Reinforcement Learning and Optimal Control

ASU, CSE 691, Winter 2020

Dimitri P. Bertsekas dimitrib@mit.edu

Lecture 5

Outline

Multiagent Rollout

Deterministic Problem Rollout with Constraints

3 Combinatorial Applications - Examples

The Pure Form of Rollout: For a Suboptimal Base Policy π , Use

$$J_{k+\ell}(x_{k+\ell}) = J_{k+\ell,\pi}(x_{k+\ell})$$

Policy improvement property (where no truncation is used):

$$J_{k,\pi}(x_k) \leq J_{k,\pi}(x_k)$$
, for all x_k and k

The key issue in the practical application of rollout: Too much computation

- If the problem is deterministic, the computation is greatly reduced (no Monte Carlo)
- Another computational bottleneck: Large control spaces, e.g., the multiagent case, where controls have many components,

$$u_k = (u_k^1, \ldots, u_k^m)$$

Bertsekas Reinforcement Learning 4

Trading off Control Space Complexity with State Space Complexity

An equivalent reformulation - "Unfolding" the control action

• The control space is simplified at the expense of m-1 additional layers of states, and corresponding m-1 cost-to-go functions

$$J_k^1(x_k, u_k^1), J_k^2(x_k, u_k^1, u_k^2), \ldots, J_k^{m-1}(x_k, u_k^1, \ldots, u_k^{m-1})$$

- Multiagent or one-component-at-a-time rollout is just standard rollout for the reformulated problem.
- The increase in size of the state space does not adversely affect rollout.
- The cost improvement property is maintained.
- Complexity reduction: The one-step lookahead branching factor is reduced from n^m to nm, where n is the number of possible choices for each component u_k^i .
- Base policy for u_k^i may depend only on x_k or include dependence on $u_k^{i-1}, u_k^{i-2}, \dots$

Bertsekas Reinforcement Learning 5 / 2

A Deterministic Example: Multi-Vehicle Routing

- *n* vehicles move along the arcs of a given graph.
- Some of the nodes of the graph include a task to be performed by the vehicles.
 Each task will be performed only once.
- Find a route for each vehicle so that all the tasks are collectively performed by the vehicles in minimum time.
- Cost function choice: For each stage there is a cost of one unit for each task that is pending at the end of the stage.
- Total cost: The number of stages that a task is pending, summed over the tasks.
 What is the state? What is the control? Why is this good multiagent candidate?

Multi-Agent Rollout for Multi-Vehicle Routing

Base heuristic:

- Each vehicle makes a move towards the pending task that is closest (in terms of number of moves needed to reach it).
- The vehicles make their selection independently one-at-a-time in the order 1,..., n, and take into account the tasks that have already been performed.
- What is the solution produced by the base heuristic?
- What is the solution produced by the one-vehicle-at-a-time rollout?
- Do we get cost improvement? What is the intuition?

Constrained Deterministic Rollout

• For every pair (x_k, u_k) , $u_k \in U_k(x_k)$, we generate a Q-factor

$$\tilde{Q}_k(x_k, u_k) = g_k(x_k, u_k) + H_{k+1}(f_k(x_k, u_k))$$

using the base heuristic $[H_{k+1}(x_{k+1})]$ is the heuristic cost starting from x_{k+1}].

- Select u_k with minimal Q-factor, move to next state x_{k+1} and continue.
- What if there are constraints, i.e., future control choices are constrained by past control choices?
- Base heuristic and rollout should be modified (e.g., avoid controls that compromise feasibility of future controls).

Constrained Example: Multi-Vehicle Routing with Constraints

Examples of constraints

- Vehicle capacity constraints (limit on how many tasks some vehicles can perform).
- Vehicle specializations (some tasks can be performed only by some of the vehicles).
- Time windows (some tasks must be performed within specified time intervals).

