Topics in Reinforcement Learning:
Lessons from AlphaZero for
(Sub)Optimal Control and Discrete Optimization

Arizona State University
Course CSE 691, Spring 2022

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 3
Approximation in Value Space and Linear Quadratic Problems
Problem Formulations, Reformulations, and Examples

Bertsekas Reinforcement Learning 1/33

0 Infinite Horizon - An Overview

@ Infinite Horizon Linear Quadratic Problems
e Problem Formulations and Examples

0 State Augmentation and Other Reformulations
@ Problems with Terminal State

e Multiagent Problems

° Partial State Observation Problems

Bertsekas Reinforcement Learning 2/33

Review of Infinite Horizon Problems

Random Transition

Tha1 = f(xr, up, wy) Infinite Horizon
Random Cost

akg(xy, up, wy)

Bellman operators: Abstract notation, convenient for visualization and analysis
The min-Bellman operator T that transforms a function J(-) into a function (7J)(-)

ueU

(TI)(x) = ml(n)E{g(x, u,w) + ad(f(x, u, W))}, for all x

The p-Bellman operator T, for any stationary policy {u, i, ...}
(T.J)(x E{g X, u(x),)+aJ(f(x,u(x),W))}, for all x

Theory and Algorithms using Bellman operators (with some exceptions)
@ J* satisfies J* = TJ" (the min-Bellman equation). If T,,J* = TJ*, u is optimal
@ J, satisfies J, = T,J, (the u-Bellman equation).
@ VI: Jkr1 = TJk; converges to J*. Also Jy.1 = T,Jx converges to J
@ Pl:J k= T «J, .« (policy evaluation) and T «1J,x = TJ,k (policy improvement)

Bertsekas

Reinforcement Learning 4/33

Deterministic Linear Quadratic Problem - Riccati Operators

@ System xi, 1 = axx + bux and cost function limy_,.. SN ' (gxZ + ruf)
@ The min-Bellman eq. is J*(x) = min, [gx® + ru® + J*(ax + bu)]
@ For linear u(x) = Lx, the p-Bellman eq. is J,.(x) = (q + rL?)x* + J. ((a+ bL)x)

@ The Bellman egs. admit quadratic solutions J*(x) = K*x? and J,.(x) = K/ x?,
where K* and K| solve the Riccati egs. (restrictions of Bellman egs. to quadratics)
a&rK

r+ bPK

K=F(K)= +9, K=F(K)=(a+bL’K+q+rl?

@ The optimal policy is a linear function of x, .*(x) = L*x, and is obtained from

abK™

* o . 2 2 * 2 e
w'(x) =argmin [gx” + " + gK™ (ax + bu)], L' =— =

@ The Vlalgorithm is Jy.1(x) = miny [gx® + ru® + Je(ax + bu)]

@ Starting with Jo(x) = Kox?, the value iterates Jx are quadratic: Jk(x) = Kix?,
where {Kx} is generated by

2
Ko >0, Kkt = —5,- +9

Bertsekas Reinforcement Learning 6/33

Graphical Solution of Min-Riccati and L-Riccati Equations

Stable L
la+bL| < 1

I
i +a
L
b
Unstable L Lo
la+ bL| > ! |
K* K, K

RICCATI EQUATIONS K* = F(K*), K. = Fi(KL)

J(x)=K*x®, Ju.(x)=K.x* fora stable linear policy u(x) = Lx (ja+ bL| < 1)

Bertsekas Reinforcement Learning 7133

Algorithmic Solution by VI

Value Iteration: K11 = F(K})
from
Jit1(z) = K122 = F(Kg)x? = Ji(x)

Bertsekas Reinforcement Learning 8/33

Min-Riccati Operator as Lower Envelope of L-Riccati Operators

Y FL(K)=(a+bL)2K +q+rL?
; //\
T o abK
L= 7T‘+b2f(
SN
\ S FR)
e ‘ E
! |
! |
0 . . .
K K* K

F(K)a? = miég {q2? + ru? + K (az + bu)?}
ue

. . 9 9 2
= min min {qx +ru? + K(az + bu) }
=mi +bL+ K(a+bL)? 22
Enég{q (a) }x
or

