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1.1 SETS

1.2 PROBABILISTIC MODELS

Elements of a Probabilistic Model

• The sample space Ω, which is the set of all possible outcomes of an
experiment.

• The probability law, which assigns to a set A of possible outcomes
(also called an event) a nonnegative number P(A) (called the proba-
bility of A) that encodes our knowledge or belief about the collective
“likelihood” of the elements of A. The probability law must satisfy
certain properties to be introduced shortly.

Probability Axioms

1. (Nonnegativity) P(A) ≥ 0, for every event A.

2. (Additivity) If A and B are two disjoint events, then the probability
of their union satisfies

P(A ∪B) = P(A) +P(B).

More generally, if the sample space has an infinite number of elements
and A1, A2, . . . is a sequence of disjoint events, then the probability of
their union satisfies

P(A1 ∪A2 ∪ · · ·) = P(A1) +P(A2) + · · · .

3. (Normalization) The probability of the entire sample space Ω is
equal to 1, that is, P(Ω) = 1.
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Discrete Probability Law

If the sample space consists of a finite number of possible outcomes, then the
probability law is specified by the probabilities of the events that consist of
a single element. In particular, the probability of any event {s1, s2, . . . , sn}
is the sum of the probabilities of its elements:

P
(

{s1, s2, . . . , sn}
)

= P(s1) +P(s2) + · · ·+P(sn).

Discrete Uniform Probability Law

If the sample space consists of n possible outcomes which are equally likely
(i.e., all single-element events have the same probability), then the proba-
bility of any event A is given by

P(A) =
number of elements of A

n
.

Some Properties of Probability Laws

Consider a probability law, and let A, B, and C be events.

(a) If A ⊂ B, then P(A) ≤ P(B).

(b) P(A ∪B) = P(A) +P(B) −P(A ∩B).

(c) P(A ∪B) ≤ P(A) +P(B).

(d) P(A ∪B ∪ C) = P(A) +P(Ac ∩B) +P(Ac ∩Bc ∩ C).
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1.3 CONDITIONAL PROBABILITY

Properties of Conditional Probability

• The conditional probability of an event A, given an event B with
P(B) > 0, is defined by

P(A |B) =
P(A ∩B)

P(B)
,

and specifies a new (conditional) probability law on the same sample
space Ω. In particular, all properties of probability laws remain valid
for conditional probability laws.

• Conditional probabilities can also be viewed as a probability law on a
new universe B, because all of the conditional probability is concen-
trated on B.

• If the possible outcomes are finitely many and equally likely, then

P(A |B) =
number of elements of A ∩B

number of elements of B
.

1.4 TOTAL PROBABILITY THEOREM AND BAYES’ RULE

Total Probability Theorem

Let A1, . . . , An be disjoint events that form a partition of the sample space
(each possible outcome is included in exactly one of the events A1, . . . , An)
and assume that P(Ai) > 0, for all i. Then, for any event B, we have

P(B) = P(A1 ∩B) + · · ·+P(An ∩B)

= P(A1)P(B |A1) + · · ·+P(An)P(B |An).
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1.5 INDEPENDENCE

Independence

• Two events A and B are said to be independent if

P(A ∩B) = P(A)P(B).

If in addition, P(B) > 0, independence is equivalent to the condition

P(A |B) = P(A).

• If A and B are independent, so are A and Bc.

• Two events A and B are said to be conditionally independent,
given another event C with P(C) > 0, if

P(A ∩B |C) = P(A |C)P(B |C).

If in addition, P(B ∩ C) > 0, conditional independence is equivalent
to the condition

P(A |B ∩ C) = P(A |C).

• Independence does not imply conditional independence, and vice versa.

Definition of Independence of Several Events

We say that the events A1, A2, . . . , An are independent if

P

(

⋂

i∈S

Ai

)

=
∏

i∈S

P(Ai), for every subset S of {1, 2, . . . , n}.
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1.6 COUNTING

The Counting Principle

Consider a process that consists of r stages. Suppose that:

(a) There are n1 possible results at the first stage.

(b) For every possible result at the first stage, there are n2 possible results
at the second stage.

(c) More generally, for any sequence of possible results at the first i − 1
stages, there are ni possible results at the ith stage.

Then, the total number of possible results of the r-stage process is

n1n2 · · ·nr.

Summary of Counting Results

• Permutations of n objects: n!.

• k-permutations of n objects: n!/(n− k)!.

• Combinations of k out of n objects:

(

n

k

)

=
n!

k! (n− k)!
.

• Partitions of n objects into r groups, with the ith group having ni

objects:
(

n

n1, n2, . . . , nr

)

=
n!

n1!n2! · · ·nr!
.

1.7 SUMMARY AND DISCUSSION
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2.1 BASIC CONCEPTS

Main Concepts Related to Random Variables

Starting with a probabilistic model of an experiment:

• A random variable is a real-valued function of the outcome of the
experiment.

• A function of a random variable defines another random variable.

• We can associate with each random variable certain “averages” of in-
terest, such as the mean and the variance.

• A random variable can be conditioned on an event or on another
random variable.

• There is a notion of independence of a random variable from an
event or from another random variable.

Concepts Related to Discrete Random Variables

Starting with a probabilistic model of an experiment:

• A discrete random variable is a real-valued function of the outcome
of the experiment that can take a finite or countably infinite number
of values.

• A discrete random variable has an associated probability mass func-
tion (PMF), which gives the probability of each numerical value that
the random variable can take.

• A function of a discrete random variable defines another discrete
random variable, whose PMF can be obtained from the PMF of the
original random variable.
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2.2 PROBABILITY MASS FUNCTIONS

Calculation of the PMF of a Random Variable X

For each possible value x of X :

1. Collect all the possible outcomes that give rise to the event {X = x}.
2. Add their probabilities to obtain pX(x).

2.3 FUNCTIONS OF RANDOM VARIABLES

2.4 EXPECTATION, MEAN, AND VARIANCE

Expectation

We define the expected value (also called the expectation or the mean)
of a random variable X , with PMF pX , by

E[X ] =
∑

x

xpX(x).

Expected Value Rule for Functions of Random Variables

Let X be a random variable with PMF pX , and let g(X) be a function of
X . Then, the expected value of the random variable g(X) is given by

E
[

g(X)
]

=
∑

x

g(x)pX(x).
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Variance

The variance var(X) of a random variable X is defined by

var(X) = E
[

(

X −E[X ]
)2
]

,

and can be calculated as

var(X) =
∑

x

(

x−E[X ]
)2
pX(x).

It is always nonnegative. Its square root is denoted by σX and is called the
standard deviation.

Mean and Variance of a Linear Function of a Random Variable

Let X be a random variable and let

Y = aX + b,

where a and b are given scalars. Then,

E[Y ] = aE[X ] + b, var(Y ) = a2 var(X).

Variance in Terms of Moments Expression

var(X) = E[X2]−
(

E[X ]
)2
.
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2.5 JOINT PMFS OF MULTIPLE RANDOM VARIABLES

Summary of Facts About Joint PMFs

Let X and Y be random variables associated with the same experiment.

