Bertsekas

Reinforcement Learning and Optimal Control

ASU, CSE 691, Winter 2020

Dimitri P. Bertsekas
dimitrib@mit.edu

Lecture 5

Reinforcement Learning

1/22

0 Multiagent Rollout
e Deterministic Problem Rollout with Constraints

e Combinatorial Applications - Examples

Bertsekas Reinforcement Learning 2/22

The Pure Form of Rollout: For a Suboptimal Base Policy 7, Use

Jkse(Xkte) = Jicrer(Xere)

Min Approximation First Step “Future”

< < »

] . < >

At) e 1IN E{gk(xk, Uk, W)+ 41 ($k+1)}

w

Truncated Rollout
E{ Approximation Approximate
{} Approxima Base Policy Cost
Policy improvement property (where no truncation is used):

i 7 (Xk) < iy (Xx), for all x,x and k

The key issue in the practical application of rollout: Too much computation
@ If the problem is deterministic, the computation is greatly reduced (no Monte Carlo)

@ Another computational bottleneck: Large control spaces, e.g., the multiagent case,
where controls have many components,

Uk = (Ug, ..., ud)

Bertsekas Reinforcement Learning 4/22

Trading off Control Space Complexity with State Space Complexity

Control up?

Random Transition

D@D D o S
Random Cost
9k (Tk, Uk, W)

Stage k
An equivalent reformulation - “Unfolding" the control action

@ The control space is simplified at the expense of m — 1 additional layers of states,
and corresponding m — 1 cost-to-go functions
i (X, Uk), B (X, U, UR), - I (X Uy - U

@ Multiagent or one-component-at-a-time rollout is just standard rollout for the
reformulated problem.

@ The increase in size of the state space does not adversely affect rollout.
@ The cost improvement property is maintained.

@ Complexity reduction: The one-step lookahead branching factor is reduced from
n™ to nm, where n is the number of possible choices for each component uj.

@ Base policy for uj, may depend only on xk or include dependence on u, ', u; 2,

Bertsekas Reinforcement Learning 5/22

A Deterministic Example: Multi-Vehicle Routing

11 8 5 9 Vehicle 2
O O
12 10 O Optimal
O O Solution
Vehicle 1
—o—=o =
9 6 3 1

@ n vehicles move along the arcs of a given graph.

@ Some of the nodes of the graph include a task to be performed by the vehicles.
Each task will be performed only once.

@ Find a route for each vehicle so that all the tasks are collectively performed by the
vehicles in minimum time.

@ Cost function choice: For each stage there is a cost of one unit for each task that
is pending at the end of the stage.

@ Total cost: The number of stages that a task is pending, summed over the tasks.
What is the state? What is the control? Why is this good multiagent candidate?

Bertsekas Reinforcement Learning 6/22

Multi-Agent Rollout for Multi-Vehicle Routing

11 3 5 9 Vehicle 2
o o
12 10 7 4 Optimal
O O Solution
s Vehicle 1
§)
S g
9 6 3 1

Base heuristic:
@ Each vehicle makes a move towards the pending task that is closest (in terms of
number of moves needed to reach it).

@ The vehicles make their selection independently one-at-a-time in the order
1,...,n, and take into account the tasks that have already been performed.

@ What is the solution produced by the base heuristic?
@ What is the solution produced by the one-vehicle-at-a-time rollout?

@ Do we get cost improvement? What is the intuition?

Bertsekas Reinforcement Learning 7122

Constrained Deterministic Rollout

Next States

Current State

Heuristic

Q-Factors

@ For every pair (xk, Ux), ux € Uk(Xx), we generate a Q-factor

Qi (X,) = Gk (X, Uk) + Hicr (Fe(Xk, Ui))

using the base heuristic [Hk+1(Xk+1) is the heuristic cost starting from x.1].

@ Select ux with minimal Q-factor, move to next state xx.1 and continue.

@ What if there are constraints, i.e., future control choices are constrained by past
control choices?

@ Base heuristic and rollout should be modified (e.g., avoid controls that
compromise feasibility of future controls).

Bertsekas Reinforcement Learning 9/22

Constrained Example: Multi-Vehicle Routing with Constraints

8 5 Vehicle 2
O —0O-
7 é Optimal
O Solution
Vehicle 1
O O
6 3 1 Capacity=1

Examples of constraints

@ Vehicle capacity constraints (limit on how many tasks some vehicles can perform).

