
Dynamic Programming and Optimal Control
THIRD EDITION

Dimitri P. Bertsekas

Massachusetts Institute of Technology

Selected Theoretical Problem Solutions

Last Updated 10/1/2008

Athena Scientific, Belmont, Mass.

WWW site for book information and orders

http://www.athenasc.com/

1



NOTE

This solution set is meant to be a significant extension of the scope and coverage of the book. It

includes solutions to all of the book’s exercises marked with the symbol w w w .

The solutions are continuously updated and improved, and additional material, including new prob-
lems and their solutions are being added. Please send comments, and suggestions for additions and
improvements to the author at dimitrib@mit.edu

The solutions may be reproduced and distributed for personal or educational uses.
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Solutions Vol. I, Chapter 1

1.16 w w w

(a) Given a sequence of matrix multiplications

M1M2 · · ·MkMk+1 · · ·MN

we represent it by a sequence of numbers {n1, . . . , nN+1}, where nk × nk+1 is the dimension of Mk.
Let the initial state be x0 = {n1, . . . , nN+1}. Then choosing the first multiplication to be carried out
corresponds to choosing an element from the set x0 −{n1, nN+1}. For instance, choosing n2 corresponds
to multiplying M1 and M2, which results in a matrix of dimension n1 × n3, and the initial state must
be updated to discard n2, the control applied at that stage. Hence at each stage the state represents the
dimensions of the matrices resulting from the multiplications done so far. The allowable controls at stage
k are uk ∈ xk − {n1, nN+1}. The system equation evolves according to

xk+1 = xk − {uk}.

Note that the control will be applied N − 1 times, therefore the horizon of this problem is N − 1. The
terminal state is xN−1 = {n1, nN+1} and the terminal cost is 0. The cost at stage k is given by the
number of multiplications,

gk(xk, uk) = nanuk
nb,

where nuk
= uk and

a = max
{
i ∈ {1, . . . , N + 1} | i < uk, i ∈ xk

}
,

b = min
{
i ∈ {1, . . . , N + 1} | i > uk, i ∈ xk

}
.

The DP algorithm for this problem is given by

JN−1(xN−1) = 0,

Jk(xk) = min
uk∈xk−{n1,nN+1}

{
nanuk

nb + Jk+1

(
xk − {uk}

)}
, k = 0, . . . , N − 2.

Now consider the given problem, where N = 3 and

M1 is 2 × 10,

M2 is 10 × 5,

M3 is 5 × 1.

The optimal order is M1(M2M3), requiring 70 multiplications.

(b) In this part we can choose a much simpler state space. Let the state at stage k be given by {a, b},
where a, b ∈ {1, . . . , N} and give the indices of the first and the last matrix in the current partial product.
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There are two possible controls at each stage, which we denote by L and R. Note that L can be applied
only when a 6= 1 and R can be applied only when b 6= N . The system equation evolves according to

xk+1 =

{
{a − 1, b}, if uk = L,
{a, b + 1}, if uk = R,

k = 1, . . . , N − 1.

The terminal state is xN = {1, N} with cost 0. The cost at stage k is given by

gk(xk, uk) =

{
na−1nanb+1, if uk = L,
nanb+1nb+2, if uk = R,

k = 1, . . . , N − 1.

For the initial stage, we can take x0 to be the empty set and u0 ∈ {1, . . . , N}. The next state will be
given by x1 = {u0, u0}, and the cost incurred at the initial stage will be 0 for all possible controls.

1.18 w w w

Let t1 < t2 < · · · < tN−1 denote the times where g1(t) = g2(t). Clearly, it is never optimal to switch
functions at any other times. We can therefore divide the problem into N − 1 stages, where we want to
determine for each stage k whether or not to switch activities at time tk.

Define

xk =

{
0 if on activity g1 just before time tk,
1 if on activity g2 just before time tk,

uk =

{
0 to continue current activity,
1 to switch between activities.

Then the state at time tk+1 is simply xk+1 = (xk + uk) mod 2, and the profit for stage k is

gk(xk, uk) =

∫ tk+1

tk

g1+xk+1
(t)dt − ukc.

The DP algorithm is then

JN (xN ) = 0

Jk(xk) = min
uk

[
gk(xk, uk) + Jk+1

(
(xk + uk) mod 2

)]
.

1.21 w w w

We consider part (b), since part (a) is essentially a special case. We will consider the problem of placing
N − 2 points between the endpoints A and B of the given subarc. We will show that the polygon of
maximal area is obtained when the N − 2 points are equally spaced on the subarc between A and B.
Based on geometric considerations, we impose the restriction that the angle between any two successive
points is no more than π.
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As the subarc is traversed in the clockwise direction, we number sequentially the encountered points
as x1, x2, . . . , xN , where x1 and xN are the two endpoints A and B of the arc, respectively. For any point
x on the subarc, we denote by φ the angle between x and xN (measured clockwise), and we denote by
Ak(φ) the maximal area of a polygon with vertices the center of the circle, the points x and xN , and
N − k − 1 additional points on the subarc that lie between x and xN .

Without loss of generality, we assume that the radius of the circle is 1, so that the area of the
triangle that has as vertices two points on the circle and the center of the circle is (1/2) sinu, where u is
the angle corresponding to the center.

By viewing as state the angle φk between xk and xN , and as control the angle uk between xk and
xk+1, we obtain the following DP algorithm

Ak(φk) = max
0≤uk≤min{φk,π}

[
1

2
sin uk + Ak+1(φk − uk)

]

, k = 1, . . . , N − 2. (1)

Once xN−1 is chosen, there is no issue of further choice of a point lying between xN−1 and xN , so we
have

AN−1(φ) =
1

2
sin φ, (2)

using the formula for the area of the triangle formed by xN−1, xN , and the center of the circle.
It can be verified by induction that the above algorithm admits the closed form solution

Ak(φk) =
1

2
(N − k) sin

(
φk

N − k

)

, k = 1, . . . , N − 1, (3)

and that the optimal choice for uk is given by

u∗
k =

φk

N − k
.

Indeed, the formula (3) holds for k = N − 1, by Eq. (2). Assuming that Eq. (3) holds for k + 1, we have
from the DP algorithm (1)

Ak(φk) = max
0≤uk≤min{φk,π}

Hk(uk, φk), (4)

where

Hk(uk, φk) =
1

2
sin uk +

1

2
(N − k − 1) sin

(
φk − uk

N − k − 1

)

. (5)

It can be verified that for a fixed φk and in the range 0 ≤ uk ≤ min{φk, π}, the function Hk(·, φk) is
concave (its second derivative is negative) and its derivative is 0 only at the point u∗

k = φk/(N − k) which
must therefore be its unique maximum. Substituting this value of u∗

k in Eqs. (4) and (5), we obtain

Ak(φk) =
1

2
sin

(
φk

N − k

)

+
1

2
(N − k − 1) sin

(
φk − φk/(N − k)

N − k − 1

)

=
1

2
(N − k) sin

(
φk

N − k

)

,

and the induction is complete.
Thus, given an optimally placed point xk on the subarc with corresponding angle φk, the next point

xk+1 is obtained by advancing clockwise by φk/(N − k). This process, when started at x1 with φ1 equal
to the angle between x1 and xN , yields as the optimal solution an equally spaced placement of the points
on the subarc.
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1.25 w w w

(a) Consider the problem with the state equal to the number of free rooms. At state x ≥ 1 with y
customers remaining, if the inkeeper quotes a rate ri, the transition probability is pi to state x− 1 (with
a reward of ri) and 1− pi to state x (with a reward of 0). The DP algorithm for this problem starts with
the terminal conditions

J(x, 0) = J(0, y) = 0, ∀ x ≥ 0, y ≥ 0,

and is given by

J(x, y) = max
i=1,...,m

[
pi(ri + J(x − 1, y − 1)) + (1 − pi)J(x, y − 1)

]
, ∀ x ≥ 0.

From this equation and the terminal conditions, we can compute sequentially J(1, 1), J(1, 2), . . . , J(1, y)
up to any desired integer y. Then, we can calculate J(2, 1), J(2, 2), . . . , J(2, y), etc.

We first prove by induction on y that for all y, we have

J(x, y) ≥ J(x − 1, y), ∀ x ≥ 1.

Indeed this is true for y = 0. Assuming this is true for a given y, we will prove that

J(x, y + 1) ≥ J(x − 1, y + 1), ∀ x ≥ 1.

This relation holds for x = 1 since ri > 0. For x ≥ 2, by using the DP recursion, this relation is written
as

max
i=1,...,m

[
pi(ri + J(x − 1, y)) + (1 − pi)J(x, y)

]
≥ max

i=1,...,m

[
pi(ri + J(x − 2, y)) + (1 − pi)J(x − 1, y)

]
.

By the induction hypothesis, each of the terms on the left-hand side is no less than the corresponding
term on the right-hand side, so the above relation holds.

The optimal rate is the one that maximizes in the DP algorithm, or equivalently, the one that
maximizes

piri + pi(J(x − 1, y − 1) − J(x, y − 1)).

The highest rate rm simultaneously maximizes piri and minimizes pi. Since

J(x − 1, y − 1) − J(x, y − 1) ≤ 0,

as proved above, we see that the highest rate simultaneously maximizes piri and pi(J(x − 1, y − 1) −
J(x, y − 1)), and so it maximizes their sum.

(b) The algorithm given is the algorithm of Exercise 1.22 applied to the problem of part (a). Clearly, it
is optimal to accept an offer of ri if ri is larger than the threshold

r̄(x, y) = J(x, y − 1) − J(x − 1, y − 1).
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1.26 w w w

(a) The total net expected profit from the (buy/sell) investment decisions after transaction costs are
deducted is

E

{
N−1∑

k=0

(
ukPk(xk) − c |uk|

)

}

,

where

uk =

{
1 if a unit of stock is bought at the kth period,
−1 if a unit of stock is sold at the kth period,
0 otherwise.

With a policy that maximizes this expression, we simultaneously maximize the expected total worth of
the stock held at time N minus the investment costs (including sale revenues).

The DP algorithm is given by

Jk(xk) = max
uk∈{−1,0,1}

[

ukPk(xk) − c |uk| + E
{
Jk+1(xk+1) | xk

}]

,

with
JN (xN ) = 0,

where Jk+1(xk+1) is the optimal expected profit when the stock price is xk+1 at time k+1. Since uk does
not influence xk+1 and E

{
Jk+1(xk+1) | xk

}
, a decision uk ∈ {−1, 0, 1} that maximizes ukPk(xk) − c |uk|

at time k is optimal. Since Pk(xk) is monotonically nonincreasing in xk, it follows that it is optimal to
set

uk =

{
1 if xk ≤ xk,
−1 if xk ≥ xk,
0 otherwise,

where xk and xk are as in the problem statement. Note that the optimal expected profit Jk(xk) is given
by

Jk(xk) = E

{
N−1∑

i=k

max
ui∈{−1,0,1}

[
uiPi(xi) − c |ui|

]

}

.

(b) Let nk be the number of units of stock held at time k. If nk is less that N − k (the number of
remaining decisions), then the value nk should influence the decision at time k. We thus take as state
the pair (xk, nk), and the corresponding DP algorithm takes the form

Vk(xk, nk) =







maxuk∈{−1,0,1}

[

ukPk(xk) − c |uk| + E
{
Vk+1(xk+1, nk + uk) | xk

}]

if nk ≥ 1,

maxuk∈{0,1}

[

ukPk(xk) − c |uk| + E
{
Vk+1(xk+1, nk + uk) | xk

}]

if nk = 0,

with
VN (xN , nN ) = 0.

Note that we have
Vk(xk, nk) = Jk(xk), if nk ≥ N − k,
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where Jk(xk) is given by the formula derived in part (a). Using the above DP algorithm, we can calculate
VN−1(xN−1, nN−1) for all values of nN−1, then calculate VN−2(xN−2, nN−2) for all values of nN−2, etc.

To show the stated property of the optimal policy, we note that Vk(xk, nk) is monotonically nonde-
creasing with nk, since as nk decreases, the remaining decisions become more constrained. An optimal
policy at time k is to buy if

Pk(xk) − c + E
{
Vk+1(xk+1, nk + 1) − Vk+1(xk+1, nk) | xk

}
≥ 0, (1)

and to sell if
−Pk(xk) − c + E

{
Vk+1(xk+1, nk − 1) − Vk+1(xk+1, nk) | xk

}
≥ 0. (2)

The expected value in Eq. (1) is nonnegative, which implies that if xk ≤ xk, implying that Pk(xk)−c ≥ 0,
then the buying decision is optimal. Similarly, the expected value in Eq. (2) is nonpositive, which implies
that if xk < xk, implying that −Pk(xk)− c < 0, then the selling decision cannot be optimal. It is possible
that buying at a price greater than xk is optimal depending on the size of the expected value term in Eq.
(1).

(c) Let mk be the number of allowed purchase decisions at time k, i.e., m plus the number of sale decisions
up to k, minus the number of purchase decisions up to k. If mk is less than N−k (the number of remaining
decisions), then the value mk should influence the decision at time k. We thus take as state the pair
(xk, mk), and the corresponding DP algorithm takes the form

Wk(xk, mk) =







maxuk∈{−1,0,1}

[

ukPk(xk) − c |uk| + E
{
Wk+1(xk+1, mk − uk) | xk

}]

if mk ≥ 1,

maxuk∈{−1,0}

[

ukPk(xk) − c |uk| + E
{
Wk+1(xk+1, mk − uk) | xk

}]

if mk = 0,

with
WN (xN , mN ) = 0.

