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° Review of Approximation in Value Space and Rollout

e Review of On-Line Rollout for Deterministic Finite-State Problems
© Stochastic Rollout and Monte Carlo Tree Search

@ On-Line Rollout for Deterministic Infinite Spaces Problems

© Model Predictive Control

Bertsekas Reinforcement Learning 2/27



Recall Approximation in Value Space and the Three Approximations

Approximate Q-Factor Qy, (g, uk)

Min Approximation First Step “Future”
-—

muinE{gk(xk,uk,wk)+jk+1($k+1)}
k

E{-} Approximation Cost-to-Go Approximation
ONE-STEP LOOKAHEAD

At State x;

DP minimization

|

k+0—1
min E {gk(fl7k:-, up, wy) + Z I (@m s pn (Tm ), wm) + Jk+14(l'k+1{)}
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First ¢ Steps “Future”

Cost-to-go

Lookahead Minimization Approximation

MULTISTEP LOOKAHEAD
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The Pure Form of Rollout: For a Suboptimal Base Policy 7, Use

Jkse(Xkte) = Jicrer(Xere)

At State xy
DP minimization First ¢ Steps “Future”

Uiy Wk 155 Hbo£—1
sHkA1 55 okt i1

l b k+0—1 "
min E {gk:(zk;:uk::wk) + > gi(wi,pali), w) + Jk+((frk+2)}

Rollout Control 4y Lookahead Minimization  Base Policy Cost
Rollout Policy iy,

Use a suboptimal/heuristic policy at the end of limited lookahead )

@ The suboptimal policy is called base policy.
@ The lookahead policy is called rollout policy.

@ The aim of rollout is policy improvement (i.e., rollout policy performs better than
the base policy); true under some assumptions. In practice: good performance,
very reliable, very simple to implement.

@ Rollout in its “standard" forms involves simulation and on-line implementation.

@ The simulation can be prohibitively expensive (so further approximations may be
needed); particularly for stochastic problems and multistep lookahead.
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Deterministic Rollout: At xx. 1, Use a Heuristic with Cost Hy. 1(Xk11)

Next States

Current State Heuristic

Heuristic

Heuristic

Q-Factors

@ At state x, for every pair (X, Ux), ux € Ux(xx), we generate a Q-factor

Qu(Xk, Uk) = (X, Uk) + His (Fe(Xk, UK))

using the base heuristic [Hk+1(Xk+1) is the heuristic cost starting from xt1].
@ We select the control ux with minimal Q-factor.
@ We move to next state xx.1, and continue.

@ The scheme is very general: The heuristic can be anything (stage- or
state-dependent)! May not necessarily correspond to a policy.
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Criteria for Cost Improvement of a Rollout Algorithm - Sequential

Consistency, and Sequential Improvement

Remember:
Any heuristic (no matter how inconsistent or silly) is in principle admissible to use as
base heuristic. )

So it is important to properties guaranteeing that the rollout policy has no
worse performance than the base heuristic
@ Two such conditions are sequential consistency and sequential improvement.
@ The base heuristic is sequentially consistent if and only if it can be implemented
with a legitimate DP policy {uo, - - ., tn—1}-
@ Example: Greedy heuristics tend to be sequentially consistent.
@ A sequentially consistent heuristic is also sequentially improving. See next slide.
@ We will see that any heuristic can be “fortified" to become sequentially improving. |
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Policy Improvement for Sequentially Improving Heuristics

Sequential improvement holds if for all xx (Best heuristic Q-factor < Heuristic cost):

min : [gk(Xk, Uk) + Hit (Fe(Xx, Uk))] < Hie(xk),

Uy € U (Xk

where Hi(xx) is the cost of the trajectory generated by the heuristic starting from x.
True for sequ. consistent heuristic [Hk(xx) =one of the Q-factors minimized on the left].

Cost improvement property for a sequentially improving base heuristic:

Let the rollout policy be & = {jio, - . ., fin—1}, and let Jx = (x«) denote its cost starting
from xx. Then for all xx and k, Ji = (Xx) < Hk(Xk).

Proof by induction: It holds for k = N, since Jy > = Hy = gn. Assume that it
holds for index k + 1. We show that it holds for index k:

Jix (X)) = G (Xi, fik(Xk)) + Jiy1,7 (fk(xk,ﬁk(xk))) (by DP equation)
< Ok (Xk7 ,ak(Xk)) =+ Hk+1 (fk(Xk, ﬁk(Xk))) (by induction hypothesis)
= min [gk(xk, uk) + Hice1 (F(Xe, uk))] (by definition of rollout)

uy € Uy (xk)

< Hk(xx) (by sequential improvement condition)
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A Working Break: Challenge Question

Space (0,0)

Possible Path 0
A >
\ e e %

Heuristic
Move to the Right

(v, —A‘ “ ““ i
-N Ul i N i

@ Walk on a line of length 2N starting at position 0. At each of N steps, move one
unit to the left or one unit to the right.

@ Objective is to land at a position i of small cost g(i) after N steps.

