
Class Notes for

ASU Course CSE 691; Spring 2022

Topics in Reinforcement Learning

Based on the Books

Reinforcement Learning and Optimal Control, 2019,

Rollout, Policy Iteration, and
Distributed Reinforcement Learning, 2020,

and

Lessons from AlphaZero for Optimal,
Model Predictive, and Adaptive Control, 2022

by

Dimitri P. Bertsekas

Arizona State University

dimitrib@mit.edu

Version of January 27, 2022

1

Preface

These class notes are made available as instructional mate-
rial for the 2022 CSE 691 ASU class on Reinforcement Learning.
They are posted on the internet, and can be used freely for in-
structional purposes, provided they are not excerpted, shortened,
or altered in any way.

The purpose of the notes is to provide an entry point to
reinforcement learning, largely from a decision, control, and op-
timization point of view. They have limited scope, but they pro-
vide enough background for starting to read literature in the
field and for making a choice for a research-oriented term paper.
They roughly cover the material of the first six to seven lectures.
They also provide the foundation for much of the material of
the remaining lectures, which address topics such as parametric
cost function and policy approximations (possibly involving neu-
ral networks), approximation in policy space, and aggregation,
and deal much more broadly with infinite horizon problems.

To repeat, the notes are not a textbook, they just provide an
entry point to the field, often uneven in coverage and insufficient
for in-depth understanding. At the same time the notes are at
the forefront of current research, and in part discuss new and as
yet unpublished material.

Your comments, corrections, and suggestions for improved
presentation are most welcome. The contents of the notes will
be periodically updated and corrected, so try to read the latest
version and please refer to the version date.

The aim of the 2022 version of the ASU course is to provide an
overview of the Reinforcement Learning (RL) methodology, and to focus
attention on a new conceptual framework, which aims to bridge the gaps
between the artificial intelligence, control theory, and operations research
views of the subject. This framework centers on approximate forms of Dy-
namic Programming (DP), which are motivated from some of the major
successes of RL involving games. Primary examples are the recent (2017)
AlphaZero program (which plays chess), and the similarly structured and
earlier (1990s) TD-Gammon program (which plays backgammon).

Our framework is couched on two general algorithms that are de-
signed largely independently of each other and operate in synergy through
the powerful mechanism of Newton’s method, applied for solution of the
fundamental Bellman equation of DP. We call these the off-line training
and the on-line play algorithms. In the AlphaZero and TD-Gammon game
contexts, the off-line training algorithm is the method used to teach the

2

program how to evaluate positions and to generate good moves at any given
position, while the on-line play algorithm is the method used to play in real
time against human or computer opponents.

Our synergistic view of off-line training and on-line play is motivated
by some striking empirical observations. In particular, both AlphaZero and
TD-Gammon were trained off-line extensively using neural networks and an
approximate version of the fundamental DP algorithm of policy iteration.
Yet the AlphaZero player that was obtained off-line is not used directly
during on-line play (it is too inaccurate due to approximation errors that
are inherent in off-line neural network training). Instead a separate on-line
player is used to select moves, based on multistep lookahead minimiza-
tion and a terminal position evaluator that was trained using experience
with the off-line player. The on-line player performs a form of policy im-
provement, which is not degraded by neural network approximations. As
a result, it greatly improves the performance of the off-line player.

Similarly, TD-Gammon performs on-line a policy improvement step
using one-step or two-step lookahead minimization, which is not degraded
by neural network approximations. To this end it uses an off-line neural
network-trained terminal position evaluator, and importantly it also ex-
tends its on-line lookahead by rollout (simulation with the one-step looka-
head player that is based on the position evaluator). Thus in summary:

(a) The on-line player of AlphaZero plays much better than its extensively
trained off-line player. This is due to the beneficial effect of exact
policy improvement with long lookahead minimization, which corrects
for the inevitable imperfections of the neural network-trained off-line
player, and position evaluator/terminal cost approximation.

(b) The TD-Gammon player that uses long rollout plays much better
than TD-Gammon without rollout. This is due to the beneficial ef-
fect of the rollout, which serves as a substitute for long lookahead
minimization.

An important lesson from AlphaZero and TD-Gammon is that the
performance of an off-line trained policy can be greatly improved by on-line
approximation in value space, with long lookahead (involving minimization
or rollout with the off-line policy, or both), and terminal cost approximation
that is obtained off-line. This performance enhancement is often dramatic
and is due to a simple fact, which is couched on algorithmic mathematics
and is a focal point of our course: approximation in value space with one-
step lookahead minimization amounts to a step of Newton’s method for
solving Bellman’s equation, while the starting point for the Newton step is
based on the results of off-line training, and may be enhanced by longer
lookahead minimization and on-line rollout . Indeed the major determinant
of the quality of the on-line policy is the Newton step that is performed
on-line, while off-line training plays a secondary role by comparison.

