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where Σ is given by

Σ = Σ − ΣC ′(CΣC ′ + N)−1CΣ,

and Σ is the unique positive semidefinite symmetric solution of the Riccati
equation

Σ = A
(
Σ − ΣC ′(CΣC ′ + N)−1CΣ

)
A′ + M.

The assumptions required for this are that the pair (A, C) is observable
and that the matrix M can be written as M = DD′, where D is a matrix
such that the pair (A, D) is controllable. The steady-state controller of
Eqs. (5.10)-(5.12) is particularly attractive for practical implementation.
Furthermore, as shown in Appendix E, it results in a stable closed-loop
system, under the preceding controllability and observability assumptions.

5.3 MINIMUM VARIANCE CONTROL OF LINEAR SYSTEMS

We have considered so far the control of linear systems in state variable
form as in the previous section. However, linear systems are often mod-
eled by means of an input-output equation, which is more economical in the
number of parameters needed to describe the system dynamics. In this sec-
tion we consider single-input, single-output, linear, time-invariant systems,
and a special type of quadratic cost function. The resulting optimal policy
is particularly simple and has found wide application. We first introduce
some of the basic facts regarding linear systems in input-output form. De-
tailed discussions may be found in the books by Aström and Wittenmark
[AsW84], [AsW90], Goodwin and Sin [GoS84], and Whittle [Whi63].

We consider a single-input single-output discrete-time linear system,
which is specified by an equation of the form

yk + a1yk−1 + · · · + amyk−m = b0uk + b1uk−1 + · · · + bmuk−m, (5.13)

where ai, bi are given scalars. The scalar sequences {uk | k = 0,±1,±2, . . .},
{yk | k = 0,±1,±2, . . .} are viewed as the input and output of the system,
respectively. Note that we allow time to extend to −∞ as well as +∞;
this will be useful for describing generic properties of the system relating
to stability. We will later revert to our usual convention of starting at time
0 and proceeding forward.

It is convenient to describe this type of system by means of the
backward shift operator , denoted s, which when operating on a sequence
{xk | k = 0,±1,±2, . . .} shifts its index by one unit; that is,

s(xk) = xk−1, k = 0,±1,±2, . . .
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We denote by sr the operator resulting from r successive applications of s:

sr(xk) = xk−r, k = 0,±1,±2, . . . (5.14)

We also write for simplicity srxk = xk−r. The forward shift operator ,
denoted s−1, is the inverse of s and is defined by

s−1(xk) = xk+1, k = 0,±1,±2, . . .

Thus the notation (5.14) holds for all integers r. We can form linear com-
binations of operators of the form sr. Thus, for example, the operator
(s + 2s2) is defined by

(s + 2s2)(xk) = xk−1 + 2xk−2, k = 0,±1,±2, . . .

With this notation, Eq. (5.13) can be written as

A(s)yk = B(s)uk,

where A(s), B(s) are the operators

A(s) = 1 + a1s + · · · + amsm,

B(s) = b0 + b1s + · · · + bmsm.

Sometimes it is convenient to write the equation A(s)yk = B(s)uk as

yk =
B(s)
A(s)

uk

or
A(s)
B(s)

yk = uk.

The meaning of both equations is that the sequences {yk} and {uk} are
related via A(s)yk = B(s)uk. There is a certain ambiguity here in that,
for a fixed {uk}, the equation A(s)yk = B(s)uk has an infinite number of
solutions in {yk}. For example, the equation

yk + ayk−1 = uk

for uk ≡ 0 has as solutions all sequences of the form yk = β(−a)k, where
β is any scalar; the solution becomes unique only after some boundary
condition for the sequence {yk} is specified. As will be discussed shortly,
however, for stable systems and for a bounded sequence {uk} there is a
unique solution {yk} that is bounded . It is this solution that will be denoted
by

(
B(s)/A(s)

)
uk in what follows. The reader who is familiar with linear
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dynamic system theory will note that B(s)/A(s) can be viewed as a transfer
function involving z-transforms.

We now introduce some terminology. When the sequences {yk} and
{uk} satisfy A(s)yk = B(s)uk, we say that yk is obtained by passing uk

through the filter B(s)/A(s). This comes from engineering terminology,
where linear time-invariant systems are commonly referred to as filters.
We also refer to the equation A(s)yk = B(s)uk as the filter B(s)/A(s).

A filter B(s)/A(s) is said to be stable if the polynomial A(s) has all its
(complex) roots strictly outside the unit circle of the complex plane; that
is, |ρ| > 1 for all complex ρ satisfying A(ρ) = 0. A stable filter B(s)/A(s)
has the following two properties:

(a) Every solution {yk} of
A(s)yk = 0

satisfies limk→∞ yk = 0; that is, the output yk tends to zero if the
input sequence {uk} is identically zero.

(b) For every bounded sequence {uk}, the equation

A(s)yk = B(s)uk

has a unique solution {yk} within the class of bounded sequences.
Furthermore, every solution {yk} (possibly unbounded) of the equa-
tion satisfies

lim
k→∞

(yk − yk) = 0.

For example, consider the system

yk − 0.5yk−1 = uk.

Given the bounded input sequence uk = {. . . , 1, 1, 1, . . .}, the set of
all solutions is given by

yk = 2 +
β

2k
,

where β is a scalar, but of these the only bounded solution is yk =
{. . . , 2, 2, 2, . . .}. The solution {yk} can thus be naturally associated
with the input sequence {uk}; it is also known as the forced response
of the system due to the input {uk}.

ARMAX Models – Reduction to State Space Form

We now consider a linear system with output yk, which is driven by two
inputs: a random noise input ϵk, and a control input uk. It has the form

yk + a1yk−1 + · · · + amyk−m = b1uk−1 + · · · + bmuk−m

+ ϵk + c1ϵk−1 + · · · + cmϵk−m,
(5.15)
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and it is known as an ARMAX model (AutoRegressive, Moving Average,
with eXogenous input). We assume throughout that the random variables
ϵk are mutually independent. We can write the model in the shorthand
form

A(s)yk = B(s)uk + C(s)ϵk,

where the polynomials A(s), B(s), and C(s) are given by

A(s) = 1 + a1s + · · · + amsm,

B(s) = b1s + · · · + bmsm,

C(s) = 1 + c1s + · · · + cmsm.

The ARMAX model is very common and its derivation is outlined
in Appendix F, where it is shown that without loss of generality we can
assume that C(s) has no roots strictly inside the unit circle. For much
of the analysis in subsequent sections, it will be necessary to exclude the
critical case where C(s) has roots on the unit circle and assume that C(s)
has all its roots strictly outside the unit circle. This assumption is usually
satisfied in practice.

In several situations, analysis and algorithms relating to the ARMAX
model are greatly simplified if C(s) = 1 so that the noise terms C(s)ϵk = ϵk

are independent. However, this is typically an unrealistic assumption. To
emphasize this point and see how easily the noise can be correlated, suppose
that we have a first-order system

xk+1 = axk + wk,

where we observe
yk = xk + vk.

Then
yk+1 = xk+1 + vk+1

= axk + wk + vk+1

= a(yk − vk) + wk + vk+1,

so finally
yk+1 = ayk + vk+1 − avk + wk.

However, the noise sequence {vk+1 − avk + wk} is correlated even if {vk}
and {wk} are individually and mutually independent.

The ARMAX model (5.15) can be put into state space form. The
process is based on state augmentation and can perhaps be best understood
in terms of an example. Consider the system

yk + a1yk−1 + a2yk−2 = b1uk−1 + b2uk−2 + ϵk + c1ϵk−1. (5.16)
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We have
⎛

⎜⎝

yk+1

yk

uk

ϵk+1

⎞

⎟⎠ =

⎛

⎜⎝

−a1 −a2 b2 c1

1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎠

⎛

⎜⎝

yk

yk−1

uk−1

ϵk

⎞

⎟⎠ +

⎛
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b1

0
1
0

⎞

⎟⎠ uk +

⎛

⎜⎝

ϵk+1

0
0

ϵk+1

⎞

⎟⎠ .

(5.17)
By setting

xk =

⎛

⎜⎝

yk

yk−1

uk−1

ϵk

⎞

⎟⎠ , wk =

⎛

⎜⎝

ϵk+1

0
0

ϵk+1

⎞

⎟⎠ ,

A =

⎛

⎜⎝

−a1 −a2 b2 c1

1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎠ , B =

⎛

⎜⎝

b1

0
1
0

⎞

⎟⎠ ,

we can write Eq. (5.17) as

xk+1 = Axk + Buk + wk,

where {wk} is a stationary independent process. We have arrived at this
state space model through state augmentation. Notice that the state xk

includes ϵk. Thus if the controller is assumed to know at time k only the
present and past outputs yk, yk−1, . . . , and past controls uk−1, uk−2, . . .
(but not ϵk, ϵk−1, . . .), we are faced with a model of imperfect state infor-
mation. If c1 = 0 in Eq. (5.16) then the state space model can be simplified
so that

xk =

⎛

⎝
yk

yk−1

uk−1

⎞

⎠ ,

in which case we have perfect state information. More generally, we have
perfect state information in the ARMAX model (5.15) if b1 ̸= 0 and c1 =
c2 = · · · = cm = 0.

