-
nuity of ∂f(x) (the method has no clue that
∂f(x) may change drastically nearby).

• Example with αk determined by minimization
along −gk: {xk} converges to nonoptimal point.
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ǫ-SUBDIFFERENTIAL

• To correct the convergence deficiency of steepest
descent, we may enlarge ∂f(x) so that we take into
account “nearby” subgradients.

• Fot a proper convex f : ℜn 7→ (−∞,∞] and
ǫ > 0, we say that a vector g is an ǫ-subgradient

of f at a point x ∈ dom(f) if

f(z) ≥ f(x) + (z − x)′g − ǫ, ∀ z ∈ ℜn

0

f(z)

(−g, 1)

z

(

x, f(x) − ǫ

)

ǫ

• The ǫ-subdifferential ∂ǫf(x) is the set of all ǫ-
subgradients of f at x. By convention, ∂ǫf(x) = Ø

for x /∈ dom(f).

• We have ∩ǫ↓0∂ǫf(x) = ∂f(x) and

∂ǫ1f(x) ⊂ ∂ǫ2f(x) if 0 < ǫ1 < ǫ2



ǫ-SUBGRADIENTS AND CONJUGACY

• For any x ∈ dom(f), consider x-translation of
f , i.e., the function fx given by

fx(d) = f(x+ d) − f(x), ∀ d ∈ ℜn

and its conjugate

hx(g) = sup
d∈ℜn

{

d′g−f(x+d)+f(x)
}

= h(g)+f(x)−g′x

where h is the conjugate of f .

• We have

g ∈ ∂f(x) iff sup
d∈ℜn

{

g′d−f(x+d)+f(x)
}

≤ 0,

so ∂f(x) can be characterized as a level set of hx:

∂f(x) =
{

g | hx(g) ≤ 0
}

.

Similarly,

∂ǫf(x) =
{

g | hx(g) ≤ ǫ
}



ǫ-SUBDIFFERENTIALS AS LEVEL SETS

• For hx(g) = h(g) + f(x) − g′x,

∂ǫf(x) =
{

g | hx(g) ≤ ǫ
}

fx(y)

0

Translated

Epigraph

of f

y

fx(y)

0 y

fx(y)

0 y

(a)

(b)

(c)

f(x) - (cl f)(x)

gx(λ)

0 λ

gx(λ)

0 λ

Conjugate

gx(λ)

0 λ

f(x) - (cl f)(x)

hx(g)

hx(g)

hx(g)

g

g

g

d

d

d

fx(d)

fx(d)

fx(d)

• Since (cl f)(x) − f(x) = supg∈ℜn

{

−hx(g)
}

,

inf
g∈ℜn

hx(g) = 0 if and only if (cl f)(x) = f(x),

so if f is closed, ∂ǫf(x) 6= Ø for every x ∈ dom(f).



PROPERTIES OF ǫ-SUBDIFFERENTIALS

• Assume that f is closed proper convex, x ∈
dom(f), and ǫ > 0.

• ∂ǫf(x) is nonempty and closed.

• ∂ǫf(x) is compact iff hx does no nonzero direc-
tions of recession. This is true in particular, if f
is real-valued (support fn of dom is the recession
fn of conjugate).

• The support function of ∂ǫf(x) is

σ∂ǫf(x)(y) = sup
g∈∂ǫf(x)

y′g = inf
α>0

f(x+ αy) − f(x) + ǫ

α

0

f(z)

(−g, 1)

z

(

x, f(x) − ǫ

)

ǫ



ǫ-DESCENT WITH ǫ-SUBDIFFERENTIALS

• We say that d is an ǫ-descent direction at x ∈
dom(f) if

inf
α>0

f(x+ αd) < f(x) − ǫ.

• Assuming f is closed proper convex, we have

σ∂ǫf(x)(d) = sup
g∈∂ǫf(x)

d′g = inf
α>0

f(x+ αd) − f(x) + ǫ

α
,

for all d ∈ ℜn, so

d is an ǫ-descent direction iff sup
g∈∂ǫf(x)

d′g < 0

• If 0 /∈ ∂ǫf(x), the vector −g, where

g = arg min
g∈∂ǫf(x)

‖g‖,

is an ǫ-descent direction.

• Also, from the definition, 0 ∈ ∂ǫf(x) iff

f(x) ≤ inf
z∈ℜn

f(z) + ǫ



ǫ-DESCENT METHOD

• The kth iteration is

xk+1 = xk + αkdk

where
−dk = arg min

g∈∂ǫf(xk)
‖g‖,

and αk is a positive stepsize.

• If dk = 0, i.e., 0 ∈ ∂ǫf(xk), then xk is an ǫ-
optimal solution.

• If dk 6= 0, choose αk that reduces the cost func-
tion by at least ǫ, i.e.,

f(xk+1) = f(xk + αkdk) ≤ f(xk) − ǫ

• Drawback: Must know ∂ǫf(xk).

• Motivation for a variant where ∂ǫf(xk) is ap-
proximated by a set A(xk) that can be computed
more easily than ∂ǫf(xk).

• Then, dk = −gk, where

gk = arg min
g∈A(xk)

‖g‖



ǫ-DESCENT METHOD - APPROXIMATIONS

• Outer approximation methods: Here ∂ǫf(xk) is
approximated by a set A(x) such that

∂ǫf(xk) ⊂ A(xk) ⊂ ∂γǫf(xk),

where γ is a scalar with γ > 1.

• Example of outer approximation for case f =
f1 + · · · + fm:

A(x) = cl
(

∂ǫf1(x) + · · · + ∂ǫfm(x)
)

,

based on the fact

∂ǫf(x) ⊂ cl
(

∂ǫf1(x) + · · · + ∂ǫfm(x)
)

⊂ ∂mǫf(x)

• Then the method terminates with anmǫ-optimal
solution, and effects at least ǫ-reduction on f oth-
erwise.

• Application to separable problems where each
∂ǫfi(x) is a one-dimensional interval. Then to find
an ǫ-descent direction, we must solve a quadratic
program.



LECTURE 20

LECTURE OUTLINE

• Review of ǫ-subgradients

• ǫ-subgradient method

• Application to dual problems and minimax

• Incremental subgradient methods

• Connection with bundle methods

***********************************************

• For a proper convex f : ℜn 7→ (−∞,∞] and
ǫ > 0, we say that a vector g is an ǫ-subgradient

of f at a point x ∈ dom(f) if

f(z) ≥ f(x) + (z − x)′g − ǫ, ∀ z ∈ ℜn

0

f(z)

(−g, 1)

z

(

x, f(x) − ǫ

)

ǫ



ǫ-DESCENT WITH ǫ-SUBDIFFERENTIALS

• Assume f is closed. We say that d is an ǫ-
descent direction at x ∈ dom(f) if

inf
α>0

f(x+ αd) < f(x) − ǫ

Characterization:

d is an ǫ-descent direction iff sup
g∈∂ǫf(x)

d′g < 0

• Also, 0 ∈ ∂ǫf(x) iff f(x) ≤ infz∈ℜn f(z) + ǫ

zx

Slope = supg∈∂ǫf(x) d′g

Slope = 0

x, f(x)

x, f(x) − ǫ

)

x, f(x)

x, f(x) − ǫ

)

= 0 = 0

f(z) f(x + αd)

α

• If 0 /∈ ∂ǫf(x) and

g = arg min
g∈∂ǫf(x)

‖g‖

then −g is an ǫ-descent direction.



ǫ-DESCENT METHOD

• The kth iteration is

xk+1 = xk + αkdk

where
−dk = arg min

g∈∂ǫf(xk)
‖g‖

and αk is a positive stepsize.