How to Deal with Constraints Across Stages in Deterministic Problems

- Consider a deterministic optimal control problem with system $x_{k+1} = f_k(x_k, u_k)$.
- A complete trajectory is a sequence

$$T = (x_0, u_0, x_1, u_1, \dots, u_{N-1}, x_N)$$

• We consider the (very general) problem

$$\min_{T \in C} G(T)$$

where *G* is a given cost function and *C* is a given constraint set of trajectories.

We transform to an unconstrained problem in order to apply rollout ideas

Redefine the state to be the partial trajectory

$$y_k = (x_0, u_0, x_1, \dots, u_{k-1}, x_k)$$

• Partial trajectory evolves according to a redefined system equation:

$$y_{k+1}=(y_k,u_k,f_k(x_k,u_k))$$

• The problem becomes to minimize $G(y_N)$ subject to the constraint $y_N \in C$.

Bertsekas Reinforcement Learning 11/2

Rollout Algorithm - Partial Trajectory-Dependent Base Heuristic

- Given $\tilde{y}_k = \{\tilde{x}_0, \tilde{y}_0, \tilde{x}_1, \tilde{u}_1, \dots, \tilde{u}_{k-1}, \tilde{x}_k\}$ consider all controls u_k and corresponding next states x_{k+1} .
- Extend \tilde{y}_k to obtain the partial trajectories $y_{k+1} = (\tilde{y}_k, u_k, x_{k+1})$.
- Run the base heuristic from each y_{k+1} to obtain the partial trajectory $R(y_{k+1})$.
- Join the partial trajectories y_{k+1} and $R(y_{k+1})$ to obtain complete trajectories denoted by $T_k(\tilde{y}_k, u_k) = (\tilde{y}_k, u_k, R(y_{k+1}))$
- Find the set of controls $U_k(\tilde{y}_k)$ for which $T_k(\tilde{y}_k, u_k)$ is feasible, i.e., $T_k(\tilde{y}_k, u_k) \in C$
- Choose the control $\tilde{u}_k \in U_k(\tilde{y}_k)$ according to the minimization

$$\tilde{u}_k \in \arg\min_{u_k \in U_k(\tilde{y}_k)} G(T_k(\tilde{y}_k, u_k))$$

Bertsekas Reinforcement Learning 12 / 22

Rollout Algorithm Properties

- The notions of sequential consistency and sequential improvement apply. Part of their definition includes that the set of "feasible" controls $U_k(\tilde{y}_k)$ is nonempty for all k; see the notes.
- There is a fortified version (follows the best feasible trajectory). Has the cost improvement property, assuming the base heuristic generates a feasible trajectory starting from the initial condition $\tilde{y}_0 = x_0$
- There is a multiagent version that uses one-control-component-at-a-time minimization.
- Additional variants are possible; see the notes.

Example: Multi-Vehicle Routing with Constraints

- Base heuristic moves each vehicle (one-at-a-time) to the closest pending task.
- What is the first move of vehicle 1 chosen by base heuristic and by rollout?
- What is the solution found by base heuristic?
- What is the solution found by rollout?

General Discrete Optimization Problem: Minimize G(u) subject to $u \in C$

- This is a special case of the constrained deterministic optimal control problem where each state x_k can only take a single value.
- A very broad range of problems, e.g., combinatorial, integer programming, etc.
- Solution by constrained rollout applies. Provides entry point to the use of neural nets in discrete optimization through approximation in policy space.
- Other methods: local/random search, genetic algorithms, etc. Rollout is different.

Bertsekas Reinforcement Learning 16 / 22

Facility Location: A Classical Integer Programming Problem

- Place facilities at some locations to serve the needs of M "clients."
- Client i = 1, ..., M has a demand d_i for services that may be satisfied at a location j = 1, ..., N at a cost a_{ij} per unit.
- A facility placed at location j has capacity c_j and costs b_j . Here $u_j \in \{0, 1\}$, with $u_j = 1$ if a facility is placed at j.
- Problem: Minimize $\sum_{i=1}^{M} \sum_{j=1}^{N} a_{ij} x_{ij} + \sum_{j=1}^{N} b_{j} u_{j}$ subject to total demand satisfaction constraints.
- Note: If the placement variables u_j are known, the remaining problem is easily solvable (it is a linear "transportation" problem).

