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o Parametric Approximation Architectures

e Training of Approximation Architectures

e Incremental Optimization of Sums of Differentiable Functions
0 Neural Nets and Finite Horizon DP

e Approximation in Policy Space - Perpetual Rollout
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Recall the Approximation in Value Space Framework for Finite Horizon

Problems

First Step “Future”

Approximate Min _ - R

min E{gk(l’k, Uk, wk)+Jk+1(ﬂfk+1)}

v A

Approximate E{-} Approximate Cost-to-Go jk+1
Certainty equivalence Problem approximation
Adaptive simulation Rollout, Model Predictive Control

Parametric approximation
Neural nets
Aggregation

Monte Carlo tree search
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Parametric Approximation in Value Space

The starting point: A target cost function and an approximation architecture
@ The architecture: A class of functions J(x, r) that depend on x and a vector
r=(n,...,rm)of m-“unable" scalar parameters (or weights).

@ Training: Use data to adjust r so that J “matches” the target function, usually by
some form of least squares fit.

@ Architectures are feature-based if they depend on x via a feature vector ¢(x),
J(Xv r) = j(¢(X)> r)7

where J is some function. Idea: Features capture dominant nonlinearities and can
be problem-specific.

@ Architectures J(x, r) can be linear or nonlinear in r. Linear are much easier to
train.

@ A linear feature-based architecture: J(x, r) = r'¢(x) = 37, rigi(x)

Linear Cost

State 2 Feature Extraction | Feature Vector ¢(z) Linear Approximator 1’ ¢(z)
—> . > . - 5
Mapping Mapping
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Examples of Generic Feature-Based Architectures

@ Piecewise constant and piecewise linear architectures: The features are constant
or linear functions defined on “pieces" of the state space.

@ Quadratic polynomial approximation: J(x, r) is quadratic in the components

x',...,x" of x. Consider features

po(x)=1,  ¢i(x)=x,  ¢(x)=x¥, ij=1,..n

A linear feature-based architecture, where r consists of weights ro, r;, and r;:

J(x, r)fro+Zr,x +ZZ/’,,XX’

i=1 j=i

@ General polynomial architectures: Higher-degree polynomials in the components

x',...,x". Another possibility: Polynomials of features.

@ Many other possibilities: Radial basis functions, data-dependent/kernel
architectures, support vector machines, etc.

@ Partial state observation problems (POMDP): Can be reformulated as problems of
perfect state observation involving a belief state. Architectures involving features
of the belief state (such as state estimates) are useful.
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Examples of Domain-Specific Feature-Based Architectures

Bertsekas
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Feature-Based State Space Partitioning

Feature %
Extraction

»
!

State Space Feature Space

A simple method to construct complex approximation architectures

@ Use features to partition the state space into several subsets and construct a
separate value and/or policy approximation in each subset.

@ Example: Use a separate approximation architecture on each set of the partition.
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Neural Nets: An Architecture that Automatically Constructs Features

x,v
- ¢1(x,v) A Cost
pproximation
State y(xl Ay(x) + b $2(x,v) r'¢(x,v)
— O —
ot o "
State Linear Nonlinear Linear
Encoding Layer Layer Weighting
Parameter Parameter
v=(4,b) FEATURES r
Given a set of state-cost training pairs (x°, 3°), s = 1,..., g, the parameters of the

neural network (A, b, r) are obtained by solving the training problem

q m 2
. ( rw((Ay(xswbmﬂs)
s=1 =1
@ Special methods (also known as backpropagation or stochastic gradient descent)
are typically used for training.
@ Universal approximation property.
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Training of Architectures

Least squares regression

@ Collect a set of state-cost training pairs (x°, 8°), s = 1,..., g, where 3° is equal to
the target cost J(x°) plus some “noise".

@ ris determined by least squares fit, i.e., solving the problem
q
min > (J(x*, r) - °)°
s=1

@ Sometimes a quadratic regularization term ~||r||? is added to the least squares
objective, to facilitate the minimization (among other reasons).

Training of linear feature-based architectures can be done exactly

o If J(x,r) = r'¢(x), where ¢(x) is the m-dimensional feature vector, the training
problem is quadratic and can be solved in closed form.

@ The exact solution of the training problem is given by
q -1 q
P= (Z ¢(x5)¢<x5)’> > o(x)s°
s=1 s=1

@ This requires a lot of computation for a large m and data set; may not be best.
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Training of Nonlinear Architectures

The main training issue
How to exploit the structure of the training problem

min Zq: (J(x°r) - ﬁs)z

to solve it efficiently.

Key characteristics of the training problem

@ Possibly nonconvex with many local minima, with horribly complicated graph (true
when a neural net is used).

@ Many terms in the least least squares sum; standard gradient and Newton-like
methods are essentially inapplicable.