• The joint PMF pX,Y of X and Y is defined by

pX,Y (x, y) = P(X = x, Y = y).

• The marginal PMFs of X and Y can be obtained from the joint
PMF, using the formulas

pX(x) =
∑

y

pX,Y (x, y), pY (y) =
∑

x

pX,Y (x, y).

• A function g(X,Y ) of X and Y defines another random variable, and

E
[

g(X,Y )
]

=
∑

x

∑

y

g(x, y)pX,Y (x, y).

If g is linear, of the form aX + bY + c, we have

E[aX + bY + c] = aE[X ] + bE[Y ] + c.

• The above have natural extensions to the case where more than two
random variables are involved.
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2.6 CONDITIONING

Summary of Facts About Conditional PMFs

Let X and Y be random variables associated with the same experiment.

• Conditional PMFs are similar to ordinary PMFs, but pertain to a
universe where the conditioning event is known to have occurred.

• The conditional PMF of X given an event A with P(A) > 0, is defined
by

pX|A(x) = P(X = x |A)

and satisfies
∑

x

pX|A(x) = 1.

• If A1, . . . , An are disjoint events that form a partition of the sample
space, with P(Ai) > 0 for all i, then

pX(x) =

n
∑

i=1

P(Ai)pX|Ai
(x).

(This is a special case of the total probability theorem.) Furthermore,
for any event B, with P(Ai ∩B) > 0 for all i, we have

pX|B(x) =

n
∑

i=1

P(Ai |B)pX|Ai∩B(x).

• The conditional PMF of X given Y = y is related to the joint PMF
by

pX,Y (x, y) = pY (y)pX|Y (x | y).

• The conditional PMF of X given Y can be used to calculate the
marginal PMF of X through the formula

pX(x) =
∑

y

pY (y)pX|Y (x | y).

• There are natural extensions of the above involving more than two
random variables.
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Summary of Facts About Conditional Expectations

Let X and Y be random variables associated with the same experiment.

• The conditional expectation of X given an event A with P(A) > 0, is
defined by

E[X |A] =
∑

x

xpX|A(x).

For a function g(X), we have

E
[

g(X) |A
]

=
∑

x

g(x)pX|A(x).

• The conditional expectation of X given a value y of Y is defined by

E[X |Y = y] =
∑

x

xpX|Y (x | y).

• If A1, . . . , An be disjoint events that form a partition of the sample
space, with P(Ai) > 0 for all i, then

E[X ] =

n
∑

i=1

P(Ai)E[X |Ai].

Furthermore, for any event B with P(Ai ∩B) > 0 for all i, we have

E[X |B] =

n
∑

i=1

P(Ai |B)E[X |Ai ∩B].

• We have
E[X ] =

∑

y

pY (y)E[X |Y = y].
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2.7 INDEPENDENCE

Summary of Facts About Independent Random Variables

Let A be an event, with P(A) > 0, and let X and Y be random variables
associated with the same experiment.

• X is independent of the event A if

pX|A(x) = pX(x), for all x,

that is, if for all x, the events {X = x} and A are independent.

• X and Y are independent if for all pairs (x, y), the events {X = x}
and {Y = y} are independent, or equivalently

pX,Y (x, y) = pX(x)pY (y), for all x, y.

• If X and Y are independent random variables, then

E[XY ] = E[X ]E[Y ].

Furthermore, for any functions g and h, the random variables g(X)
and h(Y ) are independent, and we have

E
[

g(X)h(Y )
]

= E
[

g(X)
]

E
[

h(Y )
]

.

• If X and Y are independent, then

var(X + Y ) = var(X) + var(Y ).



Sec. 2.8 Summary and Discussion 15

2.8 SUMMARY AND DISCUSSION

Summary of Results for Special Random Variables

Discrete Uniform over [a, b]:

pX(k) =

{ 1

b− a+ 1
, if k = a, a+ 1, . . . , b,

0, otherwise,

E[X ] =
a+ b

2
, var(X) =

(b − a)(b− a+ 2)

12
.

Bernoulli with Parameter p: (Describes the success or failure in a single
trial.)

pX(k) =

{

p, if k = 1,
1− p, if k = 0,

E[X ] = p, var(X) = p(1− p).

Binomial with Parameters p and n: (Describes the number of successes
in n independent Bernoulli trials.)

pX(k) =

(

n

k

)

pk(1− p)n−k, k = 0, 1, . . . , n,

E[X ] = np, var(X) = np(1− p).

Geometric with Parameter p: (Describes the number of trials until the
first success, in a sequence of independent Bernoulli trials.)

pX(k) = (1− p)k−1p, k = 1, 2, . . . ,

E[X ] =
1

p
, var(X) =

1− p

p2
.

Poisson with Parameter λ: (Approximates the binomial PMF when n
is large, p is small, and λ = np.)

pX(k) = e−λ
λk

k!
, k = 0, 1, . . . ,

E[X ] = λ, var(X) = λ.
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3.1 CONTINUOUS RANDOM VARIABLES AND PDFS

Summary of PDF Properties

Let X be a continuous random variable with PDF fX .

• fX(x) ≥ 0 for all x.

•
∫ ∞

−∞

fX(x) dx = 1.

• If δ is very small, then P
(

[x, x+ δ]
)

≈ fX(x) · δ.
• For any subset B of the real line,

P(X ∈ B) =

∫

B

fX(x) dx.

Expectation of a Continuous Random Variable and its Properties

Let X be a continuous random variable with PDF fX .

• The expectation of X is defined by

E[X ] =

∫ ∞

−∞

xfX(x) dx.

• The expected value rule for a function g(X) has the form

E
[

g(X)
]

=

∫ ∞

−∞

g(x)fX(x) dx.

• The variance of X is defined by

var(X) = E
[(

X −E[X ]
)2]

=

∫ ∞

−∞

(

x−E[X ]
)2
fX(x) dx.

• We have
0 ≤ var(X) = E[X2]−

(

E[X ]
)2
.

• If Y = aX + b, where a and b are given scalars, then

E[Y ] = aE[X ] + b, var(Y ) = a2var(X).
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3.2 CUMULATIVE DISTRIBUTION FUNCTIONS

Properties of a CDF

The CDF FX of a random variable X is defined by

FX(x) = P(X ≤ x), for all x,

and has the following properties.

• FX is monotonically nondecreasing:

if x ≤ y, then FX(x) ≤ FX(y).

• FX(x) tends to 0 as x → −∞, and to 1 as x → ∞.

• If X is discrete, then FX(x) is a piecewise constant function of x.

• If X is continuous, then FX(x) is a continuous function of x.

• If X is discrete and takes integer values, the PMF and the CDF can
be obtained from each other by summing or differencing:

FX(k) =

k
∑

i=−∞

pX(i),

pX(k) = P(X ≤ k)−P(X ≤ k − 1) = FX(k)− FX(k − 1),

for all integers k.

• If X is continuous, the PDF and the CDF can be obtained from each
other by integration or differentiation:

FX(x) =

∫ x

−∞

fX(t) dt, fX(x) =
dFX

dx
(x).

