Reinforcement Learning and Optimal Control

ASU, CSE 691, Winter 2020

Dimitri P. Bertsekas
dimitrib@mit.edu

Lecture 8

Outline

(9) Introduction to Infinite Horizon Problems
(2) Transition Probability Notation - Main Results

3 SSP Problems: Elaboration

4 Policy Iteration

Stochastic DP Problems - Infinite Horizon

Infinite number of stages, and stationary system and cost

- System $x_{k+1}=f\left(x_{k}, u_{k}, w_{k}\right)$ with state, control, and random disturbance.
- Policies $\pi=\left\{\mu_{0}, \mu_{1}, \ldots\right\}$ with $\mu_{k}(x) \in U(x)$ for all x and k.
- Special scalar α with $0<\alpha \leq 1$. If $\alpha<1$ the problem is called discounted.
- Cost of stage k : $\alpha^{k} g\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)$.
- Cost of a policy $\pi=\left\{\mu_{0}, \mu_{1}, \ldots\right\}$

$$
J_{\pi}\left(x_{0}\right)=\lim _{N \rightarrow \infty} E_{w_{k}}\left\{\sum_{k=0}^{N-1} \alpha^{k} g\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right\}
$$

- Optimal cost function $J^{*}\left(x_{0}\right)=\min _{\pi} J_{\pi}\left(x_{0}\right)$.
- If $\alpha=1$ we assume a special cost-free termination state t. The objective is to reach t at minimum expected cost. The problem is called stochastic shortest path (SSP) problem.

Going from Finite to Infinite Horizon (Just Intuition - Proofs Needed)
Value iteration (VI) convergence: Fix horizon N, let terminal cost be 0

- Let $V_{N-k}(x)$ be the optimal cost starting at x with k stages to go, so

$$
V_{N-k}(x)=\min _{u \in U(x)} E_{w}\left\{\alpha^{N-k} g(x, u, w)+V_{N-k+1}(f(x, u, w))\right\} \text { (Finite Horizon DP) }
$$

- Reverse the time index: Define $J_{k}(x)=V_{N-k}(x) / \alpha^{N-k}$ and divide with α^{N-k} :

$$
\begin{equation*}
J_{k}(x)=\min _{u \in U(x)} E_{w}\left\{g(x, u, w)+\alpha J_{k-1}(f(x, u, w))\right\} \tag{VI}
\end{equation*}
$$

- $J_{N}(x)$ is equal to $V_{0}(x)$, which is the N-stages optimal cost starting from x
- Hence, intuitively, J_{N} converges to J^{*} :

$$
J^{*}(x)=\lim _{N \rightarrow \infty} J_{N}(x), \quad \text { for all states } x \quad(\text { proof needed })
$$

The following Bellman equation holds: Take the limit in Eq. (VI)

$$
J^{*}(x)=\min _{u \in U(x)} E_{w}\left\{g(x, u, w)+\alpha J^{*}(f(x, u, w))\right\}, \quad \text { for all states } x \quad \text { (proof needed) }
$$

Optimality condition: Let $\mu(x)$ attain the min in the Bellman equation for all x The policy $\{\mu, \mu, \ldots\}$ is optimal (??). (This type of policy is called stationary.)

Transition Probability Notation for Finite-Spaces Problems

- States: $i=1, \ldots, n$. Successor states: j. (For SSP there is also the extra termination state t.)
- Probability of $i \rightarrow j$ transition under control $u: p_{i j}(u)$ (plays the role of the system equation)
- Cost of $i \rightarrow j$ transition under control u : $g(i, u, j)$

VI (translated to the new notation - note that $J_{k}(t)=0$ for SSP)

$$
\begin{gathered}
J_{k+1}(i)=\min _{u \in U(i)} \sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha J_{k}(j)\right) \quad \text { (for disc } \\
(i)=\min _{u \in U(i)}\left[p_{i t}(u) g(i, u, t)+\sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+J_{k}(j)\right)\right]
\end{gathered}
$$

Bellman equation (translated to the new notation - note that $J^{*}(t)=0$ for SSP)

$$
\begin{aligned}
& J^{*}(i)=\min _{u \in U(i)} \sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha J^{*}(j)\right) \quad \text { (for disc } \\
& J^{*}(i)=\min _{u \in U(i)}\left[p_{i t}(u) g(i, u, t)+\sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+J^{*}(j)\right)\right]
\end{aligned}
$$

(for discounted)

Convergence of VI

Given any initial conditions $J_{0}(1), \ldots, J_{0}(n)$, the sequence $\left\{J_{k}(i)\right\}$ generated by VI

$$
J_{k+1}(i)=\min _{u \in U(i)} \sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha J_{k}(j)\right), \quad i=1, \ldots, n,
$$

converges to $J^{*}(i)$ for each i.