3

Significantly, the synergy between off-line training and on-line play
also underlies Model Predictive Control (MPC), a major control system
design methodology that has been extensively developed since the 1980s.
This synergy can be understood in terms of abstract models of infinite
horizon DP and simple geometrical constructions, and helps to explain the
all-important stability issues within the MPC context.

An additional benefit of policy improvement by approximation in
value space, not observed in the context of games (which have stable rules
and environment), is that it works well with changing problem parameters
and on-line replanning, similar to the methodology of indirect adaptive
control. Here the Bellman equation is perturbed due to the parameter
changes, but approximation in value space still operates as a Newton step.
An essential requirement here is that a system model is estimated on-line
through some identification method, and is used during the one-step or
multistep lookahead minimization process.

In these notes we will aim to explain (often with visualization) the
beneficial effects of on-line decision making on top of off-line training. In
the process, we will bring out the strong connections between the artificial
intelligence view of RL, the control theory views of MPC and adaptive con-
trol, and the operation research view of discrete optimization algorithms.
Moreover, we will describe a broad variety of algorithms (particularly roll-
out) that can be used for on-line play.

We will also aim to show, through the algorithmic ideas of Newton’s
method and the unifying principles of abstract DP, that the AlphaZero/TD-
Gammon methodology of approximation in value space and rollout applies
very broadly to deterministic and stochastic optimal control problems, in-
volving both discrete and continuous search spaces, as well as finite and
infinite horizon. Moreover, we will show that in addition to MPC and adap-
tive control, our conceptual framework can be effectively integrated with
other important methodologies such as multiagent systems and decentral-
ized control, discrete and Bayesian optimization, and heuristic algorithms
for discrete optimization.

We finally note that while we will deemphasize mathematical proofs
in these notes, there is considerable related analysis, which supports our
conclusions and can be found in the author’s recent RL and DP books.
These books also contain additional material on off-line training of neural
networks and on the use of policy gradient methods for approximation in
policy space, which will be prominent in the second half of the course, but
is not covered in sufficient detail in the present class notes.

Sources

While these notes are focused primarily on on-line play, the algorithmic
aspects of off-line training will be covered at length in class, and are also
discussed in the author’s books:

4

[1] Bertsekas, D. P., 2019. Reinforcement Learning and Optimal Control,
Athena Scientific, Belmont, MA.

[2] Bertsekas, D. P., 2020. Rollout, Policy Iteration, and Distributed Rein-
forcement Learning, Athena Scientific, Belmont, MA.

In particular, our class discussion will include the training of neu-
ral networks for approximation in value space, the methodology of policy
gradient methods for approximation in policy space, and an overview of a
variety of approximation architectures, including aggregation.

The books [1] and [2] above also include a far more detailed discus-
sion of MPC, adaptive control, and discrete optimization topics, than the
present class notes. Moreover, the monograph

[3] Bertsekas, D. P., 2022. Abstract Dynamic Programming, 3rd Ed., Athena
Scientific, Belmont, MA (can be downloaded from the author’s website)

focuses on the analytical aspects of abstract DP on which the Newton-based
methodology is couched, and may serve as a mathematical supplement to
the present class notes. It also provides the mathematical foundation for
the more visually oriented book

[4] Bertsekas, D. P., 2022. Lessons from AlphaZero for Optimal, Model
Predictive, and Adaptive Control, Athena Scientific, Belmont, MA (can be
downloaded from the author’s website)

which focuses in greater detail than the present class notes on the off-line
training/on-line play/Newton’s method conceptual framework, as well as
on model predictive and adaptive control, and associated issues of stability.

These class notes can be fruitfully supplemented by the extensive text-
book and research monograph literature. This literature, is summarized in
Section 1.8, and includes several accounts of reinforcement learning, based
on alternative viewpoints of artificial intelligence, control theory, and op-
erations research.