F(K):lgliI%FL(](), with Fr(K)= (a+bL)2K + g+ bL
€

Bertsekas Reinforcement Learning 9/33

Newton’s Method for Solving the Fixed Point Problem y = G(y)

/] You Y1
/0 N\ O Y

Region of Region of
Attraction of y*

Attraction of y*
At the typical iteration k

@ We linearize the problem at the current iterate yjx using a first order Taylor series
expansion of G,

G(y) = G(yx) + VG (Y — ¥«),
where VG(y«) is the gradient of G at yx

@ We solve the linearized problem to obtain yy.1:

¥y = Gy) + VG — ¥)

Bertsekas

y.
Reinforcement Learning

10/33

Newton’s Method for Solving Nondifferentiable Equations

Y H(y) = min {Hi(y), H2(y), H3(y)}

Hs(y)

- \

o
Se---
7
Y

S
S

H consists of the minimum of multiple differentiable functions H;, i =1,.... m

At the typical iteration k

@ We linearize the problem at the current iterate yx using a first order Taylor series
expansion of any one of the active components of H at yx

@ We solve the linearized problem to obtain yj.+
@ Can also be used for the fixed point problem y = min { Gi(y), Gz(y), Gs(¥) }

Bertsekas Reinforcement Learning 11/33

Visualization of Approximation in Value Space - One-Step Lookahead

Newton Step

%
0

I!(K+ K i K
A)

Off-Line On-Line

Training Play

Given quadratic cost approximation J(z) = Kz2, we find
fi(z) = argmin, (T, J)(z) or L =arg min Fr(K)
to construct the one-step lookahead policy fi(z) = Lx

and its cost function J;(z) = Kja?

Bertsekas Reinforcement Learning 12/33

Visualization of Approximation in Value Space - Two-Step Lookahead

A
Off-Line On-Line
Training Play

Multistep lookahead moves
the starting point of the Newton step closer to K*
The longer the lookahead the better

Bertsekas Reinforcement Learning 13/33

Visualization of Region of Stability

4 Unstable Policy Stable Policy

[~ \
Slop\e—l %

Optimal Policy

(a]
- - — — - ——————

¢
=

Kg

Region of stability
also

Region of Convergence of
Newton’s Method

The start of the Newton step must be within the region of stability
Longer lookahead promotes stability of the multistep lookahead policy

Bertsekas Reinforcement Learning 14/33

Visualization of Rollout with Stable Linear Base Policy

Policy evaluatioV

for p and fi

\

|

|

1

|

| I
| I
| I
Policy Improvement With‘ |
Base Policy u | |
| I

| I

| I

I
I
I
I
I
I
I
\ Newton Step
I

I

Optimal cost,

K* /
Ny N R
. < -

Cost of rollout policy /i Cost of base policy

Bertsekas Reinforcement Learning 15/33

Visualization of Truncated Rollout

K / \K. K

Cost of Truncated Cost of base policy
Rollout Policy f

Bertsekas Reinforcement Learning 16/33

Policy lteration for the Linear Quadratic Problem

Starts with linear policy 1.°(x) = Lox, generates sequence of linear policies
1k (x) = Likx (see class notes for details)

@ Policy evaluation:
Jok(x) = Kix®

where
q+r2
K= +—F——F7——
1 — (a+ bLy)?
@ Policy improvement:
P () = Liyax
where
L _ aka
7

@ Rollout is a single Newton iteration
@ Pl is a full-fledged Newton method for solving the Riccati equation K = F(K)
@ An important variant, Optimistic P, consists of repeated truncated rollout iterations

@ Can be viewed as a Newton-SOR method (repeated application of a Newton step,
preceded by first order VIs)

Bertsekas Reinforcement Learning 17/33

Let’'s Take a 15-min Working Break: Catch your Breath, Collect your

Questions, and Consider the Following Challenge Question

How long should the length of the truncated rollout be?

Consider issues of performance and stability of the lookahead policy

Bertsekas Reinforcement Learning 18/33

How do we Formulate DP Problems?