• If dk = 0, i.e., 0 ∈ ∂ǫf(xk), then xk is an ǫ-
optimal solution.

• If dk 6= 0, choose αk that reduces the cost func-
tion by at least ǫ, i.e.,

f(xk+1) = f(xk + αkdk) ≤ f(xk) − ǫ

• Drawback: Must know ∂ǫf(xk).

• Need for variants.



ǫ-SUBGRADIENT METHOD

• This is an alternative/different type of method.

• Can be viewed as an approximate subgradient
method, using an ǫ-subgradient in place of a sub-
gradient.

• Problem: Minimize convex f : ℜn 7→ ℜ over a
closed convex set X.

• Method:

xk+1 = PX(xk − αkgk)

where gk is an ǫk-subgradient of f at xk, αk is a
positive stepsize, and PX(·) denotes projection on
X.

• Fundamentally differs from ǫ-descent (it does
not guarantee cost descent at each iteration).

• Can be viewed as subgradient method with “er-
rors”.

• Arises in several different contexts.



APPLICATION IN DUALITY AND MINIMAX

• Consider minimization of

f(x) = sup
z∈Z

φ(x, z), (1)

where x ∈ ℜn, z ∈ ℜm, Z is a subset of ℜm, and
φ : ℜn × ℜm 7→ (−∞,∞] is a function such that
φ(·, z) is convex and closed for each z ∈ Z.

• How to calculate ǫ-subgradient at x ∈ dom(f)?

• Let zx ∈ Z attain the supremum within ǫ ≥ 0
in Eq. (1), and let gx be some subgradient of the
convex function φ(·, zx).

• For all y ∈ ℜn, using the subgradient inequality,

f(y) = sup
z∈Z

φ(y, z) ≥ φ(y, zx)

≥ φ(x, zx) + g′x(y − x) ≥ f(x) − ǫ+ g′x(y − x)

i.e., gx is an ǫ-subgradient of f at x, so

φ(x, zx) ≥ sup
z∈Z

φ(x, z) − ǫ and gx ∈ ∂φ(x, zx)

⇒ gx ∈ ∂ǫf(x)



CONVERGENCE ANALYSIS

• Basic inequality: If {xk} is the ǫ-subgradient
method sequence, for all y ∈ X and k ≥ 0

‖xk+1−y‖2 ≤ ‖xk−y‖2−2αk

(

f(xk)−f(y)−ǫk
)

+α2
k‖gk‖2

• Replicate the entire convergence analysis for
subgradient methods, but carry along the ǫk terms.

• Example: Constant αk ≡ α, constant ǫk ≡ ǫ.
Assume ‖gk‖ ≤ c for all k. For any optimal x∗,

‖xk+1−x∗‖2 ≤ ‖xk−x∗‖2−2α
(

f(xk)−f∗−ǫ
)

+α2c2,

so the distance to x∗ decreases if

0 < α <
2
(

f(xk) − f∗ − ǫ
)

c2

or equivalently, if xk is outside the level set

{

x
∣

∣

∣ f(x) ≤ f∗ + ǫ+
αc2

2

}

• Example: If αk → 0,
∑

k αk → ∞, and ǫk → ǫ,
we get convergence to the ǫ-optimal set.



INCREMENTAL SUBGRADIENT METHODS

• Consider minimization of sum

f(x) =
m
∑

i=1

fi(x)

• Often arises in duality contexts with m: very
large (e.g., separable problems).

• Incremental method moves x along a sub-
gradient gi of a component function fi NOT
the (expensive) subgradient of f , which is

∑

i gi.

• View an iteration as a cycle of m subiterations,
one for each component fi.

• Let xk be obtained after k cycles. To obtain
xk+1, do one more cycle: Start with ψ0 = xk, and
set xk+1 = ψm, after the m steps

ψi = PX(ψi−1 − αkgi), i = 1, . . . ,m

with gi being a subgradient of fi at ψi−1.

• Motivation is faster convergence. A cycle
can make much more progress than a subgradient
iteration with essentially the same computation.



CONNECTION WITH ǫ-SUBGRADIENTS

• Neighborhood property: If x and x are
“near” each other, then subgradients at x can be
viewed as ǫ-subgradients at x, with ǫ “small.”

• If g ∈ ∂f(x), we have for all z ∈ ℜn,

f(z) ≥ f(x) + g′(z − x)

≥ f(x) + g′(z − x) + f(x) − f(x) + g′(x− x)

≥ f(x) + g′(z − x) − ǫ,

where ǫ = |f(x) − f(x)| + ‖g‖ · ‖x − x‖. Thus,
g ∈ ∂ǫf(x), with ǫ: small when x is near x.

• The incremental subgradient iter. is an ǫ-subgradient
iter. with ǫ = ǫ1 + · · ·+ ǫm, where ǫi is the “error”
in ith step in the cycle (ǫi: Proportional to αk).

• Use

∂ǫ1f1(x) + · · · + ∂ǫmfm(x) ⊂ ∂ǫf(x),

where ǫ = ǫ1 + · · · + ǫm, to approximate the ǫ-
subdifferential of the sum f =

∑m
i=1 fi.

• Convergence to optimal if αk → 0,
∑

k αk → ∞.



CONNECTION WITH BUNDLE METHOD

Serious Step

δk

f(yk) − f(xk+1)

X x) yk yk+1 = xk+1

f(x)
δk

Fk(x)

f(yk) − f(xk+1)

X x) yk yk+1 = xk+1

Null Step

f(x)

δk

Fk(x)

f(yk) − f(xk+1)

X xxk+1x) yk = yk+1

δk

X x) yk yk+1 = xk+1

f(x)
δk Fk(x)

) yk yk+1 = xk+1

Slope gk =
yk−xk+1

ck

is ǫk-subgradient

ǫk = δk −
1

2ck

‖xk+1 − yk‖2
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LECTURE OUTLINE

• Constrained minimization and duality

• Geometric Multipliers

• Dual problem - Weak duality

• Optimality Conditions

• Separable problems

************************************************

• We consider the problem

minimize f(x)

subject to x ∈ X, g1(x) ≤ 0, . . . , gr(x) ≤ 0

• We assume nothing on X, f , and gj , except

−∞ < f∗ = inf
x∈X

gj(x)≤0, j=1,...,r

f(x) <∞



GEOMETRIC MULTIPLIERS

• A vector µ∗ ≥ 0 is a geometric multiplier if

f∗ = inf
x∈X

L(x, µ∗),

where
L(x, µ) = f(x) + µ′g(x)

• Meaning of the definition: µ∗ is a G-multiplier
if and only if µ∗ ≥ 0 and the hyperplane of ℜr+1

with normal (µ∗, 1) that passes through the point
(0, f∗) leaves every possible constraint-cost pair

(

g(x), f(x)
)

, x ∈ X,

in its positive halfspace

{

(z, w) ∈ ℜr+1 | 1 · w + µ∗′ · z ≥ 1 · f∗ + µ∗′ · 0
}

• Extension to equality constraints l(x) = 0:
A (λ∗, µ∗) is a geometric multiplier if µ∗ ≥ 0 and

f∗ = inf
x∈X

L(x, λ∗, µ∗) = inf
x∈X

{

f(x)+λ∗′l(x)+µ∗′g(x)
}



VISUALIZATION

(λ, µ, 1)

= 0

w

(v, u) = 0

w

(v, u)

L(x, λ, µ)

inf
x∈X

L(x, λ, µ)

)

S =
{

(

l(x), g(x), f(x)
) ∣

∣ x ∈ X
}

(

l(x), g(x), f(x)
)

(0, 0, f∗)

S

u

(0, f∗)

= 0

w

S
S

(µ∗, 1)

H =
{

(u, w) | w + µ∗′u = f∗

}

(

Hyperplane

Set of pairs
(

g(x), f(x)
)

u

(0, f∗)

= 0

w

(µ∗, 1)

for x ∈ arg minx∈X L(x, µ∗)

Hyp
(a) (b)

(c) (d)

• Note: A G-multiplier solves a max-crossing
problem whose min common problem has optimal
value f∗.