Minimum Variance Control: Perfect State Information Case

Consider the perfect state information case of the ARMAX model (5.15):

yk + a1yk−1 + · · · + amyk−m = b1uk−1 + · · · + bmuk−m + ϵk,

where b1 ̸= 0. A problem of interest, known as the minimum variance
control problem, is to select uk as a function of the present and past outputs
yk, yk−1, . . ., as well as the past controls uk−1, uk−2, . . . , so as to minimize
the cost

E

{
N∑

k=1

(yk)2
}

.
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There are no constraints on uk. By transforming the system to state space
form, we see that this problem can be reduced to a perfect state information
linear-quadratic problem where the state xk is

(
yk, yk−1, . . . , yk−m+1, uk−1, . . . , uk−m+1

)′
.

The problem is of the same nature as the linear-quadratic problem of Sec-
tion 4.1 except that the corresponding matrices Rk in the quadratic cost
function are zero here. Nonetheless, in Section 4.1 we used the invertibility
of Rk only to ensure that various matrices in the optimal policy and the
Riccati equation are invertible. If invertibility of these matrices can be
guaranteed by other means, the same analysis applies even if Rk is posi-
tive semidefinite. This is indeed the case here. An analysis analogous to
the one of Section 4.1 shows that the optimal control u∗

k at time k (given
yk, yk−1, . . . , yk−m+1 and uk−1, . . . , uk−m+1) is the same as the one that
would be applied if all future disturbances ϵk+1, . . . , ϵN were set equal to
zero, their expected value (certainty equivalence). It follows that

µ∗
k(yk, . . . , yk−m+1, uk−1, . . . , uk−m+1) =

1
b1

(a1yk + · · · + amyk−m+1

− b2uk−1 − · · ·− bmuk−m+1),

and {u∗
k} is generated via the equation

b1u∗
k + b2u∗

k−1 + · · · + bmu∗
k−m+1 = a1yk + a2yk−1 + · · · + amyk−m+1.

In other words, {u∗
k} is generated by passing {yk} through the linear filter

A(s)/B(s), where

A(s) = a1 + a2s + · · · + amsm−1 = s−1
(
A(s) − 1

)
,

B(s) = b1 + b2s + · · · + bmsm−1 = s−1B(s),

as shown in Fig. 5.3.1. The resulting closed-loop system is

yk = ϵk (5.18)

and the associated cost is
N E{(ϵk)2}.

Notice that the optimal policy, called minimum variance control law, is
time invariant and does not depend on the horizon N .

Whereas the optimal closed-loop system as given by Eq. (5.18) is
clearly stable, we can anticipate serious difficulties if the filter A(s)/B(s)
in the feedback loop is unstable. For if B(s) has some roots inside the
unit circle, then the sequence {uk} will tend to be unbounded. This is
illustrated by the following example.
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uk yk
+

+B(s)
A(s)

ykuk

B(s)
A(s)

εk

∑

1
A(s)

Figure 5.3.1 Minimum variance control with perfect state information. Structure
of the optimal closed-loop system, where A(s) = 1 + a1s + · · · + amsm, B(s) =

b1s + · · · + bmsm, A(s) = s−1
(
A(s) − 1

)
, and B(s) = s−1B(s).

Example 5.3.1 (An Optimal but Unstable Controller)

Consider the system

yk + yk−1 = uk−1 − 2uk−2 + ϵk.

The optimal policy is
uk = 2uk−1 + yk

and the optimal closed-loop system is

yk = ϵk,

which is a stable system. On the other hand, the last two equations yield

uk = 2uk−1 + ϵk.

Thus, uk is generated by an unstable system, and in fact it is given by

uk =

k∑

n=0

2nϵk−n.

Therefore, even though the output yk stays bounded, the control uk typically
becomes unbounded.

For another view of the same difficulty, suppose that the coefficients
b1, . . . , bm of B(s) are slightly different from the ones of the true system.
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We will show that if the feedback filter A(s)/B(s) is unstable, then the
closed-loop system is also unstable in the sense that both uk and yk become
unbounded with probability one.

Assume that the system is governed by

A0(s)yk = B0(s)uk + ϵk, (5.19)

while the policy is calculated under the assumption that the system model
is

A(s)yk = B(s)uk + ϵk,

where the coefficients of A(s) and B(s) differ slightly from those of A0(s),
B0(s). Define A

0(s), B
0(s) by

1 + sA
0(s) = A0(s),

sB
0(s) = B0(s).

Note that A
0(s) = A(s) and B

0(s) = B(s) if A0(s) = A(s), B0(s) = B(s).
By multiplying Eq. (5.19) with B(s) and by using the relation defining the
optimal policy

B(s)uk = A(s)yk,

we obtain
B(s)A0(s)yk = B0(s)A(s)yk + B(s)ϵk.

If the coefficients of A
0(s) and B

0(s) are close to those of A(s), B(s), then
the roots of the polynomial

B(s) + s
(
B(s)A0(s) − B

0(s)A(s)
)

are close to the roots of B(s). Thus the closed-loop system is stable only if
the roots of B(s) are outside the unit circle, or equivalently, if and only if the
filter A(s)/B(s) is stable. If our model is exact, the closed-loop system will
be stable due to what is commonly referred to as a pole-zero cancellation.
However, the slightest modeling discrepancy will induce instability.

The conclusion from the preceding analysis is that the minimum vari-
ance control law is advisable only if it can be realized through a stable filter
[B(s) has roots outside the unit circle]. Even if B(s) has its roots outside
the unit circle, but some of these roots are near the unit circle, the perfor-
mance of the minimum variance policy can be very sensitive to variations
in the parameters of the polynomials A(s) and B(s). One way to overcome
this sensitivity is to change the cost to

E

{
N∑

k=1

(
(yk)2 + R(uk−1)2

)
}

,
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where R is some positive parameter. This requires solution via the Riccati
equation as in Section 4.1. For a detailed derivation, see Aström [Ast83].

In some problems, the system equation includes an additional external
input sequence {vk}, the values of which can be measured by the controller
as they occur. In particular, consider the scalar system

yk + a1yk−1 + · · · + amyk−m = b1uk−1 + · · · + bmuk−m

+ d1vk−1 + · · · + dmvk−m + ϵk,

where each value vk becomes known to the controller without error at time
k. The minimum variance controller then takes the form

µ∗
k(yk, . . . , yk−m+1,uk−1, . . . , uk−m+1, vk, . . . , vk−m+1)

=
1
b1

(
a1yk + · · · + amyk−m+1 − d1vk − · · ·− dmvk−m+1

− b2uk−1 · · ·− bmuk−m+1

)
,

and the optimal controls {u∗
k} are generated by

B(s)u∗
k = A(s)yk − D(s)vk,

where
A(s) = a1 + a2s + · · · + amsm−1,

B(s) = b1 + b2s + · · · + bmsm−1,

D(s) = d1 + d2s + · · · + dmsm−1.

The closed-loop system is again yk = ϵk, but for practical purposes it is
stable only if B(s) has its roots outside the unit circle. The process whereby
external inputs are measured and used for control is commonly referred to
as feedforward control .

Imperfect State Information Case

Consider now the general ARMAX model

yk + a1yk−1 + · · · + amyk−m = bMuk−M + · · · + bmuk−m

+ ϵk + c1ϵk−1 + · · · + cmϵk−m

or, equivalently,
A(s)yk = B(s)uk + C(s)ϵk,

where
A(s) = 1 + a1s + · · · + amsm,

B(s) = bMsM + · · · + bmsm,

C(s) = 1 + c1s + · · · + cmsm.
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We assume the following:

(1) bM ̸= 0 and 1 ≤ M ≤ m.

(2) {ϵk} is a zero mean, independent, stationary process.

(3) The polynomial C(s) has all its roots outside the unit circle. (As
explained in Appendix F, this assumption is not overly restrictive.)

The controller knows at each time k the past inputs and outputs.
Thus the information vector at time k is

Ik =
(
yk, yk−1, . . . , y−m+1, uk−1, uk−2, . . . , u−m+M

)
.

(We include in the information vector the control inputs u−1, . . . , u−m+M .
If control starts at time 0, these inputs will be zero.) There are no con-
straints on uk. The problem is to find a policy

{
µ0(I0), . . . , µN−1(IN−1)

}

that minimizes

E

{
N∑

k=1

(yk)2
}

.

By using state augmentation, we can cast this problem into the frame-
work of the linear-quadratic problem of Section 5.2. The corresponding
linear system in state space format involves a state xk given by

xk = (yk+M−1, . . . , yk+M−m, uk−1, . . . , uk+M−m, ϵk+M−1, . . . , ϵk+M−m).