From this point the analysis is similar to the one of part (b).

(d) The DP algorithm takes the form

Hk(xk, mk, nk) = max
uk∈{−1,0,1}

[

ukPk(xk) − c |uk| + E
{
Hk+1(xk+1, mk − uk, nk + uk) | xk

}]

if mk ≥ 1 and nk ≥ 1, and similar formulas apply for the cases where mk = 0 and/or nk = 0 [compare
with the DP algorithms of parts (b) and (c)].

(e) Let r be the interest rate, so that x invested dollars at time k will become (1+ r)N−kx dollars at time
N . Once we redefine the expected profit Pk(xk) to be

Pk(x) = E{xN | xk = x} − (1 + r)N−kx,

the preceding analysis applies.
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Solutions Vol. I, Chapter 2

2.4 w w w

(a) We denote by Pk the OPEN list after having removed k nodes from OPEN, (i.e., after having performed
k iterations of the algorithm). We also denote dk

j the value of dj at this time. Let bk = minj∈Pk
{dk

j }. First,
we show by induction that b0 ≤ b1 ≤ · · · ≤ bk. Indeed, b0 = 0 and b1 = minj{asj

} ≥ 0, which implies that
b0 ≤ b1. Next, we assume that b0 ≤ · · · ≤ bk for some k ≥ 1; we shall prove that bk ≤ bk+1. Let jk+1 be
the node removed from OPEN during the (k +1)th iteration. By assumption dk

jk+1
= minj∈Pk

{dk
j } = bk,

and we also have

dk+1
i = min{dk

i , dk
jk+1

+ ajk+1i}.

We have Pk+1 = (Pk − {jk+1})∪Nk+1, where Nk+1 is the set of nodes i satisfying dk+1
i = dk

jk+1
+ ajk+1i

and i /∈ Pk. Therefore,

min
i∈Pk+1

{dk+1
i } = min

i∈(Pk−{jk+1})∪Nk+1

{dk+1
i } = min

[

min
i∈Pk−{jk+1}

{dk+1
i }, min

i∈Nk+1

{dk+1
i }

]

.

Clearly,

min
i∈Nk+1

{dk+1
i } = min

i∈Nk+1

{dk
jk+1

+ ajk+1i} ≥ dk
jk+1

.

Moreover,

min
i∈Pk−{jk+1}

{dk+1
i } = min

i∈Pk−{jk+1}

[

min{dk
i , dk

jk+1
+ ajk+1i}

]

≥ min

[

min
i∈Pk−{jk+1}

{dk
i }, dk

jk+1

]

= min
i∈Pk

{dk
i } = dk

jk+1
,

because we remove from OPEN this node with the minimum dk
i . It follows that bk+1 = mini∈Pk+1

{dk+1
i } ≥

dk
jk+1

= bk.

Now, we may prove that once a node exits OPEN, it never re-enters. Indeed, suppose that some node

i exits OPEN after the k∗th iteration of the algorithm; then, dk∗−1
i = bk∗−1. If node i re-enters OPEN

after the ℓ∗th iteration (with ℓ∗ > k∗), then we have dℓ1−1
i > dℓ∗

i = dℓ∗−1
j∗
ℓ

+ajℓ∗ i ≥ dℓ∗−1
jℓ∗

= bℓ∗−1. On the

other hand, since di is non-increasing, we have bk∗−1 = dk∗−1
i ≥ dℓ∗−1

i . Thus, we obtain bk∗−1 > bℓ∗−1,
which contradicts the fact that bk is non-decreasing.

Next, we claim the following: after the kth iteration, dk
i equals the length of the shortest possible

path from s to node i ∈ Pk under the restriction that all intermediate nodes belong to Ck. The proof will be
done by induction on k. For k = 1, we have C1 = {s} and d1

i = asi, and the claim is obviously true. Next,
we assume that the claim is true after iterations 1, . . . , k; we shall show that it is also true after iteration
k + 1. The node jk+1 removed from OPEN at the (k + 1)-st iteration satisfies mini∈Pk

{dk
i } = d∗jk+1

.

Notice now that all neighbors of the nodes in Ck belong either to Ck or to Pk.
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It follows that the shortest path from s to jk+1 either goes through Ck or it exits Ck, then it passes
through a node j∗ ∈ Pk, and eventually reaches jk+1. In the latter case, the length of this path is at least
equal to the length of the shortest path from s to j∗ through Ck; by the induction hypothesis, this equals
dk

j∗ , which is at least dk
jk+1

. It follows that, for node jk+1 exiting the OPEN list, dk
jk+1

equals the length

of the shortest path from s to jk+1. Similarly, all nodes that have exited previously have their current
estimate of di equal to the corresponding shortest distance from s.

Notice now that

dk+1
i = min

{
dk

i , dk
jk+1

+ ajk+1i

}
.

For i /∈ Pk and i ∈ Pk+1 it follows that the only neighbor of i in Ck+1 = Ck ∪ {jk+1} is node jk+1; for
such a node i, dk

i = ∞, which leads to dk+1
i = dk

jk+1
+ ajk+1i. For i 6= jk+1 and i ∈ Pk, the augmentation

of Ck by including jk+1 offers one more path from s to i through Ck+1, namely that through jk+1.
Recall that the shortest path from s to i through Ck has length dk

i (by the induction hypothesis). Thus,
dk+1

i = min
{
dk
1 , dk

jk+1
+ ajk+1i

}
is the length of the shortest path from s to i through Ck+1.

The fact that each node exits OPEN with its current estimate of di being equal to its shortest
distance from s has been proved in the course of the previous inductive argument.

(b) Since each node enters the OPEN list at most once, the algorithm will terminate in at most
N − 1 iterations. Updating the di’s during an iteration and selecting the node to exit OPEN requires
O(N) arithmetic operations (i.e., a constant number of operations per node). Thus, the total number of
operations is O(N2).

2.6 w w w

Proposition: If there exists a path from the origin to each node in T , the modified version of the label
correcting algorithm terminates with UPPER < ∞ and yields a shortest path from the origin to each
node in T . Otherwise the algorithm terminates with UPPER = ∞.

Proof: The proof is analogous to the proof of Proposition 3.1. To show that this algorithm terminates,
we can use the identical argument in the proof of Proposition 3.1.

Now suppose that for some node t ∈ T , there is no path from s to t. Then a node i such that (i, t)
is an arc cannot enter the OPEN list because this would establish that there is a path from s to i, and
therefore also a path from s to t. Thus, dt is never changed and UPPER is never reduced from its initial
value of ∞.

Suppose now that there is a path from s to each node t ∈ T . Then, since there is a finite number
of distinct lengths of paths from s to each t ∈ T that do not contain any cycles, and each cycle has
nonnegative length, there is also a shortest path. For some arbitrary t, let (s, j1, j2, . . . , jk, t) be a
shortest path and let d∗t be the corresponding shortest distance. We will show that the value of UPPER
upon termination must be equal to d∗ = maxt∈T d∗t . Indeed, each subpath (s, j1, . . . , jm), m = 1, . . . , k,
of the shortest path (s, j1, . . . , jk, t) must be a shortest path from s to jm. If the value of UPPER is
larger than d∗ at termination, the same must be true throughout the algorithm, and therefore UPPER
will also be larger than the length of all the paths (s, j1, . . . , jm), m = 1, . . . , k, throughout the algorithm,
in view of the nonnegative arc length assumption. If, for each t ∈ T , the parent node jk enters the OPEN
list with djk

equal to the shortest distance from s to jk, UPPER will be set to d∗ in step 2 immediately
following the next time the last of the nodes jk is examined by the algorithm in step 2. It follows that, for
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some t̄ ∈ T , the associated parent node j̄k will never enter the OPEN list with dj̄k
equal to the shortest

distance from s to j̄k. Similarly, and using also the nonnegative length assumption, this means that node
j̄k−1 will never enter the OPEN list with dj̄k−1

equal to the shortest distance from s to j̄k−1. Proceeding

backwards, we conclude that j̄1 never enters the OPEN list with dj̄1
equal to the shortest distance from

s to j̄1 [which is equal to the length of the arc (s, j1)]. This happens, however, at the first iteration of
the algorithm, obtaining a contradiction. It follows that at termination, UPPER will be equal to d∗.

Finally, it can be seen that, upon termination of the algorithm, the path constructed by tracing the
parent nodes backward from d to s has length equal to d∗t for each t ∈ T . Thus the path is a shortest
path from s to t.

2.13 w w w

(a) We first need to show that dk
i is the length of the shortest k-arc path originating at i, for i 6= t. For

k = 1,
d1

i = min
j

cij

which is the length of shortest arc out of i. Assume that dk−1
i is the length of the shortest (k − 1)-arc

path out of i. Then
dk

i = min
j

{cij + dk−1
j }

If dk
i is not the length of the shortest k-arc path, the initial arc of the shortest path must pass through

a node other than j. This is true since dk−1
j ≤ length of any (k − 1)-step arc out of j. Let ℓ be the

alternative node. From the optimality principle

distance of path through ℓ = ciℓ + dk−1
ℓ ≤ dk

i

But this contradicts the choice of dk
i in the DP algorithm. Thus, dk

i is the length of the shortest k-arc
path out of i.

Since dk
t = 0 for all k, once a k-arc path out of i reaches t we have dκ

i = dk
i for all κ ≥ k. But with

all arc lengths positive, dk
i is just the shortest path from i to t. Clearly, there is some finite k such that

the shortest k-path out of i reaches t. If this were not true, the assumption of positive arc lengths implies
that the distance from i to t is infinite. Thus, the algorithm will yield the shortest distances in a finite
number of steps. We can estimate the number of steps, Ni as

Ni ≤
minj djt

minj,k djk

(b) Let d̄k
i be the distance estimate generated using the initial condition d0

i = ∞ and dk
i be the estimate

generated using the initial condition d0
i = 0. In addition, let di be the shortest distance from i to t.

Lemma:

dk
i ≤ dk+1

i ≤ di ≤ d̄k+1
i ≤ d̄k

i (1)

dk
i = di = d̄k

i for k sufficently large (2)
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Proof: Relation (1) follows from the monotonicity property of DP. Note that d1
i ≥ d0

i and that d̄1
i ≤ d̄0

i .
Equation (2) follows immediately from the convergence of DP (given d0

i = ∞) and from part a).

Proposition: For every k there exists a time Tk such that for all T ≥ Tk

dk
i ≤ dT

i ≤ d̄k
i , i = 1, 2, . . . , N

Proof: The proof follows by induction. For k = 0 the proposition is true, given the positive arc length
assumption. Assume it is true for a given k. Let N(i) be a set containing all nodes adjacent to i. For
every j ∈ N(i) there exists a time, T j

k such that

dk
j ≤ dT

j ≤ d̄k
j ∀ T ≥ T j

k

Let T ′ be the first time i updates its distance estimate given that all d
T

j

k
j , j ∈ N(i), estimates have

arrived. Let dT
ij be the estimate of dj that i has at time T ′. Note that this may differ from d

T
j

k
j since the

later estimates from j may have arrived before T ′. From the Lemma

dk
j ≤ dT ′

ij ≤ d̄k
j

which, coupled with the monotonicity of DP, implies

dk+1
i ≤ dT

i ≤ d̄k+1
i ∀ T ≥ T ′

Since each node never stops transmitting, T ′ is finite and the proposition is proved. Using the Lemma,
we see that there is a finite k such that dκ

i = di = d̄κ
i , ∀ κ ≥ k. Thus, from the proposition, there exists

a finite time T ∗ such that dT
i = d∗i for all T ≥ T ∗ and i.
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Solutions Vol. I, Chapter 3

3.6 w w w

This problem is similar to the Brachistochrone Problem (Example 4.2) described in the text. As in that
problem, we introduce the system

ẋ = u

and have a fixed terminal state problem [x(0) = a and x(T ) = b]. Letting

g(x, u) =

√
1 + u2

Cx
,

the Hamiltonian is
H(x, u, p) = g(x, u) + pu.

Minimization of the Hamiltonian with respect to u yields

p(t) = −∇ug
(
x(t), u(t)

)
.

Since the Hamiltonian is constant along an optimal trajectory, we have

g
(
x(t), u(t)

)
−∇ug

(
x(t), u(t)

)
u(t) = constant.

Substituting in the expression for g, we have

√
1 + u2

Cx
− u2

√
1 + u2 Cx

=
1√

1 + u2 Cx
= constant,

which simplifies to
(
x(t)

)2
(

1 +
(
ẋ(t)

)2
)

= constant.

Thus an optimal trajectory satisfies the differential equation

ẋ(t) =

√

D −
(
x(t)

)2

(
x(t)

)2 .

It can be seen through straightforward calculation that the curve

(
x(t)

)2
+ (t − d)2 = D

satisfies this differential equation, and thus the curve of minimum travel time from A to B is an arc of a
circle.

13



3.9 w w w

We have the system ẋ(t) = Ax(t) + Bu(t), for which we want to minimize the quadratic cost

x(T )′QT x(T ) +

∫ T

0

(
x(t)′Qx(t) + u(t)′Ru(t)

)
dt.

The Hamiltonian here is
H(x, u, p) = x′Qx + u′Ru + p′(Ax + Bu),

and the adjoint equation is
ṗ(t) = −A′p(t) − 2Qx(t),

with the terminal condition
p(T ) = 2Qx(T ).