(The second equality is valid for those x at which the PDF is contin-
uous.)



20 From Introduction to Probability, by Bertsekas and Tsitsiklis Chap. 3

3.3 NORMAL RANDOM VARIABLES

Normality is Preserved by Linear Transformations

If X is a normal random variable with mean µ and variance σ2, and if a 6= 0,
b are scalars, then the random variable

Y = aX + b

is also normal, with mean and variance

E[Y ] = aµ+ b, var(Y ) = a2σ2.

CDF Calculation for a Normal Random Variable

For a normal random variable X with mean µ and variance σ2, we use a
two-step procedure.

(a) “Standardize” X , i.e., subtract µ and divide by σ to obtain a standard
normal random variable Y .

(b) Read the CDF value from the standard normal table:

P(X ≤ x) = P

(

X − µ

σ
≤ x− µ

σ

)

= P

(

Y ≤ x− µ

σ

)

= Φ

(

x− µ

σ

)

.
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.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

The standard normal table. The entries in this table provide the numerical values

of Φ(y) = P(Y ≤ y), where Y is a standard normal random variable, for y between 0

and 3.49. For example, to find Φ(1.71), we look at the row corresponding to 1.7 and

the column corresponding to 0.01, so that Φ(1.71) = .9564. When y is negative, the

value of Φ(y) can be found using the formula Φ(y) = 1−Φ(−y).
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3.4 JOINT PDFS OF MULTIPLE RANDOM VARIABLES

Summary of Facts about Joint PDFs

Let X and Y be jointly continuous random variables with joint PDF fX,Y .

• The joint PDF is used to calculate probabilities:

P
(

(X,Y ) ∈ B
)

=

∫ ∫

(x,y)∈B

fX,Y (x, y) dx dy.

• The marginal PDFs of X and Y can be obtained from the joint PDF,
using the formulas

fX(x) =

∫ ∞

−∞

fX,Y (x, y) dy, fY (y) =

∫ ∞

−∞

fX,Y (x, y) dx.

• The joint CDF is defined by FX,Y (x, y) = P(X ≤ x, Y ≤ y), and
determines the joint PDF through the formula

fX,Y (x, y) =
∂2FX,Y

∂x∂y
(x, y),

for every (x, y) at which the joint PDF is continuous.

• A function g(X,Y ) of X and Y defines a new random variable, and

E
[

g(X,Y )
]

=

∫ ∞

−∞

∫ ∞

−∞

g(x, y)fX,Y (x, y) dx dy.

If g is linear, of the form aX + bY + c, we have

E[aX + bY + c] = aE[X ] + bE[Y ] + c.

• The above have natural extensions to the case where more than two
random variables are involved.
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3.5 CONDITIONING

Conditional PDF Given an Event

• The conditional PDF fX|A of a continuous random variable X , given
an event A with P(A) > 0, satisfies

P(X ∈ B |A) =
∫

B

fX|A(x) dx.

• If A is a subset of the real line with P(X ∈ A) > 0, then

fX|{X∈A}(x) =







fX(x)

P(X ∈ A)
, if x ∈ A,

0, otherwise.

• Let A1, A2, . . . , An be disjoint events that form a partition of the sam-
ple space, and assume that P(Ai) > 0 for all i. Then,

fX(x) =

n
∑

i=1

P(Ai)fX|Ai
(x)

(a version of the total probability theorem).

Conditional PDF Given a Random Variable

Let X and Y be jointly continuous random variables with joint PDF fX,Y .

• The joint, marginal, and conditional PDFs are related to each other
by the formulas

fX,Y (x, y) = fY (y)fX|Y (x | y),

fX(x) =

∫ ∞

−∞

fY (y)fX|Y (x | y) dy.

The conditional PDF fX|Y (x | y) is defined only for those y for which
fY (y) > 0.

• We have

P(X ∈ A |Y = y) =

∫

A

fX|Y (x | y) dx.
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Summary of Facts About Conditional Expectations

Let X snd Y be jointly continuous random variables, and let A be an event
with P(A) > 0.

• Definitions: The conditional expectation of X given the event A is
defined by

E[X |A] =
∫ ∞

−∞

xfX|A(x) dx.

The conditional expectation of X given that Y = y is defined by

E[X |Y = y] =

∫ ∞

−∞

xfX|Y (x | y) dx.

• The expected value rule: For a function g(X), we have

E
[

g(X) |A
]

=

∫ ∞

−∞

g(x)fX|A(x) dx,

and

E
[

g(X) |Y = y
]

=

∫ ∞

−∞

g(x)fX|Y (x | y) dx.

• Total expectation theorem: Let A1, A2, . . . , An be disjoint events
that form a partition of the sample space, and assume that P(Ai) > 0
for all i. Then,

E[X ] =

n
∑

i=1

P(Ai)E[X |Ai].

Similarly,

E[X ] =

∫ ∞

−∞

E[X |Y = y]fY (y) dy.

• There are natural analogs for the case of functions of several random
variables. For example,

E
[

g(X,Y ) |Y = y
]

=

∫

g(x, y)fX|Y (x | y) dx,

and

E
[

g(X,Y )
]

=

∫

E
[

g(X,Y ) |Y = y]fY (y) dy.
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Independence of Continuous Random Variables

Let X and Y be jointly continuous random variables.

• X and Y are independent if

fX,Y (x, y) = fX(x)fY (y), for all x, y.

• If X and Y are independent, then

E[XY ] = E[X ]E[Y ].

Furthermore, for any functions g and h, the random variables g(X)
and h(Y ) are independent, and we have

E
[

g(X)h(Y )
]

= E
[

g(X)
]

E
[

h(Y )
]

.

• If X and Y are independent, then

var(X + Y ) = var(X) + var(Y ).
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3.6 BAYES’ RULE AND APPLICATIONS IN INFERENCE

Bayes’ Rule Relations for Random Variables

Let X and Y be two random variables.

• If X and Y are discrete, we have for all x, y with pX(x) 6= 0, pY (y) 6= 0,

pX(x)pY |X(y |x) = pY (y)pX|Y (x | y),

and the terms on the two sides in this relation are both equal to

pX,Y (x, y).

• IfX is discrete and Y is continuous, we have for all x, y with pX(x) 6= 0,
fY (y) 6= 0,

pX(x)fY |X(y |x) = fY (y)pX|Y (x | y),

and the terms on the two sides in this relation are both equal to

lim
δ→0

P(X = x, y ≤ Y ≤ y + δ)

δ
.

• If X and Y are continuous, we have for all x, y with fX(x) 6= 0,
fY (y) 6= 0,

fX(x)fY |X(y |x) = fY (y)fX|Y (x | y),

and the terms on the two sides in this relation are both equal to

lim
δ→0

P(x ≤ X ≤ x+ δ, y ≤ Y ≤ y + δ)

δ2
.
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3.7 SUMMARY AND DISCUSSION

Summary of Results for Special Random Variables

Continuous Uniform Over [a, b]:

fX(x) =







1

b− a
, if a ≤ x ≤ b,

0, otherwise,

E[X ] =
a+ b

2
, var(X) =

(b− a)2

12
.