@ Question: Consider a base heuristic that takes steps to the right only. Is it
sequentially consistent or sequentially improving? How will the rollout perform
compared to the base heuristic?

@ Compare with a superheuristic/combination of two heuristics: 1) Move only to the
right, and 2) Move only to the left. Base heuristic chooses the path of best cost.
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A Counterexample to Cost Improvement

Optimal Trajectory
Chosen by Base Heuristic at zg

High Cost Transition

Rollout < Chosen by Heuristic at z7

Choice

@ Suppose at xo there is a unique optimal trajectory (xo, Uy, X7, U3, X3 ).

@ Suppose the base heuristic produces this optimal trajectory starting at xo.

@ Rollout uses the base heuristic to construct a trajectory starting from x;* and X;.

@ Suppose the heuristic’s trajectory starting from x;" is “bad" (has high cost).

@ Then the rollout algorithm rejects the optimal control ug in favor of the other control
iy, and moves to a nonoptimal next state X1 = fy(xo, Uo).

@ So without some safeguard, the rollout can deviate from an already available good
trajectory.

@ This suggests a possible remedy: Follow the currently best trajectory if rollout
suggests following an inferior trajectory.
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Fortified Rollout: Restores Cost Improvement for Base Heuristics that

are not Sequentially Improving

Tentative Best Trajectory T

Heuristic

Current State

. Heuristic

Heuristic

Permanent trajectory Py

@ Upon reaching state x it stores the permanent trajectory
Py = {xo0,Uo, ..., Uk—1, Xk}
that has been constructed up to stage k, and also stores a tentative best trajectory
Tk = {Xk, Uk, Xks1, U1, - - -, UN—1, XN}

@ The tentative best trajectory is such that Px U T is the best complete trajectory
computed up to stage k of the algorithm.

o Initially, Po = {Xo} and T, is the trajectory computed by the base heuristic from xo.
@ At each step, fortified rollout follows the best trajectory computed thus far.
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lllustration of Fortified Algorithm

Initial
Tentative Best
Trajectory

High Cost Transition
< Chosen by Heuristic at z}

Rollout
Choice

@ Fortified rollout stores as initial tentative best trajectory the unique optimal
trajectory (xo, Ug, X', U5, X5 ) generated by the base heuristic at x.

@ Starting at x3 it runs the heuristic from x; and X, and (despite that the heuristic
prefers x; to x{°) it discards the control & in favor of uj, which is dictated by the
tentative best trajectory.

@ It then sets the permanent trajectory to (xo, Ug, X;') and the tentative best trajectory
to (x7, uf, x3).

v
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Multistep Deterministic Rollout with Terminal Cost Approximation
Lookahead V T ""',. .
Terminal Cost _
Approximation .J

@ oo ---»®

States Tji2

@ Terminal approximation saves computation but cost improvement is lost.

@ We can prove cost improvement, assuming sequential consistency and a special
property of the terminal cost function approximation that resembles sequential
improvement (more on this when we discuss infinite horizon rollout).

@ It is not necessarily true that longer lookahead leads to improved performance; but
usually true (similar counterexamples as in the last lecture).

@ It is not necessarily true that increasing the length of the rollout leads to improved
performance (some examples indicate this). Moreover, long rollout is costly.

@ Experimentation with length of rollout and terminal cost function approximation are
recommended.

v
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Stochastic Rollout [Uses Jy¢(Xk1c) = Jk+0,7(Xk1¢) @and MC Simulation]

At State x;
DP minimization First £ Steps “Future”

l - ko1 "
min E {gk(:l;k,’u,k, wg) + Z gi (:L'z',y,i(;l;i)j «u,va) + Jk+g(.rk+g)}

Uk s k415 s Hk+e—
Hk+1 Hk+e—1 i—ht1 T

Rollout Control i Lookahead Minimization Base Policy Cost
Rollout Policy fix

Consider the pure case (no truncation, no terminal cost approximation)

@ Assume that the base heuristic is a legitimate policy = = {uo, ..., un—1} (i.e., is
sequentially consistent, in the context of deterministic problems).
@ Let # = {jio, ..., fin—1} be the rollout policy. Then cost improvement is obtained
i, 7 (Xk) < Ik, (Xa), for all x, and k.

@ Essentially identical induction proof as for the sequentially improving case (see the
text).

v
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Backgammon Example

Possible Moves

Wiw e
Y T

1

Av. Score by Av. Score by Av. Score by  Av. Score by
Monte-Carlo Monte-Carlo Monte-Carlo  Monte-Carlo
Simulation Simulation Simulation Simulation

@ Announced by Tesauro in 1996.

@ Truncated rollout with cost function approximation provided by TD-Gammon (a
1991 famous program by Tesauro, involving a neural network trained by a form of
approximate policy iteration that uses “Temporal Differences").

@ Plays better than TD-Gammon, and better than any human.

@ Too slow for real-time play (without parallel hardware), due to excessive simulation
time.
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Monte Carlo Tree Search - Motivation

We assumed equal effort for evaluation of Q-factors of all controls at a state xi
Drawbacks:

@ The trajectories may be too long because the horizon length N is large (or infinite,
in an infinite horizon context).