5

CONTENTS

1.1. AlphaZero, Off-Line Training, and On-Line Play p. 3
1.2. Deterministic Dynamic Programming p. 8

1.2.1. Finite Horizon Problem Formulation p. 8
1.2.2. The Dynamic Programming Algorithm p. 12
1.2.3. Approximation in Value Space and Rollout p. 23

1.3. Stochastic Dynamic Programming p. 27
1.3.1. Finite Horizon Problems p. 27
1.3.2. Approximation in Value Space for Stochastic DP . . . p. 34

1.4. Infinite Horizon Problems - An Overview p. 37
1.4.1. Infinite Horizon Methodology p. 39
1.4.2. Approximation in Value Space p. 42

1.5. Infinite Horizon Linear Quadratic Problems p. 48
1.5.1. Visualizing Approximation in Value Space -

Newton’s Method p. 54
1.5.2. Rollout and Policy Iteration p. 60

1.6. Examples, Variations, and Simplifications p. 63
1.6.1. A Few Words About Modeling p. 63
1.6.2. Problems with a Termination State p. 65
1.6.3. State Augmentation, Time Delays, Forecasts, and

Uncontrollable State Components p. 68
1.6.4. Partial State Information and Belief States p. 74
1.6.5. Multiagent Problems and Multiagent Rollout p. 77
1.6.6. Problems with Unknown Parameters - Adaptive

and Model Predictive Control p. 82
1.7. Reinforcement Learning and Optimal Control - Some

Terminology . p. 94
1.8. Notes, Sources, and Exercises p. 96

2. Principles of Approximation in Value Space

2.1. Approximation in Value and Policy Space p. 112
2.1.1. Approximation in Value Space - One-Step and

Multistep Lookahead p. 113
2.1.2. Approximation in Policy Space p. 117
2.1.3. Combined Approximation in Value and

Policy Space p. 118
2.2. Off-Line Training, On-Line Play, and Newton’s Method . . p. 123

2.2.1. Approximation in Value Space and Newton’s
Method . p. 130

2.2.2. Region of Stability p. 132

6

2.2.3. Policy Iteration, Rollout, and Newton’s Method . . . p. 138
2.2.4. How Sensitive is On-Line Play to the Off-Line

Training Process? p. 144
2.2.5. Why Not Just Train a Policy Network and Use it

Without On-Line Play? p. 146

References . p. 149

7

1

Exact and Approximate Dynamic

Programming

Contents

1.1. AlphaZero, Off-Line Training, and On-Line Play p. 3
1.2. Deterministic Dynamic Programming p. 8

1.2.1. Finite Horizon Problem Formulation p. 8
1.2.2. The Dynamic Programming Algorithm p. 12
1.2.3. Approximation in Value Space and Rollout p. 23

1.3. Stochastic Dynamic Programming p. 27
1.3.1. Finite Horizon Problems p. 27
1.3.2. Approximation in Value Space for Stochastic DP . p. 34

1.4. Infinite Horizon Problems - An Overview p. 37
1.4.1. Infinite Horizon Methodology p. 39
1.4.2. Approximation in Value Space p. 42

1.5. Infinite Horizon Linear Quadratic Problems p. 48
1.5.1. Visualizing Approximation in Value Space -

Newton’s Method p. 54
1.5.2. Rollout and Policy Iteration p. 60

1.6. Examples, Variations, and Simplifications p. 63
1.6.1. A Few Words About Modeling p. 63
1.6.2. Problems with a Termination State p. 65
1.6.3. State Augmentation, Time Delays, Forecasts, and . . .

Uncontrollable State Components p. 68

1

2 Exact and Approximate Dynamic Programming Chap. 1

1.6.4. Partial State Information and Belief States p. 74
1.6.5. Multiagent Problems and Multiagent Rollout . . . p. 77
1.6.6. Problems with Unknown Parameters - Adaptive . . .

and Model Predictive Control p. 82
1.7. Reinforcement Learning and Optimal Control - Some

Terminology . p. 94
1.8. Notes, Sources, and Exercises p. 96

Sec. 1.1 AlphaZero, Off-Line Training, and On-Line Play 3

In this chapter, we provide some background on exact and approximate
dynamic programming (DP), with a view towards the suboptimal solution
methods, which are based on approximation in value space and are the
main subject of these notes. We first discuss finite horizon problems, which
involve a finite sequence of successive decisions, and are thus conceptually
and analytically simpler. We then consider somewhat briefly the more
intricate infinite horizon problems.

We will discuss separately deterministic and stochastic problems (Sec-
tions 1.2 and 1.3, respectively). The reason is that deterministic problems
are simpler and have some favorable characteristics, which allow the ap-
plication of a broader variety of methods. Significantly they include chal-
lenging discrete and combinatorial optimization problems, which can be
fruitfully addressed with some of the rollout and approximate policy it-
eration methods that are some of the main subjects of the present class
notes.

