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Preface

With four parameters I can fit an elephant, and with five I
can make him wiggle his trunk.†

John von Neumann

The purpose of this monograph is to propose and develop a new concep-
tual framework for approximate Dynamic Programming (DP) and Rein-
forcement Learning (RL). This framework centers around two algorithms,
which are designed largely independently of each other and operate in syn-
ergy through the powerful mechanism of Newton’s method. We call these
the off-line training and the on-line play algorithms; the names are bor-
rowed from some of the major successes of RL involving games. Primary
examples are the recent (2017) AlphaZero program (which plays chess), and
the similarly structured and earlier (1990s) TD-Gammon program (which
plays backgammon). In these game contexts, the off-line training algorithm
is the method used to teach the program how to evaluate positions and to
generate good moves at any given position, while the on-line play algo-
rithm is the method used to play in real time against human or computer
opponents.

† From the meeting of Freeman Dyson and Enrico Fermi (p. 273 of the Segre

and Hoerlin biography of Fermi, The Pope of Physics, Picador, 2017): “When

Dyson met with him in 1953, Fermi welcomed him politely, but he quickly put

aside the graphs he was being shown indicating agreement between theory and

experiment. His verdict, as Dyson remembered, was “There are two ways of doing

calculations in theoretical physics. One way, and this is the way I prefer, is to

have a clear physical picture of the process you are calculating. The other way is

to have a precise and self-consistent mathematical formalism. You have neither.”

When a stunned Dyson tried to counter by emphasizing the agreement between

experiment and the calculations, Fermi asked him how many free parameters he

had used to obtain the fit. Smiling after being told “Four,” Fermi remarked, “I

remember my old friend Johnny von Neumann used to say, with four parameters

I can fit an elephant, and with five I can make him wiggle his trunk.” See also

the paper by Mayer, Khairy, and Howard [MKH10], which provides a verification

of the von Neumann quotation.
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x Preface

Both AlphaZero and TD-Gammon were trained off-line extensively
using neural networks and an approximate version of the fundamental DP
algorithm of policy iteration. Yet the AlphaZero player that was obtained
off-line is not used directly during on-line play (it is too inaccurate due
to approximation errors that are inherent in off-line neural network train-
ing). Instead a separate on-line player is used to select moves, based on
multistep lookahead minimization and a terminal position evaluator that
was trained using experience with the off-line player. The on-line player
performs a form of policy improvement, which is not degraded by neural
network approximations. As a result, it greatly improves the performance
of the off-line player.

Similarly, TD-Gammon performs on-line a policy improvement step
using one-step or two-step lookahead minimization, which is not degraded
by neural network approximations. To this end it uses an off-line neural
network-trained terminal position evaluator, and importantly it also ex-
tends its on-line lookahead by rollout (simulation with the one-step looka-
head player that is based on the position evaluator).

Thus in summary:

(a) The on-line player of AlphaZero plays much better than its extensively
trained off-line player. This is due to the beneficial effect of exact
policy improvement with long lookahead minimization, which corrects
for the inevitable imperfections of the neural network-trained off-line
player, and position evaluator/terminal cost approximation.

(b) The TD-Gammon player that uses long rollout plays much better
than TD-Gammon without rollout. This is due to the beneficial ef-
fect of the rollout, which serves as a substitute for long lookahead
minimization.

An important lesson from AlphaZero and TD-Gammon is that the
performance of an off-line trained policy can be greatly improved by on-line
approximation in value space, with long lookahead (involving minimization
or rollout with the off-line policy, or both), and terminal cost approximation
that is obtained off-line. This performance enhancement is often dramatic
and is due to a simple fact, which is couched on algorithmic mathematics
and is the focal point of this work:

(a) Approximation in value space with one-step lookahead minimization

amounts to a step of Newton’s method for solving Bellman’s equation.

(b) The starting point for the Newton step is based on the results of off-

line training, and may be enhanced by longer lookahead minimization

and on-line rollout .

Indeed the major determinant of the quality of the on-line policy is the
Newton step that is performed on-line, while off-line training plays a sec-
ondary role by comparison.