Bellman's equation

The optimal cost function $J^{*}=\left(J^{*}(1), \ldots, J^{*}(n)\right)$ satisfies the equation

$$
J^{*}(i)=\min _{u \in U(i)} \sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha J^{*}(j)\right), \quad i=1, \ldots, n,
$$

and is the unique solution of this equation.

Optimality condition

A stationary policy μ is optimal if and only if for every state $i, \mu(i)$ attains the minimum in the Bellman equation.

Finite-Spaces SSP Problems - Statement of Main Results

Assumption (Termination Inevitable Under all Policies)

There exists $m>0$ such that regardless of the policy used and the initial state, there is positive probability that t will be reached within m stages; i.e., for all π

$$
\max _{i=1, \ldots, n} P\left\{x_{m} \neq t \mid x_{0}=i, \pi\right\}<1
$$

VI Convergence: $J_{k} \rightarrow J^{*}$ for all initial conditions J_{0}, where

$$
J_{k+1}(i)=\min _{u \in U(i)}\left[p_{i t}(u) g(i, u, t)+\sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+J_{k}(j)\right)\right], \quad i=1, \ldots, n
$$

Bellman's equation: J^{*} satisfies

$$
J^{*}(i)=\min _{u \in U(i)}\left[p_{i t}(u) g(i, u, t)+\sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+J^{*}(j)\right)\right], \quad i=1, \ldots, n,
$$

and is the unique solution of this equation. Optimality condition: μ is optimal if and only if for every $i, \mu(i)$ attains the minimum in the Bellman equation.

15 spiders move along 4 directions (≤ 1 unit) w. perfect observation; fly moves randomly

- Objective is to catch the fly in minimum time.
- Is the "termination inevitable" assumption satisfied?
- There is a way to fix that (see next slide).
- One-step lookahead and rollout are impossible: $\approx 5^{15} Q$-factors.
- Note for the future: We can reformulate one-step lookahead so that spiders move one-at-a-time. This will trade off state space and control space complexity.

SSP Analysis and Extensions (An Overview)

- A discounted problem can be converted to an SSP problem, since the stage k expected cost is identical in both problems, under the same policy.
- Proof line: Start with SSP analysis, get discounted analysis as special case.
- Key proof argument: The tail portion (k to ∞) of the infinite horizon cost diminishes to 0 , as $k \rightarrow \infty$, at a geometric progression rate (so the finite horizon costs converge to the infinite horizon cost).

A more general assumption for SSP results: Nonterminating policies are "bad"

- Every stationary policy under which termination is not inevitable from some initial states is "bad," in the sense that it has ∞ cost for some initial states.
- There exists at least one stationary policy under which termination is inevitable.

A Word of Caution: SSP Problems can be Tricky

Without the assumption "nonterminating policies are bad"

- Bellman equation may have any number of solutions: one, infinitely many, or none.
- Bellman equation may have one or more solutions, but J^{*} may not be a solution.
- VI may converge to J^{*} from some initial conditions but not from others.

Deterministic one-state SSP
Two possible controls at state 1 (costs a and b)

Challenge questions: Consider the cases $a>0, a=0$, and $a<0$

- What is $J^{*}(1)$?
- What is the solution set of Bellman's equation $J(1)=\min [b, a+J(1)]$?
- What is the limit of the VI algorithm $J_{k+1}(1)=\min \left[b, a+J_{k}(1)\right]$?

Answers to the Challenge Questions

Cost a

Deterministic one-state SSP

Two possible controls at state 1 (costs a and b)

Bellman Eq: $J(1)=\min [b, a+J(1)]$; VI: $J_{k+1}(1)=\min \left[b, a+J_{k}(1)\right]$

- If $a>0$ (positive cycle): $J^{*}(1)=b$ is the unique solution, and VI converges to $J^{*}(1)$. Here the "nonterminating policies are bad" assumption is satisfied.
- If $a=0$ (zero cycle):
$J^{*}(1)=\min [0, b]$.
The solution set of the Bellman equation is $=(-\infty, b]$.
The VI algorithm, $J_{k+1}(1)=\min \left[b, J_{k}(1)\right]$, converges (in one step) to b starting from $J_{0}(1) \geq b$, and does not move from a starting value $J_{0}(1) \leq b$.
- If $a<0$ (negative cycle): B-Eq has no solution, and VI diverges to $J^{*}(1)=-\infty$.