We will also discuss selectively in this chapter some major algorith-
mic topics in approximate DP and reinforcement learning (RL), including
rollout and policy iteration, multiagent problems, and distributed algo-
rithms. A broader discussion of DP/RL may be found in the author’s RL
books [Ber19a], [Ber20a], the DP textbooks [Ber12], [Ber17], [Ber18a], the
neuro-dynamic programming monograph [BeT96], as well as the textbook
literature described in the last section of this chapter.

The DP/RL methods that are the principal subjects of these notes,
approximation in value space, rollout, and policy iteration, have a strong
connection with the famous AlphaZero, AlphaGo, and other related pro-
grams. As an introduction to our technical development, we take a look at
this relation in the next section.

1.1 ALPHAZERO, OFF-LINE TRAINING, AND ON-LINE PLAY

One of the most exciting recent success stories in RL is the development
of the AlphaGo and AlphaZero programs by DeepMind Inc; see [SHM16],
[SHS17], [SSS17]. AlphaZero plays Chess, Go, and other games, and is
an improvement in terms of performance and generality over AlphaGo,
which plays the game of Go only. Both programs play better than all
competitor computer programs available in 2021, and much better than
all humans. These programs are remarkable in several other ways. In
particular, they have learned how to play without human instruction, just
data generated by playing against themselves. Moreover, they learned how
to play very quickly. In fact, AlphaZero learned how to play chess better
than all humans and computer programs within hours (with the help of
awesome parallel computation power, it must be said).

Perhaps the most impressive aspect of AlphaZero/chess is that its
play is not just better, but it is also very different than human play in

4 Exact and Approximate Dynamic Programming Chap. 1

terms of long term strategic vision. Remarkably, AlphaZero has discovered
new ways to play a game that has been studied intensively by humans for
hundreds of years. Still, for all of its impressive success and brilliant imple-
mentation, AlphaZero is couched on well established theory and methodol-
ogy, which is the subject of the present notes, and is portable to far broader
realms of engineering, economics, and other fields. This is the methodology
of DP, policy iteration, limited lookahead, rollout, and approximation in
value space.†

To understand the overall structure of AlphaZero, and its connection
to our DP/RL methodology, it is useful to divide its design into two parts:
off-line training, which is an algorithm that learns how to evaluate chess
positions, and how to steer itself towards good positions with a default/base
chess player, and on-line play, which is an algorithm that generates good
moves in real time against a human or computer opponent, using the train-
ing it went through off-line. We will next briefly describe these algorithms,
and relate them to DP concepts and principles.

Off-Line Training and Policy Iteration

This is the part of the program that learns how to play through off-line
self-training, and is illustrated in Fig. 1.1.1. The algorithm generates a
sequence of chess players and position evaluators . A chess player assigns
“probabilities” to all possible moves at any given chess position (these are
the probabilities with which the player selects the possible moves at the
given position). A position evaluator assigns a numerical score to any
given chess position (akin to a “probability” of winning the game from
that position), and thus predicts quantitatively the performance of a player
starting from any position. The chess player and the position evaluator are
represented by two neural networks, a policy network and a value network ,
which accept a chess position and generate a set of move probabilities and
a position evaluation, respectively.‡

† It is also worth noting that the principles of the AlphaZero design have

much in common with the work of Tesauro [Tes94], [Tes95], [TeG96] on computer

backgammon. Tesauro’s programs stimulated much interest in RL in the middle

1990s, and exhibit similarly different and better play than human backgammon

players. A related impressive program for the (one-player) game of Tetris, also

based on the method of policy iteration, is described by Scherrer et al. [SGG15].

For a better understanding of the connections of AlphaZero and AlphaGo Zero

with Tesauro’s programs and the concepts developed here, the “Methods” section

of the paper [SSS17] is recommended.

‡ Here the neural networks play the role of function approximators. By view-

ing a player as a function that assigns move probabilities to a position, and a

position evaluator as a function that assigns a numerical score to a position, the

policy and value networks provide approximations to these functions based on

Sec. 1.1 AlphaZero, Off-Line Training, and On-Line Play 5

Policy Improvement
Policy Improvement

erent! Approximate Value Function Player Features Mappinerent! Approximate Value Function Player Features Mappin

Self-Learning/Policy Iteration Constraint Relaxation

Learned from scratch ... with 4 hours of training! Current “ImprovLearned from scratch ... with 4 hours of training! Current “Improved”
Policy Improvement

Policy Evaluation Improvement of Current Policy

Neural Network Neural Network

Value Policy Value Policy

Figure 1.1.1 Illustration of the AlphaZero training algorithm. It generates a
sequence of position evaluators and chess players. The position evaluator and the
chess player are represented by two neural networks, a value network and a policy
network, which accept a chess position and generate a position evaluation and a
set of move probabilities, respectively.