Exponential with Parameter λ:

fX(x) =

{

λe−λx, if x ≥ 0,
0, otherwise,

FX(x) =

{

1− e−λx, if x ≥ 0,
0, otherwise,

E[X ] =
1

λ
, var(X) =

1

λ2
.

Normal with Parameters µ and σ2 > 0:

fX(x) =
1√
2π σ

e−(x−µ)2/2σ2

,

E[X ] = µ, var(X) = σ2.
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4.1 DERIVED DISTRIBUTIONS

Calculation of the PDF of a Function Y = g(X) of a Continuous
Random Variable X

1. Calculate the CDF FY of Y using the formula

FY (y) = P
(

g(X) ≤ y
)

=

∫

{x | g(x)≤y}

fX(x) dx.

2. Differentiate to obtain the PDF of Y :

fY (y) =
dFY

dy
(y).

The PDF of a Linear Function of a Random Variable

Let X be a continuous random variable with PDF fX , and let

Y = aX + b,

where a and b are scalars, with a 6= 0. Then,

fY (y) =
1

|a|fX
(

y − b

a

)

.
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PDF Formula for a Strictly Monotonic Function of a Continuous
Random Variable

Suppose that g is strictly monotonic and that for some function h and all x
in the range of X we have

y = g(x) if and only if x = h(y).

Assume that h is differentiable. Then, the PDF of Y in the region where
fY (y) > 0 is given by

fY (y) = fX
(

h(y)
)

∣

∣

∣

∣

dh

dy
(y)

∣

∣

∣

∣

.

4.2 COVARIANCE AND CORRELATION

Covariance and Correlation

• The covariance of X and Y is given by

cov(X,Y ) = E
[

(

X −E[X ]
)(

Y −E[Y ]
)

]

= E[XY ]−E[X ]E[Y ].

• If cov(X,Y ) = 0, we say that X and Y are uncorrelated.

• If X and Y are independent, they are uncorrelated. The converse is
not always true.

• We have

var(X + Y ) = var(X) + var(Y ) + 2cov(X,Y ).

• The correlation coefficient ρ(X,Y ) of two random variables X and
Y with positive variances is defined by

ρ(X,Y ) =
cov(X,Y )

√

var(X)var(Y )
,

and satisfies
−1 ≤ ρ(X,Y ) ≤ 1.
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4.3 CONDITIONAL EXPECTATION AND VARIANCE REVISITED

Law of Iterated Expectations: E
[

E[X |Y ]
]

= E[X ].

Law of Total Variance: var(X) = E
[

var(X |Y )
]

+ var
(

E[X |Y ]
)

.

Properties of the Conditional Expectation and Variance

• E[X |Y = y] is a number whose value depends on y.

• E[X |Y ] is a function of the random variable Y , hence a random vari-
able. Its value is E[X |Y = y] whenever the value of Y is y.

• E
[

E[X |Y ]
]

= E[X ] (law of iterated expectations).

• E[X |Y = y] may be viewed as an estimate of X given Y = y. The
corresponding error E[X |Y ]−X is a zero mean random variable that
is uncorrelated with E[X |Y ].

• var(X |Y ) is a random variable whose value is var(X |Y = y) whenever
the value of Y is y.

• var(X) = E
[

var(X |Y )
]

+ var
(

E[X |Y ]
)

(law of total variance).



Sec. 4.4 Transforms 33

4.4 TRANSFORMS

Summary of Transforms and their Properties

• The transform associated with a random variable X is given by

MX(s) = E[esX ] =















∑

x

esxpX(x), X discrete,

∫ ∞

−∞

esxfX(x) dx, X continuous.

• The distribution of a random variable is completely determined by the
corresponding transform.

• Moment generating properties:

MX(0) = 1,
d

ds
MX(s)

∣

∣

∣

∣

s=0

= E[X ],
dn

dsn
MX(s)

∣

∣

∣

∣

s=0

= E[Xn].

• If Y = aX + b, then MY (s) = esbMX(as).

• If X and Y are independent, then MX+Y (s) = MX(s)MY (s).
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Transforms for Common Discrete Random Variables

Bernoulli(p) (k = 0, 1)

pX(k) =

{

p, if k = 1,
1− p, if k = 0,

MX(s) = 1− p+ pes.

Binomial(n, p) (k = 0, 1, . . . , n)

pX(k) =

(

n

k

)

pk(1 − p)n−k, MX(s) = (1− p+ pes)n.

Geometric(p) (k = 1, 2, . . .)

pX(k) = p(1− p)k−1, MX(s) =
pes

1− (1− p)es
.

Poisson(λ) (k = 0, 1, . . .)

pX(k) =
e−λλk

k!
, MX(s) = eλ(e

s−1).

Uniform(a, b) (k = a, a+ 1, . . . , b)

pX(k) =
1

b− a+ 1
, MX(s) =

esa
(

es(b−a+1) − 1
)

(b − a+ 1)(es − 1)
.

Transforms for Common Continuous Random Variables

Uniform(a, b) (a ≤ x ≤ b)

fX(x) =
1

b− a
, MX(s) =

esb − esa

s(b− a)
.

Exponential(λ) (x ≥ 0)

fX(x) = λe−λx, MX(s) =
λ

λ− s
, (s < λ).

Normal(µ, σ2) (−∞ < x < ∞)

fX(x) =
1√
2π σ

e−(x−µ)2/2σ2

, MX(s) = e(σ
2s2/2)+µs.
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4.5 SUM OF A RANDOMNUMBEROF INDEPENDENTRANDOM
VARIABLES

Properties of the Sum of a Random Number of Independent Ran-
dom Variables

Let X1, X2, . . . be identically distributed random variables with mean E[X ]
and variance var(X). Let N be a random variable that takes nonnegative in-
teger values. We assume that all of these random variables are independent,
and we consider the sum

Y = X1 + · · ·+XN .

Then:

• E[Y ] = E[N ]E[X ].

• var(Y ) = E[N ] var(X) +
(

E[X ]
)2
var(N).

• We have
MY (s) = MN

(

logMX(s)
)

.

Equivalently, the transform MY (s) is found by starting with the trans-
form MN(s) and replacing each occurrence of es with MX(s).

4.6 SUMMARY AND DISCUSSION
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5.1 MARKOV AND CHEBYSHEV INEQUALITIES

Markov Inequality

If a random variable X can only take nonnegative values, then

P(X ≥ a) ≤ E[X ]

a
, for all a > 0.

Chebyshev Inequality

If X is a random variable with mean µ and variance σ2, then

P
(

|X − µ| ≥ c
)

≤ σ2

c2
, for all c > 0.

