
Dynamic Programming and Optimal Control
VOL. I, FOURTH EDITION

Dimitri P. Bertsekas

Massachusetts Institute of Technology

Selected Theoretical Problem Solutions

Last Updated 2/11/2017

Athena Scientific, Belmont, Mass.

WWW site for book information and orders

http://www.athenasc.com/

1

NOTE

This solution set is meant to be a significant extension of the scope and coverage of the book. It

includes solutions to all of the book’s exercises marked with the symbol w w w .

The solutions are continuously updated and improved, and additional material, including new prob-
lems and their solutions are being added. Please send comments, and suggestions for additions and
improvements to the author at dimitrib@mit.edu

The solutions may be reproduced and distributed for personal or educational uses.

2

Solutions Vol. I, Chapter 1

1.8 (Ordering Matrix Multiplications) w w w

Each state is a set Sk ⊆ {2, . . . N}. The allowable states at stage k are those of cardinality k. The
allowable controls are uk ∈ {2, . . . , N}−Sk. This control represents the multiplication of the term ending
in Muk−1 by the one starting in Muk

. The system equation evolves according to

Sk+1 = Sk ∪ uk

The terminal state is SN = {2, . . . , N}, with cost 0. The cost at stage k is given by the number of
multiplications

gk(Sk, uk) = nanuk
nb

where

a = max
{
i ∈ {1, . . . , N + 1} | i /∈ Sk, i < uk

}

b = min
{
i ∈ {1, . . . , N + 1} | i /∈ Sk, i > uk

}

For example, let N = 3 and

M1 be 1× 10

M2 be 10× 1

M3 be 1× 10

The order (M1M2)M3 corresponds to controls u1 = 2 and u2 = 3, giving cost

(u1 = 2) n1n2n3 = 10 (a = 1, b = 3)
(u2 = 3) n1n3n4 = 10 (a = 1, b = 4)

with a total cost of 20

whereas M1(M2M3) gives

(u1 = 3) n2n3n4 = 100 (a = 2, b = 4)
(u2 = 2) n1n2n4 = 100 (a = 1, b = 4)

with a total cost of 200

Now consider the given problem

M1 is 2× 10

M2 is 10× 5

M3 is 5× 1

The shortest path is Ø → {3} → {2, 3}, corresponding to M1(M2M3) and 70 multiplications.

3

1.16 w w w

(a) Consider the problem with the state equal to the number of free rooms. At state x ≥ 1 with y
customers remaining, if the inkeeper quotes a rate ri, the transition probability is pi to state x− 1 (with
a reward of ri) and 1− pi to state x (with a reward of 0). The DP algorithm for this problem starts with
the terminal cost

J(x, 0) = 0, ∀ x ≥ 0,

and is given by

J(x, y) = max
i=1,...,m

[
pi(ri + J(x− 1, y − 1)) + (1− pi)J(x, y − 1)

]
, ∀ x ≥ 0,

J(0, y) = 0.

We now prove the last assertion. We first prove by induction on y that for all y,

J(x, y) ≥ J(x− 1, y), ∀ x ≥ 1.

Indeed this is true for y = 0. Assuming this is true for a given y, we will prove that

J(x, y + 1) ≥ J(x− 1, y + 1), ∀ x ≥ 1.

This relation holds for x = 1 since ri > 0. For x ≥ 2, by using the DP recursion, this relation is written
as

max
i=1,...,m

[
pi(ri+J(x−1, y−1))+(1−pi)J(x, y−1)

]
≥ max

i=1,...,m

[
pi(ri+J(x−2, y−1))+(1−pi)J(x−1, y−1)

]
.

By the induction hypothesis, each of the terms on the left-hand side is no less than the corresponding
term on the right-hand side, and so the above relation holds.

The optimal rate is the one that maximizes in the DP algorithm, or equivalently, the one that
maximizes

piri + pi(J(x− 1, y − 1)− J(x, y − 1)).

The highest rate rm simultaneously maximizes piri and minimizes pi. Since

J(x− 1, y − 1) ≤ J(x, y − 1) ≤ 0,

as proved above, we see that the highest rate simultaneously maximizes piri and pi(J(x−1, y−1)−
J(x, y − 1)), and so it maximizes their sum.

(b) Clearly, it is optimal to accept an offer of ri if ri is larger than the threshold

r̄(x, y) = J(x, y − 1)− J(x− 1, y − 1).

4

1.17 (Investing in a Stock) w w w

(a) The total net expected profit from the (buy/sell) investment decissions after transaction costs are
deducted is

E

{
N−1∑

k=0

(
ukPk(xk)− c |uk|

)

}

,

where

uk =

{
1 if a unit of stock is bought at the kth period,
−1 if a unit of stock is sold at the kth period,
0 otherwise.

With a policy that maximizes this expression, we simultaneously maximize the expected total worth of
the stock held at time N minus the investment costs (including sale revenues).

The DP algorithm is given by

Jk(xk) = max
uk=−1,0,1

[

ukPk(xk)− c |uk|+ E
{
Jk+1(xk+1) | xk

}]

,

with
JN (xN) = 0,

where Jk+1(xk+1) is the optimal expected profit when the stock price is xk+1 at time k+1. Since uk does
not influence xk+1 and E

{
Jk+1(xk+1) | xk

}
, a decision uk ∈ {−1, 0, 1} that maximizes ukPk(xk)− c |uk|

at time k is optimal. Since Pk(xk) is monotonically nonincreasing in xk, it follows that it is optimal to
set

uk =

{
1 if xk ≤ xk,
−1 if xk ≥ xk,
0 otherwise,

where xk and xk are as in the problem statement. Note that the optimal expected profit Jk(xk) is given
by

Jk(xk) = E

{
N−1∑

i=k

max
ui=−1,0,1

[
uiPi(xi)− c |ui|

]

}

.

(b) Let nk be the number of units of stock held at time k. If nk is less that N − k (the number of
remaining decisions), then the value nk should influence the decision at time k. We thus take as state
the pair (xk, nk), and the corresponding DP algorithm takes the form

Vk(xk, nk) =

maxuk∈{−1,0,1}

[

ukPk(xk)− c |uk|+ E
{
Vk+1(xk+1, nk + uk) | xk

}]

if nk ≥ 1,

maxuk∈{0,1}

[

ukPk(xk)− c |uk|+ E
{
Vk+1(xk+1, nk + uk) | xk

}]

if nk = 0,

with
VN (xN , nN) = 0.

Note that we have
Vk(xk, nk) = Jk(xk), if nk ≥ N − k,

5

where Jk(xk) is given by the formula derived in part (a). Using the above DP algorithm, we can calculate
VN−1(xN−1, nN−1) for all values of nN−1, then calculate VN−2(xN−2, nN−2) for all values of nN−2, etc.

To show the stated property of the optimal policy, we note that Vk(xk, nk) is monotonically nonde-
creasing with nk, since as nk decreases, the remaining decisions become more constrained. An optimal
policy at time k is to buy if

Pk(xk)− c+ E
{
Vk+1(xk+1, nk + 1)− Vk+1(xk+1, nk) | xk

}
≥ 0, (1)

and to sell if

−Pk(xk)− c+ E
{
Vk+1(xk+1, nk − 1)− Vk+1(xk+1, nk) | xk

}
≥ 0. (2)

The expected value in Eq. (1) is nonnegative, which implies that if xk ≤ xk, implying that Pk(xk)−c ≥ 0,
then the buying decision is optimal. Similarly, the expected value in Eq. (2) is nonpositive, which implies
that if xk < xk, implying that −Pk(xk)− c < 0, then the selling decision cannot be optimal. It is possible
that buying at a price greater than xk is optimal depending on the size of the expected value term in Eq.
(1).

(c) Let mk be the number of allowed purchase decisions at time k, i.e., m plus the number of sale decisions
up to k, minus the number of purchase decisions up to k. Ifmk is less than N−k (the number of remaining
decisions), then the value mk should influence the decision at time k. We thus take as state the pair
(xk,mk), and the corresponding DP algorithm takes the form

Wk(xk,mk) =

maxuk∈{−1,0,1}

[

ukPk(xk)− c |uk|+ E
{
Wk+1(xk+1,mk − uk) | xk

}]

if mk ≥ 1,

maxuk∈{−1,0}

[

ukPk(xk)− c |uk|+ E
{
Wk+1(xk+1,mk − uk) | xk

}]

if mk = 0,

with

WN (xN ,mN) = 0.

From this point the analysis is similar to the one of part (b).

(d) The DP algorithm takes the form

Hk(xk,mk, nk) = max
uk∈{−1,0,1}

[

ukPk(xk)− c |uk|+ E
{
Hk+1(xk+1,mk − uk, nk + uk) | xk

}]

if mk ≥ 1 and nk ≥ 1, and similar formulas apply for the cases where mk = 0 and/or nk = 0 [compare
with the DP algorithms of parts (b) and (c)].

(e) Let r be the interest rate, so that x invested dollars at time k will become (1+ r)N−kx dollars at time
N . Once we redefine the expected profit Pk(xk) to be

Pk(x) = E{xN | xk = x} − (1 + r)N−kx,

the preceding analysis applies.

6

1.18 (Regular Polygon Theorem) w w w

We consider part (b), since part (a) is essentially a special case. We will consider the problem of placing
N − 2 points between the endpoints A and B of the given subarc. We will show that the polygon of
maximal area is obtained when the N − 2 points are equally spaced on the subarc between A and B.
Based on geometric considerations, we impose the restriction that the angle between any two successive
points is no more than π.

As the subarc is traversed in the clockwise direction, we number sequentially the encountered points
as x1, x2, . . . , xN , where x1 and xN are the two endpoints A and B of the arc, respectively. For any point
x on the subarc, we denote by φ the angle between x and xN (measured clockwise), and we denote by
Ak(φ) the maximal area of a polygon with vertices the center of the circle, the points x and xN , and
N − k − 1 additional points on the subarc that lie between x and xN .

Without loss of generality, we assume that the radius of the circle is 1, so that the area of the
triangle that has as vertices two points on the circle and the center of the circle is (1/2) sinu, where u is
the angle corresponding to the center.