Minimizing the Hamiltonian with respect to u yields the optimal control

u∗(t) = arg min
u

[
x∗(t)′Qx∗(t) + u′Ru + p′

(
Ax∗(t) + Bu

)]

= −1

2
R−1B′p(t).

We now hypothesize a linear relation between x∗(t) and p(t)

2K(t)x∗(t) = p(t), ∀ t ∈ [0, T ],

and show that K(t) can be obtained by solving the Riccati equation. Substituting this value of p(t) into
the previous equation, we have

u∗(t) = −R−1B′K(t)x∗(t).

By combining this result with the system equation, we have

ẋ(t) =
(
A − BR−1B′K(t)

)
x∗(t). (1)

Differentiating 2K(t)x∗(t) = p(t) and using the adjoint equation yields

2K̇(t)x∗(t) + 2K(t)ẋ∗(t) = −A′2K(t)x∗(t) − 2Qx∗(t).

Combining with Eq. (1), we have

K̇(t)x∗(t) + K(t)
(
A − BR−1B′K(t)

)
x∗(t) = −A′K(t)x∗(t) − Qx∗(t),

and we thus see that K(t) should satisfy the Riccati equation

K̇(t) = −K(t)A − A′K(t) + K(t)BR−1B′K(t) − Q.

From the terminal condition p(T ) = 2Qx(T ), we have K(T ) = Q, from which we can solve for K(t)
using the Riccati equation. Once we have K(t), we have the optimal control u∗(t) = −R−1B′K(t)x∗(t).
By reversing the previous arguments, this control can then be shown to satisfy all the conditions of the
Pontryagin Minimum Principle.

14



Solutions Vol. I, Chapter 4

4.10 w w w

(a) Clearly, the function JN is continuous. Assume that Jk+1 is continuous. We have

Jk(x) = min
u∈{0,1,...}

{
cu + L(x + u) + G(x + u)

}

where

G(y) = E
wk

{Jk+1(y − wk)}

L(y) = E
wk

{p max(0, wk − y) + h max(0, y − wk)}

Thus, L is continuous. Since Jk+1 is continuous, G is continuous for bounded wk. Assume that Jk is not
continuous. Then there exists a x̂ such that as y → x̂, Jk(y) does not approach Jk(x̂). Let

uy = arg min
u∈{0,1,...}

{
cu + L(y + u) + G(y + u)

}

Since L and G are continuous, the discontinuity of Jk at x̂ implies

lim
y→x̂

uy 6= ux̂

But since uy is optimal for y,

lim
y→x̂

{
cuy + L(y + uy) + G(y + uy)

}
< lim

y→x̂

{
cux̂ + L(y + ux̂) + G(y + ux̂)

}
= Jk(x̂)

This contradicts the optimality of Jk(x̂) for x̂. Thus, Jk is continuous.

(b) Let

Yk(x) = Jk(x + 1) − Jk(x)

Clearly YN (x) is a non-decreasing function. Assume that Yk+1(x) is non-decreasing. Then

Yk(x + δ) − Yk(x) = c(ux+δ+1 − ux+δ) − c(ux+1 − ux)

+ L(x + δ + 1 + ux+δ+1) − L(x + δ + ux+δ)

− [L(x + 1 + ux+1) − L(x + ux)]

+ G(x + δ + 1 + ux+δ+1) − G(x + δ + ux+δ)

− [G(x + 1 + ux+1) − G(x + ux)]

15



Since Jk is continuous, uy+δ = uy for δ sufficiently small. Thus, with δ small,

Yk(x + δ) − Yk(x) = L(x + δ + 1 + ux+1) − L(x + δ + ux) − [L(x + 1 + ux+1) − L(x + ux)]

+ G(x + δ + 1 + ux+1) − G(x + δ + ux) − [G(x + 1 + ux+1) − G(x + ux)]

Now, since the control and penalty costs are linear, the optimal order given a stock of x is less than the
optimal order given x + 1 stock plus one unit. Thus

ux+1 ≤ ux ≤ ux+1 + 1

If ux = ux+1 + 1, Y (x + δ) − Y (x) = 0 and we have the desired result. Assume that ux = ux+1. Since
L(x) is convex, L(x + 1)−L(x) is non-decreasing. Using the assumption that Yk+1(x) is non-decreasing,
we have

Yk(x + δ) − Yk(x) = L(x + δ + 1 + ux) − L(x + δ + ux) − [L(x + 1 + ux) − L(x + ux)]
︸ ︷︷ ︸

≥0

+ E
wk

{
Jk+1(x + δ + 1 + ux − wk) − Jk+1(x + δ + ux − wk)

−[Jk+1(x + 1 + ux − wk) − Jk+1(x + ux − wk)]
}

︸ ︷︷ ︸

≥0

≥ 0

Thus, Yk(x) is a non-decreasing function in x.

(c) From their definition and a straightforward induction it can be shown that J∗
k (x) and Jk(x, u) are

bounded below. Furthermore,since limx→∞ Lk(x, u) = ∞, we obtain limx→∞(x, 0) = ∞.
From the definition of Jk(x, u), we have

Jk(x, u) = Jk(x + 1, u − 1) + c, ∀ u ∈ {1, 2, . . .}. (1)

Let Sk be the smallest real number satisfying

Jk(Sk, 0) = Jk(Sk + 1, 0) + c (2)

We show that Sk is well defined. If no Sk satisfying Eq. (2) exists, we must have either Jk(x, 0)− Jk(x +
1, 0) > c, ∀ x ∈ R or Jk(x, 0)−Jk(x+1, 0) < 0, ∀ x ∈ R, because Jk is continuous. The first possibility
contradicts the fact that limx→∞ Jk(x, 0) = ∞. The second possibility implies that limx→ −∞ Jk(x, 0)+cx
is finite. However, using the boundedness of J∗

k+1(x) from below, we obtain limx→ −∞ Jk(x, 0)+ cx = ∞.
The contradiction shows that Sk is well defined.

We now derive the form of an optimal policy u∗
k(x). Fix some x and consider first the case x ≥ Sk.

Using the fact that Jk(x, u)−Jk(x+1, u) is nondecreasing function of x we have for any u ∈ {0, 1, 2, . . .}

Jk(x + 1, u) − Jk(x, u) ≥ Jk(Sk + 1, u)Jk(Sk, u) = Jk(Sk + 1, 0) − Jk(Sk, 0) = −c

Therefore,
Jk(x, u + 1) = Jk(x + 1, u) + c ≥ Jk(x, u) ∀u ∈ {0, 1, . . .}, ∀ x ≥ Sk.
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This shows that u = 0 minimizes Jk(x, u), for all x ≥ Sk. Now let x ∈ [Sk−n, Sk−n+1), n ∈ {1, 2, . . .}.
Using Eq. (1), we have

Jk(x, n + m) − Jk(x, n) = Jk(x + n, m) − Jk(x + n, 0) ≥ 0 ∀ m in {0, 1, . . .}. (3)

However, if u < n then x + u < Sk and

Jk(x + u + 1, 0) − Jk(x + u, 0) < Jk(Sk + 1, 0) − Jk(Sk, 0) = −c.

Therefore,

Jk(x, u+1) = Jk(x+u+1, 0)+(u+1)c < Jk(x+u, 0)+uc = Jk(x, u) ∀ u ∈ {0, 1, . . .}, n < n. (4)

Inequalities (3) and (4) show that u = n minimizes Jk(x, u) whenever x ∈ [Sk − n, Sk − n + 1).

4.18 w w w

Let the state xk be defined as

xk =







T, if the selection has already terminated

1, if the kth object observed has rank 1

0, if the kth object observed has rank < 1

The system evolves according to

xk+1 =

{
T, if uk = stop or xk = T
wk, if uk = continue

The cost function is given by

gk(xk, uk, wk) =

{
k
N,

if xk = 1 and uk = stop
0, otherwise

gN (xN ) =

{
1, if xN = 1
0, otherwise

Note that if termination is selected at stage k and xk 6= 1 then the probability of success is 0. Thus, if
xk = 0 it is always optimal to continue.

To complete the model we have to determine P (wk |xk, uk)
△

= P (wk) when the control uk = continue.
At stage k, we have already selected k objects from a sorted set. Since we know nothing else about these
objects the new element can, with equal probability, be in any relation with the already observed objects
aj

· · · < ai1 < · · · < ai2 < · · · · · · < aik · · ·
︸ ︷︷ ︸

k+1 possible positions for ak+1
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Thus,

P (wk = 1) =
1

k + 1
, P (wk = 0) =

k

k + 1

Proposition: If k ∈ SN
△

= {i |
(

1
N−1 + · · · + 1

i

)

≤ 1}, then

Jk(0) =
k

N

(
1

N − 1
+ · · · + 1

k

)

, Jk(1) =
k

N
.

Proof: For k = N − 1

JN−1(0) = max
[

0
︸︷︷︸

stop

, E{wN−1}
︸ ︷︷ ︸

continue

]

=
1

N

and µ∗
N−1(0) = continue. Also,

JN−1(1) = max
[N − 1

N
︸ ︷︷ ︸

stop

, E{wN−1}
︸ ︷︷ ︸

continue

]

=
N − 1

N

and µ∗
N−1(1) = stop. Note that N − 1 ∈ SN for all SN .
Assume the proposition is true for Jk+1(xk+1). Then

Jk(0) = max
[

0
︸︷︷︸

stop

, E{Jk+1(wk)}
︸ ︷︷ ︸

continue

]

Jk(1) = max
[ k

N
︸︷︷︸

stop

, E{Jk+1(wk)}
︸ ︷︷ ︸

continue

]

Now,

E{Jk+1(wk)} =
1

k + 1

k + 1

N
+

k

k + 1

k + 1

N

(
1

N − 1
+ · · · + 1

k + 1

)

=
k

N

(
1

N − 1
+ · · · + 1

k

)

Clearly

Jk(0) =
k

N

(
1

N − 1
+ · · · + 1

k

)

and µ∗
k(0) = continue. If k ∈ SN ,

Jk(1) =
k

N

and µ∗
k(1) = stop. Q.E.D.
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Proposition: If k 6∈ SN

Jk(0) = Jk(1) =
δ − 1

N

(
1

N − 1
+ · · · + 1

δ − 1

)

where δ is the minimum element of SN .

Proof: For k = δ − 1

Jk(0) =
1

δ

δ

N
+

δ − 1

δ

δ

N

(
1

N − 1
+ · · · + 1

δ

)

=
δ − 1

N

(
1

N − 1
+ · · · + 1

δ − 1

)

Jk(1) = max

[
δ − 1

N
,
δ − 1

N

(
1

N − 1
+ · · · + 1

δ − 1

)]

=
δ − 1

N

(
1

N − 1
+ · · · + 1

δ − 1

)

and µ∗
δ−1(0) = µ∗

δ−1(1) = continue.
Assume the proposition is true for Jk(xk). Then

Jk−1(0) =
1

k
Jk(1) +

k − 1

k
Jk(0) = Jk(0)

and µ∗
k−1(0) = continue.

Jk−1(1) = max

[
1

k
Jk(1) +

k − 1

k
Jk(0),

k − 1

N

]

= max

[
δ − 1

N

(
1

N − 1
+ · · · + 1

δ − 1

)

,
k − 1

N

]

= Jk(0)

and µ∗
k−1(1) = continue. Q.E.D.

Thus the optimum policy is to continue until the δth object, where δ is the minimum integer such

that
(

1
N−1 + · · · + 1

δ

)

≤ 1, and then stop at the first time an element is observed with largest rank.

4.31 w w w

(a) In order that Akx + Bku + w ∈ X for all w ∈ Wk, it is sufficient that Akx + Bku belong to some
ellipsoid X̃ such that the vector sum of X̃ and Wk is contained in X . The ellipsoid

X̃ = {z | z′Fz ≤ 1},
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where for some scalar β ∈ (0, 1),

F−1 = (1 − β)(Ψ−1 − β−1D−1
k )

has this property (based on the hint and assuming that F−1 is well-defined as a positive definite matrix).
Thus, it is sufficient that x and u are such that

(Akx + Bku)′F (Akx + Bku) ≤ 1. (1)

In order that for a given x, there exists u with u′Rku ≤ 1 such that Eq. (1) is satisfied as well as

x′Ξx ≤ 1,

it is sufficient that x is such that

min
u∈ℜm

[
x′Ξx + u′Rku + (Akx + Bku)′F (Akx + Bku)

]
≤ 1, (2)

or by carrying out explicitly the quadratic minimization above,

x′Kx ≤ 1,

where
K = A′

k(F−1 + BkR−1
k B′

k)−1 + Ξ.

The control law
µ(x) = −(Rk + B′

kFBk)−1B′
kFAkx

attains the minimum in Eq. (2) for all x, so it achieves reachability.

(b) Follows by iterative application of the results of part (a), starting with k = N − 1 and proceeding
backwards.

(c) Follows from the arguments of part (a).
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Solutions Vol. I, Chapter 5

5.1 w w w

Define

yN = xN ,

yk = xk + A−1
k wk + A−1

k A−1
k+1wk+1 + . . . + A−1

k · · ·A−1
N−1wN−1.

Then

yk = xk + A−1
k (wk − xk+1) + A−1

k yk+1

= xk + A−1
k (−Akxk − Bkuk) + A−1

k yk+1

= −A−1
k Bkuk + A−1

k yk+1

and
yk+1 = Akyk + Bkuk.

