
Reinforcement Learning and Optimal Control

ASU, CSE 691, Winter 2020

Dimitri P. Bertsekas
dimitrib@mit.edu

Lecture 8

Bertsekas Reinforcement Learning 1 / 20

Outline

1 Introduction to Infinite Horizon Problems

2 Transition Probability Notation - Main Results

3 SSP Problems: Elaboration

4 Policy Iteration

Bertsekas Reinforcement Learning 2 / 20

Stochastic DP Problems - Infinite Horizon

......
Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Stage k Future Stages

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

1

xk+1 = f(xk, uk, wk) g(xk, uk, wk)

Termination State

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

xk+1 = f(xk, uk, wk) ↵kg(xk, uk, wk)

Termination State

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

xk+1 = f(xk, uk, wk) αkg(xk, uk, wk)

Termination State Infinite Horizon

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

1

Infinite number of stages, and stationary system and cost
System xk+1 = f (xk , uk ,wk) with state, control, and random disturbance.

Policies π = {µ0, µ1, . . .} with µk (x) ∈ U(x) for all x and k .

Special scalar α with 0 < α ≤ 1. If α < 1 the problem is called discounted.

Cost of stage k : αk g
(
xk , µk (xk),wk

)
.

Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

Ewk

{
N−1∑
k=0

αk g
(
xk , µk (xk),wk

)}

Optimal cost function J∗(x0) = minπ Jπ(x0).

If α = 1 we assume a special cost-free termination state t . The objective is to
reach t at minimum expected cost. The problem is called stochastic shortest path
(SSP) problem.

Bertsekas Reinforcement Learning 4 / 20

Going from Finite to Infinite Horizon (Just Intuition - Proofs Needed)

Value iteration (VI) convergence: Fix horizon N, let terminal cost be 0

Let VN−k (x) be the optimal cost starting at x with k stages to go, so

VN−k (x) = min
u∈U(x)

Ew

{
αN−k g(x , u,w) + VN−k+1

(
f (x , u,w)

)}
(Finite Horizon DP)

Reverse the time index: Define Jk (x) = VN−k (x)/αN−k and divide with αN−k :

Jk (x) = min
u∈U(x)

Ew

{
g(x , u,w) + αJk−1

(
f (x , u,w)

)}
(VI)

JN(x) is equal to V0(x), which is the N-stages optimal cost starting from x

Hence, intuitively, JN converges to J∗:
J∗(x) = lim

N→∞
JN(x), for all states x (proof needed)

The following Bellman equation holds: Take the limit in Eq. (VI)

J∗(x) = min
u∈U(x)

Ew

{
g(x , u,w) + αJ∗

(
f (x , u,w)

)}
, for all states x (proof needed)

Optimality condition: Let µ(x) attain the min in the Bellman equation for all x

The policy {µ, µ, . . .} is optimal (??). (This type of policy is called stationary.)
Bertsekas Reinforcement Learning 5 / 20

Transition Probability Notation for Finite-Spaces Problems

States: i = 1, . . . , n. Successor states: j . (For SSP there is also the extra
termination state t .)

Probability of i → j transition under control u: pij(u) (plays the role of the system
equation)

Cost of i → j transition under control u: g(i, u, j)

VI (translated to the new notation - note that Jk (t) = 0 for SSP)

Jk+1(i) = min
u∈U(i)

n∑
j=1

pij(u)
(
g(i, u, j) + αJk (j)

)
(for discounted)

Jk+1(i) = min
u∈U(i)

pit(u)g(i, u, t) +
n∑

j=1

pij(u)
(
g(i, u, j) + Jk (j)

) (for SSP)

Bellman equation (translated to the new notation - note that J∗(t) = 0 for SSP)

J∗(i) = min
u∈U(i)

n∑
j=1

pij(u)
(
g(i, u, j) + αJ∗(j)

)
(for discounted)

J∗(i) = min
u∈U(i)

pit(u)g(i, u, t) +
n∑

j=1

pij(u)
(
g(i, u, j) + J∗(j)

) (for SSP)

Bertsekas Reinforcement Learning 7 / 20

Finite-Spaces Discounted Problems - Statement of Main Results

Convergence of VI

Given any initial conditions J0(1), . . . , J0(n), the sequence
{

Jk (i)
}

generated by VI

Jk+1(i) = min
u∈U(i)

n∑
j=1

pij(u)
(
g(i, u, j) + αJk (j)

)
, i = 1, . . . , n,

converges to J∗(i) for each i .