In the more conventional DP-oriented terms of these notes, a position
is the state of the game, a position evaluator is a cost function that gives (an
estimate of) the optimal cost-to-go at a given state, and the chess player
is a randomized policy for selecting actions/controls at a given state.†

The overall training algorithm is a form of policy iteration, a DP
algorithm that will be of primary interest to us in these notes. Starting from
a given player, it repeatedly generates (approximately) improved players,
and settles on a final player that is judged empirically to be “best” out of
all the players generated.‡ Policy iteration may be separated conceptually
in two stages (see Fig. 1.1.1).

(a) Policy evaluation: Given the current player and a chess position, the

training with data (training algorithms for neural networks and other approxi-

mation architectures are discussed in the books [Ber19a], [Ber20a]).

† One more complication is that chess and Go are two-player games, while

most of our development will involve single-player optimization. However, DP

theory extends to two-player games, although we will not focus on this extension.

Alternately, we can consider training a program to play against a known fixed

opponent; this is a one-player setting.

‡ Quoting from the paper [SSS17]: “The AlphaGo Zero selfplay algorithm

can similarly be understood as an approximate policy iteration scheme in which

MCTS is used for both policy improvement and policy evaluation. Policy im-

provement starts with a neural network policy, executes an MCTS based on that

policy’s recommendations, and then projects the (much stronger) search policy

back into the function space of the neural network. Policy evaluation is applied

to the (much stronger) search policy: the outcomes of selfplay games are also

projected back into the function space of the neural network. These projection

steps are achieved by training the neural network parameters to match the search

probabilities and selfplay game outcome respectively.”

6 Exact and Approximate Dynamic Programming Chap. 1

outcome of a game played out from the position provides a single data
point. Many data points are thus collected, and are used to train a
value network, whose output serves as the position evaluator for that
player.

(b) Policy improvement : Given the current player and its position evalua-
tor, trial move sequences are selected and evaluated for the remainder
of the game starting from many positions. An improved player is then
generated by adjusting the move probabilities of the current player
towards the trial moves that have yielded the best results. In Alp-
haZero this is done with a complicated algorithm called Monte Carlo
Tree Search. However, policy improvement can also be done more
simply. For example one could try all possible move sequences from
a given position, extending forward to a given number of moves, and
then evaluate the terminal position with the player’s position evalu-
ator. The move evaluations obtained in this way are used to nudge
the move probabilities of the current player towards more successful
moves, thereby obtaining data that is used to train a policy network
that represents the new player.

On-Line Play and Approximation in Value Space - Rollout

Suppose that a “final” player has been obtained through the AlphaZero off-
line training process just described. It could then be used in principle to
play chess against any human or computer opponent, since it is capable of
generating move probabilities at each given chess position using its policy
network. In particular, during on-line play, at a given position the player
can simply choose the move of highest probability supplied by the off-line
trained policy network. This player would play very fast on-line, but it
would not play good enough chess to beat strong human opponents. The
extraordinary strength of AlphaZero is attained only after the player and
its position evaluator obtained from off-line training have been embedded
into another algorithm, which we refer to as the “on-line player.” Given
the policy network/player obtained off-line and its value network/position
evaluator, this algorithm plays as follows (see Fig. 1.1.2).

At a given position, it generates a lookahead tree of all possible mul-
tiple move and countermove sequences, up to a given depth. It then runs
the off-line obtained player for some more moves, and then evaluates the
effect of the remaining moves by using the position evaluator of the off-line
obtained value network. Actually the middle portion, called “truncated
rollout,” is not used in the published version of AlphaZero/chess [SHS17],
[SHS17]; the first portion (multistep lookahead) is quite long and imple-
mented efficiently, so that the rollout portion is not essential. Rollout is
used in AlphaGo [SHM16], and plays a very important role in Tesauro’s
backgammon program [TeG96]. The reason is that in backgammon, long