EXAMPLES: A G-MULTIPLIER EXISTS
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(µ∗, 1)

(µ∗, 1)
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(µ∗, 1)

(µ∗, 1)

S =
{

(

g(x), f(x)
) ∣

∣ x ∈ X
}

S =
{

(

g(x), f(x)
) ∣

∣ x ∈ X
}

S =
{

(

g(x), f(x)
) ∣

∣ x ∈ X
}

(−1, 0)

(−1, 0)

(1, 0)
(

(0,−1)

minimize f(x) = x1 − x2

subject to g(x) = x1 + x2 − 1 ≤ 0

x ∈ X = {(x1, x2) | x1 ≥ 0, x2 ≥ 0}

minimize f(x) = (1/2)(x2

1
+ x2

2
)

subject to g(x) = x1 − 1 ≤ 0

x ∈ X = ℜ2

minimize f(x) = |x1| + x2

subject to g(x) = x1 ≤ 0

x ∈ X = {(x1, x2) | x2 ≥ 0}



EXAMPLES: A G-MULTIPLIER DOESN’T EXIST

min  f(x) = x

s.t.  g(x) = x2 £  0

 x Œ X = R

(a)

(0,f*) = (0,0)

(-1/2,0)

S = {(g(x),f(x)) | x Œ X}
min  f(x) = - x

s.t.  g(x) = x  - 1/2 £ 0

 x Œ X = {0,1}

(b)

(0,f*) = (0,0)

(1/2,-1)

S = {(g(x),f(x)) | x Œ X}S =
{

(

g(x), f(x)
)

∣

∣ x ∈ X
}

S =
{

(

g(x), f(x)
)

∣

∣ x ∈ X
}

minimize f(x) = −x

subject to g(x) = x − 1/2 ≤ 0

x ∈ X = {0, 1}

minimize f(x) = x

subject to g(x) = x2 ≤ 0

x ∈ X = ℜ
u

u

w

w

(0, f∗) = (0, 0)

(0, f∗) = (0, 0)

(−1/2, 0)

(1/2,−1)

• Proposition: Let µ∗ be a geometric multi-
plier. Then x∗ is a global minimum of the primal
problem if and only if x∗ is feasible and

x∗ = arg min
x∈X

L(x, µ∗), µ∗
jgj(x∗) = 0, j = 1, . . . , r



THE DUAL PROBLEM

• The dual problem is

maximize q(µ)

subject to µ ≥ 0,

where q is the dual function

q(µ) = inf
x∈X

L(x, µ), ∀ µ ∈ ℜr

• Note: The dual problem is equivalent to a max-
crossing problem.

= 0

w

q(λ, µ) = inf
x∈X

L(x, λ, µ)

)

S =
{

(

l(x), g(x), f(x)
) ∣

∣ x ∈ X
}

(λ, µ, 1)

= q∗

Hyperplane

Correspond to
arg minx∈X L(x, λ, µ)

(v, u)

H =
{

(v, u, w) | w + λ′v + µ′u = q(λ, µ)
}



THE DUAL OF A LINEAR PROGRAM

• Consider the linear program

minimize c′x

subject to e′ix = di, i = 1, . . . ,m, x ≥ 0

• Dual function

q(λ) = inf
x≥0







n
∑

j=1

(

cj −
m
∑

i=1

λieij

)

xj +
m
∑

i=1

λidi







• If cj −
∑m

i=1 λieij ≥ 0 for all j, the infimum
is attained for x = 0, and q(λ) =

∑m
i=1 λidi. If

cj −
∑m

i=1 λieij < 0 for some j, the expression in
braces can be arbitrarily small by taking xj suff.
large, so q(λ) = −∞. Thus, the dual is

maximize
m
∑

i=1

λidi

subject to

m
∑

i=1

λieij ≤ cj , j = 1, . . . , n.



WEAK DUALITY

• The domain of q is

Dq =
{

µ | q(µ) > −∞
}

• Proposition: q is concave, i.e., the domain Dq

is a convex set and q is concave over Dq.

• Proposition: (Weak Duality Theorem) We
have

q∗ ≤ f∗

Proof: For all µ ≥ 0, and x ∈ X with g(x) ≤ 0,
we have

q(µ) = inf
z∈X

L(z, µ) ≤ f(x) +
r
∑

j=1

µjgj(x) ≤ f(x),

so

q∗ = sup
µ≥0

q(µ) ≤ inf
x∈X, g(x)≤0

f(x) = f∗



DUAL OPTIMAL SOLUTIONS

Proposition: (a) If q∗ = f∗, the set of G-multipliers
is equal to the set of optimal dual solutions.
(b) If q∗ < f∗, the set of G-multipliers is empty
(so if there exists a G-multiplier, q∗ = f∗).

Proof: By definition, µ∗ ≥ 0 is a G-multiplier if
f∗ = q(µ∗). Since q(µ∗) ≤ q∗ and q∗ ≤ f∗,

µ∗ ≥ 0 is a G-multiplier iff q(µ∗) = q∗ = f∗

• Examples (dual functions for the two problems
with no G-multipliers, given earlier):

, µ)

q(µ)

f∗ = q∗ = 0
arg min L

, µ)

q(µ)

minimize f(x) = x

subject to g(x) = x2 ≤ 0

x ∈ X = ℜ

− 1

−1/2

minimize f(x) = −x

subject to g(x) = x − 1/2 ≤ 0

x ∈ X = {0, 1}

q(µ) = min
x∈{0,1}

{

−x + µ(x − 1/2)
}

= min{−µ/2, µ/2− 1}

q(µ) = min
x∈ℜ

{

x + µx2
}

=

{

−1/(4µ) if µ > 0
−∞ if µ ≤ 0



DUALITY AND MINIMAX THEORY

• The primal and dual problems can be viewed
in terms of minimax theory:

Primal Problem <=> inf
x∈X

sup
µ≥0

L(x, µ)

Dual Problem <=> sup
µ≥0

inf
x∈X

L(x, µ)

• Optimality Conditions: (x∗, µ∗) is an opti-
mal solution/G-multiplier pair if and only if

x∗ ∈ X, g(x∗) ≤ 0, (Primal Feasibility),

µ∗ ≥ 0, (Dual Feasibility),

x∗ = arg min
x∈X

L(x, µ∗), (Lagrangian Optimality),

µ∗
jgj(x∗) = 0, j = 1, . . . , r, (Compl. Slackness).

• Saddle Point Theorem: (x∗, µ∗) is an opti-
mal solution/G-multiplier pair if and only if x∗ ∈
X, µ∗ ≥ 0, and (x∗, µ∗) is a saddle point of the
Lagrangian, in the sense that

L(x∗, µ) ≤ L(x∗, µ∗) ≤ L(x, µ∗), ∀ x ∈ X, µ ≥ 0



A CONVEX PROBLEM WITH A DUALITY GAP

• Consider the two-dimensional problem

minimize f(x)

subject to x1 ≤ 0, x ∈ X = {x | x ≥ 0},

where

f(x) = e−
√

x1x2 , ∀ x ∈ X,

and f(x) is arbitrarily defined for x /∈ X.

• f is convex over X (its Hessian is positive defi-
nite in the interior of X), and f∗ = 1.