Now, the cost function is the expected value of

xN
′QxN +

N−1∑

k=0

uk
′Rkuk = y0

′K0y0 +

N−1∑

k=0

(yk+1
′Kk+1yk+1 − yk

′Kkyk + uk
′Rkuk).

We have

yk+1
′Kk+1yk+1 − yk

′Kkyk + uk
′Rkuk = (Akyk + Bkuk)′Kk+1(Akyk + Bkuk) + uk

′Rkuk

− yk
′Ak

′[Kk+1 − Kk+1Bk(Bk
′Kk+1Bk)−1BkτrKk+1]Akyk

= yk
′Ak

′Kk+1Akyk + 2y′
kA′

kKk+1Bkuk + uk
′Bk

′Kk+1Bkuk

− yk
′Ak

′Kk+1Akyk + yk
′Ak

′Kk+1BkP−1
k B′

kKk+1Akyk

+ uk
′Rkuk

= −2y′
kL

′
kPkuk + uk

′Pkuk + yk
′Lk

′PkLkyk

= (uk − Lkyk)
′
Pk(uk − Lkyk).

Thus, the cost function can be written as

E

{

y0
′K0y0 +

N−1∑

k=0

(uk − Lkyk)
′
Pk(uk − Lkyk)

}

.

The problem now is to find µ∗
k(Ik), k = 0, 1, . . . , N −1, that minimize over admissible control laws µk(Ik),

k = 0, 1, . . . , N − 1, the cost function

E

{

y0
′K0y0 +

N−1∑

k=0

(
µk(Ik) − Lkyk

)′
Pk

(
µk(Ik) − Lkyk

)

}

.
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We do this minimization by first minimizing over µN−1, then over µN−2, etc. The minimization over
µN−1 involves just the last term in the sum and can be written as

min
µN−1

E
{(

µN−1(IN−1) − LN−1yN−1

)′
PN−1

(
µN−1(IN−1) − LN−1yN−1

)}

= E
{

min
uN−1

E
{(

uN−1 − LN−1yN−1

)′
PN−1

(
uN−1 − LN−1yN−1

)∣
∣IN−1

}}

.

Thus this minimization yields the optimal control law for the last stage:

µ∗
N−1(IN−1) = LN−1 E

{

yN−1

∣
∣IN−1

}

.

[Recall here that, generically, E{z|I} minimizes over u the expression Ez

{
(u − z)′P (u − z)| |

}
for any

random variable z, any conditioning variable I, and any positive semidefinite matrix P .] The minimization
over µN−2 involves

E
{(

µN−2(IN−2) − LN−2yN−2

)′
PN−2

(
µN−2(IN−2) − LN−2yN−2

)}

+ E
{(

E{yN−1|IN−1} − yN−1

)′
L′

N−1PN−1LN−1

(

E{yN−1|IN−1} − yN−1

)}

.

However, as in Lemma 5.2.1, the term E{yN−1|IN−1}− yN−1 does not depend on any of the controls (it
is a function of x0, w0, . . . , wN−2, v0, . . . , vN−1). Thus the minimization over µN−2 involves just the first
term above and yields similarly as before

µ∗
N−2(IN−2) = LN−2 E

{

yN−2

∣
∣IN−2

}

.

Proceeding similarly, we prove that for all k

µ∗
k(Ik) = Lk E

{

yk

∣
∣Ik

}

.

Note: The preceding proof can be used to provide a quick proof of the separation theorem for linear-
quadratic problems in the case where x0, w0, . . . , wN−1, v0, . . . , vN−1 are independent. If the cost function
is

E

{

xN
′QNxN +

N−1∑

k=0

(
xk

′Qkxk + uk
′Rkuk

)

}

the preceding calculation can be modified to show that the cost function can be written as

E

{

x0
′K0x0 +

N−1∑

k=0

(
(uk − Lkxk)

′
Pk(uk − Lkxk) + wk

′Kk+1wk

)

}

.

By repeating the preceding proof we then obtain the optimal control law as

µ∗
k(Ik) = Lk E

{
xk

∣
∣Ik

}
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5.3 w w w

The control at time k is (uk, αk), where αk is a variable taking values 1 (if the next measurement at time
k + 1 is of type 1) or 2 (if the next measurement is of type 2). The cost functional is

E

{

xN
′QxN +

N−1∑

k=0

(xk
′Qxk + uk

′Ruk) +

N−1∑

k=0

gαk

}

.

We apply the DP algorithm for N = 2. We have from the Riccatti equation

J1(I1) = J1(z0, z1, u0, α0)

= E
x1

{
x1

′(A′QA + Q)x1 | I1

}
+ E

w1

{w′Qw}

+ min
u1

{
u1

′(B′QB + R)u1 + 2 E{x1 | I1}′A′QBu1

}

+ min[g1, g2].

So
µ∗

1(I1) = −(B′QB + R)−1B′QAE{x1 | I1},

α∗
1(I1) =

{
1, if g1 ≤ g2,
2, otherwise.

Note that the measurement selected at k = 1 does not depend on I1. This is intuitively clear since the
measurement z2 will not be used by the controller, so its selection should be based on measurement cost
alone and not on the basis of the quality of estimate. The situation is different once more than one stage
is considered.

Using a simple modification of the analysis in Section 5.2 of the text, we have

J0(I0) = J0(z0)

= min
u0

{

E
x0,w0

{
x0

′Qx0 + u0
′Ru0 + Ax0 + Bu0 + w0

′K0Ax0 + Bu0 + w0

∣
∣ z0

}}

+ min
α0

[

E
z1

{

E
x1

{
[x1 − E{x1 | I1}]′P1[x1 − E{x1 | I1}]

∣
∣ I1

}
∣
∣
∣ z0, u0, α0

}

+ gα0

]

+ E
w1

{w1
′Qw1} + min[g1, g2].

Note that the minimization of the second bracket is indicated only with respect to α0 and not u0. The
reason is that quantity in the second bracket is the error covariance of the estimation error (weighted by
P1) and, as shown in the text, it does not depend on u0. Because all stochastic variables are Gaussian,
the quantity in the second bracket does not depend on z0. (The weighted error covariance produced by
the Kalman filter is precomputable and depends only on the system and measurement matrices and noise
covariances but not on the measurements received.) In fact

E
z1

{

E
x1

{
[x1 − E{x1 | I1}]′P1[x1 − E{x1 | I1}]

∣
∣ I1

}
∣
∣
∣ z0, u0, α0

}

=







Tr

(

P
1
2

1

∑1
1|1 P

1
2

1

)

, if α0 = 1,

Tr

(

P
1
2

1

∑2
1|1 P

1
2

1

)

, if α0 = 2,
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where Tr(·) denotes the trace of a matrix, and
∑1

1|1 (
∑2

1|1) denotes the error covariance of the Kalman

filter estimate if a measurement of type 1 (type 2) is taken at k = 0. Thus at time k = 0, we have that
the optimal measurement chosen does not depend on z0 and is of type 1 if

Tr

(

P
1
2

1 Σ1
1|1P

1
2

1

)

+ g1 ≤ Tr

(

P
1
2

1 Σ2
1|1P

1
2

1

)

+ g2

and is of type 2 otherwise.

5.7 w w w

a) We have

pj
k+1 = P (xk+1 = j | z0, . . . , zk+1, u0, . . . , uk)

= P (xk+1 = j | Ik+1)

=
P (xk+1 = j, zk+1 | Ik, uk)

P (zk+1 | Ik, uk)

=

∑n
i=1 P (xk = i)P (xk+1 = j | xk = i, uk)P (zk+1 | uk, xk+1 = j)

∑n
s=1

∑n
i=1 P (xk = i)P (xk+1 = s | xk = i, uk)P (zk+1 | uk, xk+1 = s)

=

∑n
i=1 pi

kpij(uk)rj(uk, zk+1)
∑n

s=1

∑n
i=1 pi

kpis(uk)rs(uk, zk+1)
.

Rewriting pj
k+1 in vector form, we have

pj
k+1 =

rj(uk, zk+1)[P (uk)′Pk]j
∑n

s=1 rs(uk, zk+1)[P (uk)′Pk]s
, j = 1, . . . , n.

Therefore,

Pk+1 =
[r(uk, zk+1)] ∗ [P (uk)′Pk]

r(uk, zk+1)′P (uk)′Pk

.

b) The DP algorithm for this system is:

J̄N−1(PN−1) = min
u







n∑

i=1

pi
N−1

n∑

j=1

pij(u)gN−1(i, u, j)







= min
u

{
n∑

i=1

pi
N−1

[
GN−1(u)

]

i

}

= min
u

{
P ′

N−1GN−1(u)
}
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J̄k(Pk) = min
u







n∑

i=1

pi
k

n∑

j=1

pij(u)gk(i, u, j) +

n∑

i=1

pi
k

n∑

j=1

pij(u)

q
∑

θ=1

rj(u, θ)J̄k+1(Pk+1 | Pk, u, θ)







= min
u

{

P ′
kGk(u) +

q
∑

θ=1

r(u, θ)′P (u)′PkJ̄k+1

[
[r(u, θ)] ∗ [P (u)′Pk]

r(u, θ)′P (u)′Pk

]}

.

c) For k = N − 1,

J̄N−1(λP ′
N−1) = min

u

{
λP ′

N−1GN−1(u)
}

= min
u

{
n∑

i=1

λpi
N−1

[
GN−1(u)

]

i
}

= min
u

{λ
n∑

i=1

pi
N−1[GN−1(u)]i}

= λmin
u

{
n∑

i=1

pi
N−1[GN−1(u)]i

}

= λmin
u

{
n∑

i=1

pi
N−1[GN−1(u)]i

}

= λJ̄N−1(PN−1).

Now assume J̄k(λPk) = λJ̄k(Pk). Then,

J̄k−1(λP ′
k−1) = min

u

{

λP ′
k−1Gk−1(u) +

q
∑

θ=1

r(u, θ)′P (u)′λPk−1J̄k(Pk|Pk−1, u, θ)

}

= min
u

{

λP ′
k−1Gk−1(u) + λ

q
∑

θ=1

r(u, θ)′P (u)′Pk−1J̄k(Pk|Pk−1, u, θ)

}

= λmin
u

{

P ′
k−1Gk−1(u) +

q
∑

θ=1

r(u, θ)′P (u)′Pk−1J̄k(Pk|Pk−1, u, θ)

}

= λJ̄k−1(Pk−1). Q.E.D.

For any u, r(u, θ)′P (u)′Pk is a scalar. Therefore, letting λ = r(u, θ)′P (u)′Pk, we have

J̄k(Pk) = min
u

{

P ′
kGk(u) +

q
∑

θ=1

r(u, θ)′P (u)′PkJ̄k+1

[
[r(u, θ)] ∗ [P (u)′Pk]

r(u, θ)′P (u)′Pk

]}

= min
u

[

P ′
kGk(u) +

q
∑

θ=1

J̄k+1([r(u, θ)] ∗ [P (u)′Pk])

]

.

d) For k = N − 1, we have J̄N−1(PN−1) = minu[P ′
N−1GN−1(u)], and so J̄N−1(PN−1) has the desired

form
J̄N−1(PN−1) = min

[
P ′

N−1α
1
N−1, . . . , P

′
N−1α

m
N−1

]
,
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where αj
N−1 = GN−1(uj) and uj is the jth element of the control constraint set.

Assume that
J̄k+1(Pk+1) = min

[
P ′

k+1α
1
k+1, . . . , P

′
k+1α

mk+1

k+1

]
.

Then, using the expression from part (c) for J̄k(Pk),

J̄k(Pk) = min
u

[

P ′
kGk(u) +

q
∑

θ=1

J̄k+1

(
[r(u, θ)] ∗ [P (u)′Pk]

)

]

= min
u

[

P ′
kGk(u) +

q
∑

θ=1

min
m=1,...,mk+1

[{
[r(u, θ)] ∗ [P (u)′Pk]

}′
αm

k+1

]
]

= min
u

[

P ′
kGk(u) +

q
∑

θ=1

min
m=1,...,mk+1

[
P ′

kP (u)r(u, θ)′αm
k+1

]

]

= min
u

[

P ′
k

{

Gk(u) +

q
∑

θ=1

min
m=1,...,mk+1

[
P (u)r(u, θ)′αm

k+1

]

}]

= min
[
P ′

kα1
k, . . . , P ′

kα
mk
k

]
,

where α1
k, . . . , α

mk
k are all possible vectors of the form

Gk(u) +

q
∑

θ=1

P (u)r(u, θ)′α
mu,θ

k+1 ,

as u ranges over the finite set of controls, θ ranges over the set of observation vector indexes {1, . . . , q},
and mu,θ ranges over the set of indexes {1, . . . , mk+1}. The induction is thus complete.