An informal recipe: First define the controls, then the stages (and info
available at each stage), and then the states

@ Define as state xx something that “summarizes" the past for purposes of future
optimization, i.e., as long as we know x, all past information is irrelevant.

@ Rationale: The controller applies action that depends on the state. So the state
must subsume all info that is useful for decision/control.

Some examples

@ In the traveling salesman problem, we need to include all the relevant info in the
state (e.g., the past cities visited). Other info, such as the visit order, or the costs
incurred so far, need not be included in the state.

@ In partial or imperfect information problems, we use “noisy" measurements for
control of some quantity of interest yx that evolves over time (e.g., the
position/velocity vector of a moving object). If I is the collection of all
measurements up to time Kk, it is correct to use Ik as state.

@ |t may also be correct to use alternative states; e.g., the conditional probability

distribution Px(yx | Ik). This is called belief state, and subsumes all the information
that is useful for the purposes of control choice.

V.

Bertsekas Reinforcement Learning 20/33

State Augmentation: Delays

Xi1 = fic(Xiy Xk—1, Uy Uk—1, Wk), X1 = fo(Xo, Uo, Wo)

@ Introduce additional state variables yx and s, where yx = Xk_1, Sk = Ux—1. Then

Xk4-1 fx(Xk, Yk, Uk, Sk, Wk)
Yk+1 | = Xk
Sk+1 Uk

@ Define Xx = (Xk, Y, Sk) as the new state, we have
Kicer = (e, Uk, Wi)
@ Reformulated DP algorithm: Start with Jg(xn) = gn(Xn)

Ji (Xk, Xk—1, Uk—1) = min Ewk{gk(xk, U, Wie) 4k 1 (T Xk, Xk—1, Uk, Uk—1, Wi), Xk, U)
Uk € U (Xic)

J (x0) = Uoénul;:’(\XO) Ewo{go(Xo-, Uo, Wo) + Ji (fo(Xm Uo, Wo), Xo, Uo)}

See the class notes for other examples of state augmentation)

Bertsekas Reinforcement Learning 22/33

Problems Where There is a Cost-Free and Absorbing Terminal State

@ Generally, we can view them as infinite horizon problems

@ Another possibility is to convert to a finite horizon problem: Introduce as horizon an
upper bound to the optimal number of stages (assuming such a bound is known)

@ Add BIG penalty for not terminating before the end of the horizon

11 8 5 9 Vehicle 2

12 Optimal

Solution

Vehicle 1

I\Oﬁ

Example: Multi-vehicle routing; vehicles move one step at a time

@ Minimize the number of vehicle moves to perform all tasks

@ How to formulate the problem by DP problem? States? Controls?

@ Astronomical numbers, even for modest number of tasks and vehicles

@ A good candidate for the multiagent framework that we will introduce shortly

Bertsekas Reinforcement Learning 24/33

Multiagent Problems (1960s —)

Environment

Computing Cloud

Info Info Info Info Info

Info

@ Multiple agents collecting and sharing information selectively with each other and
with an environment/computing cloud

@ Agent / applies decision u; sequentially in discrete time based on info received

The major mathematical distinction between problem structures

@ The classical information pattern: Agents are fully cooperative, fully sharing and
never forgetting information. Can be treated by DP

@ The nonclassical information pattern: Agents are partially sharing information, and

may be antagonistic. HARD because it cannot be treated by DP
——
Bertsekas Reinforcement Learning 26/33

Starting Point: A Classical Information Pattern (We Generalize Later)

Sensor Sensor
Info Info

l 7Y\
ik g),) V= ,Lf‘:'\

Info

At each time: Agents have exact state info; choose their controls as function of state J

Model: A discrete-time (possibly stochastic) system with state x and control u
@ Decision/control has m components u = (us, . .., Un) corresponding to m “agents”
@ “Agents" is just a metaphor - the important math structure is u = (us, . .., Um)

@ The theoretical framework is DP. We will reformulate for faster computation

Deal with the exponential size of the search/control space
Be able to compute the agent controls in parallel (in the process we will deal in part with
nonclassical info pattern issues)

v

Bertsekas Reinforcement Learning 27/33

Spiders-and-Flies Example

(e.g., Vehicle Routing, Maintenance, Search-and-Rescue, Firefighting)