• Also, for all µ ≥ 0 we have

q(µ) = inf
x≥0

{

e−
√

x1x2 + µx1

}

= 0,

since the expression in braces is nonnegative for
x ≥ 0 and can approach zero by taking x1 → 0
and x1x2 → ∞. It follows that q∗ = 0.



INFEASIBLE AND UNBOUNDED PROBLEMS

u

u

u

w

0

w

0

(a)

(b)

w

0

(c)

f∗ = ∞, q∗ = ∞

minimize f(x) = 1/x

subject to g(x) = x ≤ 0

x ∈ X = {x | x > 0}

S =
{

(x, 1/x) | x > 0
}

minimize f(x) = x

subject to g(x) = x2 ≤ 0

x ∈ X = {x | x > 0}

f∗ = ∞, q∗ = 0

minimize f(x) = x1 + x2

subject to g(x) = x1 ≤ 0

x ∈ X =
{

(x1, x2) | x1 > 0}
{

f∗ = ∞, q∗ = −∞

S =
{

(x1, x1 + x2) | x1 > 0
}

S =
{

(x2, x) | x > 0
}



SEPARABLE PROBLEMS I

• Suppose that x = (x1, . . . , xm), xi ∈ ℜni , and
the problem is

minimize

m
∑

i=1

fi(xi)

subject to
m
∑

i=1

gij(xi) ≤ 0, j = 1, . . . , r,

xi ∈ Xi, i = 1, . . . ,m,

where fi : ℜni 7→ ℜ and gij : ℜni 7→ ℜ, and
Xi ⊂ ℜni .

• Dual function:

q(µ) =
m
∑

i=1

inf
xi∈Xi







fi(xi) +
r
∑

j=1

µjgij(xi)







=
m
∑

i=1

qi(µ)

• Set of constraint cost pairs S = S1 + · · · + Sm,

Si =
{(

gi(xi), fi(xi)
)

| xi ∈ Xi

}

,

and gi is the function gi(xi) =
(

gi1(xi), . . . , gim(xi)
)

.



SEPARABLE PROBLEMS II

• The sum of a large number of nonconvex sets
is “almost” convex.

• Shapley-Folkman Theorem: Let Xi, i =
1, . . . ,m, be nonempty subsets of ℜn and let X =
X1 + · · · + Xm. Then every vector x ∈ conv(X)
can be represented as x = x1 + · · · + xm, where
xi ∈ conv(Xi) for all i = 1, . . . ,m, and xi ∈ Xi

for at least m− n indices i.

−2 −1 0 1
−2

−1

0

1

2
m = 2

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5
m = 4

−2 −1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5
m = 6

−2 −1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5
m = 8
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LECTURE OUTLINE

• Conditions for existence of geometric multipliers

• Conditions for strong duality

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• Primal problem: Minimize f(x) subject to x ∈
X, and g1(x) ≤ 0, . . . , gr(x) ≤ 0 (assuming −∞ <
f∗ <∞). It is equivalent to infx∈X supµ≥0 L(x, µ).

• Dual problem: Maximize q(µ) subject to µ ≥ 0,
where q(µ) = infx∈X L(x, µ). It is equivalent to
supµ≥0 infx∈X L(x, µ).

• µ∗ is a geometric multiplier if and only if f∗ =
q∗, and µ∗ is an optimal solution of the dual prob-
lem.

• Question: Under what conditions f∗ = q∗ and
there exists a dual optimal solution?



RECALL NONLINEAR FARKAS’ LEMMA

Let X ⊂ ℜn be convex, and f : X 7→ ℜ and
gj : X 7→ ℜ, j = 1, . . . , r, be convex functions.
Assume that

f(x) ≥ 0, ∀ x ∈ F =
{

x ∈ X | g(x) ≤ 0
}

,

and one of the following two conditions holds:

(1) There exists x ∈ X such that g(x) < 0.

(2) The functions gj , j = 1, . . . , r, are affine, and
F contains a relative interior point of X.

Then, there exists a vector µ∗ = (µ∗
1, . . . , µ

∗
r) ≥ 0,

such that

f(x) +
r
∑

j=1

µ∗
jgj(x) ≥ 0, ∀ x ∈ X

In case (1) the set of such µ∗ is also compact.



APPLICATION TO CONVEX PROGRAMMING

Consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where X, f : X 7→ ℜ, and gj : X 7→ ℜ are convex.
Assume that the optimal value f∗ is finite.

• Replace f(x) by f(x)− f∗ and assume that the
conditions of Farkas’ Lemma are satisfied. Then
there exist µ∗

j ≥ 0 such that

f∗ ≤ f(x) +
r
∑

j=1

µ∗
jgj(x), ∀ x ∈ X

Since F ⊂ X and µ∗
jgj(x) ≤ 0 for all x ∈ F ,

f∗ ≤ inf
x∈F







f(x) +
r
∑

j=1

µ∗
jgj(x)







≤ inf
x∈F

f(x) = f∗

Thus equality holds throughout, we have

f∗ = inf
x∈X

{f(x) + µ∗′g(x)} ,

and µ∗ is a geometric multiplier.



STRONG DUALITY THEOREM I

Assumption : (Nonlinear Constraints - Slater
Condition) f∗ is finite, and the following hold:

(1) The functions f and gj , j = 1, . . . , r, are
convex over X.

(2) There exists a feasible vector x̄ such that
gj(x̄) < 0 for all j = 1, . . . , r.

Proposition : Under the above assumption, there
exists at least one geometric multiplier.

Proof: Apply Farkas/condition(1).



STRONG DUALITY THEOREM II

Assumption : (Convexity and Linear Constraints)
f∗ is finite, and the following hold:

(1) The cost function f is convex over X and
the functions gj are affine.

(2) There exists a feasible solution of the prob-
lem that belongs to the relative interior of
X.

Proposition : Under the above assumption, there
exists at least one geometric multiplier.

Proof: Apply Farkas/condition(2).

• There is an extension to the case where X =
P ∩ C, where P is polyhedral and C is convex.
Then f must be convex over C, and there must
exist a feasible solution that belongs to the relative
interior of C.



STRONG DUALITY THEOREM III

Assumption : (Linear and Nonlinear Constraints)
f∗ is finite, and the following hold:

(1) X = P ∩C, with P : polyhedral, C: convex.

(2) The functions f and gj , j = 1, . . . , r, are
convex over C, and the functions gj , j =
r + 1, . . . , r, are affine.

(3) There exists a feasible vector x̄ such that
gj(x̄) < 0 for all j = 1, . . . , r.

(4) There exists a vector that satisfies the lin-
ear constraints [but not necessarily the con-
straints gj(x) ≤ 0, j = 1, . . . , r] and belongs
to the relative interior of C.

Proposition : Under the above assumption, there
exists at least one geometric multiplier.

Proof: If P = ℜn and there are no linear con-
straints (the Slater condition), apply Farkas. Oth-
erwise, lump the linear constraints within X, as-
sert the existence of geometric multipliers for the
nonlinear constraints, then use the preceding du-
ality result for linear constraints. Q.E.D.



THE PRIMAL FUNCTION

• Minimax theory centered around the function

p(u) = inf
x∈X

sup
µ≥0

{

L(x, µ) − µ′u
}

• Properties of p around u = 0 are critical in
analyzing the presence of a duality gap and the
existence of primal and dual optimal solutions.

• p is known as the primal function of the con-
strained optimization problem.