For a quick way to understand the preceding proof, based on polyhedral concavity notions, note
that the conclusion is equivalent to asserting that J̄k(Pk) is a positively homogeneous, concave polyhedral
function. The preceding induction argument amounts to showing that the DP formula of part (c) preserves
the positively homogeneous, concave polyhedral property of J̄k+1(Pk+1). This is indeed evident from
the formula, since taking minima and nonnegative weighted sums of positively homogeneous, concave
polyhedral functions results in a positively homogeneous, concave polyhedral function.
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Solutions Vol. I, Chapter 6

6.8 w w w

First, we notice that α − β pruning is applicable only for arcs that point to right children, so that at
least one sequence of moves (starting from the current position and ending at a terminal position, that
is, one with no children) has been considered. Furthermore, due to depth-first search the score at the
ancestor positions has been derived without taking into account the positions that can be reached from
the current point. Suppose now that α-pruning applies at a position with Black to play. Then, if the
current position is reached (due to a move by White), Black can respond in such a way that the final
position will be worse (for White) than it would have been if the current position were not reached. What
α-pruning saves is searching for even worse positions (emanating from the current position). The reason
for this is that White will never play so that Black reaches the current position, because he certainly has
a better alternative. A similar argument applies for β pruning.

A second approach: Let us suppose that it is the WHITE’s turn to move. We shall prove that a β−cutoff
occurring at the nth position will not affect the backed up score. We have from the definition of β β =
min{TBS of all ancestors of n (white) where BLACK has the move}. For a cutoff to occur: TBS(n) > β.
Observe first of all that β = TBS(n1) for some ancestor n1 where BLACK has the move. Then there exists
a path n1, n2, . . . , nk, n. Since it is WHITE’s move at n we have that TBS(n) = max{TBS(n), BS(ni)} >
β, where ni are the descendants of n. Consider now a position nk. Then TBS(nk) will either remain
unchanged or will increase to a value greater than β as a result of the exploration of node n. Proceeding
similarly, we conclude that TBS(n2) will either remain the same or change to a value greater than β.
Finally at node n1 we have that TBS(n1) will not change since it is BLACK’s turn to move and he will
choose the move with minimum score. Thus the backed up score and the choice of the next move are
unaffected from β−pruning. A similar argument holds for α−pruning.
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Solutions Vol. I, Chapter 7

7.8 w w w

A threshold policy is specified by a threshold integer m and has the form
Process the orders if and only if their number exceeds m.

The cost function corresponding to a threshold policy specified by m will be denoted by Jm. By Prop.
3.1(c), this cost function is the unique solution of system of equations

Jm(i) =

{
K + α(1 − p)Jm(0) + αpJm(1) if i > m,
ci + α(1 − p)Jm(i) + αpJm(i + 1) if i ≤ m.

(1)

Thus for all i ≤ m, we have

Jm(i) =
ci + αpJm(i + 1)

1 − α(1 − p)
,

Jm(i − 1) =
c(i − 1) + αpJm(i)

1 − α(1 − p)
.

From these two equations it follows that for all i ≤ m, we have

Jm(i) ≤ Jm(i + 1) ⇒ Jm(i − 1) < Jm(i). (2)

Denote now
γ = K + α(1 − p)Jm(0) + αpJm(1).

Consider the policy iteration algorithm, and a policy µ that is the successor policy to the threshold policy
corresponding to m. This policy has the form

Process the orders if and only if

K + α(1 − p)Jm(0) + αpJm(1) ≤ ci + α(1 − p)Jm(i) + αpJm(i + 1)

or equivalently
γ ≤ ci + α(1 − p)Jm(i) + αpJm(i + 1).

In order for this policy to be a threshold policy, we must have for all i

γ ≤ c(i − 1) + α(1 − p)Jm(i − 1) + αpJm(i) ⇒ γ ≤ ci + α(1 − p)Jm(i) + αpJm(i + 1). (3)

This relation holds if the function Jm is monotonically nondecreasing, which from Eqs. (1) and (2) will
be true if Jm(m) ≤ Jm(m + 1) = γ.

Let us assume that the opposite case holds, where γ < Jm(m). For i > m, we have Jm(i) = γ, so
that

ci + α(1 − p)Jm(i) + αpJm(i + 1) = ci + αγ. (4)
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We also have

Jm(m) =
cm + αpγ

1 − α(1 − p)
,

from which, together with the hypothesis Jm(m) > γ, we obtain

cm + αγ > γ. (5)

Thus, from Eqs. (4) and (5) we have

ci + α(1 − p)Jm(i) + αpJm(i + 1) > γ, for all i > m, (6)

so that Eq. (3) is satisfied for all i > m.
For i ≤ m, we have ci + α(1− p)Jm(i) + αpJm(i + 1) = Jm(i), so that the desired relation (3) takes

the form
γ ≤ Jm(i − 1) ⇒ γ ≤ Jm(i). (7)

To show that this relation holds for all i ≤ m, we argue by contradiction. Suppose that for some i ≤ m
we have Jm(i) < γ ≤ Jm(i − 1). Then since Jm(m) > γ, there must exist some i > i such that
Jm(i− 1) < Jm(i). But then Eq. (2) would imply that Jm(j − 1) < Jm(j) for all j ≤ i, contradicting the
relation Jm(i) < γ ≤ Jm(i − 1) assumed earlier. Thus, Eq. (7) holds for all i ≤ m so that Eq. (3) holds
for all i. The proof is complete.

7.12 w w w

Let Assumption 2.1 hold and let π = {µ0, µ1, . . .} be an admissible policy. Consider also the sets Sk(i)
given in the hint with S0(i) = {i}. If t ∈ Sn(i) for all π and i, we are done. Otherwise, we must have for
some π and i, and some k < n, Sk(i) = Sk+1(i) while t /∈ Sk(i). For j ∈ Sk(i), let m(j) be the smallest
integer m such that j ∈ Sm. Consider a stationary policy µ with µ(j) = µm(j)(j) for all j ∈ Sk(i). For
this policy we have for all j ∈ Sk(i),

pjl(µ(j)) > 0 ⇒ l ∈ Sk(i).

This implies that the termination state t is not reachable from all states in Sk(i) under the stationary
policy µ, and contradicts Assumption 2.1.
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Solutions Vol. II, Chapter 1

1.5

(a) We have

n∑

j=1

p̃ij(u) =

n∑

j=1

{
pij(u) − mj

1 −
∑n

k=1 mk

}

=

∑n
j=1 pij(u) −

∑n
j=1 mj

1 −∑n
k=1 mk

= 1.

Therefore, p̃ij(u) are transition probabilities.

(b) We have for the modified problem

J ′(i) = min
u∈U(i)



g(i, u) + α



1 −
n∑

j=1

mj





n∑

j=1

pij(u) − mj

1 −∑n
k=1 mk

J ′(j)





= min
u∈U(i)



g(i, u) + α

n∑

j=1

pij(u)J ′(j) − α

n∑

k=1

mkJ ′(k)



 .

So

J ′(i) +
α
∑n

k=1 mkJ ′(k)

1 − α
= min

u∈U(i)







g(i, u) + α

n∑

j=1

pij(u)J ′(j) − α
n∑

k=1

mk (1 − 1

1 − α
)

︸ ︷︷ ︸
α

1−α

J ′(k)








⇒ J ′(i) +
α
∑n

k=1 mkJ ′(k)

1 − α
= min

u∈U(i)



g(i, u) + α

n∑

j=1

pij(u)

(

J ′(j) +
α
∑n

k=1 mkJ ′(k)

1 − α

)


 .

Thus

J ′(i) +
α
∑n

k=1 mkJ ′(k)

1 − α
= J∗(i), ∀ i.

Q.E.D.
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1.7

We show that for any bounded function J : S → R, we have

J ≤ T (J) ⇒ T (J) ≤ F (J), (1)

J ≥ T (J) ⇒ T (J) ≥ F (J). (2)

For any µ, define

Fµ(J)(i) =
g(i, µ(i)) + α

∑

j 6=i pij(µ(i))J(j)

1 − αpii(µ(i))

and note that

Fµ(J)(i) =
Tµ(J)(i) − αpii(µ(i))J(i)

1 − αpii(µ(i))
. (3)

Fix ǫ > 0. If J ≤ T (J), let µ be such that Fµ(J) ≤ F (J) + ǫe. Then, using Eq. (3),

F (J)(i) + ǫ ≥ Fµ(J)(i) =
Tµ(J)(i) − αpii(µ(i))J(i)

1 − αpii(µ(i))
≥ T (J)(i) − αpii(µ(i))T (J)(i)

1 − αpii(µ(i))
= T (J)(i).

Since ǫ > 0 is arbitrary, we obtain F (J)(i) ≥ T (J)(i). Similarly, if J ≥ T (J), let µ be such that
Tµ(J) ≤ T (J) + ǫe. Then, using Eq. (3),

F (J)(i) ≤ Fµ(J)(i) =
Tµ(J)(i) − αpii(µ(i))J(i)

1 − αpii(µ(i))
≤ T (J)(i) + ǫ − αpii(µ(i))T (J)(i)

1 − αpii(µ(i))
≤ T (J)(i) +

ǫ

1 − α
.

Since ǫ > 0 is arbitrary, we obtain F (J)(i) ≤ T (J)(i).
From (1) and (2) we see that F and T have the same fixed points, so J∗ is the unique fixed point

of F . Using the definition of F , it can be seen that for any scalar r > 0 we have

F (J + re) ≤ F (J) + αre, F (J) − αre ≤ F (J − re). (4)

Furthermore, F is monotone, that is

J ≤ J ′ ⇒ F (J) ≤ F (J ′). (5)

For any bounded function J , let r > 0 be such that

J − re ≤ J∗ ≤ J + re.

Applying F repeatedly to this equation and using Eqs. (4) and (5), we obtain

F k(J) − αkre ≤ J∗ ≤ F k(J) + αkre.

Therefore F k(J) converges to J∗. From Eqs. (1), (2), and (5) we see that

J ≤ T (J) ⇒ T k(J) ≤ F k(J) ≤ J∗,
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J ≥ T (J) ⇒ T k(J) ≥ F k(J) ≥ J∗.

These equations demonstrate the faster convergence property of F over T .
As a final result (not explicitly required in the problem statement), we show that for any two

bounded functions J : S → R, J ′ : S → R, we have

max
j

|F (J)(j) − F (J ′)(j)| ≤ α max
j

|J(j) − J ′(j)|, (6)

so F is a contraction mapping with modulus α. Indeed, we have

F (J)(i) = min
u∈U(i)

{
g(i, u) + α

∑

j 6=i pij(u)J(j)

1 − αpii(u)

}

= min
u∈U(i)

{
g(i, u) + α

∑

j 6=i pij(u)J ′(j)

1 − αpii(u)
+

α
∑

j 6=i pij(u)[J(j) − J ′(j)]

1 − αpii(u)

}

≤ F (J ′)(i) + max
j

|J(j) − J ′(j)|, ∀ i,

where we have used the fact

1 − αpii(u) ≥ 1 − pii(u) =
∑

j 6=i

pij(u).

Thus, we have

F (J)(i) − F (J ′)(i) ≤ α max
j

|J(j) − J ′(j)|, ∀ i.

The roles of J and J ′ may be reversed, so we can also obtain

F (J ′)(i) − F (J)(i) ≤ α max
j

|J(j) − J ′(j)|, ∀ i.

Combining the last two inequalities, we see that

|F (J)(i) − F (J ′)(i)| ≤ α max
j

|J(j) − J ′(j)|, ∀ i.

By taking the maximum over i, Eq. (6) follows.

1.9

(a) Since J , J ′ ∈ B(S), i.e., are real-valued, bounded functions on S, we know that the infimum and the
supremum of their difference is finite. We shall denote

m = min
x∈S

(
J(x) − J ′(x)

)

and

M = max
x∈s

(
J(x) − J ′(x)

)
.
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Thus

m ≤ J(x) − J ′(x) ≤ M, ∀ x ∈ S,

or

J ′(x) + m ≤ J(x) ≤ J ′(x) + M, ∀ x ∈ S.

Now we apply the mapping T on the above inequalities. By property (1) we know that T will preserve
the inequalities. Thus

T (J ′ + me)(x) ≤ T (J)(x) ≤ T (J ′ + Me)(x), ∀ x ∈ S.

By property (2) we know that

T (J)(x) + min[a1r, a2r] ≤ T (J + re)(x) ≤ T (J)(x) + max[a1r, a2r].

If we replace r by m or M , we get the inequalities

T (J ′)(x) + min[a1m, a2m] ≤ T (J ′ + me)(x) ≤ T (J ′)(x) + max[a1m, a2m]

and

T (J ′)(x) + min[a1M, a2M ] ≤ T (J ′ + Me)(x) ≤ T (J ′)(x) + max[a1M, a2M ].

Thus

T (J ′)(x) + min[a1m, a2m] ≤ T (J)(x) ≤ T (J ′)(x) + max[a1M, a2M ],

so that

|T (J)(x) − T (J ′)(x)| ≤ max[a1|M |, a2|M |, a1|m), a2|m|].

We also have

max[a1|M |, a2|M |, a1|m|, a1|m|, a2|m|] ≤ a2 max[|M |, |m|] ≤ a2 sup
x∈S

|J(x) − J ′(x).

Thus

|T (J)(x) − T (J ′)(x)| ≤ a2 max
x∈S

|J(x) − J ′(x)|

from which

max
x∈S

|T (J)(x) − T (J ′)(x)| ≤ a2 max
x∈S

|J(x) − J ′(x)|.

Thus T is a contraction mapping since we know by the statement of the problem that 0 ≤ a1 ≤ a2 < 1.
Since the set B(S) of bounded real valued functions is a complete linear space, we conclude that

the contraction mapping T has a unique fixed point, J∗, and limk→∞ T k(J)(x) = J∗(x).