Sec. 1.1 AlphaZero, Off-Line Training, and On-Line Play 7

Base Heuristic Truncated Rollout

Base Heuristic Truncated Rollout

.x0

Current Position

Current Position

Current Position xk

Off-Line Obtained Player O

ON-LINE PLAY

ON-LINE PLAY

OFF-LINE TRAINING

OFF-LINE TRAINING

ON-LINE PLAY Lookahead Tree States

ON-LINE PLAY Lookahead Tree States xk+1

Current Position

States xk+2

-Line Obtained Player Off-Line Obtained Cost Approximation

Adaptive Reoptimization Position EvaluatorWithout the Newton Step Base Player

With the Newton Step Adaptive Rollout Cost Approximation

Figure 1.1.2 Illustration of an on-line player such as the one used in AlphaGo,
AlphaZero, and Tesauro’s backgammon program [TeG96]. At a given position,
it generates a lookahead tree of multiple moves up to some depth, then runs
the off-line obtained player for some more moves, and evaluates the effect of the
remaining moves by using the position evaluator of the off-line player.

multistep lookahead is not possible because of rapid expansion of the looka-
head tree with every move.†

We should note that the preceding description of AlphaZero and re-
lated games is oversimplified. We will be adding refinements and details
as the book progresses. However, DP ideas with cost function approxima-
tions, similar to the on-line player illustrated in Fig. 1.1.2, will be central
for our purposes. They will be generically referred to as approximation in
value space. Moreover, the algorithmic division between off-line training
and on-line policy implementation will be conceptually very important for
our purposes.

Note that these two processes may be decoupled and may be designed
independently. For example the off-line training portion may be very sim-
ple, such as using a simple known policy for rollout without truncation, or
without terminal cost approximation. Conversely, a sophisticated process
may be used for off-line training of a terminal cost function approximation,
which is used immediately following one-step or multistep lookahead in a
value space approximation scheme.

† Tesauro’s rollout-based backgammon program [TeG96] does not use a pol-

icy network. It involves only a value network trained by his earlier TD-Gammon

algorithm [Tes94] (an approximate policy iteration algorithm), which is used to

generate moves for the truncated rollout via a one-step or two-step lookahead

minimization. The position evaluation used at the end of the truncated rollout

is also provided by the value network.

8 Exact and Approximate Dynamic Programming Chap. 1

In control system design, similar architectures to the ones of Alp-
haZero and TD-Gammon are employed in model predictive control (MPC).
There, the number of steps in lookahead minimization is called the con-
trol interval , while the total number of steps in lookahead minimization
and truncated rollout is called the prediction interval ; see e.g., Magni et
al. [MDM01].† The benefit of truncated rollout in providing an economical
substitute for longer lookahead minimization is well known within this con-
text. We will discuss later the structure of MPC and its similarities with
the AlphaZero architecture.

Dynamic programming frameworks with cost function approxima-
tions that are similar to the on-line player illustrated in Fig. 1.1.2, are
also known as approximate dynamic programming, or neuro-dynamic pro-
gramming, and will be central for our purposes. They will be generically
referred to as approximation in value space in these notes.‡

1.2 DETERMINISTIC DYNAMIC PROGRAMMING

In all DP problems, the central object is a discrete-time dynamic system
that generates a sequence of states under the influence of control. The
system may evolve deterministically or randomly (under the additional
influence of a random disturbance).

1.2.1 Finite Horizon Problem Formulation

In finite horizon problems the system evolves over a finite number N of time
steps (also called stages). The state and control at time k of the system will
be generally denoted by xk and uk, respectively. In deterministic systems,
xk+1 is generated nonrandomly, i.e., it is determined solely by xk and uk.
Thus, a deterministic DP problem involves a system of the form

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1, (1.1)

where

† The Matlab toolbox for MPC design explicitly allows the user to set these

two intervals.

‡ The names “approximate dynamic programming” and “neuro-dynamic pro-

gramming” are often used as synonyms to RL. However, RL is generally thought

to also subsume the methodology of approximation in policy space, which in-

volves search for optimal parameters within a parametrized set of policies. The

search is done with methods that are largely unrelated to DP, such as for example

stochastic gradient or random search methods. Approximation in policy space

may be used off-line to design a policy that can be used for on-line rollout. It

will not be discussed at any length here, but an account that is consistent in

terminology with these notes may be found in the RL book [Ber19a].

Sec. 1.2 Deterministic Dynamic Programming 9

k is the time index,

xk is the state of the system, an element of some space,

uk is the control or decision variable, to be selected at time k from some
given set Uk(xk) that depends on xk,

fk is a function of (xk, uk) that describes the mechanism by which the
state is updated from time k to time k + 1,

N is the horizon, i.e., the number of times control is applied.