Results Involving Q-Factors - Discounted Problems

VI for Q-factors (finite horizon optimal Q-factors converge to infinite horizon Q-factors)

$$
Q_{k+1}(i, u)=\sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha \min _{v \in U(j)} Q_{k}(j, v)\right)
$$

converges to $Q^{*}(i, u)$ for each (i, u).
Bellman's equation for Q -factors

$$
Q^{*}(i, u)=\sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha \min _{v \in U(j)} Q^{*}(j, v)\right)
$$

Q^{*} is the unique solution of this equation, and we have

$$
\begin{equation*}
J^{*}(i)=\min _{u \in U(i)} Q^{*}(i, u) \tag{1}
\end{equation*}
$$

Optimality condition
A stationary policy μ is optimal if and only if $\mu(i)$ attains the minimum in Eq. (1) for every state i.

Policy Iteration (PI) Algorithm (Perpetual Rollout): From Base Policy to Rollout Policy and Repeat

Given the current (base) policy μ^{k}, a PI consists of two phases:

- Policy evaluation computes $J_{\mu^{k}}(i), i=1, \ldots, n$, as the solution of the (linear) Bellman equation system (or by some form of simulation)

$$
J_{\mu^{k}}(i)=\sum_{j=1}^{n} p_{i j}\left(\mu^{k}(i)\right)\left(g\left(i, \mu^{k}(i), j\right)+\alpha J_{\mu^{k}}(j)\right), \quad i=1, \ldots, n
$$

- Policy improvement then computes a new (the rollout) policy μ^{k+1} as

$$
\mu^{k+1}(i) \in \arg \min _{u \in U(i)} \sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha J_{\mu^{k}}(j)\right), \quad i=1, \ldots, n
$$

Fundamental Policy Improvement Property - Intuition: Acting Optimally for One Step and then Using μ^{k} Should Improve on μ^{k}

PI finite-step convergence: PI generates an improving sequence of policies, i.e., $J_{\mu^{k+1}}(i) \leq J_{\mu^{k}}(i)$ for all i and k, and terminates with an optimal policy.

Proof: We will show that $J_{\tilde{\mu}} \leq J_{\mu}$, where $\tilde{\mu}$ is obtained from μ by PI

- Denote by J_{N} the cost function of a policy that applies $\tilde{\mu}$ for the first N stages and applies μ thereafter.
- We have the Bellman equation $J_{\mu}(i)=\sum_{j=1}^{n} p_{i j}(\mu(i))\left(g(i, \mu(i), j)+\alpha J_{\mu}(j)\right)$, so

$$
J_{1}(i)=\sum_{j=1}^{n} p_{i j}(\tilde{\mu}(i))\left(g(i, \tilde{\mu}(i), j)+\alpha J_{\mu}(j)\right) \leq J_{\mu}(i) \quad \text { (by policy improvement eq.) }
$$

- From the definition of J_{2} and J_{1}, monotonicity, and the preceding relation, we have

$$
J_{2}(i)=\sum_{j=1}^{n} p_{i j}(\tilde{\mu}(i))\left(g(i, \tilde{\mu}(i), j)+\alpha J_{1}(j)\right) \leq \sum_{j=1}^{n} p_{i j}(\tilde{\mu}(i))\left(g(i, \tilde{\mu}(i), j)+\alpha J_{\mu}(j)\right)=J_{1}(i)
$$

$$
\text { so } J_{2}(i) \leq J_{1}(i) \leq J_{\mu}(i) \text { for all } i \text {. }
$$

- Continuing similarly, we obtain $J_{N+1}(i) \leq J_{N}(i) \leq J_{\mu}(i)$ for all i and N. Since $J_{N} \rightarrow J_{\tilde{\mu}}$ (VI for $\tilde{\mu}$ converges), it follows that $J_{\tilde{\mu}} \leq J_{\mu}$.

Illustration Movies: A Single Step of Policy Iteration for a Four-Spiders and Two-Flies Problem

We want to minimize the time to catch both flies

- Base policy (each spider follows the shortest path): Time is 85
- Rollout (all spiders move at once, 625 Q-factors/move choices): Time is 34
- We can reduce the number of Q-factors using multiagent/one-spider at-a-time rollout (will return to this later)

About the Next Lecture

We will cover:

- Infinite horizon policy iteration: extensions and approximations
- Rollout and parametric approximation methods
- We will likely need more that one lecture

PLEASE READ AS MUCH OF Chapter 4 AS YOU CAN PLEASE DOWNLOAD THE LATEST VERSIONS FROM MY WEBSITE