(b) We shall first prove the lower bounds of J∗(x). The upper bounds follow by a similar argument. Since
J , T (J) ∈ B(S), there exists a c ∈ ℜ, (c < ∞), such that

J(x) + c ≤ T (J)(x). (1)
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We apply T on both sides of (1) and since T preserves the inequalities (by assumption (1)) we have by
applying the relation of assumption (2).

J(x) + min[c + a1c, c + a2c] ≤ T (J)(x) + min[a1c, a2c] ≤ T (J + ce)(x) ≤ T 2(J)(x). (2)

Similarly, if we apply T again we get,

J(x) + min
i∈(1,2)

[c + aic, c + a2
i c] ≤ T (J) + min[a1c + a2

1c, a2c + a2
2c]

≤ T 2(J) + min[a2
1c, a

2
2c] ≤ T (T (J) + min[a1c, a2c]e)(x) ≤ T 3(J)(x).

Thus by induction we conclude

J(x) + min[

k∑

m=0

am
1 c,

k∑

m=0

am
2 c] ≤ T (J)(x) + min[

k∑

m=1

am
1 c,

k∑

m=1

am
2 c] ≤ . . .

≤ T k(J)(x) + min[ak
1c, ak

2c] ≤ T k+1(J)(x).

(3)

By taking the limit as k → ∞ and noting that the quantities in the minimization are monotone, and
either nonnegative or nonpositive, we conclude that

J(x) + min

[
1

1 − a1
c,

1

1 − a2
c

]

≤ T (J)(x) + min

[
a1

1 − a1
c,

a2

1 − a2
c

]

≤ T k(J)(x) + min

[
ak
1

1 − a1
c,

ak
2

1 − a2
c

]

≤ T k+1(J)(x) + min

[

ak+1
1

1 − a1
c,

ak+1
2

1 − a2
c

]

≤ J∗(x).

(4)

Finally we note that
min[ak

1c, ak
2c] ≤ T k+1(J)(x) − T k(J)(x).

Thus
min[ak

1c, a
k
2c] ≤ inf

x∈S
(T k+1(J)(x) − T k(J)(x)) .

Let bk+1 = infx∈S (T k+1(J)(x) − T k(J)(x)) . Thus min[ak
1c, a

k
2c] ≤ bk+1. From the above relation we infer

that

min

[

ak+1
1 c

1 − a1
,

ak+1
2 c

1 − a2

]

≤ min

[
a1

1 − a1
bk1

,
a2

1 − a2
bk+1

]

= ck+1

Therefore

T k(J)(x) + min

[
ak
1c

1 − a1
,

ak
2c

1 − a2

]

≤ T k+1(J)(x) + ck+1.

This relationship gives for k = 1

T (J)(x) + min

[
a1c

1 − a1
,

a2c

1 − a2

]

≤ T 2(J)(x) + c2
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Let

c = inf
x∈S

(T (J)(x) − J(x))

Then the above inequality still holds. From the definition of c1 we have

c1 = min

[
a1c

1 − a1
,

a2c

1 − a2

]

.

Therefore

T (J)(x) + c1 ≤ T 2(J)(x) + c2

and T (J)(x) + c1 ≤ J∗(x) from Eq. (4). Similarly, let J1(x) = T (J)(x), and let

b2 = min
x∈S

(T 2(J)(x) − T (J)(x)) = min
x∈S

(T (J1)(x) − T (J1)(x)).

If we proceed as before, we get

J1(x) + min

[
1

1 − a3
b2,

1

1 − a2
b2

]

≤ T (J1)(x) + min

[
a1b2

1 − a2
,

a1b2

1 − a2

]

≤ T 2(J1)(x) + min

[
a2
1b2

1 − a2
,

a2
2b2

1 − a2

]

≤ J∗(x).

Then

min[a1b2, a2b2] ≤ min
x∈S

[T 2(J1)(x) − T (J1)(x)] = min
x∈S

[T 3(J)(x) − T 2(J)(x)] = b3

Thus

min

[
a2
1b2

1 − a1
,

a2
2b2

1 − a2

]

≤ min

[
a1b3

1 − a2
,

a2b3

1 − a2

]

.

Thus

T (J1)(x) + min

[
a1b2

1 − a2
,

a2b2

1 − a2

]

≤ T 2(J1)(x) + min

[
a1b3

1 − a2
,

a2b2

1 − a2

]

or

T 2(J)(x) + c2 ≤ T 3(J)(x) + c3

and

T 2(J)(x) + c2 ≤ J∗(x).

Proceeding similarly the result is proved.
The reverse inequalities can be proved by a similar argument.

(c) Let us first consider the state x = 1

F (J)(1) = min
u∈U(1)






g(j, j) + a

n∑

j=1

p1jJ(j)






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Thus

F (J + re)(1) = min
u∈U(1)






g(1, u) + α

n∑

j=1

pij(J + re)(j)






= min

u∈U(1)






g(1, u) + α

n∑

j=1

p1jJ(j) + ar







= F (J)(1) + αr

Thus
F (J + re)(1) − F (J((1)

r
= α (1)

Since 0 ≤ α ≤ 1 we conclude that αn ≤ α. Thus

αn ≤ F (J + re)(1) − F (J)(1)

r
= α

For the state x = 2 we proceed similarly and we get

F (J)(2) = min
u∈U(2)

{

g(2, u) + αp21F (J)(1) + α

n∑

J=2

p2jJ(j)

}

and

F (J + re)(2) = min
u∈U(2)

{

g(2, u) + αp21F (J + re)(1) + α
n∑

J=2

p2j(J + re)(j)

}

= min
u∈U(2)

{

g(2, u) + αp21F (J)(1) + α2rp21 + α
n∑

J=2

p2J(j) + α
n∑

J=2

pijre(j)

}

where, for the last equality, we used relation (1).
Thus we conclude

F (J + re)(2) = F (J)(2) + α2rp21 + α

n∑

j=2

p2jr = F (J)(2) + α2rp21 + αr(1 − p21)

which yields
F (J + re)(2) − F (J)(2)

r
= α2P21 + α(1 − p21) (2)

Now let us study the behavior of the right-hand side of Eq. (2). We have 0 < α < 1 and 0 < p21 < 1, so
since α2 ≤ α, and α2p21 + α(1 − p21) is a convex combination of α2, α, it is easy to see that

α2 ≤ α2p21 + (1 − p21)α ≤ α (3)

If we combine Eq. (2) with Eq. (3) we get

an ≤ α2 ≤ F (J + re)(2) − F (J)(2)

r
≤ α
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which is the pursued result.

Claim:

αi ≤ F (J + re)(x) − F (J)(x)

r
≤ α

Proof: We shall employ an inductive argument. Obviously the result holds for x = 1, 2. Let us assume
that it holds for all x ≤ i. We shall prove it for x = i + j

F (J)(i + 1) = min
u∈U(i+1)






g(i + 1, u) + α

i∑

j=1

p1+ijF (J)(j) + α

n∑

j=i+1

pi+1jpi+1jJ(j)







F (J + re)(i + 1) = min
u∈U(i+1)






g(i + 1, u) + α

i∑

j=1

pi+1jF (J + re)(j) + α
∑

j=i+1n

pi+1,j(J + re)(j)







We know αj ≤ F (J + re)(j) ≤ α, ∀ j ≤ i, thus

F (J)(i + 1) + rα
∑

j=1

F (J)(i + 1) + α2rp + αr(1 − p)

where

p =
i∑

j=1

p1+ij

Obviously
i∑

j=1

αjpi+1j ≥ αi

i∑

j=1

pi+1j = αip

Thus

αi+1p + α(1 − p) ≤ F (J + re)(j) − F (J)(j)

r
≤ α2p + (1 − p)α

Since 0 < αi+1 ≤ α2 ≤ α < 1 and 0 ≤ p ≤ i we conclude that αi+1 ≤ ai+1p+α(1−p) and a2p+(1−p)α ≤
α. Thus

αi+1 ≤ F (J + re)(i + 1) − F (J)(i + 1)

r
≤ α

which completes the inductive proof.
Since 0 ≤ αn ≤ αi ≤ 1 for i ≤ i ≤ n, the result follows.

(d) Let J(x) ≤ J ′9x)(=)J ′(x) − J(x) ≥ 0 Since all the elements mij are non-negative we conclude that

M
(
J ′(x) − J(x)

)
≥ 0(=)MJ ′(x) ≥ MJ(x)

g(x) + MJ ′(x) ≥ g(x) + MJ(x)

T (J ′)(x) ≥ T (J)(x)
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thus property (1) holds.
For property (2) we note that

T (J + re)(x) = g(x) + M(J + re)(x) = g(x) + MJ(x) + rMe(x) = T (J)(x) + rMe(x)

We have

α1 ≤ Me(x) ≤ α2

so that
T (J + re)(x) − T (J)(x)

r
= Me(x)

and

α1 ≤ T (J + re)(x) − T (J)(x)

r
≤ α2

Thus property (2) also holds if α2 < 1.

1.10

(a) If there is a unique µ such that Tµ(J) = T (J), then there exists an ǫ > 0 such that for all ∆ ∈ Rn

with maxi |∆(i)| ≤ ǫ we have

F (J + ∆) = T (J + ∆) − J − ∆ = gµ + αPµ(J + ∆) − J − ∆ = gµ + (αPµ − I)(J + ∆).

It follows that F is linear around J and its Jacobian is αPµ − I.

(b) We first note that the equation defining Newton’s method is the first order Taylor series expansion of
F around Jk. If µk is the unique µ such that Tµ(Jk) = T (Jk), then F is linear near Jk and coincides with
its first order Taylor series expansion around Jk. Therefore the vector Jk+1 is obtained by the Newton
iteration satisfies

F (Jk+1) = 0

or

Tµk(Jk+1) = Jk+1.

This equation yields Jk+1 = Jµk , so the next policy µk+1 is obtained as

µk+1 = argmin
µ

Tµ(Jµk).

This is precisely the policy iteration of the algorithm.
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1.12

For simplicity, we consider the case where U(i) consists of a single control. The calculations are very
similar for the more general case. We first show that

∑n
j=1 M̄ij = α. We apply the definition of the

quantities M̄ij

n∑

j=1

M̄ij =
n∑

j=1

(

δij +
(1 − α)(Mij − δij)

1 − mi

)

=
n∑

j=1

δij +
n∑

j=1

(1 − α)(Mij − δij)

1 − mi

= 1 + (1 − α)
n∑

j=1

Mij

1 − mi
− (1 − α)

1 − mi

n∑

j=1

δij = 1 + (1 − α)
mi

1 − mi
− (1 − α)

1 − mi

= 1 − (1 − α) = α.

Let J∗
1 , . . . , J∗

n satisfy

J∗
i = gi +

n∑

j=1

MijJ∗
j . (1)

We substitute J∗ into the new equation

J∗
i = ḡi +

n∑

j=1

M̄ijJ∗
j

and manipulate the equation until we reach a relation that holds trivially

J∗
1 =

gi(1 − α)

1 − mi
+

n∑

j=1

δijJ∗
j +

1 − α

1 − mi

n∑

j=1

(Mij − δij)J∗
j

=
gi(1 − α)

1 − mi
+ J∗

i +
1 − α

1 − mi

n∑

j=1

MijJ∗
j − 1 − α

1 − mi
J∗

i

= J∗
i +

1 − α

1 − mi



gi +

n∑

j=1

MijJ∗
j − J∗

i



 .

This relation follows trivially from Eq. (1) above. Thus J∗ is a solution of

Ji = ḡi +

n∑

J=1

M̄ijJj .
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1.17

The form of Bellman’s Equation for the tax problem is

J(x) = min
i




∑

j 6=i

cj(xi) + αEwi{J [xi, xi−1, f i(xi, wi)





Let J̄(x) = −J(x)

J̄(x) = max
i



−
n∑

j=1

cj(xj) + ci(xi) + αEwi{J̄ [· · ·]}





Let J̃(x) = (1 − α)J̄(x) +
∑n

j=1 Cj(xj) By substitution we obtain

J̃(x) = max
i



−(1 − α)

n∑

j=1

cj(xj) + (1 − α)ci(xi) + αEwi{(1 − α)J̄ [· · ·]}





= max
i

[ci(xi) − αEwi
{ci(f(xi, wi)}] + αEwi

{J̃(· · ·)}].

Thus J̃ satisfies Bellman’s Equation of a multi-armed Bandit problem with

Ri(xi) = ci(xi) − αEwi
{ci(f(xi, wi))}.

1.18

Bellman’s Equation for the restart problem is

J(x) = max[R(x0) + αE{J [f(x0, w)]}, R(x) + αE{J [f(x, w)]}]. (A)

Now, consider the one-armed bandit problem with reward R(x)

J(x, M) = max{M, R(x) + αE[J(f(x, w), M)]}. (B)

We have
J(x0, M) = R(x0) + αE[J(f(x0, w), M)] > M

if M < m(x0) and J(x0, M) = M . This implies that

R(x0) + αE[J(f(x0, w))] = m(x0).

Therefore the forms of both Bellman’s Equations (A) and (B) are the same when M = m(x0).
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7.28 w w w

(a) This follows from the nonnegativity of the one-stage cost.

(b) Follow the hint.

(c) Take the limit as α → 1 in Bellman’s equation for a discounted cost.

(d) Follow the hint.

