Topics in Reinforcement Learning:
Rollout and Approximate Policy Iteration

ASU, CSE 691, Spring 2020

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 4

Bertsekas Reinforcement Learning 1/27

° Review of Approximation in Value Space and Rollout

e Review of On-Line Rollout for Deterministic Finite-State Problems
© Stochastic Rollout and Monte Carlo Tree Search

@ On-Line Rollout for Deterministic Infinite Spaces Problems

© Model Predictive Control

Bertsekas Reinforcement Learning 2/27

Recall Approximation in Value Space and the Three Approximations

Approximate Q-Factor Qy, (g, uk)

Min Approximation First Step “Future”
-—

muinE{gk(xk,uk,wk)+jk+1($k+1)}
k

E{-} Approximation Cost-to-Go Approximation
ONE-STEP LOOKAHEAD

At State x;

DP minimization

|

k+0—1
min E {gk(fl7k:-, up, wy) + Z I (@m s pn (Tm), wm) + Jk+14(l'k+1{)}

Uk sF 41505 Hk+e—1 m=k+1

First ¢ Steps “Future”

Cost-to-go

Lookahead Minimization Approximation

MULTISTEP LOOKAHEAD

Bertsekas Reinforcement Learning 4/27

The Pure Form of Rollout: For a Suboptimal Base Policy 7, Use

Jkse(Xkte) = Jicrer(Xere)

At State xy
DP minimization First ¢ Steps “Future”

Uiy Wk 155 Hbo£—1
sHkA1 55 okt i1

l b k+0—1 "
min E {gk:(zk;:uk::wk) + > gi(wi,pali), w) + Jk+((frk+2)}

Rollout Control 4y Lookahead Minimization Base Policy Cost
Rollout Policy iy,

Use a suboptimal/heuristic policy at the end of limited lookahead)

@ The suboptimal policy is called base policy.
@ The lookahead policy is called rollout policy.

@ The aim of rollout is policy improvement (i.e., rollout policy performs better than
the base policy); true under some assumptions. In practice: good performance,
very reliable, very simple to implement.

@ Rollout in its “standard" forms involves simulation and on-line implementation.

@ The simulation can be prohibitively expensive (so further approximations may be
needed); particularly for stochastic problems and multistep lookahead.

Bertsekas Reinforcement Learning 5/27

Deterministic Rollout: At xx. 1, Use a Heuristic with Cost Hy. 1(Xk11)

Next States

Current State Heuristic

Heuristic

Heuristic

Q-Factors

@ At state x, for every pair (X, Ux), ux € Ux(xx), we generate a Q-factor

Qu(Xk, Uk) = (X, Uk) + His (Fe(Xk, UK))

using the base heuristic [Hk+1(Xk+1) is the heuristic cost starting from xt1].
@ We select the control ux with minimal Q-factor.
@ We move to next state xx.1, and continue.

@ The scheme is very general: The heuristic can be anything (stage- or
state-dependent)! May not necessarily correspond to a policy.

Bertsekas Reinforcement Learning 7127

Criteria for Cost Improvement of a Rollout Algorithm - Sequential

Consistency, and Sequential Improvement

Remember:
Any heuristic (no matter how inconsistent or silly) is in principle admissible to use as
base heuristic.)

So it is important to properties guaranteeing that the rollout policy has no
worse performance than the base heuristic
@ Two such conditions are sequential consistency and sequential improvement.
@ The base heuristic is sequentially consistent if and only if it can be implemented
with a legitimate DP policy {uo, - - ., tn—1}-
@ Example: Greedy heuristics tend to be sequentially consistent.
@ A sequentially consistent heuristic is also sequentially improving. See next slide.
@ We will see that any heuristic can be “fortified" to become sequentially improving. |

Bertsekas Reinforcement Learning 8/27

Policy Improvement for Sequentially Improving Heuristics

Sequential improvement holds if for all xx (Best heuristic Q-factor < Heuristic cost):

min : [gk(Xk, Uk) + Hit (Fe(Xx, Uk))] < Hie(xk),

Uy € U (Xk

where Hi(xx) is the cost of the trajectory generated by the heuristic starting from x.
True for sequ. consistent heuristic [Hk(xx) =one of the Q-factors minimized on the left].