The set of all possible xk is called the state space at time k. It can be
any set and may depend on k. Similarly, the set of all possible uk is called
the control space at time k. Again it can be any set and may depend on k.
Similarly the system function fk can be arbitrary and may depend on k.†

The problem also involves a cost function that is additive in the sense
that the cost incurred at time k, denoted by gk(xk, uk), accumulates over
time. Formally, gk is a function of (xk, uk) that takes real number values,
and may depend on k. For a given initial state x0, the total cost of a control
sequence {u0, . . . , uN−1} is

J(x0;u0, . . . , uN−1) = gN(xN) +
N−1
∑

k=0

gk(xk, uk), (1.2)

where gN(xN) is a terminal cost incurred at the end of the process. This is
a well-defined number, since the control sequence {u0, . . . , uN−1} together
with x0 determines exactly the state sequence {x1, . . . , xN} via the system
equation (1.1); see Figure 1.2.1. We want to minimize the cost (1.2) over
all sequences {u0, . . . , uN−1} that satisfy the control constraints, thereby

† This generality is one of the great strengths of the DP methodology and
guides the exposition style of this book, and the author’s other DP works.
By allowing general state and control spaces (discrete, continuous, or mixtures
thereof), and a k-dependent choice of these spaces, we can focus attention on
the truly essential algorithmic aspects of the DP approach, exclude extraneous
assumptions and constraints from our model, and avoid duplication of analysis.

The generality of our DP model is also partly responsible for our choice

of notation. In the artificial intelligence and operations research communities,

finite state models, often referred to as Markovian Decision Problems (MDP),

are common and use a transition probability notation (see Chapter 5). Unfor-

tunately, this notation is not well suited for deterministic models, and also for

continuous spaces models, both of which are important for the purposes of this

book. For the latter models, it involves transition probability distributions over

continuous spaces, and leads to mathematics that are far more complex as well

as less intuitive than those based on the use of the system function (1.1).

10 Exact and Approximate Dynamic Programming Chap. 1

s t u

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-

Initial State Stage 0 Stage 1 Stage 2 StageInitial State Stage 0 Stage 1 Stage 2 StageInitial State Stage 0 Stage 1 Stage 2 StageInitial State Stage 0 Stage 1 Stage 2 Stage N − 1 Stage1 Stage N
.

. . . .

.

. . . .

.

. . . .

.

. . . .

) Artificial Terminal

with Cost gN (xN)

State Space Partition Initial States

Figure 1.2.2 Transition graph for a deterministic finite-state system. Nodes
correspond to states xk. Arcs correspond to state-control pairs (xk , uk). An arc
(xk, uk) has start and end nodes xk and xk+1 = fk(xk , uk), respectively. We
view the cost gk(xk, uk) of the transition as the length of this arc. The problem
is equivalent to finding a shortest path from initial nodes of stage 0 to terminal
node t.

obtaining the optimal value as a function of x0:†

J*(x0) = min
uk∈Uk(xk)
k=0,...,N−1

J(x0;u0, . . . , uN−1). (1.3)

Discrete Optimal Control Problems

There are many situations where the state and control spaces are naturally
discrete and consist of a finite number of elements. Such problems are often
conveniently described with an acyclic graph specifying for each state xk the
possible transitions to next states xk+1. The nodes of the graph correspond
to states xk and the arcs of the graph correspond to state-control pairs
(xk, uk). Each arc with start node xk corresponds to a choice of a single
control uk ∈ Uk(xk) and has as end node the next state fk(xk, uk). The
cost of an arc (xk, uk) is defined as gk(xk, uk); see Fig. 1.2.2. To handle the
final stage, an artificial terminal node t is added. Each state xN at stage
N is connected to the terminal node t with an arc having cost gN (xN).

Note that control sequences {u0, . . . , uN−1} correspond to paths orig-
inating at the initial state (a node at stage 0) and terminating at one of the
nodes corresponding to the final stage N . If we view the cost of an arc as
its length, we see that a deterministic finite-state finite-horizon problem is
equivalent to finding a minimum-length (or shortest) path from the initial

† Here and later we write “min” (rather than “inf”) even if we are not sure

that the minimum is attained; similarly we write “max” (rather than “sup”) even

if we are not sure that the maximum is attained.

Sec. 1.2 Deterministic Dynamic Programming 11

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

SA

CAB

CAC

CCA

CCD

CBC

CCB

CCD

CAB

CAB

CAD

CDA

CCD

CBD

CBD

CDB

CDB

+1 Initial State A C AB AC CA CD ABC
+1 Initial State A C AB AC CA CD ABC

SC

Figure 1.2.3 The transition graph of the deterministic scheduling problem of
Example 1.2.1. Each arc of the graph corresponds to a decision leading from
some state (the start node of the arc) to some other state (the end node of the
arc). The corresponding cost is shown next to the arc. The cost of the last
operation is shown as a terminal cost next to the terminal nodes of the graph.

nodes of the graph (stage 0) to the terminal node t. Here, by the length of
a path we mean the sum of the lengths of its arcs.†

Generally, combinatorial optimization problems can be formulated as
deterministic finite-state finite-horizon optimal control problems. The idea
is to break down the solution into components, which can be computed
sequentially. The following is an illustrative example.