By viewing as state the angle φk between xk and xN , and as control the angle uk between xk and
xk+1, we obtain the following DP algorithm

Ak(φk) = max
0≤uk≤min{φk,π}

[
1

2
sinuk +Ak+1(φk − uk)

]

, k = 1, . . . , N − 2. (1)

Once xN−1 is chosen, there is no issue of further choice of a point lying between xN−1 and xN , so we
have

AN−1(φ) =
1

2
sinφ, (2)

using the formula for the area of the triangle formed by xN−1, xN , and the center of the circle.
It can be verified by induction that the above algorithm admits the closed form solution

Ak(φk) =
1

2
(N − k) sin

(
φk

N − k

)

, k = 1, . . . , N − 1, (3)

and that the optimal choice for uk is given by

u∗
k =

φk

N − k
.

Indeed, the formula (3) holds for k = N − 1, by Eq. (2). Assuming that Eq. (3) holds for k + 1, we have
from the DP algorithm (1)

Ak(φk) = max
0≤uk≤min{φk,π}

Hk(uk, φk), (4)

where

Hk(uk, φk) =
1

2
sinuk +

1

2
(N − k − 1) sin

(
φk − uk

N − k − 1

)

. (5)

7

It can be verified that for a fixed φk and in the range 0 ≤ uk ≤ min{φk, π}, the function Hk(·, φk) is
concave (its second derivative is negative) and its derivative is 0 only at the point u∗

k = φk/(N − k) which
must therefore be its unique maximum. Substituting this value of u∗

k in Eqs. (4) and (5), we obtain

Ak(φk) =
1

2
sin

(
φk

N − k

)

+
1

2
(N − k − 1) sin

(
φk − φk/(N − k)

N − k − 1

)

=
1

2
(N − k) sin

(
φk

N − k

)

,

and the induction is complete.
Thus, given an optimally placed point xk on the subarc with corresponding angle φk, the next point

xk+1 is obtained by advancing clockwise by φk/(N − k). This process, when started at x1 with φ1 equal
to the angle between x1 and xN , yields as the optimal solution an equally spaced placement of the points
on the subarc.

1.20 w w w

Let t1 < t2 < . . . < tN−1 denote the times where g1(t) = g2(t). Clearly, it is never optimal to switch
functions at any other times. We can therefore divide the problem into N − 1 stages, where we want to
determine for each stage k whether or not to switch activities at time tk.

Define

xk =

{
0 if on activity g1 just before time tk
1 if on activity g2 just before time tk

uk =

{
0 to continue current activity
1 to switch between activities

Then the state at time tk+1 is simply xk+1 = (xk + uk) mod 2, and the profit for stage k is

gk(xk, uk) =

∫ tk+1

tk

g1+xk+1
(t)dt− ukc

The DP algorithm is then

JN (xN) = 0

Jk(xk) = min
uk

{gk(xk, uk) + Jk+1[(xk + uk) mod 2]} .

1.27 (Semilinear Systems) w w w

The DP algorithm is
JN (xN) = c′NxN

Jk(xk) = min
uk

E
wk,Ak

{
c′kxk + gk(uk) + Jk+1

(
Akxk + fk(uk) + wk

)}

8

We will show that Jk(xk) is affine through induction. Clearly JN (xN) is affine. Assume that Jk+1(xk+1)
is affine; that is,

Jk+1(xk+1) = b′k+1xk+1 + dk+1

Then

Jk(xk) = min
uk

E
wk,Ak

{
c′kxk + gk(uk) + b′k+1Akxk + b′k+1fk(uk) + b′k+1wk + dk+1

}

= c′kxk + b′k+1 E {Ak}xk + b′k+1 E {wk}+min
uk

{
gk(uk) + b′k+1fk(uk)

}
+ dk+1

Note that E{Ak} and E{wk} do not depend on xk or uk. If the optimal value is finite then min{gk(uk)+
b′k+1fk(uk)} is a real number, so Jk(xk) is affine. Furthermore, the optimal control at each stage solves
this minimization which is independent of xk. Thus the optimal policy consists of constant functions µ∗

k.

1.28 (Monotonicity Property of DP) w w w

Under the time invariance assumptions, the DP algorithm takes the form

Jk(x) = min
u∈U(x)

E
w

{
g(x, u, w) + Jk+1

(
f(x, u, w)

)}
, x ∈ S.

Thus if JN−1(x) ≤ JN (x) for all x ∈ S, we have

JN−2(x) = min
u∈U(x)

E
w

{
g(x, u, w) + JN−1

(
f(x, u, w)

)}

≤ min
u∈U(x)

E
w

{
g(x, u, w) + JN

(
f(x, u, w)

)}

= JN−1(x),

for all x ∈ S. Continuing similarly, we obtain Jk(x) ≤ Jk+1(x) for all k and x.

9

Solutions Vol. I, Chapter 2

2.8 (Shortest Path Tour Problem [BeC04], [FGL13]) w w w

We will transform the problem to a (standard) shortest path problem in an expanded graph that is
constructed from the given graph. Let I be the set of nodes of the original graph. The expanded graph
has nodes (i, 0), (i, 1), . . . , (i, N), where i ranges over the node set I of the original graph. The meaning
of being in node (i,m), m = 1, . . . , N , is that we are at node i and have already successively visited the
sets T1, . . . , Tm, but not the sets Tm+1, . . . , TN . The meaning of being in node (i, 0) is that we are at
node i and have not yet visited any node in the set T1.

The arcs of the expanded graph are constructed as follows: For each arc (i, j) of the original graph,
with length aij , introduce for m = 0, . . . , N − 1, in the expanded graph an arc of length aij that goes
from (i,m) to (j,m) if j /∈ Tm+1, and goes from (i,m) to (j,m+ 1) if j ∈ Tm+1. Also, for each arc (i, j)
of length aij of the original graph, introduce in the expanded graph an arc of length aij that goes from
(i, N) to (j,N).

It is seen that the problem is equivalent to finding a shortest path from (s, 0) to (t, N) in the
expanded graph.

Let Dk+1(i,m), m = 0, 1, . . . , N , be the shortest distance from (i,m) to the destination (t, N) using
k arcs or less. The DP iteration is

Dk+1(i,m) = min
{j | (i,j) is an arc}

{

min
j /∈Tm+1

{
aij +Dk(j,m)

}
, min
j∈Tm+1

{
aij +Dk(j,m+ 1)

}
}

,

m = 0, . . . , N − 1,

Dk+1(i, N) =

{

min{j | (i,j) is an arc}
{
aij +Dk(j,N)

}
if i 6= t,

0 if i = t.

The initial condition is

D0(i,m) =

{
∞ if (i,m) 6= (t, N),
0 if (i,m) = (t, N).

This algorithm is not very efficient because it requires as many as N · |I| iterations, where |I| is the
number of nodes in the original graph. The algorithm can be made more efficient by observing that to
calculate D(i, k) for all i, we do not need to know D(i, k − 1), . . . , D(i, 0); it is sufficient to know just
D(j, k+1) for j ∈ Tk+1. Thus, we may calculate firstD(i, N) using a standard shortest path computation,
then calculate D(i, N − 1), then D(i, N − 2), etc. This more efficient calculation process may also be
viewed as a DP algorithm that involves the solution of N (standard) shortest path problems involving
several origins and a single destination. The origins are the nodes in Tk and the destination is an artificial
node to which the nodes j ∈ Tk+1 are connected with an arc of length D(j, k + 1).

10

2.10 (Label Correcting with Multiple Destinations) w w w

Proposition: If there exist a path from the origin to each node in T , the modified version of the label
correcting algorithm terminates with UPPER < ∞ and yields a shortest path from the origin to each
node in T . Otherwise the algorithm terminates with UPPER = ∞.

Proof: The proof is analogous to the proof of Proposition 3.1. To show that this algorithm terminates,
we can use the identical argument in the proof of Proposition 3.1.

Now suppose that for some node t ∈ T , there is no path from s to t. Then a node i such that (i, t)
is an arc cannot enter the OPEN list because this would establish that there is a path from s to i, and
therefore also a path from s to t. Thus, dt is never changed and UPPER is never reduced from its initial
value of ∞.

Suppose now that there is a path from s to each node t ∈ T . Then, since there is a finite number
of distinct lengths of paths from s to each t ∈ T that do not contain any cycles, and each cycle has
nonnegative length, there is also a shortest path. For some arbitrary t, let (s, j1, j2, . . . , jk, t) be a
shortest path and let d∗t be the corresponding shortest distance. We will show that the value of UPPER
upon termination must be equal to d∗ = maxt∈T d∗t . Indeed, each subpath (s, j1, . . . , jm),m = 1, . . . , k,
of the shortest path (s, j1, . . . , jk, t) must be a shortest path from s to jm. If the value of UPPER is
larger than d∗ at termination, the same must be true throughout the algorithm, and therefore UPPER
will also be larger than the length of all the paths (s, j1, . . . , jm),m = 1, . . . , k, throughout the algorithm,
in view of the nonnegative arc length assumption. If, for each t ∈ T , the parent node jk enters the OPEN
list with djk equal to the shortest distance from s to jk, UPPER will be set to d∗ in step 2 immediately
following the next time the last of the nodes jk is examined by the algorithm in step 2. It follows that, for
some t̄ ∈ T , the associated parent node j̄k will never enter the OPEN list with dj̄k equal to the shortest
distance from s to j̄k. Similarly, and using also the nonnegative length assumption, this means that node
j̄k−1 will never enter the OPEN list with dj̄k−1

equal to the shortest distance from s to j̄k−1. Proceeding

backwards, we conclude that j̄1 never enters the OPEN list with dj̄1 equal to the shortest distance from
s to j̄1 [which is equal to the length of the arc (s, j1)]. This happens, however, at the first iteration of
the algorithm, obtaining a contradiction. It follws that at termination, UPPER will be equal to d∗.

Finally, it can be seen that, upon termination of the algorithm, the path constructed by tracing the
parent nodes backward from d to s has length equal to d∗t for each t ∈ T . Thus the path is a shortest
path from s to t.

