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° Introduction to Infinite Horizon Problems
e Transition Probability Notation - Main Results
e SSP Problems: Elaboration

0 Policy Iteration
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Stochastic DP Problems - Infinite Horizon

Random Transition
_ . Infinite Horizon
Tpr1 = f(og, ur, w) te Horizc

Random Cost

akg(xy, up, wy)

Infinite number of stages, and stationary system and cost
@ System xx.1 = f(Xk, Uk, wk) with state, control, and random disturbance.
@ Policies m = {po, 1, - . .} with pux(x) € U(x) for all x and k.
@ Special scalar a with 0 < o < 1. If & < 1 the problem is called discounted.
@ Cost of stage k: g (X, sk (Xk), Wk).
@ Cost of a policy m = {uo, 1, - .-}
N—1
Jr(X0) = ’Vleoo Ew, {Z c!kg(Xk~, 1k (X ), W) }

k=0

@ Optimal cost function J*(xp) = min, J(Xo).

o If « = 1 we assume a special cost-free termination state ¢. The objective is to
reach t at minimum expected cost. The problem is called stochastic shortest path
(SSP) problem.
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Going from Finite to Infinite Horizon (Just Intuition - Proofs Needed)

Value iteration (VI) convergence: Fix horizon N, let terminal cost be 0

@ Let Vy_«(x) be the optimal cost starting at x with k stages to go, so
Vi-s(x) = min Ew{a “*g(x, u, w) + Va_ks1 (F(x, U, w))} (Finite Horizon DP)

@ Reverse the time index: Define Jk(x) = V_k(x)/aV =¥ and divide with oV =:
Jk(x) = uren[jpx) Ew{g(x, u, w) + adk—1 (f(x, u, w))} (V1)

@ Jn(x) is equal to Vo(x), which is the N-stages optimal cost starting from x

@ Hence, intuitively, Jy converges to J*:
J(x) = Nlim JIn(X), for all states x (proof needed)
— 00

The following Bellman equation holds: Take the limit in Eq. (VI)

J(x) = mJP)EW{g(X’ u,w) + oJ* (f(x, u, W))}, for all states x (proof needed)
ueU(x

Optimality condition: Let u(x) attain the min in the Bellman equation for all x

The policy {u, , ...} is optimal (??). (This type of policy is called stationary.)
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Transition Probability Notation for Finite-Spaces Problems

@ States: i = 1,...,n. Successor states: j. (For SSP there is also the extra
termination state t.)

@ Probability of i — j transition under control u: pj;(u) (plays the role of the system
equation)
@ Cost of i — j transition under control u: g(/, u, j)

VI (translated to the new notation note that Jx(t) = 0 for SSP)
i1 (i) = m|n Zp,, a(i,u,j) + adk(j))  (for discounted)

Jir1(f) = mm pi(u)g(i, u, t) +Zp,, g, u,j) + k() (for SSP)

v

Bellman equation (translated to the new notation - note that J*(t) = 0 for SSP)

J*(i) = urenlijr&) Z pi(u)(g(i,u,j) +aJ*(j))  (for discounted)

J (i) = mir(], pi(u)g(i, u, t) +Zp,, a(i, u,j) + J*())) (for SSP)
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Finite-Spaces Discounted Problems - Statement of Main Results

Convergence of VI

Given any initial conditions Jo(1), . .., Jo(n), the sequence {Jk(i)} generated by VI
s (i —u@mZp,, a(iu,)) + adk(j)),  i=1,....n,

converges to J* (i) for each i.

Bellman’s equation
The optimal cost function J* = (J*(1),...,J*(n)) satisfies the equation

*(i) = min Zp,, (g(i, u,j) + ad*())). i=1,....n,

ueU(i)

and is the unique solution of this equation.

Optimality condition
A stationary policy u is optimal if and only if for every state /, u(i) attains the minimum
in the Bellman equation.
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Finite-Spaces SSP Problems - Statement of Main Results

Assumption (Termination Inevitable Under all Policies)

There exists m > 0 such that regardless of the policy used and the initial state, there is
positive probability that ¢ will be reached within m stages; i.e., for all ©

0009

VI Convergence: Jx — J* for all initial conditions Jy, where

i1 (i) = ur&ijr&) [p,-t(u)g(i, u, t) + Zp,-,—(u) (9(i,u,j) + Jk(j))] , i=1,...,n

=1

Bellman’s equation: J* satisfies

n

J(i) = min [P/t(“)g(i, ut)+ > pi(u) (gl uj) + J° (j))] . i=1,...n,
j=1

and is the unique solution of this equation.

Optimality condition: u is optimal if and only if for every i, u(/) attains the minimum in

the Bellman equation.
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A Spiders-and-Fly SSP Example (or Search-and-Rescue)
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15 spiders move along 4 directions (< 1 unit) w. perfect observation; fly moves randomeJ

@ Obijective is to catch the fly in minimum time.

@ Is the “termination inevitable" assumption satisfied?

@ There is a way to fix that (see next slide).

@ One-step lookahead and rollout are impossible: ~ 5'° Q-factors.

@ Note for the future: We can reformulate one-step lookahead so that spiders move
one-at-a-time. This will trade off state space and control space complexity.
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SSP Analysis and Extensions (An Overview)

Cost g(i,u,j)
api;(u)

Cost g(i,u,j) apii(u)
patw) P )

pji(w)
Discounted Problem SSP Equivalent

@ A discounted problem can be converted to an SSP problem, since the stage k
expected cost is identical in both problems, under the same policy.