5.2 THE WEAK LAW OF LARGE NUMBERS

The Weak Law of Large Numbers

Let X1, X2, . . . be independent identically distributed random variables with
mean µ. For every ǫ > 0, we have

P
(

|Mn − µ| ≥ ǫ
)

= P

(∣

∣

∣

∣

X1 + · · ·+Xn

n
− µ

∣

∣

∣

∣

≥ ǫ

)

→ 0, as n → ∞.
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5.3 CONVERGENCE IN PROBABILITY

Convergence of a Deterministic Sequence

Let a1, a2, . . . be a sequence of real numbers, and let a be another real
number. We say that the sequence an converges to a, or limn→∞ an = a, if
for every ǫ > 0 there exists some n0 such that

|an − a| ≤ ǫ, for all n ≥ n0.

Convergence in Probability

Let Y1, Y2, . . . be a sequence of random variables (not necessarily indepen-
dent), and let a be a real number. We say that the sequence Yn converges
to a in probability, if for every ǫ > 0, we have

lim
n→∞

P
(

|Yn − a| ≥ ǫ
)

= 0.
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5.4 THE CENTRAL LIMIT THEOREM

The Central Limit Theorem

Let X1, X2, . . . be a sequence of independent identically distributed random
variables with common mean µ and variance σ2, and define

Zn =
X1 + · · ·+Xn − nµ

σ
√
n

.

Then, the CDF of Zn converges to the standard normal CDF

Φ(z) =
1√
2π

∫ z

−∞

e−x2/2 dx,

in the sense that

lim
n→∞

P(Zn ≤ z) = Φ(z), for every z.

Normal Approximation Based on the Central Limit Theorem

Let Sn = X1 + · · · + Xn, where the Xi are independent identically dis-
tributed random variables with mean µ and variance σ2. If n is large, the
probability P(Sn ≤ c) can be approximated by treating Sn as if it were
normal, according to the following procedure.

1. Calculate the mean nµ and the variance nσ2 of Sn.

2. Calculate the normalized value z = (c− nµ)/σ
√
n.

3. Use the approximation

P(Sn ≤ c) ≈ Φ(z),

where Φ(z) is available from standard normal CDF tables.
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De Moivre-Laplace Approximation to the Binomial

If Sn is a binomial random variable with parameters n and p, n is large, and
k, l are nonnegative integers, then

P(k ≤ Sn ≤ l) ≈ Φ

(

l + 1
2 − np

√

np(1− p)

)

− Φ

(

k − 1
2 − np

√

np(1− p)

)

.

5.5 THE STRONG LAW OF LARGE NUMBERS

The Strong Law of Large Numbers

Let X1, X2, . . . be a sequence of independent identically distributed random
variables with mean µ. Then, the sequence of sample means Mn = (X1 +
· · ·+Xn)/n converges to µ, with probability 1, in the sense that

P

(

lim
n→∞

X1 + · · ·+Xn

n
= µ

)

= 1.

Convergence with Probability 1

Let Y1, Y2, . . . be a sequence of random variables (not necessarily indepen-
dent). Let c be a real number. We say that Yn converges to c with prob-
ability 1 (or almost surely) if

P
(

lim
n→∞

Yn = c
)

= 1.

5.6 SUMMARY AND DISCUSSION
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6.1 THE BERNOULLI PROCESS

Some Random Variables Associated with the Bernoulli Process
and their Properties

• The binomial with parameters p and n. This is the number S of
successes in n independent trials. Its PMF, mean, and variance are

pS(k) =

(

n

k

)

pk(1− p)n−k, k = 0, 1, . . . , n,

E[S] = np, var(S) = np(1− p).

• The geometric with parameter p. This is the number T of trials
up to (and including) the first success. Its PMF, mean, and variance
are

pT (t) = (1− p)t−1p, t = 1, 2, . . . ,

E[T ] =
1

p
, var(T ) =

1− p

p2
.

Independence Properties of the Bernoulli Process

• For any given time n, the sequence of random variablesXn+1, Xn+2, . . .
(the future of the process) is also a Bernoulli process, and is indepen-
dent from X1, . . . , Xn (the past of the process).

• Let n be a given time and let T be the time of the first success after
time n. Then, T − n has a geometric distribution with parameter p,
and is independent of the random variables X1, . . . , Xn.

Alternative Description of the Bernoulli Process

1. Start with a sequence of independent geometric random variables T1,
T2, . . ., with common parameter p, and let these stand for the interar-
rival times.

2. Record a success (or arrival) at times T1, T1 + T2, T1 + T2 + T3, etc.
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Properties of the kth Arrival Time

• The kth arrival time is equal to the sum of the first k interarrival times

Yk = T1 + T2 + · · ·+ Tk,

and the latter are independent geometric random variables with com-
mon parameter p.

• The mean and variance of Yk are given by

E[Yk] = E[T1] + · · ·+E[Tk] =
k

p
,

var(Yk) = var(T1) + · · ·+ var(Tk) =
k(1− p)

p2
.

• The PMF of Yk is given by

pYk
(t) =

(

t− 1

k − 1

)

pk(1− p)t−k, t = k, k + 1, . . . ,

and is known as the Pascal PMF of order k.
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Poisson Approximation to the Binomial

• A Poisson random variable Z with parameter λ takes nonnegative
integer values and is described by the PMF

pZ(k) = e−λ
λk

k!
, k = 0, 1, 2, . . . .

Its mean and variance are given by

E[Z] = λ, var(Z) = λ.

• For any fixed nonnegative integer k, the binomial probability

pS(k) =
n!

(n− k)! k!
· pk(1− p)n−k

converges to pZ(k), when we take the limit as n → ∞ and p = λ/n,
while keeping λ constant.

• In general, the Poisson PMF is a good approximation to the binomial
as long as λ = np, n is very large, and p is very small.
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6.2 THE POISSON PROCESS

Definition of the Poisson Process

An arrival process is called a Poisson process with rate λ if it has the fol-
lowing properties:

(a) (Time-homogeneity) The probability P (k, τ) of k arrivals is the
same for all intervals of the same length τ .

(b) (Independence) The number of arrivals during a particular interval
is independent of the history of arrivals outside this interval.

(c) (Small interval probabilities) The probabilities P (k, τ) satisfy

P (0, τ) = 1− λτ + o(τ),

P (1, τ) = λτ + o1(τ),

P (k, τ) = ok(τ), for k = 2, 3, . . .

Here, o(τ) and ok(τ) are functions of τ that satisfy

lim
τ→0

o(τ)

τ
= 0, lim

τ→0

ok(τ)

τ
= 0.

Random Variables Associated with the Poisson Process and their
Properties

• The Poisson with parameter λτ . This is the number Nτ of arrivals
in a Poisson process with rate λ, over an interval of length τ . Its PMF,
mean, and variance are

pNτ
(k) = P (k, τ) = e−λτ

(λτ)k

k!
, k = 0, 1, . . . ,

E[Nτ ] = λτ, var(Nτ ) = λτ.

• The exponential with parameter λ. This is the time T until the
first arrival. Its PDF, mean, and variance are

fT (t) = λe−λt, t ≥ 0, E[T ] =
1

λ
, var(T ) =

1

λ2
.
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Independence Properties of the Poisson Process

• For any given time t > 0, the history of the process after time t is also
a Poisson process, and is independent from the history of the process
until time t.