2.11 (Label Correcting with Negative Arc Lengths) w w w

(a) The proof of termination for this algorithm follows exactly that for the original algorithm. Each time
a node j enters the OPEN list, its label is decreased and becomes equal to the length of some path from
s to j. Although arc lengths are no longer necessarily nonnegative, cycles lengths are. Therefore, since
each path can be decomposed into a path with no repeated nodes (there is a finite number of distinct such
paths) plus a (possibly empty) set of cycles (which have a nonnegative length), the number of distinct
lengths of paths from s to j that are smaller than any given number is finite. Therefore, there can be
only a finite number of label reductions and the algorithm must terminate.

11

(b) In the case where all arcs have nonnegative lengths, an underestimate of the shortest distance from
any node to the destination node is clearly 0. Letting uj = 0 from all nodes j, we see that the algorithm
described reduces to the algorithm of Section 2.3.1.

2.12 (Dijkstra’s Algorithm for Shortest Paths) w w w

(a) We denote by Pk the OPEN list after having removed k nodes from OPEN, (i.e., after having performed
k iterations of the algorithm). We also denote dkj the value of dj at this time. Let bk = minj∈Pk

{dkj }. First,
we show by induction that b0 ≤ b1 ≤ · · · ≤ bk. Indeed, b0 = 0 and b1 = minj{asj} ≥ 0, which implies that
b0 ≤ b1. Next, we assume that b0 ≤ · · · ≤ bk for some k ≥ 1; we shall prove that bk ≤ bk+1. Let jk+1 be
the node removed from OPEN during the (k+1)th iteration. By assumption dkjk+1

= minj∈Pk
{dkj } = bk,

and we also have

dk+1
i = min{dki , dkjk+1

+ ajk+1i}.

We have Pk+1 = (Pk − {jk+1})∪Nk+1, where Nk+1 is the set of nodes i satisfying dk+1
i = dkjk+1

+ ajk+1i

and i /∈ Pk. Therefore,

min
i∈Pk+1

{dk+1
i } = min

i∈(Pk−{jk+1})∪Nk+1

{dk+1
i } = min

[

min
i∈Pk−{jk+1}

{dk+1
i }, min

i∈Nk+1

{dk+1
i }

]

.

Clearly,

min
i∈Nk+1

{dk+1
i } = min

i∈Nk+1

{dkjk+1
+ ajk+1i} ≥ dkjk+1

.

Moreover,

min
i∈Pk−{jk+1}

{dk+1
i } = min

i∈Pk−{jk+1}

[

min{dki , dkjk+1
+ ajk+1i}

]

≥ min

[

min
i∈Pk−{jk+1}

{dki }, dkjk+1

]

= min
i∈Pk

{dki } = dkjk+1
,

because we remove from OPEN this node with theminimum dki . It follows that bk+1 = mini∈Pk+1
{dk+1

i } ≥
dkjk+1

= bk.

Now, we may prove that once a node exits OPEN, it never re-enters. Indeed, suppose that some node

i exits OPEN after the k∗th iteration of the algorithm; then, dk
∗−1

i = bk∗−1. If node i re-enters OPEN

after the ℓ∗th iteration (with ℓ∗ > k∗), then we have dℓ
1−1
i > dℓ

∗

i = dℓ
∗−1
j∗
ℓ

+ajℓ∗ i ≥ dℓ
∗−1
jℓ∗

= bℓ∗−1. On the

other hand, since di is non-increasing, we have bk∗−1 = dk
∗−1

i ≥ dℓ
∗−1
i . Thus, we obtain bk∗−1 > bℓ∗−1,

which contradicts the fact that bk is non-decreasing.
Next, we claim the following after the kth iteration, dki equals the length of the shortest possible path

from s to node i ∈ Pk under the restriction that all intermediate nodes belong to Ck. The proof will be
done by induction on k. For k = 1, we have C1 = {s} and d1i = asi, and the claim is obviously true. Next,
we assume that the claim is true after iterations 1, . . . , k; we shall show that it is also true after iteration
k + 1. The node jk+1 removed from OPEN at the (k + 1)-st iteration satisfies mini∈Pk

{dki } = d∗jk+1
.

Notice now that all neighbors of the nodes in Ck belong either to Ck or to Pk.

12

It follows that the shortest path from s to jk+1 either goes through Ck or it exits Ck, then it passes
through a node j∗ ∈ Pk, and eventually reaches jk+1. If the latter case applies, then the length of this
path is at least the length of the shortest path from s to j∗ through Ck; by the induction hypothesis,
this equals dkj∗ , which is at least dkjk+1

. It follows that, for node jk+1 exiting the OPEN list, dkjk+1
equals

the length of the shortest path from s to jk+1. Similarly, all nodes that have exited previously have their
current estimate of di equal to the corresponding shortest distance from s. * Notice now that

dk+1
i = min

{
dki , d

k
jk+1

+ ajk+1i

}
.

For i /∈ Pk and i ∈ Pk+1 it follows that the only neighbor of i in Ck+1 = Ck ∪ {jk+1} is node jk+1; for
such a node i, dki = ∞, which leads to dk+1

i = dkjk+1
+ ajk+1i. For i 6= jk+1 and i ∈ Pk, the augmentation

of Ck by including jk+1 offers one more path from s to i through Ck+1, namely that through jk+1.
Recall that the shortest path from s to i through Ck has length dki (by the induction hypothesis). Thus,
dk+1
i = min

{
dk1 , d

k
jk+1

+ ajk+1i

}
is the length of the shortest path from s to i through Ck+1.

The fact that each node exits OPEN with its current estimate of di being equal to its shortest
distance from s has been proved in the course of the previous inductive argument.

(b) Since each node enters the OPEN list at most once, the algorithm will terminate in at most N − 1
iterations. Updating the di’s during an iteration and selecting the node to exit OPEN requiresO(N) arith-
metic operations (i.e., a constant number of operations per node). Thus, the total number of operations
is O(N2).

2.17 (Distributed Asynchronous Shortest Path Computation [Ber82a]) w w w

(a) We first need to show that dki is the length of the shortest k-arc path originating at i, for i 6= t. For
k = 1

d1i = min
j

cij

which is the length of shortest arc out of i. Assume that dk−1
i is the length of the shortest (k − 1)-arc

path out of i. Then
dki = min

j
{cij + dk−1

j }

If dki is not the length of the shortest k-arc path, the initial arc of the shortest path must pass through
a node other than j. This is true since dk−1

j ≤ length of any (k − 1)-step arc out of j. Let ℓ be the
alternative node. From the optimality principle

distance of path through ℓ = ciℓ + dk−1
ℓ ≤ dki

But this contradicts the choice of dki in the DP algorithm. Thus, dki is the length of the shortest k-arc
path out of i. Since dkt = 0 for all k, once a k-arc path out of i reaches t we have dκi = dki for all

* Strictly speaking, this is the shortest distance from s to these nodes because paths are directed from
s to the nodes.

13

κ ≥ k. But with all arc lengths positive, dki is just the shortest path from i to t. Clearly, there is some
finite k such that the shortest k-path out of i reaches t. If this were not true, the assumption of positive
arc lengths implies that the distance from i to t is infinite. Thus, the algorithm will yield the shortest
distances in a finite number of steps. We can estimate the number of steps, Ni as

Ni ≤
minj djt
minj,k djk

(b) Let d̄ki be the distance estimate generated using the initial condition d0i = ∞ and dki be the estimate
generated using the initial condition d0i = 0. In addition, let di be the shortest distance from i to t.

Lemma:
dki ≤ dk+1

i ≤ di ≤ d̄k+1
i ≤ d̄ki (1)

dki = di = d̄ki for k sufficently large (2)

Proof: Relation (1) follows from the monotonicity property of DP. Note that d1i ≥ d0i and that d̄1i ≤ d̄0i .
Equation (2) follows immediately from the convergence of DP (given d0i = ∞) and from part a).

Proposition: For every k there exists a time Tk such that for all T ≥ Tk

Proof: The proof follows by induction. For k = 0 the proposition is true, given the positive arc length
assumption. Asume it is true for a given k. Let N(i) be a set containing all nodes adjacent to i. For
every j ∈ N(i) there exists a time, T j

k such that

dkj ≤ dTj ≤ d̄kj ∀T ≥ T j
k

Let T ′ be the first time i updates its distance estimate given that all d
T
j

k
j , j ∈ N(i), estimates have

arrived. Let dTij be the estimate of dj that i has at time T ′. Note that this may differ from d
T
j

k
j since the

later estimates from j may have arrived before T ′. From the Lemma

dkj ≤ dT
′

ij ≤ d̄kj ,

which, coupled with the monotonicity of DP, implies

dk+1
i ≤ dTi ≤ d̄k+1

i , ∀ T ≥ T ′

Since each node never stops transmitting, T ′ is finite and the proposition is proved. Using the Lemma,
we see that there is a finite k such that dκi = di = d̄κi , ∀ κ ≥ k. Thus, from the proposition, there exists
a finite time T ∗ such that dTi = d∗i ∀ T ≥ T ∗, i.

14

Solutions Vol. I, Chapter 3

3.10 (Inventory Control with Integer Constraints [Vei65], [Tsi84b]) w w w

(a) Clearly, JN (x) is continuous. Assume that Jk+1(x) is continuous. We have

Jk(x) = min
u∈{0,1,...}

{
cu+ L(x+ u) +G(x+ u)

}

where

G(y) = E
wk

{Jk+1(y − wk)}

L(y) = E
wk

{
pmax(0, wk − y) + hmax(0, y − wk)

}

Thus, L is continuous. Since Jk+1 is continuous, G is continuous for bounded wk. Assume that Jk is not
continuous. Then there exists a x̂ such that as y → x̂, Jk(y) does not approach Jk(x̂). Let

uy = arg min
u∈{0,1,...}

{
cu+ L(y + u) +G(y + u)

}

Since L and G are continuous, the discontinuity of Jk at x̂ implies that

lim
y→x̂

uy 6= ux̂.