(e) Follow the hint.
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Solutions Vol. II, Chapter 2

2.2

Let’s define the following states:
H : Last flip outcome was heads
T : Last flip outcome was tails
C: Caught (this is the termination state)

(a) We can formulate this problem as a stochastic shortest path problem with state C being the termina-
tion state. There are four possible policies: π1 = {always flip fair coin}, π2 = {always flip two-headed coin},
π3 = {flip fair coin if last outcome was heads / flip two-headed coin if last outcome was tails}, and π4 =
{flip fair coin if last outcome was tails / flip two-headed coin if last outcome was heads}. The only way
to reach the termination state is to be caught cheating. Under all policies except π1, this is inevitable.
Thus π1 is an improper policy, and π2, π3, and π4 are proper policies.

(b) Let Jπ1
(H) and Jπ2

(T ) be the costs corresponding policy π1 where the starting state is H and T ,
respectively. The expected benefit starting from state T up to the first return to T (and always using the
fair coin), is

1

2

(

1 +
1

2
+

1

22
+ · · ·

)

− m

2
=

1

2
(2 − m).

Therefore

Jπ1
(T ) =

{
+∞ if m < 2
0 if m = 2
−∞ if m > 2.

Also we have

Jπ1
(H) =

1

2
(1 + Jn(H)) +

1

2
Jn(T ),

so
Jπ1

(H) = 1 + Jπ(T ).

It follows that if m > 2, then π1 results in infinite cost for any initial state.

(c,d) The expected one-stage rewards at each stage are
Play Fair in State H : 1

2
Cheat in State H : 1 − p
Play Fair in State T : 1−m

2
Cheat in State T : 0

We show that any policy that cheats at H at some stage cannot be optimal. As a result we can eliminate
cheating from the control constraint set of state H .

Indeed suppose we are at state H at some stage and consider a policy π̂ which cheats at the first
stage and then follows the optimal policy π∗ from the second stage on. Consider a policy π̃ which plays
fair at the first stage, and then follows π∗ from the second stage on if the outcome of the first stage is H
or cheats at the second stage and follows π∗ from the third stage on if the outcome of the first stage is
T . We have

Jπ̂(H) = (1 − p)[1 + Jπ∗(H)]
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Jπ̃(H) =
1

2
(1 + Jπ∗(H)) +

1

2

{
(1 − p)[1 + Jπ∗(H)]

}

=
1

2
+

1

2
[Jπ∗(H) + Jπ̂(H)] ≥ 1

2
+ Jπ̂(H),

where the inequality follows from the fact that Jπ∗(H) ≥ Jπ̂(H) since π∗ is optimal. Therefore the reward
of policy π̂ can be improved by at least 1

2 by switching to policy π̃, and therefore π̂ cannot be optimal.
We now need only consider policies in which the gambler can only play fair at state H : π1 and π3.

Under π1, we saw from part b) that the expected benefits are

Jπ1
(T ) =

{
+∞ if m < 2
0 if m = 2
−∞ if m > 2,

and

Jπ1
(H) =

{
+∞ if m < 2
1 if m = 2
−∞ if m > 2.

Under π3, we have

Jπ3
(T ) = (1 − p)Jπ3

(H),

Jπ3
(H) =

1

2
[1 + Jπ3

(H)] +
1

2
Jπ3

(T ).

Solving these two equations yields

Jπ3
(T ) =

1 − p

p
,

Jπ3
(H) =

1

p
.

Thus if m > 2, it is optimal to cheat if the last flip was tails and play fair otherwise, and if m < 2, it is
optimal to always play fair.

2.7

(a) Let i be any state in Sm. Then,

J(i) = min
u∈U(i)

[E{g(i, u, j) + J(j)}]

= min
u∈U(i)




∑

j∈Sm

pij(u)[g(i, u, j) + J(j)] +
∑

j∈Sm−1∪···∪S1∪t

pij(u)[g(i, u, j) + J(j)]





= min
u∈U(i)




∑

j∈Sm

pij(u)[g(i, u, j) + J(j)] + (1 −
∑

j∈Sm

pij(u))

∑

j∈Sm−1∪···∪S1∪t pij(u)[g(i, u, j) + J(j)]

(1 −
∑

j∈Sm
pij(u))



 .
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In the above equation, we can think of the union of Sm−1, . . . , S1, and t as an aggregate termination state
tm associated with Sm. The probability of a transition from i ∈ Sm to tm (under u) is given by,

pitm(u) = 1 −
∑

j∈Sm

pij(u).

The corresponding cost of a transition from i ∈ Sm to tm (under u) is given by,

g̃(i, u, tm) =

∑

j=Sm−1∪···∪S1∪t pij(u)[g(i, u, j) + J(j)]

pitm(u)
.

Thus, for i ∈ Sm, Bellman’s equation can be written as,

J(i) = min
u∈U(i)




∑

j∈Sm

pij(u)[g(i, u, j) + J(j)] + pitm(u)[g̃(i, u, tm) + 0]



 .

Note that with respect to Sm, the termination state tm is both absorbing and of zero cost. Let tm and
g̃(i, u, tm) be similarly constructed for m = 1, . . . , M .

The original stochastic shortest path problem can be solved as M stochastic shortest path sub-
problems. To see how, start with evaluating J(i) for i ∈ S1 (where t1 = {t}). With the values of J(i),
for i ∈ S1, in hand, the g̃ cost-terms for the S2 problem can be computed. The solution of the original
problem continues in this manner as the solution of M stochastic shortest path problems in succession.

(b) Suppose that in the finite horizon problem there are ñ states. Define a new state space Snew

and sets Sm as follows,

Snew = {(k, i)|k ∈ {0, 1, . . . , M − 1} and i ∈ {1, 2, . . . , ñ}}

Sm = {(k, i)|k = M − m and i ∈ {1, 2, . . . , ñ}}
for m = 1, 2, . . . , M . (Note that the Sm’s do not overlap.) By associating Sm with the state space of
the original finite-horizon problem at stage k = M − m, we see that if ik ∈ Sm−1 under all policies. By
augmenting a termination state t which is absorbing and of zero cost, we see that the original finite-
horizon problem can be cast as a stochastic shortest path problem with the special structure indicated in
the problem statement.

2.8

Let J∗ be the optimal cost of the original problem and J̃ be the optimal cost of the modified problem.
Then we have

J∗(i) = min
u

n∑

j=1

pij(u) (g(i, u, j) + J∗(j)) ,

and

J̃(i) = min
u

n∑

j=1,j 6=i

pij(u)

1 − pii(u)

(

g(i, u, j) +
g(i, u, i)pii(u)

1 − pii(u)
+ J̃(j)

)

.
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For each i, let µ∗(i) be a control such that

J∗(i) =

n∑

j=1

pij(µ∗(i)) (g(i, µ∗(i), j) + J∗(j)) .

Then

J∗(i) =





n∑

j=1,j 6=i

pij(µ∗(i)) (g(i, µ∗(i), j) + J∗(j))



+ pii(µ∗(i)) (g(i, µ∗(i), i) + J∗(i)) .

By collecting the terms involving J∗(i) and then dividing by 1 − pii(µ∗(i)),

J∗(i) =
1

1 − pii(µ∗(i))











n∑

j=1,j 6=i

pij(µ∗(i))(g(i, µ∗(i), j) + J∗(j))



 + pii(µ∗(i))g(i, µ∗(i), i)






.

Since
∑n

j=1,j 6=i

pij(µ∗(i))

1−pii(µ
∗(i)) = 1, we have

J∗(i) =
1

1 − pii(µ∗(i))











n∑

j=1,j 6=i

pij(µ∗(i))(g(i, µ∗(i), j) + J∗(j))



 +

n∑

j=1,j 6=i

pij(µ∗(i))

1 − pii(µ∗(i))
pii(µ∗(i))g(i, µ∗(i), i)







=

n∑

j=1,j 6=i

[
pij(µ∗(i))

1 − pii(µ∗(i))
(g(i, µ∗(i), j) + J∗(j) +

pii(µ∗(i))g(i, µ∗(i), i)

1 − pii(µ∗(i))
)

]

.

Therefore J∗(i) is the cost of stationary policy {µ∗, µ∗, . . .} in the modified problem. Thus

J∗(i) ≥ J̃(i) ∀ i.

Similarly, for each i, let µ̃(i) be a control such that

J̃(i) =

n∑

j=1,j 6=i

pij(µ̃(i))

1 − pii(m̃u(i))

(

g(i, µ̃(i), j) +
g(i, µ̃(i), i)pii(µ̃(i))

1 − pii(µ̃(i))
+ J̃(j)

)

.

Then, using a reverse argument from before, we see that J̃(i) is the cost of stationary policy {µ̃, µ̃, . . .}
in the original problem. Thus

J̃(i) ≥ J∗(i) ∀ i.

Combining the two results, we have J̃(i) = J∗(i), and thus the two problems have the same optimal costs.
If pii(u) = 1 for some i 6= t, we can eliminate u from U(i) without increasing J∗(i) or any other

optimal cost J∗(j), j 6= i. If that were not so, every optimal stationary policy must use u at state i and
therefore must be improper, which is a contradiction.
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Solutions Vol. II, Chapter 3

3.4

By using the relation Tµ(J∗) ≤ T (J∗) + ǫe = J∗ + ǫe and the monotonicity of Tµ, we obtain

T 2
µ(J∗) ≤ Tµ(J∗) + αǫe ≤ J∗ + αǫe + ǫe.

Proceeding similarly, we obtain

T k
µ (J∗) ≤ Tµ(J∗) + α

(
k−2∑

i=0

αi

)

ǫe ≤ J∗ +

k−1∑

i=0

αiǫe

and by taking limit as k → ∞, the desired result Jµ ≤ J∗ + (ǫ/(1 − α))e follows.

3.5

Under assumption P, we have by Prop. 1.2(a), J ′ ≥ J∗. Let r > 0 be such that

J∗ ≥ J ′ − re.

Then, applying T k to this inequality, we have

J∗ = T k(J∗) ≥ T k(J ′) − αkre.

Taking the limit as k → ∞, we obtain J∗ ≥ J ′, which combined with the earlier shown relation J ′ ≥ J∗,
yields J ′ = J∗. Under assumption N, the proof is analogous, using Prop. 1.2(b).

3.8

From the proof of Proposition 1.1, we know that there exists a policy π such that, for all ǫi > 0.

Jπ(x) ≤ J∗(x) +

∞∑

i=0

αiǫi

Let
ǫi =

ǫ

2i+1αi
> 0.

Thus,

Jπǫ(x) ≤ J∗(x) + ǫ

∞∑

i=0

1

2i+1
= J∗(x) + ǫ ∀ xǫS.

If α < 1, choose

ǫi =
ǫ

∑∞
i=0 αi

which is independent of i. In this case, πǫ is stationary. If α = 1, we may not have a stationary policy
πǫ. In particular, let us consider a system with only one state, i.e. S = {0}, U = (0,∞), J0(0) = 0, and
g(0, u) = u. Then J∗(0) = infπ∈Π Jπ(0) = 0 but for every stationary policy, Jµ =

∑∞
k=0 u = ∞.
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3.9

Let π∗ = {µ∗
0, µ

∗
1, . . .} be an optimal policy. Then we know that

J∗(x) = Jπ∗(x) = lim
k→∞

(Tµ∗

0
Tµ∗

1
. . . Tµ∗

k
)(J0)(x) = lim

k→∞
(Tµ∗

0

(
Tµ∗

1
. . . Tµ∗

k
)
)
(J0)(x).

From monotone convergence we know that

J∗(x) = lim
k→∞

Tµ∗

0
(Tµ∗

1
. . . Tµ∗

k
)(J0)(x) = Tµ∗

0
( lim
k→∞

(Tµ∗

1
. . . Tµ∗

k
)(J0))(x)

≥ Tµ∗

0
(J∗)(x) ≥ T (J∗)(x) = J∗(x)

Thus Tµ∗

0
(J∗)(x) = J∗(x). Hence by Prop. 1.3, the stationary policy {µ∗

0, µ
∗
0, . . .} is optimal.

3.12

We shall make an analysis similar to the one of §3.1. In particular, let

J0(x) = 0

T (J0)(x) = min[x′Qx + u′Ru] = xqx = x′K0x

T 2(J0)(x) = min[x′Qx + u′Ru + (Ax + Bu)′Q(Ax + Bu)] = x′K1x,

where K1 = Q + R + D′
1K0D1 with D1 = A + BL1 and L1 = −(R + B′K0B)−1B′K0A. Thus

T k(J0)(x) = x′Kkx

where Kk = Q + R + D′
kKk−1Dk with DK = A + BLk and Lk = −(R + B′Kk−1B)−1B′Kk−1A. By

the analysis of Chapter 4 we conclude that Kk → K with K being the solution to the algebraic Ricatti
equation. Thus J∞(x) = x′Kx = limN→∞ T N(J0)(x). Then it is easy to verify that J∞(x) = T (J∞)(x)
and by Prop. 1.5 in Chapter 1, we have that J∞(x) = J∗(x).

