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OUTLINE

• Convexity issues in optimization
• Historical remarks
• Our treatment of the subject
• Three unifying lines of analysis

– Common geometrical framework for duality and minimax
– Unifying framework for existence of solutions and duality

gap analysis
– Unification of Lagrange multiplier theory using an

enhanced Fritz John theory and the notion of
pseudonormality
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WHY IS CONVEXITY
IMPORTANT IN OPTIMIZATION I

•  A convex function has no local minima that are
not global
•  A nonconvex function can be “convexified” 
while maintaining the optimality of its minima
•  A convex set has nonempty relative interior
•  A convex set has feasible directions at any point
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WHY IS CONVEXITY
IMPORTANT IN OPTIMIZATION II

0

Level Sets of Convex
Function f

Recession Cone Rf

• The existence of minima of convex functions
is conveniently characterized using directions
of recession

• A polyhedral convex set is characterized by its
extreme points and extreme directions
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WHY IS CONVEXITY
IMPORTANT IN OPTIMIZATION III

• A convex function is continuous and has nice
differentiability properties

• Convex functions arise prominently in duality
• Convex, lower semicontinuous functions are

self-dual  with respect to conjugacy
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SOME HISTORY

• Late 19th-Early 20th Century:
– Caratheodory, Minkowski, Steinitz, Farkas

• 40s-50s: The big turning point
– Game Theory: von Neumann
– Duality: Fenchel, Gale, Kuhn, Tucker
– Optimization-related convexity: Fenchel

• 60s-70s: Consolidation
– Rockafellar

• 80s-90s: Extensions to nonconvex optimization
and nonsmooth analysis

– Clarke, Mordukovich, Rockafellar-Wets
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ABOUT THE BOOK

• Convex Analysis and Optimization, by D. P.
Bertsekas, with A. Nedic and A. Ozdaglar
(March 2003)

• Aims to make the subject accessible through
unification and geometric visualization

• Unification is achieved through several new
lines of analysis
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NEW LINES OF ANALYSIS

I A unified geometrical approach to convex
programming duality and minimax theory

– Basis: Duality between two elementary geometrical
problems

II A unified view of theory of existence of
solutions and absence of duality gap

– Basis: Reduction to basic questions on intersections of
closed sets

IIIA unified view of theory of existence of
Lagrange multipliers/constraint qualifications

– Basis: The notion of constraint pseudonormality,
motivated by a new set of enhanced Fritz John conditions
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OUTLINE OF THE BOOK

Basic Convexity Concepts

    Existence of 
        Optimal 
       Solutions

Min Common/
Max Crossing  
    Duality

Convex Sets and Functions
Semicontinuity and Epigraphs
  Convex and Affine Hulls

    Relative Interior
Directions of Recession

   Minimax 
Saddle Point   
    Theory

Polyhedral Convexity
Representation Thms
   Extreme Points

Integer Programming
Linear Programming

Chapter 1

Chapters 2-4

Chapters 5-8

Lagrange Multiplier
         Theory

   Constraint Qualifications
Pseudonormality

Exact Penalty Functions

Constrained 
Optimization Duality
Geometric Multipliers

Strong Duality Results

 Fenchel Duality Dual Methods 

Subgradient and 
    Incremental
      Methods

Exact Penalty
Functions

Conjugacy

Subdifferentiability

Calculus of Subgradients
Conical Approximations

Optimality Conditions

Fritz John Theory

Closed Set Intersections
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OUTLINE OF DUALITY
ANALYSIS

Min Common/
Max Crossing

Theory

Nonlinear 
Farkas 
Lemma

Existence of 
Geometric
Multipliers

Fenchel
Duality
Theory

Absence of
 Duality Gap    

Closed Set 
Intersection

Results

Preservation of
Closedness

Under Partial
Minimization

Enhanced
Fritz John
Conditions

Existence of
Informative
Geometric
Multipliers

Minimax
Theory

p(u) = infx F(x,u)
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I
MIN COMMON/MAX CROSSING

DUALITY
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GEOMETRICAL VIEW OF
DUALITY

0

(a)

Min Common Point w*

Max Crossing Point q*

M

0

(b)

M

_
M

Max Crossing Point q*

Min Common Point w*
w w

u

0

(c)

S

_
M

M
Max Crossing Point q*

Min Common Point w*

w

u

u



13

Convex Analysis and Optimization, D. P. Bertsekas

APPROACH

• Prove theorems about the geometry of M
– Conditions on M guarantee that w* = q*
– Conditions on M that guarantee existence of a max

crossing hyperplane

• Choose M to reduce the constrained
optimization problem, the minimax problem,
and others, to special cases of the min
common/max crossing framework