• We have

sup
µ≥0

{

L(x, µ) − µ′u
}

= sup
µ≥0

{

f(x) + µ′
(

g(x) − u
)}

=
{

f(x) if g(x) ≤ u,
∞ otherwise.• So

p(u) = inf
x∈X

g(x)≤u

f(x)

and p(u) can be viewed as a perturbed optimal

value [note that p(0) = f∗].



RELATION OF PRIMAL AND DUAL FUNCTIONS

= 0

w

= q∗

f∗

(µ, 1)

u

S =
{

(

g(x), f(x)
) ∣

∣ x ∈ X
}

Primal function p(u)

q(µ) = inf
u∈ℜr

{

p(u) + µ′u
}

Dual function value

• Consider the dual function q. For every µ ≥ 0,
we have

q(µ) = inf
x∈X

{f(x) + µ′g(x)}

= inf
{(u,x)|x∈X, g(x)≤u}

{f(x) + µ′g(x)}

= inf
{(u,x)|x∈X, g(x)≤u}

{f(x) + µ′u}

= inf
u∈ℜr

inf
x∈X, g(x)≤u

{f(x) + µ′u} .

• Thus we have the conjugacy relation

q(µ) = inf
u∈ℜr

{

p(u) + µ′u
}

, ∀ µ ≥ 0



CONDITIONS FOR NO DUALITY GAP

• Apply the minimax theory specialized to L(x, µ).

• Assume f∗ < ∞, X is convex, and L(·, µ) is
convex over X for each µ ≥ 0. Then:

− p is convex.

− There is no duality gap if and only if p is
lower semicontinuous at u = 0.

• Conditions that guarantee lower semicontinuity
at u = 0, correspond to those for preservation of
closure under partial minimization, e.g.:

− f∗ < ∞, X is convex and compact, and for
each µ ≥ 0, the function L(·, µ), restricted
to have domain X, is closed and convex.

− Extensions involving directions of recession
of X, f , and gj , and guaranteeing that the
minimization in p(u) = inf x∈X

g(x)≤u
f(x) is (ef-

fectively) over a compact set.

• Under the above conditions, there is no duality
gap, and the primal problem has a nonempty and
compact optimal solution set. Furthermore, the
primal function p is closed, proper, and convex.



SUBGRADIENTS OF THE PRIMAL FUNCTION

S ={(g(x),f(x)) | x ∈ X}

u

p(u)f*

0

Slope: -µ*

(µ*,1)

• Assume that p is convex, p(0) is finite, and p is
proper. Then:

− The set of G-multipliers is −∂p(0). This fol-
lows from the relation

q(µ) = inf
u∈ℜr

{

p(u) + µ′u
}

, ∀ µ ≥ 0

− If p is differentiable at 0, there is a unique
G-multiplier: µ∗ = −∇p(0).

− If the origin lies in the interior of dom(p), the
set of G-multipliers is nonempty and com-
pact. (This is true iff the Slater condition
holds.)



FRITZ JOHN THEORY

• Assume that X is convex, the functions f and
gj are convex over X, and f∗ < ∞. Then there
exist a scalar µ∗

0 and a vector µ∗ = (µ∗
1, . . . , µ

∗
r)

satisfying the following conditions:

(i) µ∗
0f

∗ = infx∈X

{

µ∗
0f(x) + µ∗′g(x)

}

.

(ii) µ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) µ∗
0, µ

∗
1, . . . , µ

∗
r are not all equal to 0.

(0,f*)

(µ∗,µ0
∗)

w

u

M = {(u,w) | there is an x ∈ X such that g(x) ≤ u, f(x) ≤ w}

S = {(g(x),f(x)) | x ∈ X}

• If the multiplier µ∗
0 can be proved positive, then

µ∗/µ∗
0 is a G-multiplier.

• Under the Slater condition (there exists x ∈ X
s.t. g(x) < 0), µ∗

0 cannot be 0; if it were, then
0 = infx∈X µ∗′g(x) for some µ∗ ≥ 0 with µ∗ 6= 0,
while we would also have µ∗′g(x) < 0.



F-J THEORY FOR LINEAR CONSTRAINTS

• Assume that X is convex, f is convex over X,
the gj are affine, and f∗ <∞. Then there exist a
scalar µ∗

0 and a vector µ∗ = (µ∗
1, . . . , µ

∗
r), satisfy-

ing the following conditions:

(i) µ∗
0f

∗ = infx∈X

{

µ∗
0f(x) + µ∗′g(x)

}

.

(ii) µ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) µ∗
0, µ

∗
1, . . . , µ

∗
r are not all equal to 0.

(iv) If the index set J = {j 6= 0 | µ∗
j > 0} is

nonempty, there exists a vector x̃ ∈ X such
that f(x̃) < f∗ and µ∗′

g(x̃) > 0.

• Proof uses Polyhedral Proper Separation Th.

• Can be used to show that there exists a geomet-
ric multiplier if X = P ∩C, where P is polyhedral,
and ri(C) contains a feasible solution.

• Conclusion: The Fritz John theory is suf-
ficiently powerful to show the major constraint
qualification theorems for convex programming.
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LECTURE OUTLINE

• Fenchel Duality

• Dual Proximal Minimization Algorithm

• Augmented Lagrangian Methods
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• We introduce another “standard” framework:

minimize f1(x) − f2(x)

subject to x ∈ X1 ∩X2,

f1, f2 : ℜn 7→ ℜ, and X1, X2 are subsets of ℜn.

• It can be shown to be equivalent to the La-
grangian framework

minimize f(x)

subject to x ∈ X, g1(x) ≤ 0, . . . , gr(x) ≤ 0

but it is more convenient for some applications,
e.g., network flow, and conic/semidefinite program-
ming.



FENCHEL DUALITY FRAMEWORK

• Consider the problem

minimize f1(x) − f2(x)

subject to x ∈ X1 ∩X2,

where f1, f2 : ℜn 7→ ℜ, and X1, X2 are subsets of
ℜn.

• Assume that f∗ <∞.

• Convert the problem to

minimize f1(y) − f2(z)

subject to z = y, y ∈ X1, z ∈ X2,

and dualize the constraint z = y:

q(λ) = inf
y∈X1, z∈X2

{

f1(y) − f2(z) + (z − y)′λ
}

= inf
z∈X2

{

z′λ− f2(z)
}

− sup
y∈X1

{

y′λ− f1(y)
}

= h2(λ) − h1(λ)



PRIMAL FENCHEL DUALITY THEOREM

• We view f1 and −f2 as extended real-valued
with domains X1 and X2, and write the primal
and dual problems as

min
x∈ℜn

{

f1(x) − f2(x)
}

, max
λ∈ℜn

{

h2(λ) − h1(λ)
}

• Use strong duality theorems for the problem

min
z=y, y∈X1, z∈X2

{

f1(y) − f2(z)
}

• Primal Fenchel Duality Theorem: The
dual problem has an optimal solution and we have

inf
x∈ℜn

{

f1(x) − f2(x)
}

= max
λ∈ℜn

{

h2(λ) − h1(λ)
}

,

if f1, −f2, X1, X2 are convex, and one of the
following two conditions holds:

− The relative interiors of X1 and X2 intersect

− X1 and X2 are polyhedral, and f1 and f2
can be extended to real-valued convex and
concave functions over ℜn.



OPTIMALITY CONDITIONS

• Assume −∞ < q∗ = f∗ < ∞. Then (x∗, λ∗)
is an optimal primal and dual solution pair if and
only if

x∗ ∈ dom(f1)∩dom(−f2), (primal feasibility),

λ∗ ∈ dom(h1) ∩ dom(−h2), (dual feasibility),

x∗ ∈ arg max
y∈ℜn

{

y′λ∗ − f1(y)
}

x∗ ∈ arg min
z∈ℜn

{

z′λ∗ − f2(z)
}

, (Lagr. optimality).