But since uy is optimal for y,

lim
y→x̂

{
cuy + L(y + uy) +G(y + uy)

}
< lim

y→x̂

{
cux̂ + L(y + ux̂) +G(y + ux̂)

}
= Jk(x̂)

This contradicts the optimality of Jk(x̂) for x̂. Thus Jk is continuous.

(b) Let

Yk(x) = Jk(x+ 1)− Jk(x).

Clearly YN (x) is a non-decreasing function. Assume that Yk+1(x) is non-decreasing. Then

Yk(x+ δ)− Yk(x) = c(ux+δ+1 − ux+δ)− c(ux+1 − ux)

+ L(x+ δ + 1 + ux+δ+1)− L(x+ δ + ux+δ)

− [L(x+ 1 + ux+1)− L(x+ ux)]

+G(x + δ + 1 + ux+δ+1)−G(x+ δ + ux+δ)

− [G(x + 1 + ux+1)−G(x+ ux)].

15

Since Jk is continuous, we have uy+δ = uy for δ sufficiently small. Thus, with δ small,

Yk(x+ δ)− Yk(x) = L(x+ δ + 1 + ux+1)− L(x+ δ + ux)− [L(x+ 1 + ux+1)− L(x+ ux)]

+G(x + δ + 1 + ux+1)−G(x + δ + ux)− [G(x + 1 + ux+1)−G(x + ux)]

Now, since the control and penalty costs are linear, the optimal order given a stock of x is less than the
optimal order given x+ 1 stock plus one unit. Thus

ux+1 ≤ ux ≤ ux+1 + 1.

If ux = ux+1 + 1, Y (x + δ) − Y (x) = 0 and we have the desired result. Assume that ux = ux+1. Since
L(x) is convex, L(x+1)−L(x) is non-decreasing. Using the assumption that Yk+1(x) is non-decreasing,
we have

Yk(x+ δ)− Yk(x) = L(x+ δ + 1 + ux)− L(x+ δ + ux)− [L(x+ 1 + ux)− L(x+ ux)]
︸ ︷︷ ︸

≥0

+ E
wk

{
Jk+1(x+ δ + 1+ ux − wk)− Jk+1(x+ δ + ux − wk)

−[Jk+1(x+ 1 + ux − wk)− Jk+1(x+ ux − wk)]
}

︸ ︷︷ ︸

≥0

≥ 0.

Thus, Yk(x) is a non-decreasing function in x.

(c) From their definition and a straightforward induction it can be shown that J∗
k (x) and Jk(x, u) are

bounded below. Furthermore, since limx→∞ Lk(x, u) = ∞, we obtain limx→∞(x, 0) = ∞.
From the definition of Jk(x, u), we have

Jk(x, u) = Jk(x+ 1, u− 1) + c, ∀ u ∈ {1, 2, . . .}. (2)

Let Sk be the smallest real number satisfying

Jk(Sk, 0) = Jk(Sk + 1, 0) + c (1)

We show that Sk is well defined If no Sk satisfying (1) exists, we must have either Jk(x, 0)−Jk(x+1, 0) >
c, ∀ x ∈ ℜ or Jk(x, 0) − Jk(x + 1, 0) < 0, ∀ x ∈ ℜ, because Jk is continuous. The first possibility
contradicts the fact that limx→∞ Jk(x, 0) = ∞. The second possibility implies that limx→ −∞ Jk(x, 0)+cx
is finite. However, using the boundedness of J∗

k+1(x) from below, we obtain limx→ −∞ Jk(x, 0)+ cx = ∞.
The contradiction shows that Sk is well defined.

We now derive the form of an optimal policy u∗
k(x). Fix some x and consider first the case x ≥ Sk.

Using the fact that Jk(x, u)−Jk(x+1, u) is nondecreasing function of x we have for any u ∈ {0, 1, 2, . . .}

Jk(x+ 1, u)− Jk(x, u) ≥ Jk(Sk + 1, u)Jk(Sk, u) = Jk(Sk + 1, 0)− Jk(Sk, 0) = −c

16

Therefore,
Jk(x, u + 1) = Jk(x + 1, u) + c ≥ Jk(x, u) ∀ u ∈ {0, 1, . . .}, ∀ x ≥ Sk.

This shows that u = 0 minimizes Jk(x, u), for all x ≥ Sk. Now let x ∈ [Sk−n, Sk−n+1), n ∈ {1, 2, . . .}.
Using (2), we have

Jk(x, n+m)− Jk(x, n) = Jk(x+ n,m)− Jk(x+ n, 0) ≥ 0 ∀ m ∈ {0, 1, . . .}. (3)

However, if u < n then x+ u < Sk and

Jk(x+ u+ 1, 0)− Jk(x+ u, 0) < Jk(Sk + 1, 0)− Jk(Sk, 0) = −c.

Therefore,

Jk(x, u+1) = Jk(x+u+1, 0)+(u+1)c < Jk(x+u, 0)+uc = Jk(x, u) ∀ u ∈ {0, 1, . . .}, n < n. (4)

Inequalities (3),(4) show that u = n minimizes Jk(x, u) whenever x ∈ [Sk − n, Sk − n+ 1).

3.18 (Optimal Termination of Sampling) w w w

Let the state xk be defined as

xk =

T, if the selection has already terminated

1, if the kth object observed has rank 1

0, if the kth object observed has rank < 1

The system evolves according to

xk+1 =

{
T, if uk = stop or xk = T
wk, if uk = continue

The cost function is given by

gk(xk, uk, wk) =

{
k
N, if xk = 1 and uk = stop
0, otherwise

gN (xN) =

{
1, if xN = 1
0, otherwise

Note that if termination is selected at stage k and xk 6= 1 then the probability of success is 0. Thus, if

xk = 0 it is always optimal to continue. To complete the model we have to determine P (wk |xk, uk)
△

=
P (wk) when the control uk = continue. At stage k, we have already selected k objects from a sorted set.
Since we know nothing else about these objects the new element can, with equal probability, be in any
relation with the already observed objects aj

· · · < ai1 < · · · < ai2 < · · · · · · < aik · · ·
︸ ︷︷ ︸

k+1 possible positions for ak+1

17

Thus,

P (wk = 1) =
1

k + 1
; P (wk = 0) =

k

k + 1

Proposition: If k ∈ SN
△

=
{

i
∣
∣

(
1

N−1 + · · ·+ 1
i

)

≤ 1
}

, then

Jk(0) =
k

N

(
1

N − 1
+ · · ·+ 1

k

)

, Jk(1) =
k

N
.

Proof: For k = N − 1,

JN−1(0) = max
[

0
︸︷︷︸

stop

, E{wN−1}
︸ ︷︷ ︸

continue

]

=
1

N
,

and µ∗
N−1(0) = continue, while

JN−1(1) = max
[N − 1

N
︸ ︷︷ ︸

stop

, E{wN−1}
︸ ︷︷ ︸

continue

]

=
N − 1

N

and µ∗
N−1(1) = stop. Note that N − 1 ∈ SN for all SN .
Assume the conclusion holds for Jk+1(xk+1). Then

Jk(0) = max
[

0
︸︷︷︸

stop

, E{Jk+1(wk)}
︸ ︷︷ ︸

continue

]

Jk(1) = max
[k

N
︸︷︷︸

stop

, E{Jk+1(wk)}
︸ ︷︷ ︸

continue

]

Now,

E{Jk+1(wk)} =
1

k + 1

k + 1

N
+

k

k + 1

k + 1

N

(
1

N − 1
+ · · ·+ 1

k + 1

)

=
k

N

(
1

N − 1
+ · · ·+ 1

k

)

Clearly, then

Jk(0) =
k

N

(
1

N − 1
+ · · ·+ 1

k

)

and µ∗
k(0) = continue. If k ∈ SN ,

Jk(1) =
k

N

and µ∗
k(1) = stop. Q.E.D.

18

Proposition: If k 6∈ SN , then

Jk(0) = Jk(1) =
m− 1

N

(
1

N − 1
+ · · ·+ 1

m− 1

)

where m is the minimum element of SN .

Proof: For k = m− 1, we have

Jk(0) =
1

m

m

N
+

m− 1

m

m

N

(
1

N − 1
+ · · ·+ 1

m

)

=
m− 1

N

(
1

N − 1
+ · · ·+ 1

m− 1

)

,

Jk(1) = max

[
m− 1

N
,
m− 1

N

(
1

N − 1
+ · · ·+ 1

m− 1

)]

=
m− 1

N

(
1

N − 1
+ · · ·+ 1

m− 1

)

,

and µ∗
m−1(0) = µ∗

m−1(1) = continue. Assume the conclusion holds for Jk(xk). Then

Jk−1(0) =
1

k
Jk(1) +

k − 1

k
Jk(0) = Jk(0)

and µ∗
k−1(0) = continue.

Jk−1(1) = max

[
1

k
Jk(1) +

k − 1

k
Jk(0),

k − 1

N

]

= max

[
m− 1

N

(
1

N − 1
+ · · ·+ 1

m− 1

)

,
k − 1

N

]

= Jk(0)

and µ∗
k−1(1) = continue. Q.E.D.

Thus the optimum policy is to continue until the mth object, where m is the minimum integer such

that
(

1
N−1 + · · ·+ 1

m

)

≤ 1, and then stop at the first time an element is observed with largest rank.

3.24 (Hardy’s Theorem) w w w

Consider first the problem of maximizing
∑n

i=1 aibji . We can compare the optimal sequence of ji’s

L = {j1, j2, . . . , jk−1, j, ℓ, ik+2, . . . , jn}

19

with the sequence obtained from L by interchanging j and ℓ

L′ = {j1, j2, . . . , jk−1, ℓ, j, ik+2, . . . , jn}

Since this is a deterministic problem, we have

Reward of L = Reward of (j1, . . . , jk−1) + akbj + ak+1bℓ

+Reward of (jk+2, . . . , jn)

Reward of L′ = Reward of (j1, . . . , jk−1) + akbℓ + ak+1bj

+Reward of (jk+2, . . . , jn).

Since L maximizes the reward, we have

Reward of L ≥ Reward of L′

⇒ akbj + ak+1bℓ ≥ akbℓ + ak+1bj

⇒ (ak − ak+1) bj ≥ (ak − ak+1) bℓ

Since {ai} is a non-decreasing sequence, ak − ak+1 ≤ 0. Thus, to maximize the reward we want

bj ≤ bℓ.