@ Incremental iterative methods that operate on a single term (J(x°,r) — ﬂS)Z at
each iteration have worked well enough (for many problems).
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Incremental Gradient Methods

Generic sum of terms optimization problem
Minimize
m

) = > i)

where each f; is a differentiable scalar function of the n-dimensional vector y (this is
the parameter vector in the context of parametric training).

The ordinary gradient method generates y**! from y* according to
m
Y =y =) =y = VYY)
i=1

where v¥ > 0 is a stepsize parameter.

The incremental gradient counterpart
Choose an index i and iterate according to

Y = yf =V ()

where v¥ > 0 is a stepsize parameter. Index selection can be orderly or randomly.
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The Advantage of Incrementalism

(ciy —bi)?
. \
— min; y; R MaxX; Y
| = - — .
FAROUT REGION REGION OF CONFUSION FAROUT REGION

Minimize f(y) = 3 31", (ciy — bi)?

Compare the ordinary and the incremental gradient methods in two cases

@ When far from convergence: Incremental gradient is as fast as ordinary gradient
with 1/m amount of work.

@ When close to convergence: Incremental gradient gets confused and requires a
diminishing stepsize for convergence.
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Sequential DP Approximation - A Parametric Approximation at Every

Stage (Also Called

Start with Jy = gn and sequentially train going backwards, until k = 0

@ Given a cost-to-go approximation Ji 1 ~ J;. ;, we use one-step lookahead to

construct a large number of state-cost pairs (x¢, 85), s=1,..., q, where
= min_ E{g(xf, u, wi) + Juer (Fe(XE, u, wi), 1 s=1,...
ﬁk UEUk(XE) {g( Ky Uy k)+ k+1(k( ks Uy k)7 k+1)}7 ) ,q
@ We “train" an architecture Jx on the training set (x{, 35), s =1,..., g, so that
jk ~ Ji

Typical approach: Train by least squares/regression using a linear or
nonlinear/neural net architecture

We minimize over r

q
S (el re) — 8°)°

s=1
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An Alternative: Fitted Value lteration Based on Q-Factors

@ Consider sequential DP approximation of Q-factor parametric approximations

ék(Xim Ux) = E{gk(xk-, Uk, Wk) + min ék+1(xk+1 y U eyt )}
U€ Uk i1 (Xk41)

(Note a mathematical magic: The order of E{-} and min have been reversed.)

@ We obtain Qk(xk, Uk, r) by training with many pairs ((x2, ug), Bi), where 3¢ is a
sample of the approximate Q-factor of (xi, u;). [No need to compute E{-}.]

@ Also: No need for a model to obtain 3;. Sufficient to have a simulator that
generates state-control-cost-next state random samples

(XK, Uk), (9k (Xk, Uk, Wi), Xkr1))

@ Having computed ri, the one-step lookahead control is obtained on-line as
7 (xx) €earg min  Qu(xx,u,
B (Xic) g wooin (X, U, Ik)

without the need of a model or expected value calculations.
@ Important advantage: The on-line calculation of the control is simplified.
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Parametric Approximation of a Given Policy - Finite Control Space

Control
Probabilities
h(w, xg, k)
State Data-Trained \: Max Poliey uk(wl: ")
Classifier /; u

We can implement approximately a given policy with a data-trained classifier
@ We collect a training set of many state-control pairs (xg, ug), s=1,...,q, using
the policy (i.e., at x; the policy applies u).
@ The classifier generates for each state xx the “probability"” E(u, Xk, Ik) of each
control u being the correct one (i.e., the one generated by the given policy).

@ The classifier outputs the control of max probability for each state.

@ Thus a pattern classification/recognition method can be used to train the policy
approximation.

@ Neural nets are widely used for this.
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Truncated Rollout with a Partitioned Architecture and a Value Network

Each Set Has
Local Value Network

—— Initial State

Truncated Rollout
Using the
Base Policy

Terminal Cost
Supplied by
Local Value Network

Terminal State

State Space Partition
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Perpetual Rollout with a Partitioned Architecture

Multiple Value and Policy Networks

Each Set Has a Local Value Network
and a Local Policy Network

—— Initial State

Truncated Rollout
LN Using the
Local Policy Network

Terminal Cost
Supplied by
Local Value Network

Terminal State

State Space Partition

@ Start with some base policy and a value network for each set.
@ Obtain a policy and a value network for the truncated rollout policy. Repeat.
@ Partitioning may be a good way to deal with adequate state space exploration.
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About the Next Lecture

We will cover:
@ Neural Network Discussion and Implementation Issues J

PLEASE READ AS MUCH OF CHAPTER 3 AS YOU CAN
PLEASE DOWNLOAD THE LATEST VERSIONS FROM MY WEBSITE J
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