• Specialize the min common/max crossing
theorems to duality and minimax theorems
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CONVEX PROGRAMMING
DUALITY

• Primal problem:
min f(x)    subject to    x∈∈∈∈X and gj(x)≤≤≤≤0, j=1,…,r

• Dual problem:
max q(µµµµ)  subject to    µµµµ≥≥≥≥0

where the dual function is

 q(µµµµ) = infx L(x,µµµµ) = infx {f(x) + µµµµ’g(x)}
• Optimal primal value = infxsupµµµµ≥≥≥≥0000 L(x,µµµµ)
• Optimal dual value = supµµµµ≥≥≥≥0000infx L(x,µµµµ)

• Min common/max crossing framework:
 M = epi(p), p(u) = infx∈∈∈∈X, gj(x)≤≤≤≤uj f(x)
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VISUALIZATION

{(g(x),f(x)) | x  ∈ X}

f*

u

q*

p(u)

q(µ) = infu{p(u) + µ′u}

(µ,1) M



16

Convex Analysis and Optimization, D. P. Bertsekas

MINIMAX / ZERO SUM GAME
THEORY ISSUES

• Given a function ΦΦΦΦ(x,z), where x∈∈∈∈X and z∈∈∈∈Z,
under what conditions do we have

 infxsupz ΦΦΦΦ(x,z) = supzinfx ΦΦΦΦ(x,z)

• Assume convexity/concavity, semicontinuity
of ΦΦΦΦ

• Min common/max crossing framework:
M = epigraph of the function

p(u) = infxsupz {ΦΦΦΦ(x,z) - u’z}
• infxsupz ΦΦΦΦ = Min common value
• supzinfx ΦΦΦΦ    = Max crossing value
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VISUALIZATION

M = epi(p)

u

supzinfx φ(x,z)

= max crossing value q*

w

infx supzφ(x,z)

= min common value w*
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TWO ISSUES IN CONVEX
PROGRAMMING AND MINIMAX

• When is there no duality gap ( in convex
programming), or inf sup = sup inf (in
minimax)?

• When does an optimal dual solution exist (in
convex programming), or the sup is attained (in
minimax)?

• Min common/max crossing framework shows
that

– 1st question is a lower semicontinuity issue
– 2nd question is an issue of existence of a nonvertical

support hyperplane (or subgradient) at the origin

• Further analysis is needed for more specific
answers
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II
UNIFICATION OF EXISTENCE

AND NO DUALITY GAP ISSUES
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INTERSECTIONS OF NESTED
FAMILIES OF CLOSED SETS

• Two basic problems in convex optimization
– Attainment of a minimum of a function f over a set X
– Existence of a duality gap

• The 1st question is a set intersection issue:
The set of minima is the intersection of the
nonempty level sets {x∈∈∈∈X | f(x) ≤≤≤≤ γγγγ}

• The 2nd question is a lower semicontinuity
issue:
When is the function

p(u) = infx F(x,u)
lower semicontinuous, assuming F(x,u) is
convex and lower semicontinuous?
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PRESERVATION OF
SEMICONTINUITY UNDER
PARTIAL MINIMIZATION

• 2nd question also involves set intersection
• Key observation: For p(u) = infx F(x,u), we have

 Closure(P(epi(F))) ⊃⊃⊃⊃ epi(p) ⊃⊃⊃⊃    P(epi(F))
where P(.) is projection on the space of u. So if
projection preserves closedness, F is l.s.c.

Given C, when is P(C) closed?

If yk is a sequence in P(C) that 
converges to y, we must show 
that the intersection of the Ck 
is nonempty

-

C

P(C)

y

x

ykyk+1

Ck
Ck+1
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UNIFIED TREATMENT OF
EXISTENCE OF SOLUTIONS
AND DUALITY GAP ISSUES

Results on nonemptiness of intersection
of a nested family of closed sets

No duality gap results
In convex programming inf sup ΦΦΦΦ = sup inf ΦΦΦΦ

Existence of minima of
f over X
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THE ROLE OF POLYHEDRAL
ASSUMPTIONS: AN EXAMPLE

The min is attained if X is polyhedral, and f is constant
along common directions of recession of f and X