For the periodic problem the controllability assumption is that there exists a finite sequence of
controls {u0, . . . , ur} such that xr+1 = 0. Then the optimal control sequence is periodic

π∗ = {µ∗
0, µ

∗
1, . . . , µ

∗
p−1, µ

∗
0, µ

∗
1, . . . , µ

∗
p−1, . . .},

where
µ∗

i = −(Ri + B′
iKi+1Bi)−1b′iKk+1Aix

µ∗
p−1 = −(Rp−1 + B′

p−1K0Bp−1)−1B′
p−1K0Ap−1x

and K0 . . . , Kp−1 satisfy the coupled set of p algebraic Ricatti equations

Ki = A′
i[Ki+1 − Ki+1Bi(Ri + B′

iKi+1Bi)−1B′
iKi+1]Ai + Qi, i = 0, . . . , p − 2,

Kp−1 = A′
p−1[K0 − K0Bp−1(Rp−1 + B′

p−1K0Bp−1)−1B′
p−1K0]Ap−1 + Qp−1.
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3.14

The formulation of the problem falls under assumption P for periodic policies. All the more, the problem
is discounted. Since wk are independent with zero mean, the optimality equation for the equivalent
stationary problem reduces to the following system of equations

J̃∗(x0, 0) = min
u0∈U(x0)

Ew0
{x′

0Q0x0 + u0(x0)′R0u0(x0) + αJ̃∗(A0x0 + B0u0 + w0, 1)}

J̃∗(x1, 1) = min
u1∈U(x1)

Ew1
{x′

1Q1x1 + u1(x1)′R1u1(x1) + αJ̃∗(A1x1 + B1u1 + w1, 2)}

. . .

J̃∗(xp−1, p − 1) = min
up−1∈U(xp−1)

Ewp−1
{x′

p−1Qp−1xp−1 + up−1(xp−1)′Rp−1up−1(xp−1)

+ αJ̃∗(Ap−1xp−1 + Bp−1up−1 + wp−1, 0)}

(1)

From the analysis in §7.8 in Ch.7 on periodic problems we see that there exists a periodic policy

{µ∗
0, µ

∗
1, . . . , µ

∗
p−1, µ

∗
1, µ

∗
2, . . . , µ

∗
p−1, . . .}

which is optimal. In order to obtain the solution we argue as follows: Let us assume that the solution is
of the same form as the one for the general quadratic problem. In particular, assume that

J̃∗(x, i) = x′Kix + ci,

where ci is a constant and Ki is positive definite. This is justified by applying the successive approximation
method and observing that the sets

Uk(xi, λ, i) = {ui ∈ Rm|x′Qx + u′
iRui + (Ax + Bui)′Kk

i+1(Ax + Bui) ≤ λ}

are compact. The latter claim can be seen from the fact that R ≥ 0 and Kk
i+1 ≥ 0. Then by Proposition

7.7, limk→∞ J̃k(xi, i) = J̃∗(xi, i) and the form of the solution obtained from successive approximation is
as described above.

In particular, we have for 0 ≤ i ≤ p − 1

J̃∗(x, i) = min
ui∈U(xi)

Ewi
{x′Qix + ui(x)′R1ui(x) + αJ̃∗(A1x + B1ui + wi, i + 1)}

= min
ui∈U(xi)

Ewi
{x′Qix + ui(x)′R1ui(x) + α [(Aix + Biui + wi)′ki+1(Aix + Biui + wi) + ci+1]}

= min
ui∈U(xi)

Ewi
{x′(Qi + αA′

iKi+1Ai)xi + u′
i(ri + αB′

iKi+1Bi)ui + 2αx′A′
iKi+1Biui+

+ 2αw′
iKi+1Biui + 2αx′A′

iKi+1wi + w′
iKi+1wi + αci+1}

= min
ui∈U(xi)

{x′(Qi + αA′
iKi+1Ai)xi + u′

i(Ri + αB′
iKi+1Bi)ui + 2αx′A′

iKi+1Biui+

+ w′
iKi+1wi + αc1}

where we have taken into consideration the fact that E(wi) = 0. Minimizing the above quantity will give
us

ui∗ = −α(Ri + αB′
iKi+1Bi)−1B′

iKi+1Aix (2)
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Thus

J̃∗(x, i) = x′ [Qi + A′
i(αKi+1 − α2Ki+1(Ri + αB′

iKi+1Bi)−1B′
iKi+1)Ai]x + ci = x′Kix + ci

where ci = Ewi
{w′

iKi+1wi} + αci+1 and

Ki = Qi + A′
i(αKi+1 − α2Ki+1(Ri + αB′

iKi+1Bi)−1B′
iKi+1)Ai.

Now for this solution to be consistent we must have Kp = K0. This leads to the following system of
equations

K0 = Q0 + A′
0(αK1 − α2K1(R0 + αB′

0K1B0)−1B′
0K1)A0

. . .

Ki = Qi + A′
i(αKi+1 − α2Ki+1(Ri + αB′

iKi+1Bi)−1B′
iKi+1)Ai

. . .

Kp−1 = Qp−1 + A′
p−1(αK0 − α2K0(Rp−1 + αB′

p−1K0Bp−1)−1B′
p−1K0)Ap−1

(3)

This system of equations has a positive definite solution since (from the description of the problem) the
system is controllable, i.e. there exists a sequence of controls such that {u0, . . . , ur} such that xr+1 = 0.
Thus the result follows.

3.16

(a) Consider the stationary policy, {µ0, µ0, . . . , }, where µ0 = L0x. We have

J0(x) = 0

Tµ0
(J0)(x) = x′Qx + x′L′

0RL0x

T 2
µ0

(J0)(x) = x′Qx + x′L′
0RL0x + α(Ax + BL0x + w)′Q(Ax + BL0x + w)

= x′M1x + constant

where M1 = Q + L′
0RL0 + α(A + BL0)′Q(A + BL0),

T 3
µ0

(J0)(x) = x′Qx + x′L′
0RL0x + α(Ax + BL0x + w)′M1(Ax + BL0 + w) + α · (constant)

= x′M2x + constant

Continuing similarly, we get

Mk+1 = Q + L′
0RL0 + α(A + BL0)′Mk(A + BL0).

Using a very similar analysis as in Section 8.2, we get

Mk → K0
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where
K0 = Q + L′

0RL0 + α(A + BL0)′K0(A + BL0)

(b)

Jµ1
(x) = lim

N→∞
E wk

k=0,···,N−1

{
N−1∑

k=0

αk
[
x′

kQxk + µ1(xk)′Rµ1(xk)
]

}

= lim
N→∞

T N
µ1

(Jµ0
)(x)

Proceeding as in the proof of the validity of policy iteration (Section 7.3, Chapter 7). We have

Tµ1
(Jµ0

) = T (Jµ0
)

Jµ0
(x) = x′K0x + constant = Tµ0

(Jµ0
)(x) ≥ Tµ1

(Jµ0
(x)

Hence, we obtain
Jµ0

(x) ≥ Tµ1
(Jµ0

)(x) ≥ . . . ≥ T k
µ1

(Jµ0
)(x) ≥ . . .

implying,
Jµ0

(x) ≥ lim
k→∞

T k
µ1

(Jµ0
)(x) = Jµ1

(x).

(c) As in part (b), we show that

Jµk
(x) = x′Kkx + constant ≤ Jµk−1

(x).

Now since
0 ≤ x′Kkx ≤ x′Kk−1x, ∀ x

we have
Kk → K.

The form of K is,
K = α(A + BL)′K(A + BL) + Q + L′RL

L = −α(αB′KB + R)−1B′KA

To show that K is indeed the optimal cost matrix, we have to show that it satisfies

K = A′[αK − α2KB(αB′KB + R)−1B′K]A + Q

= A′[αKA + αKBL] + Q

Let us expand the formula for K, using the formula for L,

K = α(A′KA + A′KBL + L′B′KA + L′B′KBL) + Q + L′RL.

Substituting, we get
K = α(A′KA + A′KBL + L′B′KA) + Q − αL′B′KA

= αA′KA + αA′KBL + Q.
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Thus K is the optimal cost matrix.

A second approach: (a) We know that

Jµ0
(x) = lim

n→∞
T n

µ0
(J0)(x).

Following the analysis at §8.1 we have

J0(x) = 0

Tµ0
(J)(x) = E{x′Qx + µ0(x)′Rµ0(x)} = x′Qx + µ0(x)′Rµ0(x) = x′(Q + L′

0RL0)x

T 2
µ0

(J)(x) = E{x′Qx + µ′
0(x)Rµ0(x) + α(Ax + Bµ0(x) + w)′Q(Ax + Bµ0(x) + w)}

= x′ (Q + L′
0RL0 + α(A + BL0)′Q(A + BL0))x + αE{w′Qw}.

Define

K0
0 = Q

Kk+1
0 = Q + L′

0RL0 + α(A + BL0)′Kk
0 (A + BL0).

Then

T k+1
µ0

(J)(x) = x′Kk+1
0 x +

k−1∑

m=0

αk−mE{w′Km
0 w}.

The convergence of Kk+1
0 follows from the analysis of §4.1. Thus

Jµ0
(x) = x′K0x +

α

1 − α
E{w′K0w}

(as in §8.1) which proves the required relation.

(b) Let µ1(x) be the solution of the following

min
u

{u′Ru + α(Ax + Bu)′K0(Ax + Bu)}

which yields
u1 = −(R + αB′K0B)−1αB′K0Ax = L1x.

Thus
L1 = −(R + αB′K0B)−1αB′K0A = −M−1Π

where M = R + αB′K0B and Π = αB′K0A. Let us consider the cost associated with u1 if we ignore w

Jµ1
(x) =

∞∑

k=0

αk (x′
kQxk + µ1(xk)′Rm1(xk)) =

∞∑

k=0

αkx′
k(Q + L′

1RL1)xk.

However, we know the following

xk+1 = (A + BL1)k+1x0 +

k+1∑

m=1

(A + BL1)k+1−mwm.
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Thus, if we ignore the disturbance w we get

Jµ1
(x) = x′

0

∞∑

k=0

αk(A + BL1)′k(Q + L1RL1)(A + BL1)kx0.

Let us call

K1 =
∞∑

k=0

αk(A + BL1)′k(Q + L′
1RL1)(A + BL1)kx0. (1)

We know that
K − 0 − α(A + BL0)′K0(A + BL0) − L′

0RL0 = Q.

Substituting in (1) we have

K1 =

∞∑

k=0

αk(A + BL1)′k(K0 + α(A + BL1)′K0(A + BL1))(A + BL1)+

+

∞∑

k=0

{αk(A + BL1)′k[α(A + BL1)′K0(A + BL1) − α(A + BL0)′K0(A + BL0)+

+ L′
1RL1 − L′

0RL0](A + BL1)k}.

However, we know that

K0 =

∞∑

k=0

αk(A + BL1)′k (K0 − α(A + BL1)′K0(A + BL1)) (A + BL1)k.

Thus we conclude that

K1 − K0 =

∞∑

k=0

αk(A + BL1)kΨ(A + BL1)k

where
Ψ = α(A + BL1)′K0(A + BL1) − α(A + BL0)′K0(A + BL0) + L′

1K0L1 + L′
0K0L0.

We manipulate the above equation further and we obtain

Ψ = L′
1(R + αB′KoB)L1 − L′

0(R + αB′K0B)L0 + αL′
1B

′K0A + αA′K0BL1−
− αL′

0B
′K0A − αA′K0BL0

= L′
1ML1 − L′

0ML0 + L′
1Π + Π′L1 − L′

0Π − Π′L0

= −(L0 − L1)′M(L0 − L1) − (Π + ML1)′(L0 − L1) − (L0 − L1)′(Π + ML1).

However, it is seen that
Π + ML1 = 0.

Thus
Ψ = −(L0 − L1)′M(L0 − L1).

52



Since M ≥ 0 we conclude that

K0 − K1 =

∞∑

k=0

αk(A + BL1)′k(L0 − L1)M(L0 − L1)(A + BL1)k ≥ 0.

Similarly, the optimal solution for the case where there are no disturbances satisfies the equation

K = Q + L′RL + α(A + BL)′K(A + BL)

with L = −α(R + B′KB)−1B′KA. If we follow the same steps as above we will obtain

K1 − K =

∞∑

k=0

αk(A + BL1)′k(L1 − L)′M(L1 − L)(A + BL1)k ≥ 0.

Thus K ≤ K1 ≤ K0. Since K1 is bounded, we conclude that A + BL1 is stable (otherwise K1 → ∞).
Thus, the sum converges and K1 is the solution of K1 = α(A + BL1)′K1(A + L1) + Q + L′

1RL1. Now
returning to the case with the disturbances w we conclude as in case (a) that

Jµ1
(x) = x′K1x +

α

1 − α
E{w′K1w}.

Since K1 ≤ K0 we conclude that Jµ1
(x) ≤ Jµ0

(x) which proves the result.
c) The policy iteration is defined as follows: Let

Lk = −α(R + αB′Kk−1B)−1B′Kk−1A.

Then µk(x) = Lkx and

Jµk
(x) = x′Kkx +

α

1 − α
E{w′Kkw}

where Kk is obtained as the solution of

Kk = α(A + BLk)′Kk(A + BLk) + Q + L′
kRLk.

If we follow the steps of (b) we can prove that

K ≤ Kk ≤ . . . ≤ K1 ≤ K0. (2)

Thus by the theorem of monotonic convergence of positive operators (Kantorovich and Akilov p.
189: “Functional Analysis in Normed Spaces”) we conclude that

K∞ = lim
p→∞

Kk

exists. Then if we take the limit of both sides of eq. (2) we have

K∞ = α(A + BL∞)′K∞(A + L∞) + Q + L′
∞RL∞

with
L∞ = −α(R + αB′K∞B)−1B′K∞A.

However, according to §4.1, K is the unique solution of the above equation. Thus, K∞ = K and
the result follows.
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Solutions Vol. II, Chapters 4, 5, 6

54