0 x

f1(x)

Slope = l
g2(l ) - g1(l )

x*

f2(x)

Slope = l*

g2(l *) - g1(l *)

(- l *,1)

(- l ,1)

x

h2(λ) − h1(λ)
= λ∗

h2(λ∗) − h1(λ∗)

x∗
≤ 0

f1(x)

f2(x)

) Slope = λ

Slope = λ∗

• Note: The Lagrangian optimality condition is
equivalent to λ∗ ∈ ∂f1(x∗) ∩ ∂f2(x∗).



DUAL FENCHEL DUALITY THEOREM

• The dual problem

max
λ∈ℜn

{

h2(λ) − h1(λ)
}

is of the same form as the primal.

• By the conjugacy theorem, if the functions f1
and f2 are closed, in addition to being convex and
concave, they are the conjugates of h1 and h2.

• Conclusion: The primal problem has an opti-
mal solution and we have

min
x∈ℜn

{

f1(x) − f2(x)
}

= sup
λ∈ℜn

{

h2(λ) − h1(λ)
}

if one of the following two conditions holds

− The relative interiors of dom(h1) and dom(−h2)
intersect.

− dom(h1) and dom(−h2) are polyhedral, and
h1 and h2 can be extended to real-valued
convex and concave functions over ℜn.



RECALL PROXIMAL MINIMIZATION

• Applies to minimization of convex f :

xk+1 = arg min
x∈ℜn

{

f(x) +
1

2ck
‖x− xk‖2

}

where f : ℜn 7→ (−∞,∞], x0 is an arbitrary start-
ing point, and {ck} is a positive scalar parameter
sequence with infk≥0 ck > 0.

γk

γk −
1

2ck

‖x − xk‖2

f(x)

X xxk+1xk x
∗

f(xk)

• We have f(xk) → f∗ and xk → some minimizer
of f , provided one exists.

• Finite convergence for polyhedral f .



DUAL PROXIMAL MINIMIZATION

• The proximal iteration can be written in the
Fenchel form: minx{f1(x) − f2(x)} with

f1(x) = f(x), f2(x) = − 1

2ck
‖x− xk‖2

• The Fenchel dual is

maximize h2(λ) − h1(λ)

subject to λ ∈ ℜn

where h1, h2 are conjugates of f1, f2.

• After calculation, it becomes

minimize h(λ) − x′kλ+
ck
2
‖λ‖2

subject to λ ∈ ℜn

where h is the convex conjugate of f .

• f2 and h2 are real-valued, so no duality gap.

• Both primal and dual problems have a unique
solution, since they involve a closed, strictly con-
vex, and coercive cost function.



DUAL PROXIMAL ALGORITHM

• Can solve the Fenchel-dual problem instead of
the primal at each iteration:

λk+1 = arg min
λ∈ℜn

{

h(λ) − x′kλ+
ck
2
‖λ‖2

}

(1)

• Lagragian optimality conditions for primal:

xk+1 ∈ arg max
x∈ℜn

{

x′λk+1 − f(x)
}

xk+1 = arg min
x∈ℜn

{

x′λk+1 +
1

2ck
‖x− xk‖2

}

or equivalently,

λk+1 ∈ ∂f(xk+1), xk+1 = xk − ckλk+1

• Dual algorithm: At iteration k, obtain λk+1

from the dual proximal minimization (1) and set

xk+1 = xk − ckλk+1

• Aims to find a subgradient of h at 0: the limit
of {xk}.



VISUALIZATION

γk

γk −
1

2ck

‖x − xk‖2

f(x)

X xxk+1xk

x
∗

Slope = xk

x h(λ) h (λ)
Slope = xk+1

h(λ)

λk+1

Slope = x
∗

δk

δk + x
′

k
λ −

ck

2
‖λ‖2

• The primal and dual implementations are math-
ematically equivalent and generate identical se-
quences {xk}.
• Which one is preferable depends on whether f
or its conjugate h has more convenient structure.

• Special case: When −f is the dual function
of the constrained minimization ming(x)≤0 f(x),
the dual algorithm is equivalent to an important
general purpose algorithm: the Augmented La-
grangian method.

• Aims to find a subgradient of the primal func-
tion p(u) = ming(x)≤u f(x) at u = 0.



GRADIENT INTERPRETATION

• It can be shown that

λk+1 = ∇φck(xk) =
xk − xk+1

ck

where

φc(z) = inf
x∈ℜn

{

f(x) +
1

2c
‖x− z‖2

}

f(x)

X xx
∗

f(z)

φc(z)

xc(z)
z

z

φc(z) −
1

2c

‖x − z‖2

Slope ∇φc(z)

• So the update xk+1 = xk−ckλk+1 can be viewed
as a gradient iteration for minimizing φc(z) (it has
the same minima as f).

• The gradient is calculated by the dual proxi-
mal minimization. Possibilities for faster methods
(e.g., Newton, Quasi-Newton).



AUGMENTED LAGRANGIAN METHOD

• Consider the convex constrained problem

minimize f(x)

subject to x ∈ X, Ex = d

• Primal and dual functions:

p(v) = inf
x∈X,

Ex−d=v

f(x), q(λ) = inf
x∈X

{

f(x)+λ′(Ex−d)
}

• Assume p: closed, so (q, p) are conjugate pair.

• Proximal algorithms for maximizing q:

λk+1 = arg max
µ∈ℜm

{

q(λ) − 1

2ck
‖λ− λk‖2

}

vk+1 = arg min
v∈ℜm

{

p(v) + λ′kv +
ck
2
‖v‖2

}

Dual update: λk+1 = λk + ckvk+1

• Implementation:

vk+1 = Exk+1 − d, xk+1 ∈ arg min
x∈X

Lck(x, λk)

where Lc is the Augmented Lagrangian function

Lc(x, λ) = f(x) + λ′(Ex− d) +
c

2
‖Ex− d‖2
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LECTURE OUTLINE

• Conic Programming

• Second Order Cone Programming
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• Recall Fenchel duality framework:

inf
x∈ℜn

{

f1(x) − f2(x)
}

= sup
λ∈ℜn

{

h2(λ) − h1(λ)
}

,

where
h2(λ) = inf

z∈X2

{

z′λ− f2(z)
}

,

h1(λ) = sup
y∈X1

{

y′λ− f1(y)
}

.

• Primal Fenchel Theorem, under conditions
on f1, f2, shows no duality gap, and existence of
optimal solution of the dual problem.

• Dual Fenchel Theorem, under conditions on
h1, h2, shows no duality gap, and existence of op-
timal solution of the primal problem.



CONIC PROBLEMS

• A conic problem is to minimize a convex func-
tion f : ℜn 7→ (−∞,∞] subject to a cone con-
straint.

• The most useful/popular special cases:

− Linear-conic programming

− Second order cone programming

− Semidefinite programming

involve minimization of a linear function over the
intersection of an affine set and a cone.

• Can be analyzed as a special case of Fenchel
duality.

• There are many interesting applications of conic
problems, including in discrete optimization.



PROBLEM RANKING IN

INCREASING PRACTICAL DIFFICULTY

• Linear and (convex) quadratic programming.

− Favorable special cases.

• Second order cone programming.

• Semidefinite programming.

• Convex programming.

− Favorable special cases.

− Quasi-convex programming.

− Geometric programming.

• Nonlinear/nonconvex/continuous programming.

− Favorable special cases.

− Unconstrained.

− Constrained.

• Discrete optimization/Integer programming

− Favorable special cases.



CONIC DUALITY I

• Consider the problem

minimize f(x)

subject to x ∈ C

where C is a convex cone, and f : ℜn 7→ (−∞,∞]
is convex.