• Let t be a given time and let T be the time of the first arrival after
time t. Then, T − t has an exponential distribution with parameter λ,
and is independent of the history of the process until time t.

Alternative Description of the Poisson Process

1. Start with a sequence of independent exponential random variables
T1, T2,. . ., with common parameter λ, and let these represent the in-
terarrival times.

2. Record an arrival at times T1, T1 + T2, T1 + T2 + T3, etc.

Properties of the kth Arrival Time

• The kth arrival time is equal to the sum of the first k interarrival times

Yk = T1 + T2 + · · ·+ Tk,

and the latter are independent exponential random variables with com-
mon parameter λ.

• The mean and variance of Yk are given by

E[Yk] = E[T1] + · · ·+E[Tk] =
k

λ
,

var(Yk) = var(T1) + · · ·+ var(Tk) =
k

λ2
.

• The PDF of Yk is given by

fYk
(y) =

λkyk−1e−λy

(k − 1)!
, y ≥ 0,

and is known as the Erlang PDF of order k.
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Properties of Sums of a Random Number of Random Variables

Let N,X1, X2, . . . be independent random variables, where N takes nonneg-
ative integer values. Let Y = X1 + · · · +XN for positive values of N , and
let Y = 0 when N = 0.

• If Xi is Bernoulli with parameter p, and N is binomial with parameters
m and q, then Y is binomial with parameters m and pq.

• If Xi is Bernoulli with parameter p, and N is Poisson with parameter
λ, then Y is Poisson with parameter λp.

• If Xi is geometric with parameter p, and N is geometric with param-
eter q, then Y is geometric with parameter pq.

• If Xi is exponential with parameter λ, and N is geometric with pa-
rameter q, then Y is exponential with parameter λq.

6.3 SUMMARY AND DISCUSSION
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7.1 DISCRETE-TIME MARKOV CHAINS

Specification of Markov Models

• A Markov chain model is specified by identifying:

(a) the set of states § = {1, . . . ,m},
(b) the set of possible transitions, namely, those pairs (i, j) for which

pij > 0, and,

(c) the numerical values of those pij that are positive.

• The Markov chain specified by this model is a sequence of random
variables X0, X1, X2, . . ., that take values in §, and which satisfy

P(Xn+1 = j |Xn = i,Xn−1 = in−1, . . . , X0 = i0) = pij ,

for all times n, all states i, j ∈ §, and all possible sequences i0, . . . , in−1

of earlier states.

Chapman-Kolmogorov Equation for the n-Step Transition
Probabilities

The n-step transition probabilities can be generated by the recursive formula

rij(n) =
m
∑

k=1

rik(n− 1)pkj , for n > 1, and all i, j,

starting with
rij(1) = pij .
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7.2 CLASSIFICATION OF STATES

Markov Chain Decomposition

• A Markov chain can be decomposed into one or more recurrent classes,
plus possibly some transient states.

• A recurrent state is accessible from all states in its class, but is not
accessible from recurrent states in other classes.

• A transient state is not accessible from any recurrent state.

• At least one, possibly more, recurrent states are accessible from a given
transient state.

Periodicity

Consider a recurrent class R.

• The class is called periodic if its states can be grouped in d > 1
disjoint subsets S1, . . . , Sd, so that all transitions from Sk lead to Sk+1

(or to S1 if k = d).

• The class is aperiodic (not periodic) if and only if there exists a time
n such that rij(n) > 0, for all i, j ∈ R.
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7.3 STEADY-STATE BEHAVIOR

Steady-State Convergence Theorem

Consider a Markov chain with a single recurrent class, which is aperiodic.
Then, the states j are associated with steady-state probabilities πj that
have the following properties.

(a) For each j, we have

lim
n→∞

rij(n) = πj , for all i.

(b) The πj are the unique solution to the system of equations below:

πj =
m
∑

k=1

πkpkj , j = 1, . . . ,m,

1 =

m
∑

k=1

πk.

(c) We have
πj = 0, for all transient states j,

πj > 0, for all recurrent states j.

Steady-State Probabilities as Expected State Frequencies

For a Markov chain with a single class which is aperiodic, the steady-state
probabilities πj satisfy

πj = lim
n→∞

vij(n)

n
,

where vij(n) is the expected value of the number of visits to state j within
the first n transitions, starting from state i.
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Expected Frequency of a Particular Transition

Consider n transitions of a Markov chain with a single class which is aperi-
odic, starting from a given initial state. Let qjk(n) be the expected number
of such transitions that take the state from j to k. Then, regardless of the
initial state, we have

lim
n→∞

qjk(n)

n
= πjpjk.

7.4 ABSORPTION PROBABILITIES AND EXPECTED TIME
TO ABSORPTION

Absorption Probability Equations

Consider a Markov chain where each state is either transient or absorb-
ing, and fix a particular absorbing state s. Then, the probabilities ai of
eventually reaching state s, starting from i, are the unique solution to the
equations

as = 1,

ai = 0, for all absorbing i 6= s,

ai =

m
∑

j=1

pijaj , for all transient i.
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Equations for the Expected Times to Absorption

Consider a Markov chain where all states are transient, except for a single
absorbing state. The expected times to absorption, µ1, . . . , µm, are the
unique solution to the equations

µi = 0, if i is the absorbing state,

µi = 1 +

m
∑

j=1

pijµj , if i is transient.

Equations for Mean First Passage and Recurrence Times

Consider a Markov chain with a single recurrent class, and let s be a par-
ticular recurrent state.

• The mean first passage times µi to reach state s starting from i, are
the unique solution to the system of equations

µs = 0, µi = 1 +

m
∑

j=1

pijµj , for all i 6= s.

• The mean recurrence time µ∗
s of state s is given by

µ∗
s = 1 +

m
∑

j=1

psjµj .
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7.5 CONTINUOUS-TIME MARKOV CHAINS

Continuous-Time Markov Chain Assumptions

• If the current state is i, the time until the next transition is exponen-
tially distributed with a given parameter νi, independent of the past
history of the process and of the next state.

• If the current state is i, the next state will be j with a given probability
pij , independent of the past history of the process and of the time until
the next transition.
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Alternative Description of a Continuous-Time Markov Chain

Given the current state i of a continuous-time Markov chain, and for any
j 6= i, the state δ time units later is equal to j with probability

qijδ + o(δ),

independent of the past history of the process.

Steady-State Convergence Theorem

Consider a continuous-time Markov chain with a single recurrent class.
Then, the states j are associated with steady-state probabilities πj that
have the following properties.

(a) For each j, we have

lim
t→∞

P
(

X(t) = j |X(0) = i
)

= πj , for all i.

(b) The πj are the unique solution to the system of equations below:

πj

∑

k 6=j

qjk =
∑

k 6=j

πkqkj , j = 1, . . . ,m,

1 =
m
∑

k=1

πk.

(c) We have
πj = 0, for all transient states j,

πj > 0, for all recurrent states j.

7.6 SUMMARY AND DISCUSSION
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Major Terms, Problems, and Methods in this Chapter

• Bayesian statistics treats unknown parameters as random variables
with known prior distributions.

