Bertsekas

Reinforcement Learning and Optimal Control

ASU, CSE 691, Winter 2020

Dimitri P. Bertsekas
dimitrib@mit.edu

Lecture 6

Reinforcement Learning

1/28



o Parametric Approximation Architectures

e Training of Approximation Architectures

e Incremental Optimization of Sums of Differentiable Functions
0 Neural Nets and Finite Horizon DP

e Approximation in Policy Space - Perpetual Rollout

Bertsekas Reinforcement Learning 2/23



Recall the Approximation in Value Space Framework for Finite Horizon

Problems

First Step “Future”

Approximate Min _ - R

min E{gk(l’k, Uk, wk)+Jk+1(ﬂfk+1)}

v A

Approximate E{-} Approximate Cost-to-Go jk+1
Certainty equivalence Problem approximation
Adaptive simulation Rollout, Model Predictive Control

Parametric approximation
Neural nets
Aggregation

Monte Carlo tree search

Bertsekas Reinforcement Learning 4/23



Parametric Approximation in Value Space

The starting point: A target cost function and an approximation architecture
@ The architecture: A class of functions J(x, r) that depend on x and a vector
r=(n,...,rm)of m-“unable" scalar parameters (or weights).

@ Training: Use data to adjust r so that J “matches” the target function, usually by
some form of least squares fit.

@ Architectures are feature-based if they depend on x via a feature vector ¢(x),
J(Xv r) = j(¢(X)> r)7

where J is some function. Idea: Features capture dominant nonlinearities and can
be problem-specific.

@ Architectures J(x, r) can be linear or nonlinear in r. Linear are much easier to
train.

@ A linear feature-based architecture: J(x, r) = r'¢(x) = 37, rigi(x)

Linear Cost

State 2 Feature Extraction | Feature Vector ¢(z) Linear Approximator 1’ ¢(z)
—> . > . - 5
Mapping Mapping

Bertsekas Reinforcement Learning 5/23



Examples of Generic Feature-Based Architectures

@ Piecewise constant and piecewise linear architectures: The features are constant
or linear functions defined on “pieces" of the state space.

@ Quadratic polynomial approximation: J(x, r) is quadratic in the components

x',...,x" of x. Consider features

po(x)=1,  ¢i(x)=x,  ¢(x)=x¥, ij=1,..n

A linear feature-based architecture, where r consists of weights ro, r;, and r;:

J(x, r)fro+Zr,x +ZZ/’,,XX’

i=1 j=i

@ General polynomial architectures: Higher-degree polynomials in the components

x',...,x". Another possibility: Polynomials of features.

@ Many other possibilities: Radial basis functions, data-dependent/kernel
architectures, support vector machines, etc.

@ Partial state observation problems (POMDP): Can be reformulated as problems of
perfect state observation involving a belief state. Architectures involving features
of the belief state (such as state estimates) are useful.

Bertsekas Reinforcement Learning 6/23



Examples of Domain-Specific Feature-Based Architectures

Bertsekas

Features:
Material Balance,
ENelEl E Mobility,
O EiR Safety, etc
'y 'y i
mam a Feature
7y ’ Extraction
B A Ey
ARA AR
| W= HF
Chess

Tetris
Features such as column heights, column height differentials, number of “holes" etc

Reinforcement Learning

Win
"Probability"

.

7/23



Feature-Based State Space Partitioning

Feature %
Extraction

»
!

State Space Feature Space

A simple method to construct complex approximation architectures

@ Use features to partition the state space into several subsets and construct a
separate value and/or policy approximation in each subset.

@ Example: Use a separate approximation architecture on each set of the partition.

Bertsekas Reinforcement Learning 8/23



Neural Nets: An Architecture that Automatically Constructs Features

x,v
- ¢1(x,v) A Cost
pproximation
State y(xl Ay(x) + b $2(x,v) r'¢(x,v)
— O —
ot o "
State Linear Nonlinear Linear
Encoding Layer Layer Weighting
Parameter Parameter
v=(4,b) FEATURES r
Given a set of state-cost training pairs (x°, 3°), s = 1,..., g, the parameters of the

neural network (A, b, r) are obtained by solving the training problem

q m 2
. ( rw((Ay(xswbmﬂs)
s=1 =1
@ Special methods (also known as backpropagation or stochastic gradient descent)
are typically used for training.
@ Universal approximation property.

Bertsekas Reinforcement Learning 9/23




Training of Architectures

Least squares regression

@ Collect a set of state-cost training pairs (x°, 8°), s = 1,..., g, where 3° is equal to
the target cost J(x°) plus some “noise".

@ ris determined by least squares fit, i.e., solving the problem
q
min > (J(x*, r) - °)°
s=1

@ Sometimes a quadratic regularization term ~||r||? is added to the least squares
objective, to facilitate the minimization (among other reasons).

Training of linear feature-based architectures can be done exactly

o If J(x,r) = r'¢(x), where ¢(x) is the m-dimensional feature vector, the training
problem is quadratic and can be solved in closed form.

@ The exact solution of the training problem is given by
q -1 q
P= (Z ¢(x5)¢<x5)’> > o(x)s°
s=1 s=1

@ This requires a lot of computation for a large m and data set; may not be best.

Bertsekas Reinforcement Learning 11/23



Training of Nonlinear Architectures

The main training issue
How to exploit the structure of the training problem

min Zq: (J(x°r) - ﬁs)z

to solve it efficiently.

Key characteristics of the training problem

@ Possibly nonconvex with many local minima, with horribly complicated graph (true
when a neural net is used).