Bellman’s equation

The optimal cost function J∗ =
(
J∗(1), . . . , J∗(n)

)
satisfies the equation

J∗(i) = min
u∈U(i)

n∑
j=1

pij(u)
(
g(i, u, j) + αJ∗(j)

)
, i = 1, . . . , n,

and is the unique solution of this equation.

Optimality condition
A stationary policy µ is optimal if and only if for every state i , µ(i) attains the minimum
in the Bellman equation.

Bertsekas Reinforcement Learning 8 / 20

Finite-Spaces SSP Problems - Statement of Main Results

Assumption (Termination Inevitable Under all Policies)
There exists m > 0 such that regardless of the policy used and the initial state, there is
positive probability that t will be reached within m stages; i.e., for all π

max
i=1,...,n

P{xm 6= t | x0 = i, π} < 1.

VI Convergence: Jk → J∗ for all initial conditions J0, where

Jk+1(i) = min
u∈U(i)

pit(u)g(i, u, t) +
n∑

j=1

pij(u)
(
g(i, u, j) + Jk (j)

) , i = 1, . . . , n

Bellman’s equation: J∗ satisfies

J∗(i) = min
u∈U(i)

pit(u)g(i, u, t) +
n∑

j=1

pij(u)
(
g(i, u, j) + J∗(j)

) , i = 1, . . . , n,

and is the unique solution of this equation.
Optimality condition: µ is optimal if and only if for every i , µ(i) attains the minimum in
the Bellman equation.

Bertsekas Reinforcement Learning 9 / 20

A Spiders-and-Fly SSP Example (or Search-and-Rescue)

15 spiders move along 4 directions (≤ 1 unit) w. perfect observation; fly moves randomly

Objective is to catch the fly in minimum time.

Is the “termination inevitable" assumption satisfied?

There is a way to fix that (see next slide).

One-step lookahead and rollout are impossible: ≈ 515 Q-factors.

Note for the future: We can reformulate one-step lookahead so that spiders move
one-at-a-time. This will trade off state space and control space complexity.

Bertsekas Reinforcement Learning 11 / 20

SSP Analysis and Extensions (An Overview)