• In parameter estimation, we want to generate estimates that are
close to the true values of the parameters in some probabilistic sense.

• In hypothesis testing, the unknown parameter takes one of a finite
number of values, corresponding to competing hypotheses; we want to
choose one of the hypotheses, aiming to achieve a small probability of
error.

• Principal Bayesian inference methods:

(a) Maximum a posteriori probability (MAP) rule: Out of the
possible parameter values/hypotheses, select one with maximum
conditional/posterior probability given the data (Section 8.2).

(b) Least mean squares (LMS) estimation: Select an estimator/fun-
ction of the data that minimizes the mean squared error between
the parameter and its estimate (Section 8.3).

(c) Linear least mean squares estimation: Select an estimator
which is a linear function of the data and minimizes the mean
squared error between the parameter and its estimate (Section
8.4). This may result in higher mean squared error, but requires
simple calculations, based only on the means, variances, and co-
variances of the random variables involved.

8.1 BAYESIAN INFERENCEAND THE POSTERIORDISTRIBUTION

Summary of Bayesian Inference

• We start with a prior distribution pΘ or fΘ for the unknown random
variable Θ.

• We have a model pX|Θ or fX|Θ of the observation vector X .

• After observing the value x of X , we form the posterior distribution
of Θ, using the appropriate version of Bayes’ rule.
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The Four Versions of Bayes’ Rule

• Θ discrete, X discrete:

pΘ|X(θ |x) = pΘ(θ)pX|Θ(x | θ)
∑

θ′

pΘ(θ′)pX|Θ(x | θ′)
.

• Θ discrete, X continuous:

pΘ|X(θ |x) = pΘ(θ)fX|Θ(x | θ)
∑

θ′

pΘ(θ′)fX|Θ(x | θ′)
.

• Θ continuous, X discrete:

fΘ|X(θ |x) = fΘ(θ)pX|Θ(x | θ)
∫

fΘ(θ′)pX|Θ(x | θ′) dθ′
.

• Θ continuous, X continuous:

fΘ|X(θ |x) = fΘ(θ)fX|Θ(x | θ)
∫

fΘ(θ′)fX|Θ(x | θ′) dθ′
.
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8.2 POINT ESTIMATION, HYPOTHESIS TESTING, AND THE
MAP RULE

The Maximum a Posteriori Probability (MAP) Rule

• Given the observation value x, the MAP rule selects a value θ̂ that
maximizes over θ the posterior distribution pΘ|X(θ |x) (if Θ is discrete)
or fΘ|X(θ |x) (if Θ is continuous).

• Equivalently, it selects θ̂ that maximizes over θ:

pΘ(θ)pX|Θ(x | θ) (if Θ and X are discrete),

pΘ(θ)fX|Θ(x | θ) (if Θ is discrete and X is continuous),

fΘ(θ)pX|Θ(x | θ) (if Θ is continuous and X is discrete),

fΘ(θ)fX|Θ(x | θ) (if Θ and X are continuous).

• If Θ takes only a finite number of values, the MAP rule minimizes (over
all decision rules) the probability of selecting an incorrect hypothesis.
This is true for both the unconditional probability of error and the
conditional one, given any observation value x.
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Point Estimates

• An estimator is a random variable of the form Θ̂ = g(X), for some
function g. Different choices of g correspond to different estimators.

• An estimate is the value θ̂ of an estimator, as determined by the
realized value x of the observation X .

• Once the value x of X is observed, the Maximum a Posteriori
Probability (MAP) estimator, sets the estimate θ̂ to a value that
maximizes the posterior distribution over all possible values of θ.

• Once the value x of X is observed, the Conditional Expectation
(LMS) estimator sets the estimate θ̂ to E[Θ |X = x].

The MAP Rule for Hypothesis Testing

• Given the observation value x, the MAP rule selects a hypothesis Hi

for which the value of the posterior probability P(Θ = θi |X = x) is
largest.

• Equivalently, it selects a hypothesis Hi for which pΘ(θi)pX|Θ(x | θi) (if
X is discrete) or pΘ(θi)fX|Θ(x | θi) (if X is continuous) is largest.

• The MAP rule minimizes the probability of selecting an incorrect hy-
pothesis for any observation value x, as well as the probability of error
over all decision rules.
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8.3 BAYESIAN LEAST MEAN SQUARES ESTIMATION

Key Facts About Least Mean Squares Estimation

• In the absence of any observations, E
[

(Θ − θ̂)2
]

is minimized when

θ̂ = E[Θ]:

E
[

(

Θ−E[Θ]
)2
]

≤ E
[

(Θ− θ̂)2
]

, for all θ̂.

• For any given value x of X , E
[

(Θ − θ̂)2 |X = x
]

is minimized when

θ̂ = E[Θ |X = x]:

E
[

(

Θ−E[Θ |X = x]
)2 ∣
∣ X = x

]

≤ E
[

(Θ − θ̂)2 |X = x
]

, for all θ̂.

• Out of all estimators g(X) of Θ based on X , the mean squared esti-

mation error E
[

(

Θ− g(X)
)2
]

is minimized when g(X) = E[Θ |X ]:

E
[

(

Θ−E[Θ |X ]
)2
]

≤ E
[

(

Θ− g(X)
)2
]

, for all estimators g(X).
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Properties of the Estimation Error

• The estimation error Θ̃ is unbiased, i.e., it has zero unconditional
and conditional mean:

E[Θ̃] = 0, E[Θ̃ |X = x] = 0, for all x.

• The estimation error Θ̃ is uncorrelated with the estimate Θ̂:

cov(Θ̂, Θ̃) = 0.

• The variance of Θ can be decomposed as

var(Θ) = var(Θ̂) + var(Θ̃).

8.4 BAYESIAN LINEAR LEAST MEAN SQUARES ESTIMATION

Linear LMS Estimation Formulas

• The linear LMS estimator Θ̂ of Θ based on X is

Θ̂ = E[Θ] +
cov(Θ, X)

var(X)

(

X −E[X ]
)

= E[Θ] + ρ
σΘ

σX

(

X −E[X ]
)

,

where

ρ =
cov(Θ, X)

σΘσX

is the correlation coefficient.

• The resulting mean squared estimation error is equal to

(1− ρ2)σ2
Θ.

8.5 SUMMARY AND DISCUSSION
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Major Terms, Problems, and Methods in this Chapter

• Classical statistics treats unknown parameters as constants to be
determined. A separate probabilistic model is assumed for each pos-
sible value of the unknown parameter.

• In parameter estimation, we want to generate estimates that are
nearly correct under any possible value of the unknown parameter.

• In hypothesis testing, the unknown parameter takes a finite number
m of values (m ≥ 2), corresponding to competing hypotheses; we want
to choose one of the hypotheses, aiming to achieve a small probability
of error under any of the possible hypotheses.

• In significance testing, we want to accept or reject a single hypoth-
esis, while keeping the probability of false rejection suitably small.

• Principal classical inference methods in this chapter:

(a) Maximum likelihood (ML) estimation: Select the parame-
ter that makes the observed data “most likely,” i.e., maximizes
the probability of obtaining the data at hand (Section 9.1).