15 spiders move in 4 directions with perfect vision

3 blind flies move randomly

Objective is to

Catch the flies in minimum time

7~ 7~
P I I =] I
~ ~
ol B .
o~ = ~
78
i I I o O
~

@ At each time we must select one out of ~ 5'° joint move choices
@ We will reduce to (5 choices) - (15 times) = 75 (while maintaining good properties)
@ Idea: Break down the control into a sequence of one-spider-at-a-time moves

@ For more discussion, including illustrative videos of spiders-and-flies problems,
see https://www.youtube.com/watch?v=egbb6vVIN38&t=1654s

Bertsekas

Reinforcement Learning 28/33

Reformulation Idea: Trading off Control and State Complexity (NDP

Book, 1996)

Control uy,
Random Transition

e uy @ Uz @ Uz Um— z = f(z,u,w)
Random Cost
g(l‘Y u7 w)

Stage

An equivalent reformulation - “Unfolding" the control action

@ The control space is simplified at the expense of m — 1 additional layers of states,
and corresponding m — 1 cost functions

JOxur), P(x, i, te), . I (X U U)

@ Allows far more efficient rollout (one-agent-at-a-time). This is just standard rollout
for the reformulated problem

@ The increase in size of the state space does not adversely affect rollout (only one
state per stage is looked at during on-line play)

@ Complexity reduction: The one-step lookahead branching factor is reduced from
n™ to n- m, where n is the number of possible choices for each component u;

Bertsekas Reinforcement Learning 29/33

Parking with a Deadline: An Example of Partial State Observation

Parked/Termination State

@ At each time step, move one spot in either direction. Decide to park or not at spot
m (if free) at cost c(m). If we have not parked by time N there is a large cost C

@ We observe the free/taken status of only the spot we are in. Parking spots may
change status at the next time step with some probability.

@ The free/taken status of the spots is “estimated" in a “probabilistic sense" based
on the observations (the free/taken status of the spots visited ... when visited)

@ What should the “state" be? It should summarize all the info needed for the
purpose of future optimization

@ First candidate for state: The set of all observations so far.

@ Another candidate: The “belief state", i.e., the conditional probabilities of the

free/taken status of all the spots: p(1), p(2), ..., p(M), conditioned on all the
observations so far

Bertsekas Reinforcement Learning 31/33

Partial State Observation Problems: Reformulation via Belief State

l2k+1

Belief Estimator
Belief State System | Belief State by
| kg1 = Fr(br, uk, 241) v

Cost g (bk, ux) Control of

Belief State

Controller
HE

Control uy = uy(br)

The reformulated DP algorithm has the form

Je(bx) = UTEka Gk (b, Uk) + Ez,., {J;f+1 (Fk(bk, Uk, Zk41)) }}

@ J; (bk) denotes the optimal cost-to-go starting from belief state by at stage k.
@ Uk is the control constraint set at time k

@ O«x(bx, ux) denotes expected cost of stage k: expected stage cost gk (x«, Uk, Wk),
with distribution of (xx, wk) determined by b, and the distribution of w

@ Belief estimator: Fx(bx, Uk, Zx+1) is the next belief state, given current belief state
bk, uk is applied, and observation zx,+ is obtained

Bertsekas Reinforcement Learning 32/33

About the Next Lecture

@ We will discuss partial state observation problems, adaptive, and model predictive
control

@ We will cover general issues of one-step and multistep approximation in value
space

@ We will start a more in-depth discussion of rollout

HOMEWORK 2 (DUE IN ONE WEEK): EXERCISE 1.2 OF CLASS NOTES J

WATCH 2ND HALF OF VIDEOLECTURE 3 AND 1ST HALF OF VIDEOLECTURE 4
OF THE 2021 OFFERING OF THE COURSE J

Bertsekas Reinforcement Learning 33/33

	Infinite Horizon - An Overview
	Infinite Horizon Linear Quadratic Problems
	Problem Formulations and Examples
	State Augmentation and Other Reformulations
	Problems with Terminal State
	Multiagent Problems
	Partial State Observation Problems