pii(u) pij(u) pji(u) pjj(u) ↵pii(u) ↵pij(u) ↵pji(u) ↵pjj(u) 1�↵ i j t

x2: Level of Reservoir 2

u: Inflow to Reservoir 1

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

Imperfect-State Info Ch. 4

1

pii(u) pij(u) pji(u) pjj(u) ↵pii(u) ↵pij(u) ↵pji(u) ↵pjj(u) 1�↵ i j t

x2: Level of Reservoir 2

u: Inflow to Reservoir 1

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

Imperfect-State Info Ch. 4

1

pii(u) pij(u) pji(u) pjj(u) ↵pii(u) ↵pij(u) ↵pji(u) ↵pjj(u) 1�↵ i j t

x2: Level of Reservoir 2

u: Inflow to Reservoir 1

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

Imperfect-State Info Ch. 4

1

pii(u) pij(u) pji(u) pjj(u) ↵pii(u) ↵pij(u) ↵pji(u) ↵pjj(u) 1�↵ i j t

x2: Level of Reservoir 2

u: Inflow to Reservoir 1

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

Imperfect-State Info Ch. 4

1

pii(u) pij(u) pji(u) pjj(u) ↵pii(u) ↵pij(u) ↵pji(u) ↵pjj(u) 1�↵ i j t

x2: Level of Reservoir 2

u: Inflow to Reservoir 1

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

Imperfect-State Info Ch. 4

1

pii(u) pij(u) pji(u) pjj(u) ↵pii(u) ↵pij(u) ↵pji(u) ↵pjj(u) 1�↵ i j t

x2: Level of Reservoir 2

u: Inflow to Reservoir 1

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

Imperfect-State Info Ch. 4

1

pii(u) pij(u) pji(u) pjj(u) ↵pii(u) ↵pij(u) ↵pji(u) ↵pjj(u) 1�↵ i j t

x2: Level of Reservoir 2

u: Inflow to Reservoir 1

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

Imperfect-State Info Ch. 4

1

pii(u) pij(u) pji(u) pjj(u) ↵pii(u) ↵pij(u) ↵pji(u) ↵pjj(u) 1�↵ i j t

x2: Level of Reservoir 2

u: Inflow to Reservoir 1

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

Imperfect-State Info Ch. 4

1

pii(u) pij(u) pji(u) pjj(u) ↵pii(u) ↵pij(u) ↵pji(u) ↵pjj(u) 1�↵ i j t

x2: Level of Reservoir 2

u: Inflow to Reservoir 1

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

Imperfect-State Info Ch. 4

1

pii(u) pij(u) pji(u) pjj(u) ↵pii(u) ↵pij(u) ↵pji(u) ↵pjj(u) 1�↵ i j t

x2: Level of Reservoir 2

u: Inflow to Reservoir 1

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

Imperfect-State Info Ch. 4

1

pii(u) pij(u) pji(u) pjj(u) ↵pii(u) ↵pij(u) ↵pji(u) ↵pjj(u) 1�↵ i j t

x2: Level of Reservoir 2

u: Inflow to Reservoir 1

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

Imperfect-State Info Ch. 4

1

pii(u) pij(u) pji(u) pjj(u) ↵pii(u) ↵pij(u) ↵pji(u) ↵pjj(u) 1�↵ i j t

x2: Level of Reservoir 2

u: Inflow to Reservoir 1

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

Imperfect-State Info Ch. 4

1

pii(u) pij(u) pji(u) pjj(u) ↵pii(u) ↵pij(u) ↵pji(u) ↵pjj(u) 1�↵ i j t

x2: Level of Reservoir 2

u: Inflow to Reservoir 1

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

Imperfect-State Info Ch. 4

1

pii(u) pij(u) pji(u) pjj(u) ↵pii(u) ↵pij(u) ↵pji(u) ↵pjj(u) 1�↵ i j t

x2: Level of Reservoir 2

u: Inflow to Reservoir 1

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

Imperfect-State Info Ch. 4

1

pii(u) pij(u) pji(u) pjj(u) ↵pii(u) ↵pij(u) ↵pji(u) ↵pjj(u) 1�↵ i j t

x2: Level of Reservoir 2

u: Inflow to Reservoir 1

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

Imperfect-State Info Ch. 4

1

pii(u) pij(u) pji(u) pjj(u) ↵pii(u) ↵pij(u) ↵pji(u) ↵pjj(u) 1�↵ i j t

x2: Level of Reservoir 2

u: Inflow to Reservoir 1

u V V I Ī x⇤(t) Slope �a Slope a z(t) Regular Arcs t T

x2 u⇤(t) = 1 u⇤(t) = �1 x1 p2(t) u⇤(t) �1 (a) (b) (x1(0), x2(0))

Radius on the circle is such that the point (T, b) lies on the cycloid.

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Oven 1 Oven 2 Final Temperature x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

Imperfect-State Info Ch. 4

1

Cost 0 Cost g(i, u, j) Monte Carlo tree search

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2)

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

φjf̄ =

{
1 if j ∈ If̄

0 if j /∈ If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

dℓi = 0 if i /∈ Iℓ

φjℓ̄ = 1 if j ∈ Iℓ̄

p̂ff̄(u) =

n∑

i=1

dfi

n∑

j=1

pij(u)φjf̄

1

Cost 0 Cost g(i, u, j) Monte Carlo tree search

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2)

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

φjf̄ =

{
1 if j ∈ If̄

0 if j /∈ If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

dℓi = 0 if i /∈ Iℓ

φjℓ̄ = 1 if j ∈ Iℓ̄

p̂ff̄(u) =

n∑

i=1

dfi

n∑

j=1

pij(u)φjf̄

1

Cost 0 Cost g(i, u, j) Monte Carlo tree search

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2)

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

φjf̄ =

{
1 if j ∈ If̄

0 if j /∈ If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

dℓi = 0 if i /∈ Iℓ

φjℓ̄ = 1 if j ∈ Iℓ̄

p̂ff̄(u) =

n∑

i=1

dfi

n∑

j=1

pij(u)φjf̄

1

Cost 0 Cost g(i, u, j) Monte Carlo tree search

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2)

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

φjf̄ =

{
1 if j ∈ If̄

0 if j /∈ If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

dℓi = 0 if i /∈ Iℓ

φjℓ̄ = 1 if j ∈ Iℓ̄

p̂ff̄(u) =

n∑

i=1

dfi

n∑

j=1

pij(u)φjf̄

1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

Discounted Problem SSP Equivalent

r: Vector of weights Original States Aggregate States Discounted
Problem

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

Cost: g(xk, uk) ≥ 0 VI converges to Ĵp from within Wp

1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

Discounted Problem SSP Equivalent

r: Vector of weights Original States Aggregate States Discounted
Problem

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

Cost: g(xk, uk) ≥ 0 VI converges to Ĵp from within Wp

1

A discounted problem can be converted to an SSP problem, since the stage k
expected cost is identical in both problems, under the same policy.