@ Proof line: Start with SSP analysis, get discounted analysis as special case.

@ Key proof argument: The tail portion (k to co) of the infinite horizon cost
diminishes to 0, as k — oo, at a geometric progression rate (so the finite horizon
costs converge to the infinite horizon cost).

v

A more general assumption for SSP results: Nonterminating policies are “bad"

@ Every stationary policy under which termination is not inevitable from some initial
states is “bad," in the sense that it has oo cost for some initial states.

@ There exists at least one stationary policy under which termination is inevitable.
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A Word of Caution: SSP Problems can be Tricky

Without the assumption “nonterminating policies are bad"
@ Bellman equation may have any number of solutions: one, infinitely many, or none.
@ Bellman equation may have one or more solutions, but J* may not be a solution.
@ VI may converge to J* from some initial conditions but not from others.

Cost a

Terminal State Deterministic one-state SSP

Two possible controls at state 1

——— (costs a and b)

Cost b

Challenge questions: Consider the cases a > 0,a=0,and a< 0
@ Whatis J*(1)?
@ What is the solution set of Bellman’s equation J(1) = min [b, a+ J(1)]?
@ What is the limit of the VI algorithm Jk41(1) = min [b, a+ Jk(1)]?
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Answers to the Challenge Questions

Cost a

Terminal State Deterministic one-state SSP

Two possible controls at state 1
——— (costs a and b)

Cost b

Bellman Eq: J(1) = min [b, a-+ J(1)]; VI: k1 (1) = min [b, a+ Jk(1)]

@ If a > 0 (positive cycle): J*(1) = b is the unique solution, and VI converges to
J*(1). Here the “nonterminating policies are bad" assumption is satisfied.
@ |f a= 0 (zero cycle):
J*(1) = min|0, b].
The solution set of the Bellman equation is = (—oo, b].
The VI algorithm, Jx1(1) = min [b, Jk(1)], converges (in one step) to b starting from
Jo(1) > b, and does not move from a starting value Jy(1) < b.

@ If a < 0 (negative cycle): B-Eq has no solution, and VI diverges to J*(1) = —oc.
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Results Involving Q-Factors - Discounted Problems

VI for Q-factors (finite horizon optimal Q-factors converge to infinite horizon
Q-factors)

Quir(i,u) = Zp,, ) (9,00 + @ min 1))

converges to Q*(i, u) for each (i, u).

Bellman’s equation for Q-factors

0 =3 pi) (90u) +a mip @°G.) )
j=1
Q" is the unique solution of this equation, and we have

J (i) = min Q" (i, u) (1)

ueUu(i)

Optimality condition

A stationary policy . is optimal if and only if (/) attains the minimum in Eq. (1) for
every state i.
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Policy lteration (PI) Algorithm (Perpetual Rollout): From Base Policy to

Rollout Policy and Repeat

Initial Policy

Evaluate Cost Function J,, of Policy Cost
Current policy p Evaluation

Generate “Improved” Policy 1z Policy Improvement

Given the current (base) policy 1, a Pl consists of two phases:

@ Policy evaluation computes J,«(f), i = 1,..., n, as the solution of the (linear)
Bellman equation system (or by some form of simulation)

S i) = 3 Py (1) (90 5D 1) + @), T=T,-im
j=1

@ Policy improvement then computes a new (the rollout) policy ' as

n
W0 e arg min B py(u) (g0, ) + adk(i), i=1,en
j=1
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Fundamental Policy Improvement Property - Intuition: Acting Optimally

for One Step and then Using 1X Should Improve on %

Pl finite-step convergence: Pl generates an improving sequence of policies, i.e.,
J 1 () < J (i) for all i and k, and terminates with an optimal policy.

Proof: We will show that J; < J,,, where ji is obtained from p by PI

@ Denote by Jy the cost function of a policy that applies /i for the first N stages and
applies i thereafter.

@ We have the Bellman equation J,.(i) = 7, p; (u(i)) (g(i, w(i),j) + aJH(j)), )

n

Ji(i) =" pi(f(i)) (g(i, (i), j)+aJM(j)) < Ju(i)  (by policy improvement eq.)

Jj=1

@ From the definition of J>» and J;, monotonicity, and the preceding relation, we have

= > pi@i)) (9 (i, i), ) +ah (1)) < Zp,, ) (i (i), ) +adu(i)) = (i)
j=1

S0 (i) < Ji(i) < Ju(i) for all i.

@ Continuing similarly, we obtain Jy.1 (/) < Jn(i) < J,.(i) for all i and N. Since
JIv — Ji (VI for fi converges), it follows that J; < J,..
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lllustration Movies: A Single Step of Policy Iteration for a Four-Spiders

and Two-Flies Problem

Base Policy || Rollout Policy

We want to minimize the time to catch both flies
@ Base policy (each spider follows the shortest path): Time is 85
@ Rollout (all spiders move at once, 625 Q-factors/move choices): Time is 34

@ We can reduce the number of Q-factors using multiagent/one-spider at-a-time
rollout (will return to this later)
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About the Next Lecture

We will cover:
@ Infinite horizon policy iteration: extensions and approximations
@ Rollout and parametric approximation methods
@ We will likely need more that one lecture

PLEASE READ AS MUCH OF Chapter 4 AS YOU CAN
PLEASE DOWNLOAD THE LATEST VERSIONS FROM MY WEBSITE
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