0 x1

x2

Level Sets of 
Convex Function f

X

f(x) = ex1

0 x1

x2

Level Sets of 
Convex Function f

X

Polyhedral Constraint Set X Nonpolyhedral Constraint Set X

Minimum Attained Minimum not Attained
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THE ROLE OF QUADRATIC
FUNCTIONS

Results on nonemptiness of intersection
of sets defined by quadratic inequalities

Linear
programming

Semidefinite
programming

Quadratic
programming

If f is bounded below over X,
the min of f over X is attained

If the optimal value is finite,
there is no duality gap
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III
LAGRANGE MULTIPLIER

THEORY / PSEUDONORMALITY
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LAGRANGE MULTIPLIERS

• Problem (smooth, nonconvex):
Min f(x)
subject to x∈∈∈∈X,     hi(x)=0,  i = 1,…,m

• Necessary condition for optimality of x* (case X = Rn):
Under some “constraint qualification”, we have

∇∇∇∇f(x*) + ΣΣΣΣI λλλλi∇∇∇∇hi(x*) = 0
for some Lagrange multipliers λλλλi

• Basic analytical issue: What is the fundamental
structure of the constraint set that guarantees the
existence of a Lagrange multiplier?

• Standard constraint qualifications (case X = Rn):
– The gradients ∇∇∇∇hi(x*) are linearly independent

– The functions hi are affine
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ENHANCED FRITZ JOHN
CONDITIONS

If x* is optimal, there exist µµµµ0    ≥≥≥≥ 0 and λλλλi, not all
0, such that

             µµµµ0    ∇∇∇∇f(x*) + ΣΣΣΣi λλλλi∇∇∇∇hi(x*) = 0,
 and a sequence {xk} with xk →→→→ x* and such that

    f (xk) < f(x*) for all k,
    λλλλi hi(xk) > 0  for all i with λλλλi ≠≠≠≠ 0  and all k

 NOTE: If µµµµ0    > 0, the λλλλi are Lagrange multipliers
with a sensitivity property (we call them
informative)
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PSEUDONORMALITY

• Definition: A feasible point x* is pseudonormal if one
cannot find λλλλi and a sequence {xk} with xk →→→→ x* such
that

             ΣΣΣΣi λλλλi∇∇∇∇hi(x*) = 0,                        ΣΣΣΣi λλλλi hi(xk) > 0   for all k

• Pseudonormality at x* guarantees that, if x* is optimal,
we can take µµµµ0    = 1 in the F-J conditions (so there
exists an informative Lagrange multiplier)

Map an εεεε -ball around x*
onto the constraint space
Tεεεε = {h(x)| ||x-x*|| < εεεε}

Tε

u1

u2

0

λ

Tε

u1

u2

0

Not PseudonormalPseudonormal
hi: Affine

λ
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INFORMATIVE LAGRANGE
MULTIPLIERS

• The Lagrange multipliers obtained from the
enhanced Fritz John conditions have a special
sensitivity property:
They indicate the constraints to violate in
order to improve the cost

• We call such multipliers informative

• Proposition: If there exists at least one
Lagrange multiplier vector, there exists one
that is informative
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EXTENSIONS/CONNECTIONS
TO NONSMOOTH ANALAYSIS

• F-J conditions for an additional constraint x∈∈∈∈X
• The stationarity condition becomes

- (∇∇∇∇f(x*) + ΣΣΣΣI λλλλi∇∇∇∇hi(x*)) ∈∈∈∈        ((((normal cone of X at x*)
• X is called regular at x* if the normal cone is

equal to the polar of its tangent cone at x*
(example: X convex)

• If X is not regular at x*, the Lagrangian may
have negative slope along some feasible
directions

• Regularity is the fault line beyond which there
is no satisfactory Lagrange multiplier theory
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THE STRUCTURE OF THE
THEORY FOR X = Rn

Independent
Constraint
Gradients

Pseudonormality

Linear
Constraints

Mangasarian
Fromovitz
Condition

Existence of
Informative
Multipliers

Existence of
Lagrange
Multipliers
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THE STRUCTURE OF THE
THEORY FOR X: REGULAR

Pseudonormality

New Mangasarian
Fromovitz-Like

Condition

Existence of
Informative
Multipliers

Existence of
Lagrange
Multipliers

Slater
Condition
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EXTENSIONS

• Enhanced Fritz John conditions and
pseudonormality for convex problems, when
existence of a primal optimal solution is not
assumed

• Connection of pseudonormality and exact
penalty functions

• Connection of pseudonormality and the
classical notion of quasiregularity