Cost improvement property for a sequentially improving base heuristic:

Let the rollout policy be & = {jio, - . ., fin—1}, and let Jx = (x«) denote its cost starting
from xx. Then for all xx and k, Ji = (Xx) < Hk(Xk).

Proof by induction: It holds for k = N, since Jy > = Hy = gn. Assume that it
holds for index k + 1. We show that it holds for index k:

Jix (X)) = G (Xi, fik(Xk)) + Jiy1,7 (fk(xk,ﬁk(xk))) (by DP equation)
< Ok (Xk7 ,ak(Xk)) =+ Hk+1 (fk(Xk, ﬁk(Xk))) (by induction hypothesis)
= min [gk(xk, uk) + Hice1 (F(Xe, uk))] (by definition of rollout)

uy € Uy (xk)

< Hk(xx) (by sequential improvement condition)

Bertsekas Reinforcement Learning 9/27

A Working Break: Challenge Question

Space (0,0)

Possible Path 0
A >
\ e e %

Heuristic
Move to the Right

(v, —A‘ “ ““ i
-N Ul i N i

@ Walk on a line of length 2N starting at position 0. At each of N steps, move one
unit to the left or one unit to the right.

@ Objective is to land at a position i of small cost g(i) after N steps.

@ Question: Consider a base heuristic that takes steps to the right only. Is it
sequentially consistent or sequentially improving? How will the rollout perform
compared to the base heuristic?

@ Compare with a superheuristic/combination of two heuristics: 1) Move only to the
right, and 2) Move only to the left. Base heuristic chooses the path of best cost.

Bertsekas Reinforcement Learning 10/27

A Counterexample to Cost Improvement

Optimal Trajectory
Chosen by Base Heuristic at zg

High Cost Transition

Rollout < Chosen by Heuristic at z7

Choice

@ Suppose at xo there is a unique optimal trajectory (xo, Uy, X7, U3, X3).

@ Suppose the base heuristic produces this optimal trajectory starting at xo.

@ Rollout uses the base heuristic to construct a trajectory starting from x;* and X;.

@ Suppose the heuristic’s trajectory starting from x;" is “bad" (has high cost).

@ Then the rollout algorithm rejects the optimal control ug in favor of the other control
iy, and moves to a nonoptimal next state X1 = fy(xo, Uo).

@ So without some safeguard, the rollout can deviate from an already available good
trajectory.

@ This suggests a possible remedy: Follow the currently best trajectory if rollout
suggests following an inferior trajectory.

Bertsekas Reinforcement Learning 11/27

Fortified Rollout: Restores Cost Improvement for Base Heuristics that

are not Sequentially Improving

Tentative Best Trajectory T

Heuristic

Current State

. Heuristic

Heuristic

Permanent trajectory Py

@ Upon reaching state x it stores the permanent trajectory
Py = {xo0,Uo, ..., Uk—1, Xk}
that has been constructed up to stage k, and also stores a tentative best trajectory
Tk = {Xk, Uk, Xks1, U1, - - -, UN—1, XN}

@ The tentative best trajectory is such that Px U T is the best complete trajectory
computed up to stage k of the algorithm.

o Initially, Po = {Xo} and T, is the trajectory computed by the base heuristic from xo.
@ At each step, fortified rollout follows the best trajectory computed thus far.

Bertsekas Reinforcement Learning 12/27

lllustration of Fortified Algorithm

Initial
Tentative Best
Trajectory

High Cost Transition
< Chosen by Heuristic at z}

Rollout
Choice

@ Fortified rollout stores as initial tentative best trajectory the unique optimal
trajectory (xo, Ug, X', U5, X5) generated by the base heuristic at x.

@ Starting at x3 it runs the heuristic from x; and X, and (despite that the heuristic
prefers x; to x{°) it discards the control & in favor of uj, which is dictated by the
tentative best trajectory.

@ It then sets the permanent trajectory to (xo, Ug, X;') and the tentative best trajectory
to (x7, uf, x3).

v

Bertsekas Reinforcement Learning 13/27

Multistep Deterministic Rollout with Terminal Cost Approximation
Lookahead V T ""',. .
Terminal Cost _
Approximation .J

@ oo ---»®

States Tji2

@ Terminal approximation saves computation but cost improvement is lost.