Bertsekas Reinforcement Learning 17 / 22

Facility Location Problem: Formulation for Constrained Rollout

- Consider placements one location at a time.
- Stage = Placement decision at a single location (N stages). State at time k = The placement choices at locations 1,..., k. Control = Choice between 1 (place) or 0 (not place) for the next facility. What are the constraints? Is this multiagent?
- Base heuristic: Having fixed u_1, \ldots, u_k , place a facility in every remaining location.
- Rollout: Having fixed u_1, \ldots, u_k , compare two possibilities:
 - Set u_{k+1} = 1 (place facility at location k + 1), set u_{k+2} = ··· = u_N = 1 (as per the base heuristic), and solve the remaining problem.
 Set u_{k+1} = 0 (don't place facility at location k + 1), set u_{k+2} = ··· = u_N = 1 (as per the base heuristic), and solve the remaining problem.
- Select $u_{k+1} = 1$ or $u_{k+1} = 0$ depending on which yields feasibility and min cost.
- Linear transportation problems can be solved with the auction algorithm.

Bertsekas Reinforcement Learning 18 / 22

RNA Folding

- Given a sequence of nucleotides, "fold" it in an "interesting" way (introduce pairings that result in an "interesting" structure).
- Make a pairing decision at each nucleotide in sequence (open, close, do nothing).
- Base heuristic: Given a partial folding, generates a complete folding (this is the partial folding software).
- Two complete foldings can be compared by the critic software.
- Note: There is no explicit cost function here (it is internal to the critic software).

Bertsekas Reinforcement Learning 19 / 22

Three-Dimensional Assignment

- The performance of a job j requires a single machine ℓ and a single worker w.
- There is a given cost $a_{j\ell w}$ corresponding to the triplet (j, ℓ, w) .
- Given a set of m jobs, a set of m machines, and a set of m workers, we want to find a collection of m job-machine-worker triplets that has minimum total cost.
- A favorable case is when the cost has separable form $a_{j\ell w} = \beta_{j\ell} + \gamma_{\ell w}$
- Enforced separation heuristic:
 - First solve an artificial 2-dimensional machines-to-workers assignment problem with costs $\gamma_{\ell w}$ derived from $a_{i\ell w}$, e.g., $\gamma_{\ell w} = \min_i a_{i\ell w}$ (the "optimistic" assignment costs).
 - Next solve the 2-dimensional jobs-to-machines assignment problem with costs $\beta_{j\ell}$ specified by the machines-to-workers assignment and $a_{j\ell w}$.
- 2-D assignment problems are easy (using the auction algorithm; see the notes).

Three-Dimensional Assignment: Use of Rollout

- View as a constrained multistage problem.
- Two stages; control at stage 1 = the jobs-to-machines assignment; control at stage
 2 = the machines-to-workers assignment
- We view stage 1 assignment as "multiagent": Assign one job at a time.
- We view stage 2 assignment as "single-agent": Assign all machines at once optimally (given the stage 1 assignment).
- Base heuristic: Having fixed some stage 1 assignments, use enforced separation heuristic for the remaining stage 1 assignments, and the stage 2 assignment.
- Rollout: Fix each job assignment one-at-a-time using the base heuristic to compare all machine options.

About the Next Two Lectures

We will cover:

- Parametric approximation architectures.
- Neural networks and how we use them.
- Approximation in value space and policy space using neural nets.

PLEASE READ AS MUCH OF CHAPTER 3 AS YOU CAN
PLEASE DOWNLOAD THE LATEST VERSION

22 / 22