(b) Linear regression: Find the linear relation that matches best
a set of data pairs, in the sense that it minimizes the sum of
the squares of the discrepancies between the model and the data
(Section 9.2).

(c) Likelihood ratio test: Given two hypotheses, select one based
on the ratio of their “likelihoods,” so that certain error probabil-
ities are suitably small (Section 9.3).

(d) Significance testing: Given a hypothesis, reject it if and only if
the observed data falls within a certain rejection region. This re-
gion is specially designed to keep the probability of false rejection
below some threshold (Section 9.4).
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9.1 CLASSICAL PARAMETER ESTIMATION

Terminology Regarding Estimators

Let Θ̂n be an estimator of an unknown parameter θ, that is, a function of
n observations X1, . . . , Xn whose distribution depends on θ.

• The estimation error, denoted by Θ̃n, is defined by Θ̃n = Θ̂n − θ.

• The bias of the estimator, denoted by bθ(Θ̂n), is the expected value
of the estimation error:

bθ(Θ̂n) = Eθ[Θ̂n]− θ.

• The expected value, the variance, and the bias of Θ̂n depend on θ,
while the estimation error depends in addition on the observations
X1, . . . , Xn.

• We call Θ̂n unbiased if Eθ[Θ̂n] = θ, for every possible value of θ.

• We call Θ̂n asymptotically unbiased if limn→∞ Eθ[Θ̂n] = θ, for
every possible value of θ.

• We call Θ̂n consistent if the sequence Θ̂n converges to the true value
of the parameter θ, in probability, for every possible value of θ.

Maximum Likelihood Estimation

• We are given the realization x = (x1, . . . , xn) of a random vector
X = (X1, . . . , Xn), distributed according to a PMF pX(x; θ) or PDF
fX(x; θ).

• The maximum likelihood (ML) estimate is a value of θ that maximizes
the likelihood function, pX(x; θ) or fX(x; θ), over all θ.

• The ML estimate of a one-to-one function h(θ) of θ is h(θ̂n), where θ̂n
is the ML estimate of θ (the invariance principle).

• When the random variables Xi are i.i.d., and under some mild addi-
tional assumptions, each component of the ML estimator is consistent
and asymptotically normal.
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Estimates of the Mean and Variance of a Random Variable

Let the observations X1, . . . , Xn be i.i.d., with mean θ and variance v that
are unknown.

• The sample mean

Mn =
X1 + · · ·+Xn

n

is an unbiased estimator of θ, and its mean squared error is v/n.

• Two variance estimators are

S
2
n =

1

n

n
∑

i=1

(Xi −Mn)2, Ŝ2
n =

1

n− 1

n
∑

i=1

(Xi −Mn)2.

• The estimator S
2
n coincides with the ML estimator if the Xi are nor-

mal. It is biased but asymptotically unbiased. The estimator Ŝ2
n is

unbiased. For large n, the two variance estimators essentially coincide.

Confidence Intervals

• A confidence interval for a scalar unknown parameter θ is an interval
whose endpoints Θ̂−

n and Θ̂+
n bracket θ with a given high probability.

• Θ̂−
n and Θ̂+

n are random variables that depend on the observations
X1, . . . , Xn.

• A 1− α confidence interval is one that satisfies

Pθ

(

Θ̂−
n ≤ θ ≤ Θ̂+

n

)

≥ 1− α,

for all possible values of θ.
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9.2 LINEAR REGRESSION

Linear Regression

Given n data pairs (xi, yi), the estimates that minimize the sum of the
squared residuals are given by

θ̂1 =

n
∑

i=1

(xi − x)(yi − y)

n
∑

i=1

(xi − x)2

, θ̂0 = y − θ̂1x,

where

x =
1

n

n
∑

i=1

xi, y =
1

n

n
∑

i=1

yi.
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Bayesian Linear Regression

• Model:

(a) We assume a linear relation Yi = Θ0 +Θ1xi +Wi.

(b) The xi are modeled as known constants.

(c) The random variables Θ0,Θ1,W1, . . . ,Wn are normal and inde-
pendent.

(d) The random variables Θ0 and Θ1 have mean zero and variances
σ2
0 , σ

2
1 , respectively.

(e) The random variables Wi have mean zero and variance σ2.

• Estimation Formulas:

Given the data pairs (xi, yi), the MAP estimates of Θ0 and Θ1 are

θ̂1 =
σ2
1

σ2 + σ2
1

n
∑

i=1

(xi − x)2

·
n
∑

i=1

(xi − x)
(

yi − y
)

,

θ̂0 =
nσ2

0

σ2 + nσ2
0

(y − θ̂1x),

where

x =
1

n

n
∑

i=1

xi, y =
1

n

n
∑

i=1

yi.

9.3 BINARY HYPOTHESIS TESTING

Likelihood Ratio Test (LRT)

• Start with a target value α for the false rejection probability.

• Choose a value for ξ such that the false rejection probability is equal
to α:

P
(

L(X) > ξ;H0

)

= α.

• Once the value x of X is observed, reject H0 if L(x) > ξ.
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Neyman-Pearson Lemma

Consider a particular choice of ξ in the LRT, which results in error proba-
bilities

P
(

L(X) > ξ;H0

)

= α, P
(

L(X) ≤ ξ;H1

)

= β.

Suppose that some other test, with rejection region R, achieves a smaller or
equal false rejection probability:

P(X ∈ R;H0) ≤ α.

Then,
P(X /∈ R;H1) ≥ β,

with strict inequality P(X /∈ R;H1) > β when P(X ∈ R;H0) < α.
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9.4 SIGNIFICANCE TESTING

Significance Testing Methodology

A statistical test of a hypothesis H0 is to be performed, based on the obser-
vations X1, . . . , Xn.

• The following steps are carried out before the data are observed.

(a) Choose a statistic S, that is, a scalar random variable that
will summarize the data to be obtained. Mathematically, this
involves the choice of a function h : ℜn → ℜ, resulting in the
statistic S = h(X1 . . . , Xn).

(b) Determine the shape of the rejection region by specifying
the set of values of S for which H0 will be rejected as a function
of a yet undetermined critical value ξ.

(c) Choose the significance level, i.e., the desired probability α of
a false rejection of H0.

(d) Choose the critical value ξ so that the probability of false re-
jection is equal (or approximately equal) to α. At this point, the
rejection region is completely determined.

• Once the values x1, . . . , xn of X1, . . . , Xn are observed:

(i) Calculate the value s = h(x1, . . . , xn) of the statistic S.

(ii) Reject the hypothesis H0 if s belongs to the rejection region.
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The Chi-Square Test:

• Use the statistic

S =
m
∑

k=1

Nk log
( Nk

nθ∗k

)

(or possibly the related statistic T ) and a rejection region of the form

reject H0 if 2S > γ

(or T > γ, respectively).

• The critical value γ is determined from the CDF tables for the χ2

distribution with m− 1 degrees of freedom so that

P(2S > γ;H0) = α,

where α is a given significance level.

9.5 SUMMARY AND DISCUSSION