But {bi} is also a non-decreasing sequence. Thus, the constraint from the interchange argument can be
met by setting

ji = i for all i

To minimize
∑n

i=1 aibji we want

Cost of L ≤ Cost of L′

⇒ bj ≥ bℓ

⇒ ji = n− i+ 1

since the cost of L is the same as the reward for L in the maximization problem.

3.31 (Reachability of Ellipsoidal Tubes [Ber71], [BeR71a], [Ber72a]) w w w

(a) In order that Akx + Bku + w ∈ X for all w ∈ Wk, it is sufficient that Akx + Bku belong to some
ellipsoid X̃ such that the vector sum of X̃ and Wk is contained in X . The ellipsoid

X̃ = {z | z′Fz ≤ 1},

where for some scalar β ∈ (0, 1),

F−1 = (1− β)(Ψ−1 − β−1D−1
k)

20

has this property (based on the hint and assuming that F−1 is well-defined as a positive definite matrix).
Thus, it is sufficient that x and u are such that

(Akx+Bku)′F (Akx+Bku) ≤ 1. (1)

In order that for a given x, there exists u with u′Rku ≤ 1 such that Eq. (1) is satisfied as well as

x′Ξx ≤ 1

it is sufficient that x is such that

min
u∈ℜm

[
x′Ξx+ u′Rku+ (Akx+Bku)′F (Akx+Bku)

]
≤ 1, (2)

or by carryibf out explicitly the quadratic minimization above,

x′Kx ≤ 1,

where
K = A′

k(F
−1 +BkR

−1
k B′

k)
−1 + Ξ.

The control law
µ(x) = −(Rk +B′

kFBk)−1B′
kFAkx

attains the minimum in Eq. (2) for all x, so it achieves reachability.

(b) Follows by iterative application of the results of part (a), starting with k = N − 1 and proceeding
backwards.

(c) Follows from the arguments of part (a).

21

Solutions Vol. I, Chapter 4

4.1 Linear Quadratic Problems - Correlated Disturbances) w w w

Define

yN = xN

yk = xk +A−1
k wk +A−1

k A−1
k+1wk+1 + . . .+A−1

k · · ·A−1
N−1wN−1

Then

yk = xk +A−1
k (wk − xk+1) +A−1

k yk+1

= xk +A−1
k (−Akxk −Bkuk) +A−1

k yk+1

= −A−1
k Bkuk +A−1

k yk+1

and
yk+1 = Akyk +Bkuk

Now, the cost function is the expected value of

xN
′QxN +

N−1∑

k=0

uk
′Rkuk = y0′K0y0 +

N−1∑

k=0

(yk+1
′Kk+1yk+1 − yk′Kkyk + uk

′Rkuk)

We have

yk+1
′Kk+1yk+1 − yk′Kkyk + uk

′Rkuk = (Akyk +Bkuk)
′Kk+1(Akyk +Bkuk) + uk

′Rkuk

− yk′Ak
′[Kk+1 −Kk+1Bk(Bk

′Kk+1Bk)−1BkτrKk+1]Akyk

= yk′Ak
′Kk+1Akyk + 2y′kA

′
kKk+1Bkuk + uk

′Bk
′Kk+1Bkuk

− yk′Ak
′Kk+1Akyk + yk′Ak

′Kk+1BkP
−1
k B′

kKk+1Akyk

+ uk
′Rkuk

= −2y′kL
′
kPkuk + uk

′Pkuk + yk′Lk
′PkLkyk

= (uk − Lkyk)
′
Pk(uk − Lkyk)

Thus, the cost function can be written as

E
{

y0′K0y0 +

N−1∑

k=0

(uk − Lkyk)
′
Pk(uk − Lkyk)

}

The problem now is to find µ∗
k(Ik), k = 0, 1, . . . , N−1, that minimize over admissible control laws µk(Ik),

k = 0, 1, . . . , N − 1, the cost function

E
{

y0′K0y0 +

N−1∑

k=0

(
µk(Ik)− Lkyk

)′
Pk

(
µk(Ik)− Lkyk

)}

22

We do this minimization by first minimizing over µN−1, then over µN−2, etc. The minimization over
µN−1 involves just the last term in the sum and can be written as

min
µN−1

E
{(

µN−1(IN−1)− LN−1yN−1

)′
PN−1

(
µN−1(IN−1)− LN−1yN−1

)}

= E
{

min
uN−1

E
{(

uN−1 − LN−1yN−1

)′
PN−1

(
uN−1 − LN−1yN−1

)∣
∣IN−1

}}

Thus this minimization yields the optimal control law for the last stage

µ∗
N−1(IN−1) = LN−1E

{

yN−1

∣
∣IN−1

}

(Recall here that, generically, E{z|I} minimizes over u the expression Ez{(u− z)′P (u− z)|I} for any
random variable z, any conditioning variable I, and any positive semidefinite matrix P .) The minimization
over µN−2 involves

E
{(

µN−2(IN−2)− LN−2yN−2

)′
PN−2

(
µN−2(IN−2)− LN−2yN−2

)}

+ E
{(

E{yN−1|IN−1} − yN−1

)′
L′
N−1PN−1LN−1

(

E{yN−1|IN−1} − yN−1

)}

However, as in Lemma 4.2.1, the term E{yN−1|IN−1}− yN−1 does not depend on any of the controls (it
is a function of x0, w0, . . . , wN−2, v0, . . . , vN−1). Thus the minimization over µN−2 involves just the first
term above and yields similarly as before

µ∗
N−2(IN−2) = LN−2E

{

yN−2

∣
∣IN−2

}

Proceeding similarly, we prove that for all k

µ∗
k(Ik) = Lk E

{

yk
∣
∣Ik

}

Note: The preceding proof can be used to provide a quick proof of the separation theorem for linear-
quadratic problems in the case where x0, w0, . . . , wN−1, v0, . . . , vN−1 are independent. If the cost function
is

E
{

xN
′QNxN +

N−1∑

k=0

(
xk

′Qkxk + uk
′Rkuk

)}

the preceding calculation can be modified to show that the cost function can be written as

E
{

x0
′K0x0 +

N−1∑

k=0

(
(uk − Lkxk)

′Pk(uk − Lkxk) + wk
′Kk+1wk

)}

By repeating the preceding proof we then obtain the optimal control law as

µ∗
k(Ik) = Lk E

{

xk

∣
∣Ik

}

23

4.3 w w w

The control at time k is (uk, αk) where αk is a variable taking value 1 (if the next measurement at time
k + 1 is of type 1) or value 2 (if the next measurement is of type 2). The cost functional is

E

{

xN
′QxN +

N−1∑

k=0

(xk
′Qxk + uk

′Ruk) +
N−1∑

k=0

gαk

}

.

We apply the DP algorithm for N = 2. We have from the Riccatti equation

J1(I1) = J1(z0, z1, u0, α0)

= E
x1
{x1

′(A′QA+Q)x1 | I1}+ E
w1

{w′Qw}

+min
u1

{
u1

′(B′QB +R)u1 + 2E{x1 | I1}′A′QBu1

}

+min[g1, g2].

So
µ∗
1(I1) = −(B′QB +R)−1B′QAE{x1 | I1}

α∗
1(I1) =

{
1, if g1 ≤ g2
2, otherwise.

Note that the measurement selected at k = 1 does not depend on I1. This is intuitively clear since the
measurement z2 will not be used by the controller so its selection should be based on measurement cost
alone and not on the basis of the quality of estimate. The situation is different once more than one stage
is considered.

Using a simple modification of the analysis in Section 4.2 of the text, we have

J0(I0) = J0(z0)

= min
u0

{

E
x0,w0

{
x0

′Qx0 + u0
′Ru0 +Ax0 +Bu0 + w0

′K0Ax0 +Bu0 + w0

∣
∣ z0

}}

+min
α0

[

E
z1

{

E
x1

{
[x1 − E{x1 | I1}]′P1[x1 − E{x1 | I1}]

∣
∣ I1

}
∣
∣
∣ z0, u0, α0

}

+ gα0

]

+ E
w1

{w1
′Qw1}+min[g1, g2]

The quantity in the second bracket is the error covariance of the estimation error (weighted by P1) and,
as shown in the text, it does not depend on u0. Thus the minimization is indicated only with respect
to α0 and not u0. Because all stochastic variables are Gaussian, the quantity in the second pracket does
not depend on z0. (The weighted error covariance produced by the Kalman filter is precomputable and
depends only on the system and measurement matrices and noise covariances but not on the measurements
received.) In fact

E
z1

{

E
x1

{
[x1 − E{x1 | I1}]′P1[x1 − E{x1 | I1}]

∣
∣ I1

}
∣
∣
∣ z0, u0, α0

}

=

Tr

(

P
1
2

1

∑1
1|1 P

1
2

1

)

, if α0 = 1

Tr

(

P
1
2

1

∑2
1|1 P

1
2

1

)

, if α0 = 2

24

where Tr(·) denotes the trace of a matrix, and
∑1

1|1 (
∑2

1|1) denotes the error covariance of the Kalman

filter estimate if a measurement of type 1 (type 2) is taken at k = 0. Thus at time k = 0 we have that
the optimal measurement chosen does not depend on z0 and is of type 1 if

Tr

(

P
1
2

1 Σ1
1|1P

1
2

1

)

+ g1 ≤ Tr

(

P
1
2

1 Σ2
1|1P

1
2

1

)

+ g2

and of type 2 otherwise.

4.7 (Finite-State Systems - Imperfect State Information) w w w

(a) We have

pjk+1 = P (xk+1 = j | z0, . . . , zk+1, u0, . . . , uk)

= P (xk+1 = j | Ik+1)

=
P (xk+1 = j, zk+1 | Ik, uk)

P (zk+1 | Ik, uk)

=

∑n
i=1 P (xk = i)P (xk+1 = j | xk = i, uk)P (zk+1 | uk, xk+1 = j)

∑n
s=1

∑n
i=1 P (xk = i)P (xk+1 = s | xk = i, uk)P (zk+1 | uk, xk+1 = s)

=

∑n
i=1 p

i
kpij(uk)rj(uk, zk+1)

∑n
s=1

∑n
i=1 p

i
kpis(uk)rs(uk, zk+1)

.