Proof line: Start with SSP analysis, get discounted analysis as special case.

Key proof argument: The tail portion (k to∞) of the infinite horizon cost
diminishes to 0, as k →∞, at a geometric progression rate (so the finite horizon
costs converge to the infinite horizon cost).

A more general assumption for SSP results: Nonterminating policies are “bad"
Every stationary policy under which termination is not inevitable from some initial
states is “bad," in the sense that it has∞ cost for some initial states.

There exists at least one stationary policy under which termination is inevitable.
Bertsekas Reinforcement Learning 12 / 20

A Word of Caution: SSP Problems can be Tricky

Without the assumption “nonterminating policies are bad"
Bellman equation may have any number of solutions: one, infinitely many, or none.

Bellman equation may have one or more solutions, but J∗ may not be a solution.

VI may converge to J∗ from some initial conditions but not from others.

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 0 1 2 t b c Destination

Prob. u Prob. 1 � u Cost 1 Cost 1 �⇥
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

1

a 0 1 2 t b c Destination

Prob. u Prob. 1 � u Cost 1 Cost 1 �⇥
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

1

xk+1 = f(xk, uk, wk) ↵kg(xk, uk, wk) Terminal State

Termination State Infinite Horizon

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +
k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

Discounted Problem SSP Equivalent

r: Vector of weights Original States Aggregate States Discounted
Problem

Two possible controls at state 1 (costs a and b)

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

Discounted Problem SSP Equivalent

r: Vector of weights Original States Aggregate States Discounted
Problem

Two possible controls at state 1 (costs a and b)

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

Discounted Problem SSP Equivalent

r: Vector of weights Original States Aggregate States Discounted
Problem

Deterministic one-state SSP

Two possible controls at state 1 (costs a and b)

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Challenge questions: Consider the cases a > 0, a = 0, and a < 0
What is J∗(1)?

What is the solution set of Bellman’s equation J(1) = min
[
b, a + J(1)

]
?

What is the limit of the VI algorithm Jk+1(1) = min
[
b, a + Jk (1)

]
?

Bertsekas Reinforcement Learning 13 / 20

Answers to the Challenge Questions

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 0 1 2 t b c Destination

Prob. u Prob. 1 � u Cost 1 Cost 1 �⇥
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

1

a 0 1 2 t b c Destination

Prob. u Prob. 1 � u Cost 1 Cost 1 �⇥
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

1

xk+1 = f(xk, uk, wk) ↵kg(xk, uk, wk) Terminal State

Termination State Infinite Horizon

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +
k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

Discounted Problem SSP Equivalent

r: Vector of weights Original States Aggregate States Discounted
Problem

Two possible controls at state 1 (costs a and b)

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

Discounted Problem SSP Equivalent

r: Vector of weights Original States Aggregate States Discounted
Problem

Two possible controls at state 1 (costs a and b)

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

Discounted Problem SSP Equivalent

r: Vector of weights Original States Aggregate States Discounted
Problem

Deterministic one-state SSP

Two possible controls at state 1 (costs a and b)

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Bellman Eq: J(1) = min
[
b, a + J(1)

]
; VI: Jk+1(1) = min

[
b, a + Jk (1)

]

If a > 0 (positive cycle): J∗(1) = b is the unique solution, and VI converges to
J∗(1). Here the “nonterminating policies are bad" assumption is satisfied.
If a = 0 (zero cycle):

I J∗(1) = min[0, b].
I The solution set of the Bellman equation is = (−∞, b].
I The VI algorithm, Jk+1(1) = min

[
b, Jk (1)

]
, converges (in one step) to b starting from

J0(1) ≥ b, and does not move from a starting value J0(1) ≤ b.

If a < 0 (negative cycle): B-Eq has no solution, and VI diverges to J∗(1) = −∞.