• Apply Fenchel duality with the definitions

f1(x) = f(x), f2(x) =
{

0 if x ∈ C,
−∞ if x /∈ C.

We have

h1(λ) = sup
x∈ℜn

{

λ′x− f(x)
}

,

h2(λ) = inf
x∈C

x′λ =

{

0 if λ ∈ Ĉ,
−∞ if λ /∈ Ĉ,

where Ĉ is the negative polar cone (sometimes
called the dual cone of C):

Ĉ = −C∗ = {λ | x′λ ≥ 0, ∀ x ∈ C}



CONIC DUALITY II

• Fenchel duality can be written as

inf
x∈C

f(x) = sup
λ∈Ĉ

−h(λ),

where h is the conjugate of f .

• By the Primal Fenchel Theorem, there is no
duality gap and the sup is attained if one of the
following holds:

(a) ri(dom(f)) ∩ ri(C) 6= Ø.

(b) f can be extended to a real-valued convex
function over ℜn, and dom(f) and C are
polyhedral.

• Similarly, by the Dual Fenchel Theorem, if f is
closed and C is closed, there is no duality gap and
the infimum in the primal problem is attained if
one of the following two conditions holds:

(a) ri(dom(h)) ∩ ri(Ĉ) 6= Ø.

(b) h can be extended to a real-valued convex
function over ℜn, and dom(h) and Ĉ are
polyhedral.



LINEAR-CONIC PROBLEMS

• Let f be affine, f(x) = c′x, with dom(f) be-
ing an affine set, dom(f) = b + S, where S is a
subspace.

• The primal problem is

minimize c′x

subject to x− b ∈ S, x ∈ C.

• The conjugate is

h(λ) = sup
x−b∈S

(λ− c)′x = sup
y∈S

(λ− c)′(y + b)

=

{

(λ− c)′b if λ− c ∈ S⊥,
∞ if λ− c /∈ S⊥,

so the dual problem can be written as

minimize b′λ

subject to λ− c ∈ S⊥, λ ∈ Ĉ.

• The primal and dual have the same form.

• If C is closed, the dual of the dual yields the
primal.



VISUALIZATION OF LINEAR-CONIC PROBLEMS

x∗

λ∗

b

c

b + S

c + S⊥

C = Ĉ

λ ∈ (c + S⊥) ∩ Ĉ

(Dual)

x∈(b+S)∩C

(Primal)

Case where C is self-dual (C = Ĉ).



CONES AND GENERALIZED INEQUALITIES

• Cones allow a shorthand expression of inequal-
ity constraints.

• Example: The constraint Ax ≥ b can be writ-
ten as z = Ax − b and z ∈ C, where C is the
nonnegative orthant.

• General Example: For a closed convex cone
C we have

x ∈ C if and only if y′x ≤ 0, ∀ y ∈ C∗

where C∗ is the polar cone of C.

• Generalized Inequalities: Given a cone C,
for two vectors x, y ∈ ℜn, we write

x � y if x− y ∈ C,

and for a function g : ℜm 7→ ℜn, we write

g(x) � 0 if g(x) ∈ C.

• Desirable properties: C closed, convex, and
pointed in the sense that C ∩ (−C) = {0} (which
implies that x � y, y � x ⇒ x = y).



SOME EXAMPLES

• Nonnegative Orthant: C = {x | x ≥ 0}.
• The Second Order Cone: Let

C =

{

(x1, . . . , xn) | xn ≥
√

x2
1 + · · · + x2

n−1

}

The corresponding generalized inequality is

x � y if xn−yn ≥
√

(x1 − y1)2 + · · · + (xn−1 − yn−1)2.

• The Positive Semidefinite Cone: Consider
the space of symmetric n× n matrices, viewed as
the space ℜn2

with the inner product

< X,Y >= trace(XY ) =

n
∑

i=1

n
∑

j=1

xijyij

Let D be the cone of matrices that are positive
semidefinite. Then

X � Y if X − Y is positive semidefinite.

• All these cones are self-dual , i.e.,

C = −C∗ = Ĉ



SECOND ORDER CONE PROGRAMMING

• Second order cone programming is the linear-
conic problem

minimize c′x

subject to Aix− bi ∈ Ci, i = 1, . . . ,m,

where c, bi are vectors, Ai are matrices, bi is a
vector in ℜni , and

Ci : the second order cone of ℜni

x1

x2

x3



SECOND ORDER CONE DUALITY

• The dual of the second order cone problem
(viewed as a special case of a linear-conic prob-
lem) is (after some manipulation)

maximize
m
∑

i=1

b′iλi

subject to
m
∑

i=1

A′
iλi = c, λi ∈ Ci, i = 1, . . . ,m,

where λ = (λ1, . . . , λm).

• The duality theory is derived from (and is no
more favorable than) the one for linear-conic prob-
lems.

• There is no duality gap if there exists a feasible
solution in the interior of the 2nd order cones Ci.

• Generally, second order cone problems can be
recognized from the presence of norm or convex
quadratic functions in the cost or the constraint
functions.

• There are many applications.
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• Special Cases of Fenchel Duality

• Semidefinite Programming

• Monotropic Programming
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• Recall Fenchel duality framework:

inf
x∈ℜn

{

f1(x) − f2(x)
}

= sup
λ∈ℜn

{

h2(λ) − h1(λ)
}

,

where
h2(λ) = inf

z∈X2

{

z′λ− f2(z)
}

,

h1(λ) = sup
y∈X1

{

y′λ− f1(y)
}

.

• Primal Fenchel Theorem, under conditions
on f1, f2, shows no duality gap, and existence of
optimal solution of the dual problem.

• Dual Fenchel Theorem, under conditions on
h1, h2, shows no duality gap, and existence of op-
timal solution of the primal problem.



LINEAR-CONIC PROBLEMS

• Let f1 be affine, f1(x) = c′x, with dom(f) be-
ing an affine set, dom(f) = b + S, where S is a
subspace. Let −f2 be the indicator function of a
cone C, with dual cone denoted Ĉ.

• The primal problem is

minimize c′x

subject to x− b ∈ S, x ∈ C.

• The conjugate of f1 is

h(λ) = sup
x−b∈S

(λ− c)′x = sup
y∈S

(λ− c)′(y + b)

=

{

(λ− c)′b if λ− c ∈ S⊥,
∞ if λ− c /∈ S⊥,

so the dual problem can be written as

minimize b′λ

subject to λ− c ∈ S⊥, λ ∈ Ĉ.

• The primal and dual have the same form.

• If C is closed, the dual of the dual yields the
primal.



SEMIDEFINITE PROGRAMMING

• Consider the symmetric n× n matrices. Inner
product < X,Y >= trace(XY ) =

∑n
i,j=1 xijyij .

• Let D be the cone of pos. semidefinite matrices.
Note that D is self-dual [D = D̂, i.e., < X,Y >≥
0 for all Y ∈ D iff X ∈ D], and its interior is the
set of pos. definite matrices.

• Fix symmetric matrices C, A1, . . . , Am, and
vectors b1, . . . , bm, and consider

minimize < C,X >

subject to < Ai,X >= bi, i = 1, . . . ,m, X ∈ D

• Viewing this as an affine cost conic problem,
the dual problem (after some manipulation) is

maximize

m
∑

i=1

biλi

subject to C − (λ1A1 + · · · + λmAm) ∈ D

• There is no duality gap if there exists λ such
that C − (λ1A1 + · · · + λmAm) is pos. definite.