Because yk+M−1, . . . , yk+1 and ϵk+M−1, . . . , ϵk+M−m are unknown to the
controller, we are faced with a problem of imperfect state information.

An analysis analogous to the one of Section 5.2 shows that certainty
equivalence holds; that is, the optimal control u∗

k at time k given Ik is the
same as the one that would be applied in the deterministic problem where
the current state

xk = (yk+M−1, . . . , yk+M−m, uk−1, . . . , uk+M−m, ϵk+M−1, . . . , ϵk+M−m)

is set equal to its conditional expected value given Ik, and the future dis-
turbances ϵk+M , . . . , ϵN are set equal to zero (their expected value).

Thus the optimal control u∗
k = µ∗

k(Ik) is obtained by solving for uk

the equation

E{yk+M | uk, Ik} = E
{
yk+M | yk, yk−1, . . . , y−m+1, uk, uk−1, . . . , u−m+M

}

= 0.

This leads to the problem of calculating E{yk+M | Ik, uk}, known as the
forecasting or prediction problem, which is important in its own right. We
first treat the easier case where there is no delay (M = 1) and then discuss
the more general case where the delay can be positive.
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Forecasting for ARMAX Models – No Delay (M = 1)

Assume that M = 1. We would like to generate an equation for the forecast
E{yk+1 | Ik, uk}, and then determine the optimal control u∗

k = µ∗
k(Ik) by

setting this forecast to zero. Let us introduce an auxiliary sequence {zk}
via the equation

zk = yk − ϵk.

A key fact is that, since {ϵk} is an independent, zero-mean sequence, we
have

E{zk+1 | Ik, uk} = E{yk+1 | Ik, uk}.

We can thus obtain the desired forecast of yk+1 by forecasting zk+1 instead.
We can then obtain the optimal control u∗

k by setting E{zk+1 | Ik, u∗
k} = 0.

By using the definition zk = yk − ϵk to express yk in terms of zk in
the ARMAX model equation for M = 1, we obtain

zk+1 + c1zk + · · · + cmzk−m+1 = b1uk + · · · + bmuk−m+1 + wk, (5.20)

where
wk = (c1 − a1)yk + · · · + (cm − am)yk−m+1.

We note that wk is perfectly observable by the controller; however, the
scalars zk, . . . , zk−m+1 are not known to the controller because the initial
conditions z0, . . . , z1−m of the system (5.20) are unknown. Nonetheless, the
system (5.20) is stable, since the roots of the polynomial C(s) have been
assumed to be outside the unit circle. As a result, the initial conditions do
not matter asymptotically. In other words, if we generate a sequence {ŷk}
using the system (5.20) and zero initial conditions, i.e.,

ŷk+1 + c1ŷk + · · · + cmŷk−m+1 = b1uk + · · · + bmuk−m+1 + wk,

with
ŷ0 = 0, ŷ−1 = 0, . . . ŷ1−m = 0,

then we will have
lim

k→∞

(
ŷk − zk

)
= 0.

Thus, ŷk+1 is an asymptotically accurate approximation to the optimal
forecast E{yk+1 | Ik, uk}.

Minimum Variance Control: Imperfect State Information and
No Delay

Based on the earlier discussion, an asymptotically accurate approximation
to the minimum variance policy is obtained by setting uk to the value that
makes ŷk+1 = 0; that is, by solving for uk the equation

ŷk+1 + c1ŷk + · · · + cmŷk−m+1 = b1uk + · · · + bmuk−m+1 + wk.
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If this policy is followed, however, the earlier forecasts ŷk, . . . , ŷk−m+1 will
be equal to zero. Thus the (approximate) minimum variance policy is given
by

uk =
1
b1

(
wk − b2uk−1 − · · ·− bmuk−m+1

)

=
1
b1

(
(a1 − c1)yk + · · · + (am − cm)yk−m−1

− b2uk−1 − · · ·− bmuk−m+1

)
.

By substituting this policy in the ARMAX model

yk+1 + a1yk + · · · + amyk−m+1 = b1uk + · · · + bmuk−m+1

+ ϵk+1 + c1ϵk + · · · + cmϵk−m+1,

we see that the closed-loop system becomes

yk+1 − ϵk+1 + c1(yk − ϵk) + · · · + cm(yk−m+1 − ϵk−m+1) = 0,

or equivalently C(s)(yk − ϵk) = 0. Since C(s) has its roots outside the unit
circle, this is a stable system, and we have

yk = ϵk + γ(k),

where γ(k) → 0 as k → ∞.

Forecasting: The General Case

Consider now the general case where the delay M can be greater than 1.
The forecasting problem can still be nicely solved by using a certain trick
to transform the ARMAX equation into a more convenient form. To this
end, we first obtain polynomials F (s) and G(s) of the form

F (s) = 1 + f1s + · · · + fM−1sM−1,

G(s) = g0 + g1s + · · · + gm−1sm−1,

which satisfy
C(s) = A(s)F (s) + sMG(s). (5.21)

The coefficients of F (s) and G(s) are uniquely determined from those of
C(s) and A(s) by equating coefficients of both sides of the relation

1 + c1s + · · · + cmsm = (1 + a1s + · · · + amsm)(1 + f1s + · · · + fM−1sM−1)
+ sM (g0 + g1s + · · · + gm−1sm−1).
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Example 5.3.2

Let m = 3 and M = 2. Then the preceding equation takes the form

1+ c1s+ c2s
2 + c3s

3 = (1+ a1s+ a2s
2 + a3s

3)(1+ f1s)+ s2(g0 + g1s+ g2s
2),

and by equating coefficients we have

c1 = a1 + f1, c2 = a2 + a1f1 + g0, c3 = a3 + a2f1 + g1, a3f1 + g2 = 0,

from which f1, g0, g1, and g2 are uniquely determined.

The ARMAX model can be written as

A(s)yk+M = B(s)uk + C(s)ϵk+M , (5.22)

where
B(s) = s−MB(s) = bM + bM+1s + · · · + bmsm−M .

Multiplying both sides of Eq. (5.22) with F (s), we have

F (s)A(s)yk+M = F (s)B(s)uk + F (s)C(s)ϵk+M ,

and using Eq. (5.21) to express F (s)A(s) as C(s) − sMG(s), we obtain
(
C(s) − sMG(s)

)
yk+M = F (s)B(s)uk + F (s)C(s)ϵk+M ,

or equivalently

C(s)
(
yk+M − F (s)ϵk+M

)
= F (s)B(s)uk + G(s)yk. (5.23)

Let us now introduce the auxiliary sequence {zk} via the equation

zk+M = yk+M −F (s)ϵk+M = yk+M − ϵk+M − f1ϵk+M−1 − · · ·− fM−1ϵk+1.

Note that when M = 1, we have F (s) = 1 and zk = yk − ϵk, so {zk} is the
same sequence as the one introduced earlier for the case of no delay. Again,
since {ϵk} is an independent, zero-mean sequence, by taking expectations
in the definition zk+M = yk+M − F (s)ϵk+M , we obtain

E{zk+M | Ik, uk} = E{yk+M | Ik, uk},

and we can obtain the desired forecast of yk+M by forecasting zk+M in its
place. Furthermore, by Eq. (5.23), zk+M is written as

C(s)zk+M = wk
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or
zk+M + c1zk+M−1 + · · · + cmzk+M−m = wk, (5.24)

where
wk = F (s)B(s)uk + G(s)yk. (5.25)

Since the scalar wk of Eq. (5.25) is available at time k (i.e., it is
determined from Ik and uk), the system (5.24) can serve as a basis for
forecasting zk+M . We would be able to predict exactly zk+M and use
it as a forecast of yk+M if we knew appropriate initial conditions with
which to start the equation (5.24) that generates it. We don’t know such
initial conditions, but because this equation represents a stable system, the
choice of initial conditions does not matter asymptotically, as we proceed
to explain more formally.

We consider the sequence ŷk+M generated by

ŷk+M + c1ŷk+M−1 + · · · + cmŷk+M−m = wk

with initial condition

ŷM−1 = ŷM−2 = · · · = ŷM−m = 0, (5.26)

and we claim that the forecast E{zk+M | Ik} can be approximated by
ŷk+M . To see this, note that from Eqs. (5.24) to (5.26) we have

zk+M = ŷk+M +
(
γ1(k)zM−1 + · · · + γm(k)zM−m

)

and

E{zk+M | Ik, uk} = ŷk+M +
m∑

i=1

γi(k)E{zM−i | Ik, uk},

where γ1(k), . . . , γm(k) are appropriate scalars depending on k. Since C(s)
has all its roots outside the unit circle, we have (compare with the discussion
on stability earlier in this section)

lim
k→∞

γ1(k) = lim
k→∞

γ2(k) = · · · = lim
k→∞

γm(k) = 0.