@ Vehicle specializations (some tasks can be performed only by some of the
vehicles).

@ Time windows (some tasks must be performed within specified time intervals).

Bertsekas Reinforcement Learning 10/22

How to Deal with Constraints Across Stages in Deterministic Problems

@ Consider a deterministic optimal control problem with system Xx+1 = fi(Xk, Uk).
@ A complete trajectory is a sequence

T = (Xo,Uo,X1,U1,. ..,UN_1,XN)
@ We consider the (very general) problem
e

where G is a given cost function and C is a given constraint set of trajectories.

We transform to an unconstrained problem in order to apply rollout ideas
@ Redefine the state to be the partial trajectory

Yk = (X0, Uo, X1, - - -, Uk—1, Xk)
@ Partial trajectory evolves according to a redefined system equation:

Yierr = (Vs Ui, fie(Xi, U))

@ The problem becomes to minimize G(yn) subject to the constraint yy € C.

Bertsekas Reinforcement Learning 11/22

Rollout Algorithm - Partial Trajectory-Dependent Base Heuristic

Uk41 UN—1

o0—»0
o—»0
o—»0
Yk Tk41 Tht2 ITN-1 TN
Yk+1 o R(yes1)

T (G, wr) = (Jr, vk, R(yrs1)) € C

e Given yx = {Xo, Yo, X1, Uh, . .., Ux—1, Xx } consider all controls ux and corresponding
next states Xy.1.

@ Extend j to obtain the partial trajectories yxi1 = (¥, Uk, Xk+1)-
@ Run the base heuristic from each yi1 to obtain the partial trajectory R(yx+1).

@ Join the partial trajectories yx.1 and R(yx+1) to obtain complete trajectories
denoted by Tk(Jx, uk) = (¥, Uk, R(Yk+1))

@ Find the set of controls Uk(j) for which Tx(y, uk) is feasible, i.e., Tk(yx, ux) € C

@ Choose the control ik € Uk(j«x) according to the minimization

Oy carg min G(Tw (¥, ux))

Bertsekas Reinforcement Learning 12/22

Rollout Algorithm Properties

Uk41 UN—-1
oO—>»0
O—>»0
Yk T4+1 Tk42 ITN-1 TN
Yk+1 R(yk-+1)

Th Gk, uk) = (Tx, uk, R(yr+1)) € C

@ The notions of sequential consistency and sequential improvement apply. Part of
their definition includes that the set of “feasible" controls Uk (j«) is nonempty for all
k; see the notes.

@ There is a fortified version (follows the best feasible trajectory). Has the cost
improvement property, assuming the base heuristic generates a feasible trajectory
starting from the initial condition J = xo

@ There is a multiagent version that uses one-control-component-at-a-time
minimization.
@ Additional variants are possible; see the notes.

Bertsekas Reinforcement Learning 13/22

Example: Multi-Vehicle Routing with Constraints

5 Vehicle 2
—O-
Optimal
Solution
Vehicle 1
O
3 1 Capacity=1

@ Base heuristic moves each vehicle (one-at-a-time) to the closest pending task.
@ What is the first move of vehicle 1 chosen by base heuristic and by rollout?

@ What is the solution found by base heuristic?

@ What is the solution found by rollout?

Bertsekas Reinforcement Learning 14/22

General Discrete Optimization Problem: Minimize G(u) subjectto u €

Stage N

VAN

[N\

O
uN—-1
States
) (uo,u1,uz) u=(uo,...,un_1)
Cost G(u)

@ This is a special case of the constrained deterministic optimal control problem
where each state xx can only take a single value.

@ A very broad range of problems, e.g., combinatorial, integer programming, etc.

@ Solution by constrained rollout applies. Provides entry point to the use of neural
nets in discrete optimization through approximation in policy space.

@ Other methods: local/random search, genetic algorithms, etc. Rollout is different.

Bertsekas Reinforcement Learning

C

16/22

Facility Location: A Classical Integer Programming Problem

Clients

Locations
uj =0or 1

@ Place facilities at some locations to serve the needs of M “clients."

@ Clienti=1,..., M has a demand d; for services that may be satisfied at a location
j=1,...,Natacost g per unit.

@ A facility placed at location j has capacity ¢; and costs b;. Here u; € {0, 1}, with
u; = 1 if a facility is placed at ;.