@ Many terms in the least least squares sum; standard gradient and Newton-like
methods are essentially inapplicable.

@ Incremental iterative methods that operate on a single term (J(x°,r) — ﬂS)Z at
each iteration have worked well enough (for many problems).

Bertsekas Reinforcement Learning 12/23



Incremental Gradient Methods

Generic sum of terms optimization problem
Minimize
m

) = > i)

where each f; is a differentiable scalar function of the n-dimensional vector y (this is
the parameter vector in the context of parametric training).

The ordinary gradient method generates y**! from y* according to
m
Y =y =) =y = VYY)
i=1

where v¥ > 0 is a stepsize parameter.

The incremental gradient counterpart
Choose an index i and iterate according to

Y = yf =V ()

where v¥ > 0 is a stepsize parameter. Index selection can be orderly or randomly.
Bertsekas Reinforcement Learning 14/23




The Advantage of Incrementalism

(ciy —bi)?
. \
— min; y; R MaxX; Y
| = - — .
FAROUT REGION REGION OF CONFUSION FAROUT REGION

Minimize f(y) = 3 31", (ciy — bi)?

Compare the ordinary and the incremental gradient methods in two cases

@ When far from convergence: Incremental gradient is as fast as ordinary gradient
with 1/m amount of work.

@ When close to convergence: Incremental gradient gets confused and requires a
diminishing stepsize for convergence.

Bertsekas Reinforcement Learning 15/23



Sequential DP Approximation - A Parametric Approximation at Every

Stage (Also Called

Start with Jy = gn and sequentially train going backwards, until k = 0

@ Given a cost-to-go approximation Ji 1 ~ J;. ;, we use one-step lookahead to

construct a large number of state-cost pairs (x¢, 85), s=1,..., q, where
= min_ E{g(xf, u, wi) + Juer (Fe(XE, u, wi), 1 s=1,...
ﬁk UEUk(XE) {g( Ky Uy k)+ k+1(k( ks Uy k)7 k+1)}7 ) ,q
@ We “train" an architecture Jx on the training set (x{, 35), s =1,..., g, so that
jk ~ Ji

Typical approach: Train by least squares/regression using a linear or
nonlinear/neural net architecture

We minimize over r

q
S (el re) — 8°)°

s=1

Bertsekas Reinforcement Learning 17/23



An Alternative: Fitted Value lteration Based on Q-Factors

@ Consider sequential DP approximation of Q-factor parametric approximations

ék(Xim Ux) = E{gk(xk-, Uk, Wk) + min ék+1(xk+1 y U eyt )}
U€ Uk i1 (Xk41)

(Note a mathematical magic: The order of E{-} and min have been reversed.)

@ We obtain Qk(xk, Uk, r) by training with many pairs ((x2, ug), Bi), where 3¢ is a
sample of the approximate Q-factor of (xi, u;). [No need to compute E{-}.]

@ Also: No need for a model to obtain 3;. Sufficient to have a simulator that
generates state-control-cost-next state random samples

(XK, Uk), (9k (Xk, Uk, Wi), Xkr1))

@ Having computed ri, the one-step lookahead control is obtained on-line as
7 (xx) €earg min  Qu(xx,u,
B (Xic) g wooin (X, U, Ik)

without the need of a model or expected value calculations.
@ Important advantage: The on-line calculation of the control is simplified.

Bertsekas Reinforcement Learning

18/23



Parametric Approximation of a Given Policy - Finite Control Space

Control
Probabilities
h(w, xg, k)
State Data-Trained \: Max Poliey uk(wl: ")
Classifier /; u

We can implement approximately a given policy with a data-trained classifier
@ We collect a training set of many state-control pairs (xg, ug), s=1,...,q, using
the policy (i.e., at x; the policy applies u).
@ The classifier generates for each state xx the “probability"” E(u, Xk, Ik) of each
control u being the correct one (i.e., the one generated by the given policy).

@ The classifier outputs the control of max probability for each state.

@ Thus a pattern classification/recognition method can be used to train the policy
approximation.

@ Neural nets are widely used for this.

Bertsekas Reinforcement Learning 20/23



Truncated Rollout with a Partitioned Architecture and a Value Network

Each Set Has
Local Value Network

—— Initial State

Truncated Rollout
Using the
Base Policy

Terminal Cost
Supplied by
Local Value Network

Terminal State

State Space Partition

Bertsekas Reinforcement Learning 21/238



Perpetual Rollout with a Partitioned Architecture

Multiple Value and Policy Networks

Each Set Has a Local Value Network
and a Local Policy Network

—— Initial State

Truncated Rollout
LN Using the
Local Policy Network

Terminal Cost
Supplied by
Local Value Network

Terminal State

State Space Partition

@ Start with some base policy and a value network for each set.
@ Obtain a policy and a value network for the truncated rollout policy. Repeat.
@ Partitioning may be a good way to deal with adequate state space exploration.

Bertsekas Reinforcement Learning



About the Next Lecture

We will cover:
@ Neural Network Discussion and Implementation Issues J

PLEASE READ AS MUCH OF CHAPTER 3 AS YOU CAN
PLEASE DOWNLOAD THE LATEST VERSIONS FROM MY WEBSITE J

Bertsekas Reinforcement Learning 23/23



	Parametric Approximation Architectures
	Training of Approximation Architectures
	Incremental Optimization of Sums of Differentiable Functions
	Neural Nets and Finite Horizon DP
	Approximation in Policy Space - Perpetual Rollout 