It follows that, for large values of k,

ŷk+M ≃ E{zk+M | Ik, uk} = E{yk+M | Ik, uk}.

(More precisely, we have |ŷk+M −E{yk+M | Ik, uk}| → 0 as k → ∞, where
the convergence is in the mean-square sense.)

In conclusion, an asymptotically accurate approximation to the opti-
mal forecast E{yk+M | Ik, uk} is given by ŷk+M and is generated by the
equation

ŷk+M + c1ŷk+M−1 + · · · + cmŷk+M−m = F (s)B(s)uk + G(s)yk (5.27)

with the initial condition

ŷM−1 = ŷM−2 = · · · = ŷM−m = 0. (5.28)
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Minimum Variance Control: The General Case

Based on the earlier discussion, the minimum variance policy is obtained by
solving for uk the equation E{yk+M | Ik, uk} = 0. Thus an asymptotically
accurate approximation is obtained by setting uk to the value that makes
ŷk+M = 0, that is, by solving for uk the equation [cf. Eqs. (5.27) and (5.28)]

F (s)B(s)uk + G(s)yk = c1ŷk+M−1 + · · · + cmŷk+M−m.

If this policy is followed, however, the earlier forecasts ŷk+M−1, . . . , ŷk+M−m

will be equal to zero. Thus the (approximate) minimum variance policy is
given by

F (s)B(s)uk + G(s)yk = 0; (5.29)

that is, u∗
k is generated by passing yk through the linear filter

−G(s)/F (s)B(s),

as shown in Fig. 5.3.2.

uk yk
+

+B(s)
A(s)

ykuk

εk

∑

C(s)
A(s)

-
G(s)

F(s)B(s)

Figure 5.3.2 Minimum variance control with imperfect state information. Struc-
ture of the optimal closed-loop system.

From Eqs. (5.23) and (5.29), we obtain the equation for the closed-
loop system

C(s)
(
yk+M − F (s)ϵk+M

)
= 0.

Since C(s) has its roots outside the unit circle, we obtain

yk+M = F (s)ϵk+M + γ(k),
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where γ(k) → 0 as k → ∞. So asymptotically, the closed-loop system takes
the form

yk = ϵk + f1ϵk−1 + · · · + fM−1ϵk−M+1.

Let us consider now the stability properties of the closed-loop system
when the true system parameters differ slightly from those of the assumed
model. Let the true system be described by

A0(s)yk = sMB
0(s)uk + C0(s)ϵk, (5.30)

while uk is given by the minimum variance policy

F (s)B(s)uk + G(s)yk = 0, (5.31)

where
C(s) = A(s)F (s) + sMG(s).

Operating on Eq. (5.30) with F (s)B(s) and using Eq. (5.31), we obtain

F (s)B(s)A0(s)yk = −sMB
0(s)G(s)yk + F (s)B(s)C0(s)ϵk.

Combining the last two equations and collecting terms, we have
{

F (s)B(s)A0(s) +
(
C(s) − A(s)F (s)

)
B

0(s)
}

yk = F (s)B(s)C0(s)ϵk

or
{

B
0(s)C(s) + F (s)

(
B(s)A0(s) − A(s)B0(s)

)}
yk = F (s)B(s)C0(s)ϵk.

If the coefficients of A0(s), B
0(s), and C0(s) are near those of A(s), B(s),

and C(s), then the poles of the closed-loop system will be near the roots
of B(s)C(s). Thus the closed-loop system will be in effect stable only if the
roots of B(s) are strictly outside the unit circle, similar to the perfect state
information case examined earlier.

5.4 SUFFICIENT STATISTICS

The main difficulty with the DP algorithm for imperfect state information
problems is that it is carried out over a state space of expanding dimension.
As a new measurement is added at each stage k, the dimension of the state
(the information vector Ik) increases accordingly. This motivates an effort
to reduce the data that are truly necessary for control purposes. In other
words, it is of interest to look for quantities known as sufficient statistics,



APPENDIX F:
Modeling of Stochastic Linear

Systems

In this appendix we show how controlled linear time-invariant systems with
stochastic inputs can be represented by the ARMAX model used in Section
5.3.

F.1 LINEAR SYSTEMS WITH STOCHASTIC INPUTS

Consider a linear system with output {yk}, control input {uk}, and an
additional zero-mean random input {wk}. We assume that {wk} is a sta-
tionary (up to second order) stochastic process. That is, {wk} is a sequence
of random variables satisfying, for all i, k = 0,±1,±2, . . . ,

E{wk} = 0, E{w0wi} = E{wkwk+i} < ∞.

(All references to stationary processes in this section are meant in the
limited sense just described.) By linearity, yk is the sum of one sequence
{y1

k} due to the presence of {uk} and another sequence {y2
k} due to the

presence of {wk}:
yk = y1

k + y2
k. (F.1)

We assume that y1
k and y2

k are generated by some filters B1(s)/A1(s) and
B2(s)/A2(s), respectively:

A1(s)y1
k = B1(s)uk, (F.2a)

503
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A2(s)y2
k = B2(s)wk. (F.2b)

Operating on Eqs. (F.2a) and (F.2b) with A2(s) and A1(s), respec-
tively, adding, and using Eq. (F.1), we obtain

A(s)yk = B(s)uk + vk, (F.3)

where A(s) = A1(s)A2(s), B(s) = A2(s)B1(s), and {vk}, given by

vk = A1(s)B2(s)wk, (F.4)

is a zero-mean, generally correlated, stationary stochastic process.
We are interested in the case where uk is a control input applied

after yk has occurred and has been observed, so that in Eq. (F.2a) we have
B1(0) = 0. Then, we may assume that the polynomials A(s) and B(s)
have the form

A(s) = 1 + a1s + · · · + am0sm0 , B(s) = b1s + · · · + bm0sm0

for some scalars ai and bi, and some positive integer m0.
To summarize, we have constructed a model of the form

A(s)yk = B(s)uk + vk,

where A(s) and B(s) are polynomials of the preceding form and {vk} is
some zero-mean, correlated, stationary stochastic process. We now need to
model further the sequence {vk}.

F.2 PROCESSES WITH RATIONAL SPECTRUM

Given a zero-mean, stationary scalar process {vk}, denote by V (k) the
autocorrelation function

V (k) = E{vivi+k}, k = 0,±1,±2, . . .

We say that {vk} has rational spectrum if the transform of
{
V (k)

}
defined

by

Sv(λ) =
∞∑

k=−∞
V (k)e−jkλ

exists for λ ∈ [−π, π] and can be expressed as

Sv(λ) = σ2
|C(eiλ)|2
|D(ejλ)|2

, λ ∈ [−π, π], (F.5)
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where σ is a scalar, C(z) and D(z) are some polynomials with real coeffi-
cients

C(z) = 1 + c1z + · · · + cmzm, (F.6a)

D(z) = 1 + d1z + · · · + dmzm, (F.6b)

and D(z) has no roots on the unit circle {z | |z| = 1}.
The following facts are of interest:

(a) If {vk} is an uncorrelated process with V (0) = σ2, V (k) = 0 for k ̸= 0,
then

Sv(λ) = σ2, λ ∈ [−π, π],

and clearly {vk} has rational spectrum.

(b) If {vk} has rational spectrum Sv given by Eq. (F.5), then Sv can be
written as

Sv(λ) = σ̃2
|C̃(ejλ)|2

|D̃(ejλ)|2
, λ ∈ [−π, π],

where σ̃ is a scalar and C̃(z), D̃(z) are unique real polynomials of the
form

C̃(z) = 1 + c̃1z + · · · + c̃mzm,

D̃(z) = 1 + d̃1z + · · · + d̃mzm,

such that:

(1) C̃(z) has all its roots outside or on the unit circle, and if C(z)
has no roots on the unit circle, then the same is true for C̃(z).

(2) D̃(z) has all roots strictly outside the unit circle.

These facts are seen by noting that if ρ ̸= 0 is a root of D(z), then
|D(ejλ)|2 = D(ejλ)D(e−jλ) contains a factor

(1 − ρ−1ejλ)(1 − ρ−1e−jλ) = ρ−2(ρ − ejλ)(ρ − e−jλ).

A little reflection shows that the roots of D̃(z) should be ρ or ρ−1

depending on whether ρ is outside or inside the unit circle. Similarly,
the roots of C̃(z) are obtained from the roots of C(z). Thus the
polynomials C̃(z) and D̃(z) as well as σ̃2 can be uniquely determined.
We may thus assume without loss of generality that C(z) and D(z)
in Eq. (F.5) have no roots inside the unit circle.