@ We can prove cost improvement, assuming sequential consistency and a special
property of the terminal cost function approximation that resembles sequential
improvement (more on this when we discuss infinite horizon rollout).

@ It is not necessarily true that longer lookahead leads to improved performance; but
usually true (similar counterexamples as in the last lecture).

@ It is not necessarily true that increasing the length of the rollout leads to improved
performance (some examples indicate this). Moreover, long rollout is costly.

@ Experimentation with length of rollout and terminal cost function approximation are
recommended.

v

Bertsekas Reinforcement Learning 14/27

Stochastic Rollout [Uses Jy¢(Xk1c) = Jk+0,7(Xk1¢) @and MC Simulation]

At State x;
DP minimization First £ Steps “Future”

l - ko1 "
min E {gk(:l;k,’u,k, wg) + Z gi (:L'z',y,i(;l;i)j «u,va) + Jk+g(.rk+g)}

Uk s k415 s Hk+e—
Hk+1 Hk+e—1 i—ht1 T

Rollout Control i Lookahead Minimization Base Policy Cost
Rollout Policy fix

Consider the pure case (no truncation, no terminal cost approximation)

@ Assume that the base heuristic is a legitimate policy = = {uo, ..., un—1} (i.e., is
sequentially consistent, in the context of deterministic problems).
@ Let # = {jio, ..., fin—1} be the rollout policy. Then cost improvement is obtained
i, 7 (Xk) < Ik, (Xa), for all x, and k.

@ Essentially identical induction proof as for the sequentially improving case (see the
text).

v

Bertsekas Reinforcement Learning 16/27

Backgammon Example

Possible Moves

Wiw e
Y T

1

Av. Score by Av. Score by Av. Score by Av. Score by
Monte-Carlo Monte-Carlo Monte-Carlo Monte-Carlo
Simulation Simulation Simulation Simulation

@ Announced by Tesauro in 1996.

@ Truncated rollout with cost function approximation provided by TD-Gammon (a
1991 famous program by Tesauro, involving a neural network trained by a form of
approximate policy iteration that uses “Temporal Differences").

@ Plays better than TD-Gammon, and better than any human.

@ Too slow for real-time play (without parallel hardware), due to excessive simulation
time.

Bertsekas Reinforcement Learning 17/27

Monte Carlo Tree Search - Motivation

We assumed equal effort for evaluation of Q-factors of all controls at a state xi
Drawbacks:

@ The trajectories may be too long because the horizon length N is large (or infinite,
in an infinite horizon context).

@ Some controls ux may be clearly inferior to others and may not be worth as much
sampling effort.

@ Some controls ux that appear to be promising may be worth exploring better
through multistep lookahead.

Monte Carlo tree search (MCTS) is a “randomized" form of lookahead

@ MCTS aims to trade off computational economy with a hopefully small risk of
degradation in performance.

@ It involves adaptive simulation (simulation effort adapted to the perceived quality of
different controls).

@ Aims to balance exploitation (extra simulation effort on controls that look
promising) and exploration (adequate exploration of the potential of all controls).

v

Bertsekas Reinforcement Learning 18/27

Monte Carlo Tree Search - Adaptive Simulation

Control 1

Simulation

Current State Control 2

Simulation

Control 3 Simulation

Sample Q-Factors

MCTS provides an economical sampling policy to estimate the Q-factors

Qu (X, Ux) = E{Qk(Xk, Uk, Wi) + Tt (e (X, Uk, Wk))}, Uk € Uk(xc)

Assume that Uk (xx) contains a finite number of elements, say i =1,..., m

@ After the nth sampling period we have Q; », the empirical mean of the Q-factor of
each control i (total sample value divided by total number of samples
corresponding to /). We view Q; , as an exploitation index.

@ How do we use the estimates @, , to select the control to sample next?

Bertsekas Reinforcement Learning 19/27

MCTS Based on Statistical Tests

Qin+ Rin

Simulation

Current State

Simulation

Qli,n + R&,n

Simulation

Sample Q-Factors

A good sampling policy balances exploitation (sample controls that seem most
promising, i.e., a small Q; ;) and exploration (sample controls with small sample count)

v

@ A popular strategy: Sample next the control i that minimizes the sum Q; , + Ri»
where R; , is an exploration index.