Bertsekas Reinforcement Learning 14 / 20

Results Involving Q-Factors - Discounted Problems

VI for Q-factors (finite horizon optimal Q-factors converge to infinite horizon
Q-factors)

Qk+1(i, u) =
n∑

j=1

pij(u)
(

g(i, u, j) + α min
v∈U(j)

Qk (j, v)
)

converges to Q∗(i, u) for each (i, u).

Bellman’s equation for Q-factors

Q∗(i, u) =
n∑

j=1

pij(u)
(

g(i, u, j) + α min
v∈U(j)

Q∗(j, v)
)

Q∗ is the unique solution of this equation, and we have

J∗(i) = min
u∈U(i)

Q∗(i, u) (1)

Optimality condition
A stationary policy µ is optimal if and only if µ(i) attains the minimum in Eq. (1) for
every state i .

Bertsekas Reinforcement Learning 15 / 20

Policy Iteration (PI) Algorithm (Perpetual Rollout): From Base Policy to
Rollout Policy and Repeat

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate cost

J̃µ(r) = �r Using Simulation

Generate “Improved” Policy µ

µ(i) = arg min
u⇧U(i)

n↵

j=1

pij(u)
�
g(i, u, j) + �J̃(j, r)

⇥

x = T (x) = Ax + b

pij = 0 ⇥ aij = 0

x̃i1 , . . . , x̃iM

M↵

m=1

⇤im

�
x̃im � ⌅(im)⇤r

⇥2

⌅(i)⇤

x = T (x) = g + �Px

x =

⌅↵

t=0

�tP tg

⇧
n↵

i=1

⇤i ⌅(i)⌅(i)⇤

⌃
r⇥ =

n↵

i=1

⇤i ⌅(i)

⌥
 bi +

n↵

j=1

aij⌅(j)⇤r⇥

�
⌦

⇧
t↵

k=0

⌅(ik)⌅(ik)⇤

⌃
r̂t =

t↵

k=0

⌅(ik)

⇤
bik +

aikjk

pikjk

⌅(jk)⇤r̂t

⌅

rt+1 =

⇧
n↵

i=1

⇤i ⌅(i)⌅(i)⇤

⌃�1 n↵

i=1

⇤i ⌅(i)

⌥
 bi +

n↵

j=1

aij⌅(j)⇤rt

�
⌦

rt+1 =

⇧
t↵

k=0

⌅(ik)⌅(ik)⇤

⌃�1 t↵

k=0

⌅(ik)

⇤
bik +

aikjk

pikjk

⌅(jk)⇤rt

⌅

1

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

J̃µ(r) = �r Using Simulation

Generate “Improved” Policy µ

µ(i) = arg min
u⇧U(i)

n↵

j=1

pij(u)
�
g(i, u, j) + �J̃(j, r)

⇥

x = T (x) = Ax + b

pij = 0 ⇥ aij = 0

x̃i1 , . . . , x̃iM

M↵

m=1

⇤im

�
x̃im � ⌅(im)⇤r

⇥2

⌅(i)⇤

x = T (x) = g + �Px

x =
⌅↵

t=0

�tP tg

⇧
n↵

i=1

⇤i ⌅(i)⌅(i)⇤

⌃
r⇥ =

n↵

i=1

⇤i ⌅(i)

⌥
 bi +

n↵

j=1

aij⌅(j)⇤r⇥

�
⌦

⇧
t↵

k=0

⌅(ik)⌅(ik)⇤

⌃
r̂t =

t↵

k=0

⌅(ik)

⇤
bik +

aikjk

pikjk

⌅(jk)⇤r̂t

⌅

rt+1 =

⇧
n↵

i=1

⇤i ⌅(i)⌅(i)⇤

⌃�1 n↵

i=1

⇤i ⌅(i)

⌥
 bi +

n↵

j=1

aij⌅(j)⇤rt

�
⌦

rt+1 =

⇧
t↵

k=0

⌅(ik)⌅(ik)⇤

⌃�1 t↵

k=0

⌅(ik)

⇤
bik +

aikjk

pikjk

⌅(jk)⇤rt

⌅

1

y1 y2 y3 System Space State i µ(i, r) µ(·, r) Policy

Initial Policy Controlled System Cost per Stage Vector G(r) Transi-
tion Matrix P (r)

Steady-State Distribution ⇧(r) Average Cost ⇤(r)

⌃j1y1 ⌃j1y2 ⌃j1y3 j1 j2 j3 y1 y2 y3 Original State Space

⇥ =

�
⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⇥
⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