There is a fundamental result here that relates to the realization of
processes with rational spectrum. The proof is hard; see for example, Ash
and Gardner [AsG75, pp. 75-76].
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Proposition F.1: If {vk} is a zero-mean, stationary stochastic pro-
cess with rational spectrum

Sv(λ) = σ2
|C(ejλ)|2
|D(ejλ)|2 , λ ∈ [−π, π],

where the polynomials C(s) and D(s) are given by

C(s) = 1 + c1s + · · · + cmsm, D(s) = 1 + d1s + · · · + dmsm,

and are assumed (without loss of generality) to have no roots inside
the unit circle, then there exists a zero-mean, uncorrelated stationary
process {ϵk} with E{ϵ2k} = σ2 such that for all k

vk + d1vk−1 + · · · + dmvk−m = ϵk + c1ϵk−1 + · · · + cmϵk−m.

F.3 THE ARMAX MODEL

Let us now return to the problem of representation of a linear system with
stochastic inputs. We had arrived at the model

A(s)yk = B(s)uk + vk. (F.7)

If the zero-mean stationary process {vk} has rational spectrum, the pre-
ceding analysis and proposition show that there exists a zero-mean, uncor-
related stationary process {ϵk} satisfying

D(s)vk = C(s)ϵk,

where C(s) and D(s) are polynomials, and C(s) has no roots inside the
unit circle. Operating on both sides of Eq. (F.7) with D(s) and using the
relation D(s)vk = C(s)ϵk, we obtain

A(s)yk = B(s)uk + C(s)ϵk, (F.8)

where A(s) = D(s)A(s) and B(s) = D(s)B(s). Since A(0) = 1, B(0) = 0,
we can write Eq. (F.8) as

yk +
m∑

i=1

aiyk−i =
m∑

i=1

biuk−i + ϵk +
m∑

i=1

ciϵk−i,

for some integer m and scalars ai, bi, ci, i = 1, . . . , m. This is the ARMAX
model that we have used in Section 5.3.
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may not help appreciably in solving a different instance.

(b) The problem data changes as the system is being controlled . As an
example, consider the route planning example in case (a) above, and
assume that new service points to be visited arise as the vehicle is
on its way. It is possible in principle to model these data changes
in terms of stochastic disturbances, but then we may end up with
a problem that is too complicated for analysis or solution by DP. A
frequently employed alternative is to use on-line replanning , whereby
the problem is resolved on-line with the new data, as soon as these
data become available, and control continues with a policy that cor-
responds to the new data.

A common feature of the above situations, which can seriously impact the
solution, is that there may be stringent time constraints for the compu-
tation of the controls. This may substantially exacerbate the “curse of
dimensionality” problem mentioned above.

As indicated by the above discussion, in practice one often has to
settle for a suboptimal control scheme that strikes a reasonable balance
between convenient implementation and adequate performance. In this
chapter we discuss some general approaches for suboptimal control, which
are based on approximations to the DP algorithm. We begin with two gen-
eral schemes to simplify the DP computation, certainty equivalent control
(Section 6.1), which replaces the stochastic quantities of the problem by
deterministic nominal values, and open-loop-feedback control (Section 6.2),
which ignores in part the availability of information in the future. These
two schemes set the stage for limited lookahead control, which together with
its many variations (Sections 6.3-6.5), is one of the principal approaches
for suboptimal control. We also discuss adaptive control in the context
of certainty equivalent control. This discussion is not used in subsequent
developments, so the reader may skip Sections 6.1.1-6.1.4 if desired.

6.1 CERTAINTY EQUIVALENT AND ADAPTIVE CONTROL

The certainty equivalent controller (CEC) is a suboptimal control scheme
that is inspired by linear-quadratic control theory. It applies at each stage
the control that would be optimal if the uncertain quantities were fixed at
some “typical” values; that is, it acts as if a form of the certainty equivalence
principle were holding.

The advantage of the CEC is that it replaces the DP algorithm with
what is often a much less demanding computation: the solution of a de-
terministic optimal control problem at each stage. This problem yields
an optimal control sequence, the first component of which is used at the
current stage, while the remaining components are discarded. The main
attractive characteristic of the CEC is its ability to deal with stochastic
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and even imperfect information problems by using the mature and effec-
tive methodology of deterministic optimal control.

We describe the CEC for the general problem with imperfect state
information of Section 5.1. As can be expected, the implementation is
considerably simpler if the controller has perfect state information. Sup-
pose that we have an “estimator” that uses the information vector Ik to
produce a “typical” value xk(Ik) of the state. Assume also that for ev-
ery state-control pair (xk, uk) we have selected a “typical” value of the
disturbance, which we denote by wk(xk, uk). For example, if the state
spaces and disturbance spaces are convex subsets of Euclidean spaces, the
expected values

xk(Ik) = E{xk | Ik}, wk(xk, uk) = E{wk | xk, uk},

can serve as typical values.
The control input µk(Ik) applied by the CEC at each time k is deter-

mined by the following rule:

(1) Given the information vector Ik, compute the state estimate xk(Ik).

(2) Find a control sequence {uk, uk+1, . . . , uN−1} that solves the deter-
ministic problem obtained by fixing the uncertain quantities xk and
wk, . . . , wN−1 at their typical values:

minimize gN (xN ) +
N−1∑

i=k

gi

(
xi, ui, wi(xi, ui)

)

subject to the initial condition xk = xk(Ik) and the constraints

ui ∈ Ui, xi+1 = fi

(
xi, ui, wi(xi, ui)

)
, i = k, k + 1, . . . , N − 1.

(3) Use as control the first element in the control sequence found:

µk(Ik) = uk.

Note that step (1) is unnecessary if we have perfect state information;
in this case we simply use the known value of the xk. The deterministic
optimization problem in step (2) must be solved at each time k, once the
initial state xk(Ik) becomes known by means of an estimation (or perfect
observation) procedure. A total of N such problems must be solved by
the CEC at every system run. In many cases of interest, these determin-
istic problems can be solved by powerful numerical methods such as con-
jugate gradient, Newton’s method, augmented Lagrangian, and sequential
quadratic programming methods; see e.g. Luenberger [Lue84] or Bertsekas
[Ber99]. Furthermore, the implementation of the CEC requires no storage
of the type required for the optimal feedback controller.
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An alternative to solving N optimal control problems in an “on-line”
fashion is to solve these problems a priori. This is accomplished by com-
puting an optimal feedback controller for the deterministic optimal con-
trol problem obtained from the original problem by replacing all uncertain
quantities by their typical values. It is easy to verify, based on the equiva-
lence of open-loop and feedback implementation of optimal controllers for
deterministic problems, that the implementation of the CEC given earlier
is equivalent to the following.

Let
{
µd

0(x0), . . . , µd
N−1(xN−1)

}
be an optimal controller obtained from

the DP algorithm for the deterministic problem

minimize gN (xN ) +
N−1∑

k=0

gk

(
xk, µk(xk), wk(xk, uk)

)

subject to xk+1 = fk

(
xk, µk(xk), wk(xk, uk)

)
, µk(xk) ∈ Uk, k ≥ 0.

Then the control input µk(Ik) applied by the CEC at time k is given by

µk(Ik) = µd
k

(
xk(Ik)

)

as shown in Fig. 6.1.1.

xk

Delay

Estimator

uk  - 1

uk  - 1

vk

zk

zk

wk

Actuator

xk + 1 = fk(xk ,uk ,wk) zk = hk(xk ,uk  - 1,vk)
System Measurement

µ k
d

u k =µk
d (xk)

xk(Ik)

Figure 6.1.1 Structure of the certainty equivalent controller when implemented
in feedback form.

In other words, an equivalent alternative implementation of the CEC
consists of finding a feedback controller {µd

0, µ
d
1, . . . , µ

d
N−1} that is optimal

for a corresponding deterministic problem, and subsequently using this
controller for control of the uncertain system [modulo substitution of the
state xk by its estimate xk(Ik)]. Either one of the definitions given for the
CEC can serve as a basis for its implementation. Depending on the nature
of the problem, one method may be preferable to the other.

The CEC approach often performs well in practice and yields near-
optimal policies. In fact, for the linear-quadratic problems of Sections 4.1
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and 5.2, the CEC is identical to the optimal controller (certainty equiva-
lence principle). It is possible, however, that a CEC performs strictly worse
than the optimal open-loop controller (see Exercise 6.2).

In what follows in this section, we will discuss a few variants of the
CEC, and we will then focus on one particular type of methodology, adap-
tive control of systems with unknown parameters.

Certainty Equivalent Control with Heuristics

Even though the CEC approach simplifies a great deal the computations,
it still requires the solution of a deterministic optimal control problem at
each stage. This problem may be difficult, and a more convenient approach
may be to solve it suboptimally using a heuristic algorithm. To simplify
notation, let us assume perfect state information [the ideas to be discussed
can also be applied to imperfect state information problems, by substituting
xk with its estimate xk(Ik)]. Then, in this approach, given xk, we use
some (easily implementable) heuristic to find a suboptimal control sequence
{uk, uk+1, . . . , uN−1} for the problem

minimize gN (xN ) +
N−1∑

i=k

gi

(
xi, ui, wi(xi, ui)

)

subject to

ui ∈ Ui(xi), xi+1 = fi

(
xi, ui, wi(xi, ui)

)
, i = k, k + 1, . . . , N − 1.