Preface xi

Significantly, the synergy between off-line training and on-line play
also underlies Model Predictive Control (MPC), a major control system
design methodology that has been extensively developed since the 1980s.
This synergy can be understood in terms of abstract models of infinite
horizon DP and simple geometrical constructions, and helps to explain the
all-important stability issues within the MPC context.

An additional benefit of policy improvement by approximation in
value space, not observed in the context of games (which have stable rules
and environment), is that it works well with changing problem param-
eters and on-line replanning, similar to indirect adaptive control. Here
the Bellman equation is perturbed due to the parameter changes, but ap-
proximation in value space still operates as a Newton step. An essential
requirement within this context is that a system model is estimated on-line
through some identification method, and is used during the one-step or
multistep lookahead minimization process.

In this monograph we will aim to provide insights (often based on
visualization), which explain the beneficial effects of on-line decision mak-
ing on top of off-line training. In the process, we will bring out the strong
connections between the artificial intelligence view of RL, and the control
theory views of MPC and adaptive control. Moreover, we will show that in
addition to MPC and adaptive control, our conceptual framework can be
effectively integrated with other important methodologies such as multia-
gent systems and decentralized control, discrete and Bayesian optimization,
and heuristic algorithms for discrete optimization.

One of our principal aims is to show, through the algorithmic ideas
of Newton’s method and the unifying principles of abstract DP, that the
AlphaZero/TD-Gammon methodology of approximation in value space and
rollout applies very broadly to deterministic and stochastic optimal control
problems. Newton’s method here is used for the solution of Bellman’s equa-
tion, an operator equation that applies universally within DP with both dis-
crete and continuous state and control spaces, as well as finite and infinite
horizon. In this connection, we note that the mathematical complications
associated with the formalism of Newton’s method for nondifferentiable op-
erators have been dealt with in the literature, using sophisticated methods
of nonsmooth analysis. We have provided in an appendix a convergence
analysis for a finite-dimensional version of Newton’s method, which applies
to finite-state problems, but conveys clearly the underlying geometrical in-
tuition and points to infinite-state extensions. We have also provided an
analysis for the classical linear-quadratic optimal control problem, the as-
sociated Riccati equation, and the application of Newton’s method for its
solution.

While we will deemphasize mathematical proofs in this work, there is
considerable related analysis, which supports our conclusions, and can be
found in the author’s recent RL books [Ber19a], [Ber20a], and the abstract
DP monograph [Ber22a]. In particular, the present work may be viewed as
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a more intuitive, less mathematical, visually oriented exposition of the core
material of the research monograph [Ber20a], which deals with approxima-
tion in value space, rollout, policy iteration, and multiagent systems. The
abstract DP monograph [Ber22a] develops the mathematics that support
the visualization framework of the present work, and is a primary resource
for followup mathematical research. The RL textbook [Ber19a] provides a
more general presentation of RL topics, and includes mathematical proof-
based accounts of some of the core material of exact infinite horizon DP,
as well as approximate DP, including error bound analyses. Much of this
material is also contained, in greater detail, in the author’s DP textbook
[Ber12]. A mix of material contained in these books forms the core of the
author’s web-based RL course at ASU.

This monograph, as well as my earlier RL books, were developed
while teaching several versions of my course at ASU over the last four
years. Videolectures and slides from this course are available from my
website

http://web.mit.edu/dimitrib/www/RLbook.html

and provide a good supplement and companion resource to the present
book. The hospitable and stimulating environment at ASU contributed
much to my productivity during this period, and for this I am very thank-
ful to my colleagues and students for useful interactions. My teaching
assistants, Sushmita Bhatacharya, Sahil Badyal, and Jamison Weber, dur-
ing my courses at ASU have been very supportive. I have also appreciated
fruitful discussions with colleagues and students outside ASU, particularly
Moritz Diehl, who provided very useful comments on MPC, and Yuchao Li,
who proofread carefully the entire book, collaborated with me on research
and implementation of various methods, and tested out several algorithmic
variants.

Dimitri P. Bertsekas, 2022

dimitrib@mit.edu