EXAMPLE: MINIMIZE THE MAXIMUM

EIGENVALUE

• Given n× n matrix M(λ), depending on a pa-
rameter vector λ, choose λ to minimize the maxi-
mum eigenvalue of M(λ).

• We pose this problem as

minimize z

subject to maximum eigenvalue of M(λ) ≤ z,

or equivalently

minimize z

subject to zI −M(λ) ∈ D,

where I is the n×n identity matrix, and D is the
semidefinite cone.

• If M(λ) is an affine function of λ,

M(λ) = C + λ1M1 + · · · + λmMm,

the problem has the form of the dual semidefi-
nite problem, with the optimization variables be-
ing (z, λ1, . . . , λm).



EXAMPLE: LOWER BOUNDS FOR

DISCRETE OPTIMIZATION

• Quadr. problem with quadr. equality constraints

minimize x′Q0x+ a′0x+ b0

subject to x′Qix+ a′ix+ bi = 0, i = 1, . . . ,m,

Q0, . . . , Qm: symmetric (not necessarily ≥ 0).

• Can be used for discrete optimization. For ex-
ample an integer constraint xi ∈ {0, 1} can be
expressed by x2

i − xi = 0.

• The dual function is

q(λ) = inf
x∈ℜn

{

x′Q(λ)x+ a(λ)′x+ b(λ)
}

,

where

Q(λ) = Q0 +

m
∑

i=1

λiQi,

a(λ) = a0 +
m
∑

i=1

λiai, b(λ) = b0 +
m
∑

i=1

λibi

• It turns out that the dual problem is equivalent
to a semidefinite program ...



EXTENDED MONOTROPIC PROGRAMMING

• Let

− x = (x1, . . . , xm) with xi ∈ ℜni

− fi : ℜni 7→ (−∞,∞] is closed proper convex

− S is a subspace of ℜn1+···+nm

• Extended monotropic programming problem:

minimize
m
∑

i=1

fi(xi)

subject to x ∈ S

• Monotropic programming is the special case
where each xi is 1-dimensional.

• Models many important optimization problems
(linear, quadratic, convex network, etc).

• Has a powerful symmetric duality theory.



DUALITY

• Convert to the equivalent form

minimize
m
∑

i=1

fi(zi)

subject to zi = xi, i = 1, . . . ,m, x ∈ S

• Assigning a multiplier vector λi ∈ ℜni to the
constraint zi = xi, the dual function is

q(λ) = inf
x∈S

λ′x+
m
∑

i=1

inf
zi∈ℜni

{

fi(zi) − λ′izi

}

=

{
∑m

i=1 qi(λi) if λ ∈ S⊥,
−∞ otherwise,

where qi(λi) = infzi∈ℜ
{

fi(zi) − λ′izi

}

.

• The dual problem is the (symmetric) monotropic
program

maximize

m
∑

i=1

qi(λi)

subject to λ ∈ S⊥



OPTIMALITY CONDITIONS

• Assume that −∞ < q∗ = f∗ < ∞. Then
(x∗, λ∗) are optimal primal and dual solution pair
if and only if

x∗ ∈ S, λ∗ ∈ S⊥, λ∗i ∈ ∂fi(x∗i ), ∀ i

• Specialization to the monotropic case (ni =
1 for all i): The vectors x∗ and λ∗ are optimal
primal and dual solution pair if and only if

x∗ ∈ S, λ∗ ∈ S⊥, (x∗i , λ
∗
i ) ∈ Γi, ∀ i

where

Γi =
{

(xi, λi) | xi ∈ dom(fi), f
−
i (xi) ≤ λi ≤ f+

i (xi)
}

• Interesting application of these conditions to
electrical networks.



STRONG DUALITY THEOREM

• Assume that the extended monotropic program-
ming problem is feasible, and that for all feasible
solutions x, the set

S⊥ + ∂ǫD1,ǫ(x) + · · · +Dm,ǫ(x)

is closed for all ǫ > 0, where

Di,ǫ(x) =
{

(0, . . . , 0, λi, 0, . . . , 0) | λi ∈ ∂ǫfi(xi)
}

Then q∗ = f∗.

• An unusual duality condition. It is satisfied if
each set ∂ǫfi(x) is either compact or polyhedral.
Proof is also unusual - uses the ǫ-descent method!

• Monotropic programming case: If ni = 1,
Di,ǫ(x) is an interval, so it is polyhedral, and q∗ =
f∗.

• There are some other cases of interest. See
Chapter 8.

• The monotropic duality result extends to con-
vex separable problems with nonlinear constraints.
(Hard to prove ...)



EXACT PENALTY FUNCTIONS

• We use Fenchel duality to derive an equiva-
lence between a constrained convex optimization
problem, and a penalized problem that is less con-
strained or is entirely unconstrained.

• We consider the problem

minimize f(x)

subject to x ∈ X, g(x) ≤ 0, i = 1, . . . , r,

where g(x) =
(

g1(x), . . . , gr(x)
)

, X is a convex
subset of ℜn, and f : ℜn → ℜ and gj : ℜn → ℜ
are real-valued convex functions.

• We introduce a convex function P : ℜr 7→ ℜ,
called penalty function, which satisfies

P (u) = 0, ∀ u ≤ 0, P (u) > 0, if ui > 0 for some i

• We consider solving, in place of the original, the
“penalized” problem

minimize f(x) + P
(

g(x)
)

subject to x ∈ X,



FENCHEL DUALITY

• We have

inf
x∈X

{

f(x) + P
(

g(x)
)}

= inf
u∈ℜr

{

p(u) + P (u)
}

where p(u) = infx∈X, g(x)≤u f(x) is the primal func-
tion.

• Assume −∞ < q∗ and f∗ < ∞ so that p is
proper (in addition to being convex).

• By Fenchel duality

inf
u∈ℜr

{

p(u) + P (u)
}

= sup
µ≥0

{

q(µ) −Q(µ)
}

,

where
q(µ) = inf

x∈X

{

f(x) + µ′g(x)
}

is the dual function, and Q is the conjugate convex
function of P :

Q(µ) = sup
u∈ℜr

{

u′µ− P (u)
}



PENALTY CONJUGATES

 (1/2c)m2 (c/2)u2

0 u 0 m

Q(m) P(u) = max{0, au}

0 u 0 m

Q(m) 

0 u 0 m

Q(m) P(u)

P(u) = max{0, au +u2}

a

a

Slope = a

u

u

u

µ

µ

µ

a 0 a 0

a 0a 0

a 0 a 0

a

Slope = a

Q(µ)

Q(µ)) P (u) = max{0, au+u2}

P (u) = (c/2)u2 Q(µ) = (1/2c)µ2

P (u) = c max{0, u}

c

• Important observation: For Q to be flat for
some µ > 0, P must be nondifferentiable at 0.



FENCHEL DUALITY VIEW

µ0 m

q(m) 

0 m

0 m

q* = f* = f
~

~
f

f + Q(m) 
~

f + Q(m) 
~

f + Q(m) 
~

q(m) 

q(m) 

~
f

m~

m~

m~

µ

µ

µ

a 0

a 0

a 0

f̃

f̃

q∗ = f∗ = f̃
q(µ)

q(µ)

q(µ)

f̃ + Q(µ)

f̃ + Q(µ)

f̃ + Q(µ)

µ̃

µ̃

µ̃

• For the penalized and the original problem to
have equal optimal values, Qmust be“flat enough”
so that some optimal dual solution µ∗ minimizes
Q, i.e., 0 ∈ ∂Q(µ∗) or equivalently

µ∗ ∈ ∂P (0)

• True if P (u) = c
∑r

j=1 max{0, uj} with c ≥
‖µ∗‖ for some optimal dual solution µ∗.