We then use uk as the control for stage k.
An important enhancement of this idea is to use minimization over

the first control uk and to use the heuristic only for the remaining stages
k + 1, . . . , N − 1. To implement this variant of the CEC, we must apply at
time k a control uk that minimizes over uk ∈ Uk(xk) the expression

gk

(
xk, uk, wk(xk, uk)

)
+ Hk+1

(
fk

(
xk, uk, wk(xk, uk)

))
, (6.1)

where Hk+1 is the cost-to-go function corresponding to the heuristic, i.e.,
Hk+1(xk+1) is the cost incurred over the remaining stages k +1, . . . , N − 1
starting from a state xk+1, using the heuristic, and assuming that the
future disturbances will be equal to their typical values wi(xi, ui). Note
that for any next-stage state xk+1, it is not necessary to have a closed-
form expression for the heuristic cost-to-go Hk+1(xk+1). Instead we can
generate this cost by running the system forward from xk+1 and accu-
mulating the corresponding single-stage costs. Since the heuristic must
be run for each possible value of the control uk to calculate the costs
Hk+1

(
fk

(
xk, uk, wk(xk, uk)

))
needed in the minimization, it is necessary

to discretize the control constraint set if it is not already finite.
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Note that the general structure of the preceding variant of the CEC is
similar to the one of standard DP. It involves minimization of the expression
(6.1), which is the sum of a current stage cost and a cost-to-go starting
from the next state. The difference with DP is that the optimal cost-
to-go J∗

k+1(xk+1) is replaced by the heuristic cost Hk+1(xk+1), and the
disturbance wk is replaced by its typical value wk(xk, uk) (so that there is
no need to take expectation over wk). We thus encounter for the first time
an important suboptimal control idea, based on an approximation to the
DP algorithm: minimizing at each stage k the sum of approximations to the
current stage cost and the optimal cost-to-go. This idea is central in other
types of suboptimal control such as the limited lookahead, rollout, and
model predictive control approaches, which will be discussed in Sections
6.3-6.5.

Partially Stochastic Certainty Equivalent Control

In the preceding descriptions of the CEC all future disturbances are fixed at
their typical values. A useful variation for some imperfect state information
problems is to take into account the stochastic nature of these disturbances,
and to treat the problem as one of perfect state information, using an esti-
mate xk(Ik) of xk as if it were exact. Thus, if

{
µp

0(x0), . . . , µp
N−1(xN−1)

}

is an optimal policy obtained from the DP algorithm for the stochastic
perfect state information problem

minimize E

{
gN (xN ) +

N−1∑

k=0

gk

(
xk, µk(xk), wk

)
}

subject to xk+1 = fk

(
xk, µk(xk), wk

)
, µk(xk) ∈ Uk, k = 0, . . . , N − 1,

then the control input µk(Ik) applied by this variant of CEC at time k is
given by

µk(Ik) = µp
k

(
xk(Ik)

)
.

Generally, there are several variants of the CEC, where the stochastic
uncertainty about some of the unknown quantities is explicitly dealt with,
while all other unknown quantities are replaced by estimates obtained in a
variety of ways. Let us provide some examples.

Example 6.1.1 (Multiaccess Communication)

Consider the slotted Aloha system described in Example 5.1.1. It is very
difficult to obtain an optimal policy for this problem, primarily because there
is no simple characterization of the conditional distribution of the state (the
system backlog), given the channel transmission history. We therefore re-
sort to a suboptimal policy. As discussed in Section 5.1, the perfect state
information version of the problem admits a simple optimal policy:

µk(xk) =
1
xk

, for all xk ≥ 1.
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As a result, there is a natural partially stochastic CEC,

µk(Ik) = min

[
1,

1
xk(Ik)

]
,

where xk(Ik) is an estimate of the current packet backlog based on the entire
past channel history of successes, idles, and collisions (which is Ik). Recursive
estimators for generating xk(Ik) are discussed by Mikhailov [Mik79], Hajek
and van Loon [HaL82], Tsitsiklis [Tsi87], and Bertsekas and Gallager [BeG92].

Example 6.1.2 (Finite-State Systems with Imperfect
State Information)

Consider the case where the system is a finite-state Markov chain under im-
perfect state information. The partially stochastic CEC approach is to solve
the corresponding problem of perfect state information, and then use the con-
troller thus obtained for control of the imperfectly observed system, modulo
substitution of the exact state by an estimate obtained via the Viterbi algo-
rithm described in Section 2.2.2. In particular, suppose that {µp

0, . . . , µ
p
N−1}

is an optimal policy for the corresponding problem where the state is perfectly
observed. Then the partially stochastic CEC, given the information vector
Ik, uses the Viterbi algorithm to obtain (in real time) an estimate x(Ik) of
the current state xk, and applies the control

µk(Ik) = µp
k

(
xk(Ik)

)
.

Example 6.1.3 (Systems with Unknown Parameters)

We have been dealing so far with systems having a known system equation. In
practice, however, there are many cases where the system parameters are not
known exactly or change over time. One possible approach is to estimate the
unknown parameters from input-output records of the system by using system
identification techniques. This is a broad and important methodology, for
which we refer to textbooks such as Kumar and Varaiya [KuV86], Ljung and
Soderstrom [LjS83], and Ljung [Lju86]. However, system identification can
be time consuming, and thus difficult to apply in an on-line control context.
Furthermore, the estimation must be repeated if the parameters change.

The alternative is to formulate the stochastic control problem so that
unknown parameters are dealt with directly. It can be shown that problems
involving unknown system parameters can be embedded within the frame-
work of our basic problem with imperfect state information by using state
augmentation. Indeed, let the system equation be of the form

xk+1 = fk(xk, θ, uk, wk),
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where θ is a vector of unknown parameters with a given a priori probability
distribution. We introduce an additional state variable yk = θ and obtain a
system equation of the form(

xk+1

yk+1

)
=

(
fk(xk, yk, uk, wk)

yk

)
.

This equation can be written compactly as

x̃k+1 = f̃k(x̃k, uk, wk),

where x̃k = (xk, yk) is the new state, and f̃k is an appropriate function. The
initial state is

x̃0 = (x0, θ).

With a suitable reformulation of the cost function, the resulting problem
becomes one that fits our usual framework.

Unfortunately, however, since yk (i.e., θ) is unobservable, we are faced
with a problem of imperfect state information even if the controller knows
the state xk exactly. Thus, typically an optimal solution cannot be found.
Nonetheless, the partially stochastic CEC approach is often convenient. In
particular, suppose that for a fixed parameter vector θ, we can compute the
corresponding optimal policy{

µ∗
0(I0, θ), . . . , µ

∗
N−1(IN−1, θ)

}
;

this is true for example if for a fixed θ, the problem is linear-quadratic of
the type considered in Sections 4.1 and 5.2. Then a partially stochastic CEC
takes the form

µk(Ik) = µ∗
k(Ik, θ̂k),

where θ̂k is some estimate of θ based on the information vector Ik. Thus, in
this approach, the system is identified while it is being controlled. However,
the estimates of the unknown parameters are used as if they were exact.

The approach of the preceding example is one of the principal methods
of adaptive control , that is, control that adapts itself to changing values of
system parameters. In the remainder of this section, we discuss some of
the associated issues. Because adaptive control is somewhat disjoint from
other material in the chapter, the reader may skip directly to Section 6.2.

6.1.1 Caution, Probing, and Dual Control

Suboptimal control is often guided by the qualitative nature of optimal
control. It is therefore important to try to understand some of the charac-
teristic features of the latter in the case where some of the system parame-
ters are unknown. One of these is the need for balance between “caution”
(the need for conservatism in applying control, since the system is not fully
known), and “probing” (the need for aggressiveness in applying control, in
order to excite the system enough to be able to identify it). These notions
cannot be easily quantified, but often manifest themselves in specific con-
trol schemes. The following example provides some orientation; see also
Bar-Shalom [Bar81].
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Example 6.1.4 [Kum83]

Consider the linear scalar system

xk+1 = xk + buk + wk, k = 0, 1, . . . , N − 1,

and the quadratic terminal cost E
{
(xN )2

}
. Here everything is as in Section

4.1 (perfect state information) except that the control coefficient b is unknown.
Instead, it is known that the a priori probability distribution of b is Gaussian
with mean and variance

b = E{b} > 0, σ2
b = E

{
(b − b)2

}
.

Furthermore, wk is zero mean Gaussian with variance σ2
w for each k.

Consider first the case where N = 1, so the cost is calculated to be

E
{
(x1)

2
}

= E
{
(x0 + bu0 + w0)

2
}

= x2
0 + 2bx0u0 +

(
b
2

+ σ2
b

)
u2

0 + σ2
w.

The minimum over u0 is attained at

u0 = − b

b
2

+ σ2
b

x0,

and the optimal cost is verified by straightforward calculation to be

σ2
b

b
2

+ σ2
b

x2
0 + σ2

w.