Rewriting pjk+1 in vector form, we have

pjk+1 =
rj(uk, zk+1)[P (uk)′Pk]j

∑n
s=1 rs(uk, zk+1)[P (uk)′Pk]s

, j = 1, . . . , n.

Therefore,

Pk+1 =
[r(uk, zk+1)] ∗ [P (uk)′Pk]

r(uk, zk+1)′P (uk)′Pk
.

(b) The DP algorithm for this system is

J̄N−1(PN−1) = min
u

n∑

i=1

piN−1

n∑

j=1

pij(u)gN−1(i, u, j)

= min
u

{
n∑

i=1

piN−1

[
GN−1(u)

]

i

}

= min
u

{
P ′
N−1GN−1(u)

}

J̄k(Pk) = min
u

n∑

i=1

pik

n∑

j=1

pij(u)gk(i, u, j) +

n∑

i=1

pik

n∑

j=1

pij(u)

q
∑

θ=1

rj(u, θ)J̄k+1(Pk+1 | Pk, u, θ)

= min
u

{

P ′
kGk(u) +

q
∑

θ=1

r(u, θ)′P (u)′PkJ̄k+1

[
[r(u, θ)] ∗ [P (u)′Pk]

r(u, θ)′P (u)′Pk

]}

.

25

(c) For k = N − 1,

J̄N−1(λP ′
N−1) = min

u

{
λP ′

N−1GN−1(u)
}

= min
u

{
n∑

i=1

λpiN−1

[
GN−1(u)

]

i
}

= min
u

{λ
n∑

i=1

piN−1[GN−1(u)]i}

= λmin
u

{
n∑

i=1

piN−1[GN−1(u)]i
}

= λmin
u

{
n∑

i=1

piN−1[GN−1(u)]i
}

= λJ̄N−1(PN−1).

Now assume J̄k(λPk) = λJ̄k(Pk). Then,

J̄k−1(λP ′
k−1) = min

u

{

λP ′
k−1Gk−1(u) +

q
∑

θ=1

r(u, θ)′P (u)′λPk−1J̄k(Pk|Pk−1, u, θ)

}

= min
u

{

λP ′
k−1Gk−1(u) + λ

q
∑

θ=1

r(u, θ)′P (u)′Pk−1J̄k(Pk|Pk−1, u, θ)

}

= λmin
u

{

P ′
k−1Gk−1(u) +

q
∑

θ=1

r(u, θ)′P (u)′Pk−1J̄k(Pk|Pk−1, u, θ)

}

= λJ̄k−1(Pk−1).

This completes the induction proof that J̄k(λPk) = λJ̄k(Pk) for all k.
For any u, r(u, θ)′P (u)′Pk is a scalar. Therefore, letting λ = r(u, θ)′P (u)′Pk, we have

J̄k(Pk) = min
u

{

P ′
kGk(u) +

q
∑

θ=1

r(u, θ)′P (u)′PkJ̄k+1

[
[r(u, θ)] ∗ [P (u)′Pk]

r(u, θ)′P (u)′Pk

]}

= min
u

[

P ′
kGk(u) +

q
∑

θ=1

J̄k+1

(
[r(u, θ)] ∗ [P (u)′Pk]

)

]

.

(d) For k = N − 1, we have J̄N−1(PN−1) = minu[P ′
N−1GN−1(u)], and so J̄N−1(PN−1) has the desired

form
J̄N−1(PN−1) = min

[
P ′
N−1α

1
N−1, . . . , P

′
N−1α

m
N−1

]
,

where αj
N−1 = GN−1(uj) and uj is the jth element of the control constraint set.

Assume that
J̄k+1(Pk+1) = min

[
P ′
k+1α

1
k+1, . . . , P

′
k+1α

mk+1

k+1

]
.

26

Then, using the expression from part (c) for J̄k(Pk),

J̄k(Pk) = min
u

[

P ′
kGk(u) +

q
∑

θ=1

J̄k+1

(
[r(u, θ)] ∗ [P (u)′Pk]

)

]

= min
u

[

P ′
kGk(u) +

q
∑

θ=1

min
m=1,...,mk+1

[{
[r(u, θ)] ∗ [P (u)′Pk]

}′
αm
k+1

]
]

= min
u

[

P ′
kGk(u) +

q
∑

θ=1

min
m=1,...,mk+1

[
P ′
kP (u)r(u, θ)′αm

k+1

]

]

= min
u

[

P ′
k

{

Gk(u) +

q
∑

θ=1

min
m=1,...,mk+1

[
P (u)r(u, θ)′αm

k+1

]

}]

= min
[
P ′
kα

1
k, . . . , P

′
kα

mk
k

]
,

where α1
k, . . . , α

mk
k are all possible vectors of the form

Gk(u) +

q
∑

θ=1

P (u)r(u, θ)′α
mu,θ

k+1 ,

as u ranges over the finite set of controls, θ ranges over the set of observation vector indexes {1, . . . , q},
and mu,θ ranges over the set of indexes {1, . . . ,mk+1}. The induction is thus complete.

For a quick way to understand the preceding proof, based on polyhedral concavity notions, note
that the conclusion is equivalent to asserting that J̄k(Pk) is a positively homogeneous, concave polyhedral
function. The preceding induction argument amounts to showing that the DP formula of part (c) preserves
the positively homogeneous, concave polyhedral property of J̄k+1(Pk+1). This is indeed evident from
the formula, since taking minima and nonnegative weighted sums of positively homogeneous, concave
polyhedral functions results in a positively homogeneous, concave polyhedral function.

4.10 w w w

(a) The state is (xk, dk), where dk takes the value 1 or 2 depending on whether the common distribution
of the wk is F1 or F2. The variable dk stays constant (i.e., satisfies dk+1 = dk for all k), but is not
observed perfectly. Instead, the sample demand values w0, w1, . . . are observed (wk = xk + uk − xk+1),
and provide information regarding the value of dk. In particular, given the a priori probability q and
the demand values w0, . . . , wk−1, we can calculate the conditional probability that wk will be generated
according to F1.

(b) A suitable sufficient statistic is (xk, qk), where

qk = P (dk = 1 | w0, . . . , wk−1).

The conditional probability qk evolves according to

qk+1 =
qkP (wk | F1)

qkP (wk | F1) + (1− qk)P (wk | F2)
, q0 = q,

27

where P{· | Fi} denotes probability under the distribution Fi, and assuming that wk can take a finite
number of values under the distributions F1 and F2.

The initial step of the DP algorithm in terms of this sufficient statistic is

JN−1(xN−1, qN−1) = min
uN−1≥0

[

cuN−1

+ qN−1E
{
hmax(0, wN−1 − xN−1 − uN−1) + pmax(0, xN−1 + uN−1 − wN−1) | F1

}

+ (1− qN−1)E
{
hmax(0, wN−1 − xN−1 − uN−1) + pmax(0, xN−1 + uN−1 − wN−1) | F2

}]

,

where E{· | Fi} denotes expected value with respect to the distribution Fi.
The typical step of the DP algorithm is

Jk(xk, qk) = min
uk≥0

[

cuk

+ qkE
{
hmax(0, wk − xk − uk) + pmax(0, xk + uk − wk)

+ Jk+1

(
xk + uk − wk, φ(qk, wk)

)
| F1

}

+ (1 − qk)E
{
hmax(0, wk − xk − uk) + pmax(0, xk + uk − wk)

+ Jk+1

(
xk + uk − wk, φ(qk, wk)

)
| F2

}]

,

where

φk(qk, wk) =
qkP (wk | F1)

qkP (wk | F1) + (1− qk)P (wk | F2)
.

(c) It can be shown inductively, as in the text, that Jk(xk, qk) is convex and coercive as a function of xk for
fixed qk. For a fixed value of qk, the minimization in the right-hand side of the DP minimization is exactly
the same as in the text with the probability distribution of wk being the mixture of the distributions F1

and F2 with corresponding probabilities qk and (1 − qk). It follows that for each value of qk, there is a
threshold Sk(qk) such that it is optimal to order an amount Sk(qk) − xk, if Sk(qk) > xk, and to order
nothing otherwise. In particular, Sk(qk) minimizes over y the function

cy + qkE
{
hmax(0, wk − y) + pmax(0, y − wk) + Jk+1

(
y − wk, φk(qk, wk)

)
| F1

}

+ (1− qk)E
{
hmax(0, wk − y) + pmax(0, y − wk) + Jk+1

(
y − wk, φk(qk, wk)

)
| F2

}
.

28

Solutions Vol. I, Chapter 5

5.8 w w w

A threshold policy is specified by a threshold integer m and has the form

Process the orders if and only if their number exceeds m.

The cost function corresponding to a threshold policy specified by m will be denoted by Jm. By Prop.
5.4.1(c), this cost function is the unique solution of the system of equations

Jm(i) =

{
K + α(1− p)Jm(0) + αpJm(1) if i > m,
ci+ α(1 − p)Jm(i) + αpJm(i+ 1) if i ≤ m.

(1)

Thus for all i ≤ m, we have

Jm(i) =
ci+ αpJm(i+ 1)

1− α(1 − p)
,

Jm(i− 1) =
c(i− 1) + αpJm(i)

1− α(1− p)
.

From these two equations it follows that for all i ≤ m, we have

Jm(i) ≤ Jm(i+ 1) ⇒ Jm(i− 1) < Jm(i). (2)

Denote now
γ = K + α(1− p)Jm(0) + αpJm(1).

Consider the policy iteration algorithm, and a policy µ that is the successor policy to the threshold policy
corresponding to m. This policy has the form

Process the orders if and only if

K + α(1 − p)Jm(0) + αpJm(1) ≤ ci+ α(1 − p)Jm(i) + αpJm(i+ 1)

or equivalently
γ ≤ ci+ α(1− p)Jm(i) + αpJm(i+ 1).