@ Problem: Minimize Y1, > ajx; + >_1'; bju; subject to total demand satisfaction
constraints.

@ Note: If the placement variables u; are known, the remaining problem is easily
solvable (it is a linear “transportation” problem).

Bertsekas Reinforcement Learning 17/22

Facility Location Problem: Formulation for Constrained Rollout

Clients

Locations
u;=0or 1

@ Consider placements one location at a time.

@ Stage = Placement decision at a single location (N stages). State at time k = The
placement choices at locations 1, ..., k. Control = Choice between 1 (place) or 0
(not place) for the next facility. What are the constraints? Is this multiagent?

@ Base heuristic: Having fixed uy, . . ., uk, place a facility in every remaining location.
@ Rollout: Having fixed vy, . . ., ux, compare two possibilities:
Set vk 1 = 1 (place facility at location k + 1), set ux.o = --- = uy = 1 (as per the
base heuristic), and solve the remaining problem.
Set ux1 = 0 (don’t place facility at location k + 1), set ux,o = --- = uy = 1 (as per

the base heuristic), and solve the remaining problem.
@ Select ux1 = 1 or ux1 = 0 depending on which yields feasibility and min cost.
@ Linear transportation problems can be solved with the auction algorithm.

Bertsekas Reinforcement Learning 18/22

RNA Folding

Complete Folding

G -0“0“
Partial Folding Clgsc B ™
Partial

obodede ™, riin: | Lo o 6000 i
Software

opkx 060000

/

0bodeds Toéoved |

Complete Folding
Corresponding to Open

@ Given a sequence of nucleotides, “fold" it in an “interesting" way (introduce
pairings that result in an “interesting" structure).

@ Make a pairing decision at each nucleotide in sequence (open, close, do nothing).

@ Base heuristic: Given a partial folding, generates a complete folding (this is the
partial folding software).

@ Two complete foldings can be compared by the critic software.

@ Note: There is no explicit cost function here (it is internal to the critic software).

Bertsekas Reinforcement Learning 19/22

Three-Dimensional Assignment

Three-Dimensional
Assignment Problem

Lo

>

ESS

P

£ J
ad

i O

Jobs j Machines /¢

@ The performance of a job j requires a single machine ¢ and a single worker w.
@ There is a given cost gjw corresponding to the triplet (j, £, w).

@ Given a set of m jobs, a set of m machines, and a set of m workers, we want to
find a collection of m job-machine-worker triplets that has minimum total cost.

@ A favorable case is when the cost has separable form gjew = Bj¢ + Vew

@ Enforced separation heuristic:

First solve an artificial 2-dimensional machines-to-workers assignment problem with
costs vy derived from ajey, €.9., Yew = Min; ajey (the “optimistic” assignment costs).
Next solve the 2-dimensional jobs-to-machines assignment problem with costs 3;,
specified by the machines-to-workers assignment and ajgy -

@ 2-D assignment problems are easy (using the auction algorithm; see the notes).

[% & 5

!

Bertsekas Reinforcement Learning

}

Workers w

20/22

Three-Dimensional Assignment: Use of Rollout

Three-Dimensional
Assignment Problem

o] [o
L= 25
K
! 1 !

Jobs j Machines ¢ Workers w

@ View as a constrained multistage problem.

@ Two stages; control at stage 1 = the jobs-to-machines assignment; control at stage
2 = the machines-to-workers assignment

@ We view stage 1 assignment as “multiagent": Assign one job at a time.

@ We view stage 2 assignment as “single-agent": Assign all machines at once
optimally (given the stage 1 assignment).

@ Base heuristic: Having fixed some stage 1 assignments, use enforced separation
heuristic for the remaining stage 1 assignments, and the stage 2 assignment.

@ Rollout: Fix each job assignment one-at-a-time using the base heuristic to
compare all machine options.

Bertsekas Reinforcement Learning 21/22

About the Next Two Lectures

We will cover:
@ Parametric approximation architectures.
@ Neural networks and how we use them.
@ Approximation in value space and policy space using neural nets.

PLEASE READ AS MUCH OF CHAPTER 3 AS YOU CAN
PLEASE DOWNLOAD THE LATEST VERSION

Bertsekas Reinforcement Learning 22/22

	Multiagent Rollout
	Deterministic Problem Rollout with Constraints
	Combinatorial Applications - Examples