Therefore, the optimal control here is cautious in that the optimum |u0| de-
creases as the uncertainty in b (i.e., σ2

b ) increases.
Consider next the case where N = 2. The optimal cost-to-go at stage

1 is obtained by the preceding calculation:

J1(I1) =
σ2

b (1)
(
b(1)

)2
+ σ2

b (1)
x2

1 + σ2
w, (6.2)

where I1 = (x0, u0, x1) is the information vector and

b(1) = E{b | I1}, σ2
b (1) = E

{(
b − b(1)

)2 | I1

}
.

Let us focus on the term σ2
b (1) in the expression (6.2) for J1(I1). We

can obtain σ2
b (1) from the equation x1 = x0 + bu0 + w0 (which we view as a

noise-corrupted measurement of b) and least-squares estimation theory (see
Appendix E). The formula for σ2

b (1) will be of no further use to us, so we just
state it without going into the calculation:

σ2
b (1) =

σ2
bσ2

w

u2
0σ

2
b + σ2

w
.
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The salient feature of this equation is that σ2
b (1) is affected by the control u0.

Basically, if |u0| is small, the measurement x1 = x0 + bu0 + w0 is dominated
by w0 and the “signal-to-noise ratio” is small. Thus to achieve small error
variance σ2

b (1) [which is desirable in view of Eq. (6.2)], we must apply a
control u0 that is large in absolute value. A choice of large control to enhance
parameter identification is often referred to as probing . On the other hand,
if |u0| is large, |x1| will also be large, and this is not desirable in view of Eq.
(6.2). Therefore, in choosing u0 we must strike a balance between caution
(choosing a small value to keep x1 reasonably small) and probing (choosing a
large value to improve the signal-to-noise ratio and enhance estimation of b).

The tradeoff between the control objective and the parameter esti-
mation objective is commonly referred to as dual control .

6.1.2 Two-Phase Control and Identifiability

An apparently reasonable form of suboptimal control in the presence of
unknown parameters (cf. Example 6.1.3) is to separate the control process
into two phases, a parameter identification phase and a control phase. In
the first phase the unknown parameters are identified, while the control
takes no account of the interim results of identification. The final param-
eter estimates from the first phase are then used to implement an optimal
control law in the second phase. This alternation of identification and con-
trol phases may be repeated several times during any system run in order
to take into account subsequent changes of the parameters.

One drawback of this approach is that information gathered during
the identification phase is not used to adjust the control law until the begin-
ning of the second phase. Furthermore, it is not always easy to determine
when to terminate one phase and start the other.

A second difficulty, of a more fundamental nature, is due to the fact
that the control process may make some of the unknown parameters invis-
ible to the identification process. This is the problem of parameter identi-
fiability , discussed by Ljung [Lju86], which is best explained by means of
an example.

Example 6.1.5

Consider the scalar system

xk+1 = axk + buk + wk, k = 0, 1, . . . , N − 1,

with the quadratic cost

E

{
N∑

k=1

(xk)2

}
.

We assume perfect state information, so if the parameters a and b are known,
this is a minimum variance control problem (cf. Section 5.3), and the optimal
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control law is
µ∗

k(xk) = −a
b
xk.

Assume now that the parameters a and b are unknown, and consider the
two-phase method. During the first phase the control law

µ̃k(xk) = γxk (6.3)

is used (γ is some scalar; for example, γ = −a/b, where a and b are a priori
estimates of a and b, respectively). At the end of the first phase, the control
law is changed to

µk(xk) = − â

b̂
xk,

where â and b̂ are the estimates obtained from the identification process.
However, with the control law (6.3), the closed-loop system is

xk+1 = (a + bγ)xk + wk,

so the identification process can at best identify the value of (a + bγ) but
not the values of both a and b. In other words, the identification process
cannot discriminate between pairs of values (a1, b1) and (a2, b2) such that
a1 + b1γ = a2 + b2γ. Therefore, a and b are not identifiable when feedback
control of the form (6.3) is applied.

One way to correct the difficulty is to add an additional known input
δk to the control law (6.3); that is, use

µ̃k(xk) = γxk + δk.

Then the closed-loop system becomes

xk+1 = (a + bγ)xk + bδk + wk,

and the knowledge of {xk} and {δk} makes it possible to identify (a+bγ) and
b. Given γ, one can then obtain estimates of a and b. Actually, to guarantee
this in a more general context where the system is of higher dimension, the
sequence {δk} must satisfy certain conditions: it must be “persistently excit-
ing” (see for example Ljung and Soderstrom [LjS83] for further explanation
of this concept).

A second possibility to bypass the identifiability problem is to change
the structure of the system by artificially introducing a one-unit delay in
the control feedback. Thus, instead of considering control laws of the form
µ̃k(xk) = γxk, as in Eq. (6.3), we consider controls of the form

uk = µ̂k(xk−1) = γxk−1.

The closed-loop system then becomes

xk+1 = axk + bγxk−1 + wk,

and given γ, it is possible to identify both parameters a and b. This technique
can be generalized for systems of arbitrary order, but artificially introducing
a control delay makes the system less responsive to control.
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6.1.3 Certainty Equivalent Control and Identifiability

At the opposite extreme of the two-phase method we have the certainty
equivalent control approach, where the parameter estimates are incorpo-
rated into the control law as they are generated, and they are treated as if
they were true values. In terms of the system

xk+1 = fk(xk, θ, uk, wk)

considered in Example 6.1.3, suppose that, for each possible value of θ, the
control law π∗(θ) =

{
µ∗

0(·, θ), . . . , µ∗
N−1(·, θ)

}
is optimal with respect to a

certain cost Jπ(x0, θ). Then the (suboptimal) control used at time k is

µ̂k(Ik) = µ∗
k(xk, θ̂k),

where θ̂k is an estimate of θ based on the information

Ik = {x0, x1, . . . , xk, u0, u1, . . . , uk−1}

available at time k; for example,

θ̂k = E{θ | Ik}

or, more likely in practice, an estimate obtained via an on-line system
identification method (see [KuV86], [LjS83], [Lju86]).

One would hope that when the horizon is very long, the parameter
estimates θ̂k will converge to the true value θ, so the certainty equivalent
controller will become asymptotically optimal. Unfortunately, we will see
that difficulties related to identifiability arise here as well.

Suppose for simplicity that the system is stationary with a priori
known transition probabilities P{xk+1 | xk, uk, θ} and that the control law
used is also stationary:

µ̂k(Ik) = µ∗(xk, θ̂k), k = 0, 1, . . .

There are three systems of interest here (cf. Fig. 6.1.2):

(a) The system (perhaps falsely) believed by the controller to be true,
which evolves probabilistically according to

P
{
xk+1 | xk, µ∗(xk, θ̂k), θ̂k

}
.

(b) The true closed-loop system, which evolves probabilistically according
to

P
{
xk+1 | xk, µ∗(xk, θ̂k), θ

}
.
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System Believed to beTrue

P{xk + 1 | xk,µ*(xk, k), k }

Optimal Closed-Loop System

P{xk + 1 | xk,µ*(xk,θ),θ }

True Closed-Loop System

P{xk + 1 | xk,µ*(xk, k),θ }

θ
^

θ
^

θ
^

Figure 6.1.2 The three systems involved in certainty equivalent control, where
θ is the true parameter and θ̂k is the parameter estimate at time k. Loss of
optimality occurs when the true system differs asymptotically from the optimal
closed-loop system. If the parameter estimates converge to some value θ̂, the true
system typically becomes asymptotically equal to the system believed to be true.
However, the parameter estimates need not converge, and even if they do, both
systems may be different asymptotically from the optimal.

(c) The optimal closed-loop system that corresponds to the true value of
the parameter, which evolves probabilistically according to

P
{
xk+1 | xk, µ∗(xk, θ), θ

}
.

For asymptotic optimality, we would like the last two systems to be equal
asymptotically. This will certainly be true if θ̂k → θ. However, it is quite
possible that either

(1) θ̂k does not converge to anything, or that

(2) θ̂k converges to a parameter θ̂ ̸= θ.

There is not much we can say about the first case, so we concentrate
on the second. To see how the parameter estimates can converge to a wrong
value, assume that for some θ̂ ̸= θ and all xk+1, xk, we have

P
{
xk+1 | xk, µ∗(xk, θ̂), θ̂

}
= P

{
xk+1 | xk, µ∗(xk, θ̂), θ

}
. (6.4)

In words, there is a false value of parameter for which the system under
closed-loop control looks exactly as if the false value were true. Then, if the
controller estimates at some time the parameter to be θ̂, subsequent data
will tend to reinforce this erroneous estimate. As a result, a situation may
develop where the identification procedure locks onto a wrong parameter
value, regardless of how long information is collected. This is a difficulty
with identifiability of the type discussed earlier in connection with two-
phase control.
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On the other hand, if the parameter estimates converge to some (pos-
sibly wrong) value, we can argue intuitively that the first two systems
(believed and true) typically become equal in the limit as k → ∞, since,
generally, parameter estimate convergence in identification methods im-
plies that the data obtained are asymptotically consistent with the view of
the system one has based on the current estimates. However, the believed
and true systems may or may not become asymptotically equal to the opti-
mal closed-loop system. We first present two examples that illustrate how,
even when the parameter estimates converge, the true closed-loop system
can differ asymptotically from the optimal, thereby resulting in a certainty
equivalent controller that is strictly suboptimal. We then discuss the spe-
cial case of the self-tuning regulator for ARMAX models with unknown
parameters, where, remarkably, it turns out that all three of the above sys-
tems are typically equal in the limit, even though the parameter estimates
typically converge to false values.