In order for this policy to be a threshold policy, we must have for all i

γ ≤ c(i− 1) + α(1− p)Jm(i− 1) + αpJm(i) ⇒ γ ≤ ci+ α(1 − p)Jm(i) + αpJm(i+ 1). (3)

This relation holds if the function Jm is monotonically nondecreasing, which from Eqs. (1) and (2) will
be true if Jm(m) ≤ Jm(m+ 1) = γ.

Let us assume that the opposite case holds, where γ < Jm(m). For i > m, we have Jm(i) = γ, so
that

ci+ α(1 − p)Jm(i) + αpJm(i+ 1) = ci+ αγ. (4)

29

We also have

Jm(m) =
cm+ αpγ

1− α(1 − p)
,

from which, together with the hypothesis Jm(m) > γ, we obtain

cm+ αγ > γ. (5)

Thus, from Eqs. (4) and (5) we have

ci+ α(1 − p)Jm(i) + αpJm(i+ 1) > γ, for all i > m, (6)

so that Eq. (3) is satisfied for all i > m.
For i ≤ m, we have ci+α(1− p)Jm(i) +αpJm(i+1) = Jm(i), so that the desired relation (3) takes

the form
γ ≤ Jm(i − 1) ⇒ γ ≤ Jm(i). (7)

To show that this relation holds for all i ≤ m, we argue by contradiction. Suppose that for some i ≤ m
we have Jm(i) < γ ≤ Jm(i − 1). Then since Jm(m) > γ, there must exist some i > i such that
Jm(i− 1) < Jm(i). But then Eq. (2) would imply that Jm(j − 1) < Jm(j) for all j ≤ i, contradicting the
relation Jm(i) < γ ≤ Jm(i − 1) assumed earlier. Thus, Eq. (7) holds for all i ≤ m so that Eq. (3) holds
for all i. The proof is complete.

5.12 w w w

Let Assumption 5.2.1 hold and let π = {µ0, µ1, . . .} be an admissible policy. Consider also the sets Sk(i)
given in the hint with S0(i) = {i}. If t ∈ Sn(i) for all π and i, we are done. Otherwise, we must have for
some π and i, and some k < n, Sk(i) = Sk+1(i) while t /∈ Sk(i). For j ∈ Sk(i), let m(j) be the smallest
integer m such that j ∈ Sm. Consider a stationary policy µ with µ(j) = µm(j)(j) for all j ∈ Sk(i). For
this policy we have for all j ∈ Sk(i),

pjl(µ(j)) > 0 ⇒ l ∈ Sk(i).

This implies that the termination state t is not reachable from all states in Sk(i) under the stationary
policy µ, and contradicts Assumption 5.2.1.

30

Solutions Vol. I, Chapter 6

6.8 (One-Step Lookahead Error Bound for Discretized Convex Problems) w w w

We have that J̃N is the convex function gN , so according to the assumption, ĴN−1 is convex. The
function J̃N−1 is the inner linearization of the convex function ĴN−1, so it is also convex. Moreover by
the definition of J̃N−1 and the convexity of ĴN−1, we have ĴN−1(x) ≤ J̃N−1(x) for all x. From Prop.
6.1.1, it follows that

JN−1(x) ≤ ĴN−1(x) ≤ J̃N−1(x).

Thus, the desired bound holds for k = N − 1, and it is similarly proved for all k.

6.9 (One-Step Lookahead Error Bound for Problem Approximation) w w w

(a) We have that J̃k(xk) is the optimal cost-to-go when the costs-per-stage and control constraint sets
are g̃k = (xk, uk, wk) and Ũk(xk), respectively. We show that Ĵk(xk), given by

Ĵk(xk) = min
uk∈Ūk(xk)

E
{
gk(xk, uk, wk) + J̃k+1(fk(xk, uk, wk))

}
,

and ĴN (xN) = gN (xN) satisfies the assumptions of Prop. 6.1.1.
We have ĴN (xN) = gN (xN) ≤ g̃N(xN) = J̃N (xN) for all xN . For k = 0, 1, . . . , N − 1, we have

Ĵk(xk) = min
uk∈Ūk(xk)

E
{
gk(xk, uk, wk) + J̃k+1(fk(xk, uk, wk))

}

≤ min
uk∈Ũk(xk)

E
{
gk(xk, uk, wk) + J̃k+1(fk(xk, uk, wk))

}

≤ min
uk∈Ũk(xk)

E
{
g̃k(xk, uk, wk) + J̃k+1(fk(xk, uk, wk))

}

= J̃k(xk).

The first inequality follows from Ũk(xk) ⊂ Ūk(xk) for all xk and k, the second inequality follows from
gk(xk, uk, wk) ≤ g̃k(xk, uk, wk) for all xk, uk, wk and k, and the last equality is the DP algorithm. Because
Ĵk(xk) satisfies the assumptions of Prop. 6.1.1, we have J̄k(xk) ≤ Ĵk(xk) ≤ J̃k(xk).

(b) Using the same reasoning as for part (a), we have:

ĴN (xN) = gN(xN) ≤ g̃N (xN) + δN = J̃N (xN) + δN

and

Ĵk(xk) = min
uk∈Ūk(xk)

E
{
gk(xk, uk, wk) + J̃k+1(fk(xk, uk, wk))

}

≤ min
uk∈Ũk(xk)

E
{
gk(xk, uk, wk) + J̃k+1(fk(xk, uk, wk))

}

≤ min
uk∈Ũk(xk)

E
{
g̃k(xk, uk, wk) + δk + J̃k+1(fk(xk, uk, wk))

}

= J̃k(xk) + δk.

31

Let
J+
k (xk) = J̃k(xk) + δk + . . .+ δN .

Adding δk+1 + . . .+ δN to both sides of the second inequality above, we rewrite both inequalities above
in terms of J+

k (xk):

ĴN (xN) ≤ J+
N (xN),

and

min
uk∈Ūk(xk)

E
{
gk(xk, uk, wk) + J̃k+1

(
fk(xk, uk, wk)

)
+ δk+1 + . . .+ δN

︸ ︷︷ ︸

J+

k+1
(fk(xk,uk,wk))

}
≤ J̃k(xk) + δk + δk+1 + . . .+ δN

︸ ︷︷ ︸

J+

k
(xk)

Letting
Ĵ+
k (xk) = min

uk∈Ūk(xk)
E
{
gk(xk, uk, wk) + J+

k+1(fk(xk, uk, wk))
}

and Ĵ+
N = ĴN = gN , we rewrite the second inequality above as Ĵ+

k (xk) ≤ J+
k (xk). If we use J+

k (xk)

in place of J̃k(xk) as a cost-to-go approximation, the one-step lookahead policy will remain unchanged
(since J+

k and J̃k differ by the same constant for all states), and we can apply Prop. 6.1.1 to obtain

J̄k(xk) ≤ Ĵ+
k (xk) ≤ J+

k (xk). It follows that

J̄k(xk) ≤ J̃k(xk) + δk + . . .+ δN .

6.11 (One-Step Lookahead/Rollout for Shortest Paths) w w w

(a) We have for all i
F (i) ≥ F̂ (i) = aij(i) + F

(
j(i)

)
. (1)

Assume, in order to come to a contradiction, that the graph of the n− 1 arcs
(
i, j(i)

)
, i = 1, . . . , n− 1,

contains a cycle (i1, i2, . . . , ik, i1). Using Eq. (1), we have

F (i1) ≥ ai1i2 + F (i2),

F (i2) ≥ ai2i3 + F (i3),

· · ·
F (ik) ≥ aiki1 + F (i1).

By adding the above inequalities, we obtain

0 ≥ ai1i2 + ai2i3 + · · ·+ aiki1 .

Thus the length of the cycle (i1, i2, . . . , ik, i1) is nonpositive, a contradiction. Hence, the graph of the
n − 1 arcs

(
i, j(i)

)
, i = 1, . . . , n − 1, contains no cycle. Given any node i 6= n, we can start with arc

(
i, j(i)

)
, append the outgoing arc from j(i), and continue up to reaching n (if we did not reach n, a cycle

32

would be formed). The corresponding path P i is unique since there is only one arc outgoing from each
node.

Let P i = (i, i1, i2, . . . , ik, n) [so that i1 = j(i1), i2 = j(i1), . . . , n = j(ik)]. We have using the
hypothesis F̂ (i) ≤ F (i) for all i

F̂ (i) = aii1 + F (i1) ≥ aii1 + F̂ (i1),

and similarly

F̂ (i1) = ai1i2 + F (i2) ≥ ai1i2 + F̂ (i2),

· · ·

F̂ (ik) = aikn + F (in) = aikn.

By adding the above relations, we obtain

F̂ (i) ≥ aii1 + ai1i2 + · · ·+ aikn.

The result follows since the right-hand side is the length of P i.
We may view the set of arcs P i as a one-step lookahead policy with lookahead function equal to F (i),

and with the scalars F̂ (i) identified as the function Ĵk of Prop. 6.1.1. The conclusion of that proposition
states that the cost function of the one-step lookahead policy, which is defined by the lengths of the paths
P i, is majorized by Ĵk, which can be identified with the scalars F̂ (i). This is exactly what we have shown.

(b) For a counterexample to part (a) in the case where there are cycles of zero length, take aij = 0 for all
(i, j), let F (i) = 0 for all i, let (i1, i2, . . . , ik, i1) be a cycle, and choose j(i1) = i2, . . . , j(ik−1) = ik, j(ik) =
i1.

(c) We have

F̂ (i) = min
j∈Ni

[
aij + F (j)

]
≤ aiji + F (ji) ≤ F (i).

(d) Using induction, we can show that after each iteration of the label correcting method, we have for all
i = 1, . . . , n− 1,

F (i) ≥ min
j∈Ni

[
aij + F (j)

]
,

and if F (i) < ∞, then F (i) is equal to the length of some path starting at i and ending at n. Furthermore,
for the first arc (i, ji) of this path, we have

F (i) ≥ aiji + F (ji).

Thus the assumptions of part (c) are satisfied.