@ Some controls ux may be clearly inferior to others and may not be worth as much
sampling effort.

@ Some controls ux that appear to be promising may be worth exploring better
through multistep lookahead.

Monte Carlo tree search (MCTS) is a “randomized" form of lookahead

@ MCTS aims to trade off computational economy with a hopefully small risk of
degradation in performance.

@ It involves adaptive simulation (simulation effort adapted to the perceived quality of
different controls).

@ Aims to balance exploitation (extra simulation effort on controls that look
promising) and exploration (adequate exploration of the potential of all controls).

v
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Monte Carlo Tree Search - Adaptive Simulation

Control 1

Simulation

Current State Control 2

Simulation

Control 3 Simulation

Sample Q-Factors

MCTS provides an economical sampling policy to estimate the Q-factors

Qu (X, Ux) = E{Qk(Xk, Uk, Wi) + Tt (e (X, Uk, Wk))}, Uk € Uk(xc)

Assume that Uk (xx) contains a finite number of elements, say i =1,..., m

@ After the nth sampling period we have Q; », the empirical mean of the Q-factor of
each control i (total sample value divided by total number of samples
corresponding to /). We view Q; , as an exploitation index.

@ How do we use the estimates @, , to select the control to sample next?
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MCTS Based on Statistical Tests

Qin+ Rin

Simulation

Current State

Simulation

Qli,n + R&,n

Simulation

Sample Q-Factors

A good sampling policy balances exploitation (sample controls that seem most
promising, i.e., a small Q; ;) and exploration (sample controls with small sample count)

v

@ A popular strategy: Sample next the control i that minimizes the sum Q; , + Ri»
where R; , is an exploration index.

@ R; ,is based on a confidence interval formula and depends on the sample count s;
of control i (which comes from analysis of multiarmed bandit problems).

@ The UCB rule (upper confidence bound) sets Ri, = —c+/log n/s;, where c is a
positive constant, selected empirically (values ¢ ~ /2 are suggested, assuming
that Q. is normalized to take values in the range [—1, 0]).

@ MCTS with UCB rule has been extended to multistep lookahead ... but AlphaZero
has used a different (semi-heuristic) rule.
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Classical Control Problems - Infinite Control Spaces

REGULATION PROBLEM
Keep the state near the origin

Fixed Mobile obstacles
obstacles

Velocity
sonstraints

Acceleration

PATH PLANNING (W comsians
A Keep State Close to a
Trajectory

Need to deal with state and control constraints; linear-quadratic is often inadequate )
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On-Line Rollout for Deterministic Infinite-Spaces Problems

Next States States
Tp41 Tkt

Current State

Base Heuristic
Minimization

Stage k Stages
k+1,...,k+0-1

Suppose the control space is infinite
@ One possibility is discretization of Ux(xk); but excessive number of Q-factors.
@ Another possibility is to use optimization heuristics that look (¢ — 1) steps ahead.

@ Seemlessly combine the kth stage minimization and the optimization heuristic into
a single ¢-stage deterministic optimization.

@ Can solve it by nonlinear programming/optimal control methods (e.g., quadratic
programming, gradient-based).
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Model Predictive Control for Regulation Problems

Next States
Tk+1

Current State State

(¢ — 1)-Stages Tt =0

Minimization

) Stage k B Stages
kE+1,...k+0-1

@ System: Xir1 = fi(Xk, Uk)

@ Cost per stage: gk(x«, ux) > 0, the origin 0 is cost-free and absorbing.

@ State and control constraints: xx € Xk, ux € Uk(xx) for all k

@ At x, solve an ¢-step lookahead version of the problem, requiring Xk, = 0 while
satisfying the state and control constraints.

® If {Uk, ..., Ukie—1} is the control sequence so obtained, apply .
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Relation to Rollout

Next States
Th41

Current State State
Zrap =0
(¢ —1)-Stages Fhit

Minimization

‘ Stage k Stages
k+1,..., k+0-1

@ It is rollout with base heuristic the (¢ — 1)-step min (0 is cost-free and absorbing).
@ This heuristic is sequentially improving (not sequentially consistent), i.e.,
uketh]JLr(]xk) [k (Xk, Uk) + Hicer (Fe(Xk, uk)) | < Hie(X)
because (opt. cost to reach 0 in £ steps) < (opt. cost to reach 0 in ¢ — 1 steps)
@ Sequential improvement implies “stability": >~2, gk (Xk, Ux) < Ho(xo) < oo, where
{xo, Uo, X1, U1, . ..} is the state and control sequence generated by MPC.
@ Major issue: How do we know that the optimization of the base heuristic is
solvable (e.g., there exists ¢ such that we can drive x,., to O for all xx € Xk while

observing the state and control constraints). Methods of reachability of target
tubes can be used for this (see the text).
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About the Next Lecture

We will cover:
@ Rollout for multiagent problems
@ Constrained rollout
@ Discrete optimization problems and rollout

PLEASE READ AS MUCH OF THE REMAINDER OF CHAPTER 2 AS YOU CAN
PLEASE DOWNLOAD THE LATEST VERSION
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