Example 6.1.6 [BoV79]

Consider a two-state system with two controls u1 and u2. The transition
probabilities depend on the control applied as well as a parameter θ, which
is known to take one of two values θ∗ and θ̂. They are as shown in Fig. 6.1.3.
There is zero cost for a transition from state 1 to itself and a unit cost for
all other transitions. Therefore, the optimal control at state 1 is the one that
maximizes the probability of the state remaining at 1. Assume that the true
parameter is θ∗ and that

p11(u
1, θ̂) > p11(u

2, θ̂), p11(u
1, θ∗) < p11(u

2, θ∗).

Then the optimal control is u2, but if the controller thinks that the true
parameter is θ̂, it will apply u1. Suppose also that

p11(u
1, θ̂) = p11(u

1, θ∗).

Then, under u1 the system looks identical for both values of the parameter,
so if the controller estimates the parameter to be θ̂ and applies u1, subsequent
data will tend to reinforce the controller’s belief that the true parameter is
indeed θ̂.

More precisely, suppose that we estimate θ by selecting at each time k
the value that maximizes

P{θ | Ik} =
P{Ik | θ}P (θ)

P (Ik)
,

where P (θ) is the a priori probability that the true parameter is θ (this is a
popular estimation method). Then if P (θ̂) > P (θ∗), it can be seen, by using
induction, that at each time k, the controller will estimate falsely θ to be
θ̂ and apply the incorrect control u1. To avoid the difficulty illustrated in
this example, it has been suggested to occasionally deviate from the certainty
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Cost = 1

Cost = 1

Cost = 0 21

Cost = 1

Cost = 1

Cost = 0 1 2

p11(u1) = 0.5

p11(u2) = 0.6

p11(u1) = 0.5

p11(u2) = 0.3
Transition probabilities for θ  = θ

(false parameter value)

Transition probabilities for θ  = θ*

(true parameter value)

Figure 6.1.3 Transition probabilities for the two-state system of Example
6.1.6. Under the nonoptimal control u1, the system looks identical under the
true and the false values of the parameter θ.

equivalent control, applying other controls that enhance the identification
of the unknown parameter (see Doshi and Shreve [DoS80], and Kumar and
Lin [KuL82]). For example, by making sure that the control u2 is used in-
frequently but infinitely often, we can guarantee that the correct parameter
value will be identified by the preceding estimation scheme.

Example 6.1.7 [Kum83]

Consider the linear scalar system

xk+1 = axk + buk + wk,

where we know that the parameters are either (a, b) = (1, 1) or (a, b) =
(0,−1). The sequence {wk} is independent, stationary, zero mean, and Gaus-
sian. The cost is quadratic of the form

N−1∑

k=0

(
(xk)2 + 2(uk)2

)
,

where N is very large, so the stationary form of the optimal control law is
used (see Section 4.1). This control law can be calculated via the Riccati
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equation to be

µ∗(xk) =

{
−xk

2 if (a, b) = (1, 1),
0 if (a, b) = (0,−1).

To estimate (a, b), we use a least-squares identification method. The value of
the least-squares criterion at time k is given by

Vk(1, 1) =

k−1∑

i=0

(xi+1 − xi − ui)
2, for (a, b) = (1, 1), (6.5)

Vk(0,−1) =

k−1∑

i=0

(xi+1 + ui)
2, for (a, b) = (0,−1). (6.6)

The control applied at time k is

uk = µ̃k(Ik) =

{
−xk

2 if Vk(1, 1) < Vk(0,−1),
0 if Vk(1, 1) > Vk(0,−1).

Suppose the true parameters are θ = (0,−1). Then the true system evolves
according to

xk+1 = −uk + wk. (6.7)

If at time k the controller estimates incorrectly the parameters to be θ̂ = (1, 1),
because Vk(θ̂) < Vk(θ), the control applied will be uk = −xk/2 and the true
closed-loop system will evolve according to

xk+1 =
xk

2
+ wk. (6.8)

On the other hand, the controller thinks (given the estimate θ̂) that the closed-
loop system will evolve according to

xk+1 = xk + uk + wk = xk − xk

2
+ wk =

xk

2
+ wk, (6.9)

so from Eqs. (6.7) and (6.8) we see that under the control law uk = −xk/2,
the closed-loop system evolves identically for both the true and the false values
of the parameters [cf. Eq. (6.4)].

To see what can go wrong, note that if Vk(θ̂) < Vk(θ) for some k we
will have, from Eqs. (6.5)-(6.9),

xk+1 + uk = xk+1 − xk − uk,

so from Eqs. (6.5) and (6.6) we obtain

Vk+1(θ̂) < Vk+1(θ).
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Therefore, if V1(θ̂) < V1(θ), the least-squares identification method will yield
the wrong estimate θ̂ for every k. To see that this can happen with positive
probability, note that, since the true system is xk+1 = −uk + wk, we have

V1(θ̂) = (x1 − x0 − u0)
2 = (w0 − x0 − 2u0)

2,

V1(θ) = (x1 + u0)
2 = w2

0.

Therefore, the inequality V1(θ̂) < V1(θ) is equivalent to

(x0 + 2u0)
2 < 2w0(x0 + 2u0),

which will occur with positive probability since w0 is Gaussian.

The preceding examples illustrate that loss of identifiability is a se-
rious problem that frequently arises in the context of certainty equivalent
control.

6.1.4 Self-Tuning Regulators

We described earlier the nature of the identifiability issue in certainty equiv-
alent control: under closed-loop control, incorrect parameter estimates can
make the system behave as if these estimates were correct [cf. Eq. (6.4)].
As a result, the identification scheme may lock onto false parameter values.
This is not necessarily bad, however, since it may happen that the control
law implemented on the basis of the false parameter values is near optimal.
Indeed, through a fortuitous coincidence, it turns out that in the practically
important minimum variance control formulation (Section 5.3), when the
parameter estimates converge, they typically converge to false values, but
the resulting control law typically converges to the optimal . We can get an
idea about this phenomenon by means of an example.

Example 6.1.8

Consider the simplest ARMAX model:

yk+1 + ayk = buk + ϵk+1.

The minimum variance control law when a and b are known is

uk = µk(Ik) =
a
b
yk.

Suppose now that a and b are not known but are identified on-line by means
of some scheme. The control applied is

uk =
âk

b̂k

yk, (6.10)
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where âk and b̂k are the estimates obtained at time k. Then the difficulty
with identifiability occurs when

âk → â, b̂k → b̂,

where â and b̂ are such that the true closed-loop system given by

yk+1 + ayk =
bâ

b̂
yk + ϵk+1

coincides with the closed-loop system that the controller thinks is true on the
basis of the estimates â and b̂. This latter system is

yk+1 = ϵk+1.

For these two systems to be identical, we must have

a
b

=
â

b̂
,

which means that the control law (6.10) asymptotically becomes optimal de-
spite the fact that the asymptotic estimates â and b̂ may be incorrect.

Example 6.1.8 can be extended to the general ARMAX model of
Section 5.3 with no delay:

yk +
m∑

i=1

aiyk−i =
m∑

i=1

biuk−i + ϵk +
m∑

i=1

ciϵk−i.

If the parameter estimates converge (regardless of the identification method
used and regardless of whether the limit values are correct), then a min-
imum variance controller thinks that the closed-loop system is asymptoti-
cally

yk = ϵk.

Furthermore, parameter estimate convergence intuitively means that the
true closed-loop system is also asymptotically yk = ϵk, and this is clearly
the optimal closed-loop system. Results of this type have been proved
in the literature in connection with several popular methods for parameter
estimation. In fact, surprisingly, in some of these results, the model adopted
by the controller is allowed to be incorrect to some extent.

One issue that we have not discussed is whether the parameter esti-
mates indeed converge. A complete analysis of this issue is quite difficult.
We refer to the survey paper by Kumar [Kum85], and the textbooks by
Goodwin and Sin [GoS84], Kumar and Varaiya [KuV86], and Aström and
Wittenmark [AsW90] for a discussion and sources on this subject. How-
ever, extensive simulations have shown that with proper implementation,
these estimates typically converge for the type of systems likely to arise in
many applications.