Exercise 6.12 (Performance Bounds for Two-Step Lookahead Policies) w w w

33

First note that by definition, J+
N (xN) = ĴN (xN) = J̃N (xN) = gN (xN), so the conclusion holds for k = N .

For k = N − 1 we have

J+
N−1(xN−1) = min

uN−1∈ŪN−1(xN−1)
E
{
gN−1(xN−1, uN−1, wN−1) + ĴN (fN−1(xN−1, uN−1, wN−1))

}

= min
uN−1∈ŪN−1(xN−1)

E
{
gN−1(xN−1, uN−1, wN−1) + J̃N (fN−1(xN−1, uN−1, wN−1))

}

= ĴN−1(xN−1).

Proceeding by induction, for k < N − 1, assuming that Ĵk+1 ≤ J̃k+1, we have

J+
k (xk) = min

uk∈Ūk(xk)
E
{
gk(xk, uk, wk) + Ĵk+1(fk(xk, uk, wk))

}

≤ min
uk∈Ūk(xk)

E
{
gk(xk, uk, wk) + J̃k+1(fk(xk, uk, wk))

}

= Ĵk(xk).

This proves that J+
k (xk) ≤ Ĵk(xk) for all k = 0, . . . , N − 1.

There remains to show that J̄k(xk) ≤ Ĵ+
k (xk) for k = 0, . . . , N − 1. Indeed, for k = N − 1 we have

[recall that ĴN (xN) = J̄N (xN)]

J̄N−1(xN−1) =E
{
gN−1(xN−1, µ̄N−1(xN−1), wN−1) + J̄N (fN−1(xN−1, µ̄N−1(xN−1), wN−1))

}

=E
{
gN−1(xN−1, µ̄N−1(xN−1), wN−1) + ĴN (fN−1(xN−1, µ̄N−1(xN−1), wN−1))

}
,

where µ̄N−1(xN−1) attains the minimum in the expression

min
uN−1∈ŪN−1(xN−1)

E
{
gN−1(xN−1, uN−1, wN−1) + ĴN (fN−1(xN−1, uN−1, wN−1))

}
.

Therefore we have

J̄N−1(xN−1) = min
uN−1∈ŪN−1(xN−1)

E
{
gN−1(xN−1, uN−1, wN−1) + ĴN (fN−1(xN−1, uN−1, wN−1))}

= J+
N−1(xN−1).

Proceeding by induction, for k < N − 1, assuming that J̄k+1 ≤ J+
k+1, we have

J̄k(xk) = E
{
gk(xk, µ̄k(xk), wk) + J̄k+1(fk(xk, µ̄k(xk), wk))

}

≤ E
{
gk(xk, µ̄k(xk), wk) + J+

k+1(fk(xk, µ̄k(xk), wk))
}

≤ E
{
gk(xk, µ̄k(xk), wk) + Ĵk+1(fk(xk, µ̄k(xk), wk))

}
,

where µ̄k(xk) attains the minimum in the expression

min
uk∈Ūk(xk)

E
{
gk(xk, uk, wk) + Ĵk+1(fk(xk, uk, wk))

}
,

34

and Ĵk+1 is obtained itself on the basis of a one-step lookahead approximation:

Ĵk+1(xk+1) = min
uk+1∈Ūk+1(xk+1)

E
{
gk+1(xk+1, uk+1, wk+1) + J̃k+2(fk+1(xk+1, uk+1, wk+1))

}
,

with xk+1 = fk(xk, uk, wk). Then, using the induction hypothesis J̄k+1 ≤ J+
k+1 and the fact J+

k+1 ≤ Ĵk+1

shown earlier, we have

J̄k(xk) = E
{
gk(xk, µ̄k(xk), wk) + J̄k+1(fk(xk, µ̄k(xk), wk))

}

≤ E
{
gk(xk, µ̄k(xk), wk) + J+

k+1(fk(xk, µ̄k(xk), wk))
}

≤ E
{
gk(xk, µ̄k(xk), wk) + Ĵk+1(fk(xk, µ̄k(xk), wk))

}

= min
uk∈Ūk(xk)

E
{
gk(xk, uk, wk) + Ĵk+1(fk(xk, uk, wk))

}

= J+
k (xk).

The induction is complete.

6.13 (Rollout Algorithms with Errors) w w w

(a) Assuming |e(j)| = |Ĥ(j)−H(j)| ≤ ǫ for all j, we have for m = 1, . . . , m̄− 1,

H(im+1)− ǫ ≤ Ĥ(im+1) = min
j∈N(im)

Ĥ(j) ≤ min
j∈N(im)

H(j) + ǫ ≤ H(im) + ǫ,

where the first and second inequalities follow from the bounds on e(j), the equality follows from the
definition of the rollout algorithm, and the last inequality follows from the definition of sequential im-
provement. We use the above relation, H(im+1)− ǫ ≤ H(im) + ǫ, to obtain a bound on H(im̄), the cost
of the generated path, in terms of H(i1):

H(im̄) ≤ H(im̄−1) + 2ǫ ≤ H(im̄−2) + 4ǫ ≤ · · · ≤ H(i1) + 2(m̄− 1)ǫ.

(b) Assuming 0 ≤ Ĥ(j)−H(j) ≤ ǫ for all j, we have for m = 1, 2, . . . , m̄− 1,

H(im+1) ≤ Ĥ(im+1) = min
j∈N(im)

Ĥ(j) ≤ min
j∈N(im)

H(j) + ǫ ≤ H(im) + ǫ.

We use the above relation, H(im+1) ≤ H(im) + ǫ, to obtain a bound on H(im̄), the cost of the generated
path, in terms of H(i1):

H(im̄) ≤ H(im̄−1) + ǫ ≤ H(im̄−2) + 2ǫ ≤ · · · ≤ H(i1) + (m̄− 1)ǫ.

Assuming −ǫ ≤ Ĥ(j)−H(j) ≤ 0 for all j, we have for m = 1, 2, . . . , m̄− 1,

H(im+1)− ǫ ≤ Ĥ(im+1) = min
j∈N(im)

Ĥ(j) ≤ min
j∈N(im)

H(j) ≤ H(im).

35

We use the above relation, H(im+1) − ǫ ≤ H(im), to find a bound on Ĥ(im̄), the cost of the generated
path, in terms of H(i1):

H(im̄) ≤ H(im̄−1) + ǫ ≤ H(im̄−2) + 2ǫ ≤ · · · ≤ H(i1) + (m̄− 1)ǫ.

(c) If the base heuristic is optimal, then H(i1) is the optimal cost starting from i1. We have the following
bound on the difference between the cost of the generated path and the optimal cost starting from i1:

H(im̄)−H(i1) ≤ 2(m̄− 1)max
j

∣
∣e(j)

∣
∣

Thus, if we use a DP algorithm, or any other method, to calculate the optimal cost-to-go with an error
of at most ǫ, and then use the calculated values to generate a path/solution, the cost of this solution will
be within 2(m̄− 1)ǫ of the optimal cost.

36

Solutions Vol. I, Chapter 7

7.6 (L’Hôpital’s Problem) w w w

This problem is similar to the Brachistochrone Problem described in the text (Example 7.4.2). As in that
problem, we introduce the system

ẋ = u

and have a fixed terminal state problem [x(0) = a and x(T) = b]. Letting

g(x, u) =

√
1 + u2

Cx
,

the Hamiltonian is
H(x, u, p) = g(x, u) + pu.

Minimization of the Hamiltonian with respect to u yields

p(t) = −∇ug(x(t), u(t)).

Since the Hamiltonian is constant along an optimal trajectory, we have

g(x(t), u(t)) −∇ug(x(t), u(t))u(t) = constant.

Substituting in the expression for g, we have

√
1 + u2

Cx
− u2

√
1 + u2Cx

=
1√

1 + u2Cx
= constant,

which simplifies to
(x(t))2(1 + (ẋ(t))2) = constant.

Thus an optimal trajectory satisfies the differential equation

ẋ(t) =

√

D − (x(t))2

(x(t))2
.

It can be seen through straightforward calculation that the curve

(x(t))2 + (t− d)2 = D

satisfies this differential equation, and thus the curve of minimum travel time from A to B is an arc of a
circle.

37

7.9 w w w

We have the system ẋ(t) = Ax(t) +Bu(t), and the quadratic cost

x(T)′QTx(T) +

∫ T

0

[x(t)′Qx(t) + u(t)′Ru(t)] dt.

The Hamiltonian here is
H(x, u, p) = x′Qx+ u′Ru+ p′(Ax+Bu),

and the adjoint equation is
ṗ(t) = −A′p(t)− 2Qx(t),

with the terminal condition
p(T) = 2Qx(T).

Minimizing the Hamiltonian with respect to u yields the optimal control

u∗(t) = argmin
u

[x∗(t)′Qx∗(t) + u′Ru+ p′(Ax∗(t) +Bu)]

=
1

2
R−1B′p(t).

We now hypothesize a linear relation between x∗(t) and p(t)

2K(t)x∗(t) = p(t), ∀t ∈ [0, T],

and show that K(t) can be obtained by solving the Riccati equation. Substituting this value of p(t) into
the previous equation, we have

u∗(t) = −R−1B′K(t)x∗(t).

By combining this result with the system equation, we have

ẋ(t) = (A−BR−1B′K(t))x∗(t). (∗)

Differentiating 2K(t)x∗(t) = p(t) and using the adjoint equation yields

2K̇(t)x∗(t) + 2K(t)ẋ∗(t) = −A′2K(t)x∗(t)− 2Qx∗(t).

Combining with Eq. (∗), we have

K̇(t)x∗(t) +K(t) (A−BR−1B′K(t))x∗(t) = −A′K(t)x∗(t)−Qx∗(t),

and we thus see that K(t) should satisfy the Riccati equation

K̇(t) = −K(t)A−A′K(t) +K(t)BR−1B′K(t)−Q.

From the terminal condition p(T) = 2Qx(T), we have K(T) = Q, from which we can solve for K(t)
using the Riccati equation. Once we have K(t), we have the optimal control u∗(t) = −R−1B′K(t)x∗(t).
By reversing the previous arguments, this control can then be shown to satisfy all the conditions of the
Pontryagin Minimum Principle.

38