1 2 3 4 5 6 7 8 9 x1 x2 x3 x4

⌅ |⇥| (1 � ⌅)|⇥| l(1 � ⌅)⇥| ⌅⇥ O A B C |1 � ⌅⇥|
Asynchronous Initial state x Initial state f(x, u,w) Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ �Jµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation ⇥r = �T
(�)
µ (⇥r)

Tµ(⇥r) ⇥r = �T
(�)
µ (⇥r)

�Jµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

J TJ �TJ J̄ T J̄ �T J̄

Value Iterate T (⇥rk) = g + �P⇥rk Projection on S ⇥rk ⇥rk+1

Solution of J̃µ = �Tµ(J̃µ) ⌅ = 0 ⌅ = 1 0 < ⌅ < 1

Route to Queue 2

1

Policy Evaluation Evaluate Cost Function Jµ of Current policy µ

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Policy Evaluation Evaluate Cost Function Jµ of Current policy µ

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ

Policy Cost Evaluation Evaluate Cost Function Jµ of Current policy µ

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ

Policy Cost Evaluation Evaluate Cost Function Jµ of Current policy µ

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Given the current (base) policy µk , a PI consists of two phases:
Policy evaluation computes Jµk (i), i = 1, . . . , n, as the solution of the (linear)
Bellman equation system (or by some form of simulation)

Jµk (i) =
n∑

j=1

pij
(
µk (i)

)(
g
(
i, µk (i), j

)
+ αJµk (j)

)
, i = 1, . . . , n

Policy improvement then computes a new (the rollout) policy µk+1 as

µk+1(i) ∈ arg min
u∈U(i)

n∑
j=1

pij(u)
(
g(i, u, j) + αJµk (j)

)
, i = 1, . . . , n

Bertsekas Reinforcement Learning 17 / 20

Fundamental Policy Improvement Property - Intuition: Acting Optimally
for One Step and then Using µk Should Improve on µk

PI finite-step convergence: PI generates an improving sequence of policies, i.e.,
Jµk+1(i) ≤ Jµk (i) for all i and k , and terminates with an optimal policy.

Proof: We will show that Jµ̃ ≤ Jµ, where µ̃ is obtained from µ by PI

Denote by JN the cost function of a policy that applies µ̃ for the first N stages and
applies µ thereafter.

We have the Bellman equation Jµ(i) =
∑n

j=1 pij
(
µ(i)

)(
g
(
i, µ(i), j

)
+ αJµ(j)

)
, so

J1(i) =
n∑

j=1

pij
(
µ̃(i)

)(
g
(
i, µ̃(i), j

)
+αJµ(j)

)
≤ Jµ(i) (by policy improvement eq.)

From the definition of J2 and J1, monotonicity, and the preceding relation, we have

J2(i) =
n∑

j=1

pij
(
µ̃(i)

)(
g
(
i, µ̃(i), j

)
+αJ1(j)

)
≤

n∑
j=1

pij
(
µ̃(i)

)(
g
(
i, µ̃(i), j

)
+αJµ(j)

)
= J1(i)

so J2(i) ≤ J1(i) ≤ Jµ(i) for all i .

Continuing similarly, we obtain JN+1(i) ≤ JN(i) ≤ Jµ(i) for all i and N. Since
JN → Jµ̃ (VI for µ̃ converges), it follows that Jµ̃ ≤ Jµ.

Bertsekas Reinforcement Learning 18 / 20

Illustration Movies: A Single Step of Policy Iteration for a Four-Spiders
and Two-Flies Problem

Base Policy Rollout Policy

We want to minimize the time to catch both flies
Base policy (each spider follows the shortest path): Time is 85

Rollout (all spiders move at once, 625 Q-factors/move choices): Time is 34

We can reduce the number of Q-factors using multiagent/one-spider at-a-time
rollout (will return to this later)

Bertsekas Reinforcement Learning 19 / 20

About the Next Lecture

We will cover:
Infinite horizon policy iteration: extensions and approximations

Rollout and parametric approximation methods

We will likely need more that one lecture

PLEASE READ AS MUCH OF Chapter 4 AS YOU CAN

PLEASE DOWNLOAD THE LATEST VERSIONS FROM MY WEBSITE

Bertsekas Reinforcement Learning 20 / 20

	Introduction to Infinite Horizon Problems
	Transition Probability Notation - Main Results
	SSP Problems: Elaboration
	Policy Iteration