@ R; ,is based on a confidence interval formula and depends on the sample count s;
of control i (which comes from analysis of multiarmed bandit problems).

@ The UCB rule (upper confidence bound) sets Ri, = —c+/log n/s;, where c is a
positive constant, selected empirically (values ¢ ~ /2 are suggested, assuming
that Q. is normalized to take values in the range [—1, 0]).

@ MCTS with UCB rule has been extended to multistep lookahead ... but AlphaZero
has used a different (semi-heuristic) rule.

Bertsekas Reinforcement Learning 20/27

Classical Control Problems - Infinite Control Spaces

REGULATION PROBLEM
Keep the state near the origin

Fixed Mobile obstacles
obstacles

Velocity
sonstraints

Acceleration

PATH PLANNING (W comsians
A Keep State Close to a
Trajectory

Need to deal with state and control constraints; linear-quadratic is often inadequate)

Bertsekas Reinforcement Learning 22/27

On-Line Rollout for Deterministic Infinite-Spaces Problems

Next States States
Tp41 Tkt

Current State

Base Heuristic
Minimization

Stage k Stages
k+1,...,k+0-1

Suppose the control space is infinite
@ One possibility is discretization of Ux(xk); but excessive number of Q-factors.
@ Another possibility is to use optimization heuristics that look (¢ — 1) steps ahead.

@ Seemlessly combine the kth stage minimization and the optimization heuristic into
a single ¢-stage deterministic optimization.

@ Can solve it by nonlinear programming/optimal control methods (e.g., quadratic
programming, gradient-based).

Bertsekas Reinforcement Learning 23/27

Model Predictive Control for Regulation Problems

Next States
Tk+1

Current State State

(¢ — 1)-Stages Tt =0

Minimization

) Stage k B Stages
kE+1,...k+0-1

@ System: Xir1 = fi(Xk, Uk)

@ Cost per stage: gk(x«, ux) > 0, the origin 0 is cost-free and absorbing.

@ State and control constraints: xx € Xk, ux € Uk(xx) for all k

@ At x, solve an ¢-step lookahead version of the problem, requiring Xk, = 0 while
satisfying the state and control constraints.

® If {Uk, ..., Ukie—1} is the control sequence so obtained, apply .

Bertsekas Reinforcement Learning 25/27

Relation to Rollout

Next States
Th41

Current State State
Zrap =0
(¢ —1)-Stages Fhit

Minimization

‘ Stage k Stages
k+1,..., k+0-1

@ It is rollout with base heuristic the (¢ — 1)-step min (0 is cost-free and absorbing).
@ This heuristic is sequentially improving (not sequentially consistent), i.e.,
uketh]JLr(]xk) [k (Xk, Uk) + Hicer (Fe(Xk, uk)) | < Hie(X)
because (opt. cost to reach 0 in £ steps) < (opt. cost to reach 0 in ¢ — 1 steps)
@ Sequential improvement implies “stability": >~2, gk (Xk, Ux) < Ho(xo) < oo, where
{xo, Uo, X1, U1, . ..} is the state and control sequence generated by MPC.
@ Major issue: How do we know that the optimization of the base heuristic is
solvable (e.g., there exists ¢ such that we can drive x,., to O for all xx € Xk while

observing the state and control constraints). Methods of reachability of target
tubes can be used for this (see the text).

Bertsekas Reinforcement Learning 26/27

About the Next Lecture

We will cover:
@ Rollout for multiagent problems
@ Constrained rollout
@ Discrete optimization problems and rollout

PLEASE READ AS MUCH OF THE REMAINDER OF CHAPTER 2 AS YOU CAN
PLEASE DOWNLOAD THE LATEST VERSION

Bertsekas Reinforcement Learning 27/27

	Review of Approximation in Value Space and Rollout
	Review of On-Line Rollout for Deterministic Finite-State Problems
	Stochastic Rollout and Monte Carlo Tree Search
	On-Line Rollout for Deterministic Infinite Spaces Problems
	Model Predictive Control