Example 1.2.1 (A Deterministic Scheduling Problem)

Suppose that to produce a certain product, four operations must be performed
on a certain machine. The operations are denoted by A, B, C, and D. We
assume that operation B can be performed only after operation A has been
performed, and operation D can be performed only after operation C has
been performed. (Thus the sequence CDAB is allowable but the sequence
CDBA is not.) The setup cost Cmn for passing from any operation m to any
other operation n is given. There is also an initial startup cost SA or SC for
starting with operation A or C, respectively (cf. Fig. 1.2.3). The cost of a

† It turns out also that any shortest path problem (with a possibly nona-

cyclic graph) can be reformulated as a finite-state deterministic optimal control

problem. See [Ber17], Section 2.1, and [Ber91], [Ber98] for extensive accounts of

shortest path methods, which connect with our discussion here.

12 Exact and Approximate Dynamic Programming Chap. 1

sequence is the sum of the setup costs associated with it; for example, the
operation sequence ACDB has cost SA +CAC + CCD +CDB.

We can view this problem as a sequence of three decisions, namely the
choice of the first three operations to be performed (the last operation is
determined from the preceding three). It is appropriate to consider as state
the set of operations already performed, the initial state being an artificial
state corresponding to the beginning of the decision process. The possible
state transitions corresponding to the possible states and decisions for this
problem are shown in Fig. 1.2.3. Here the problem is deterministic, i.e., at a
given state, each choice of control leads to a uniquely determined state. For
example, at state AC the decision to perform operation D leads to state ACD
with certainty, and has cost CCD. Thus the problem can be conveniently
represented with the transition graph of Fig. 1.2.3. The optimal solution
corresponds to the path that starts at the initial state and ends at some state
at the terminal time and has minimum sum of arc costs plus the terminal
cost.

1.2.2 The Dynamic Programming Algorithm

In this section we will state the DP algorithm and formally justify it. The
algorithm rests on a simple idea, the principle of optimality, which roughly
states the following; see Fig. 1.2.4.

Principle of Optimality

Let {u∗
0, . . . , u

∗
N−1} be an optimal control sequence, which together

with x0 determines the corresponding state sequence {x∗
1, . . . , x

∗
N} via

the system equation (1.1). Consider the subproblem whereby we start
at x∗

k at time k and wish to minimize the “cost-to-go” from time k to
time N ,

gk(x∗
k, uk) +

N−1
∑

m=k+1

gm(xm, um) + gN (xN),

over {uk, . . . , uN−1} with um ∈ Um(xm), m = k, . . . , N − 1. Then the
truncated optimal control sequence {u∗

k, . . . , u
∗
N−1} is optimal for this

subproblem.

The subproblem referred to above is called the tail subproblem that
starts at x∗

k. Stated succinctly, the principle of optimality says that the
tail of an optimal sequence is optimal for the tail subproblem. Its intuitive
justification is simple. If the truncated control sequence {u∗

k, . . . , u
∗
N−1}

were not optimal as stated, we would be able to reduce the cost further
by switching to an optimal sequence for the subproblem once we reach x∗

k

(since the preceding choices of controls, u∗
0, . . . , u

∗
k−1, do not restrict our

future choices).

Sec. 1.2 Deterministic Dynamic Programming 13

Tail subproblem TimeFuture Stages Terminal Cost k N
k N

{

Cost 0 Cost

Optimal control sequence

Optimal control sequence {u∗

0
, . . . , u

∗

k
, . . . , u

∗

N−1
}

Tail subproblem Time x
∗

k
Tail subproblem Time

Figure 1.2.4 Schematic illustration of the principle of optimality. The tail
{u∗

k
, . . . , u∗

N−1} of an optimal sequence {u∗
0 , . . . , u

∗
N−1} is optimal for the tail

subproblem that starts at the state x∗
k
of the optimal state trajectory.

For an auto travel analogy, suppose that the fastest route from Phoenix
to Boston passes through St Louis. The principle of optimality translates
to the obvious fact that the St Louis to Boston portion of the route is also
the fastest route for a trip that starts from St Louis and ends in Boston.†

The principle of optimality suggests that the optimal cost function
can be constructed in piecemeal fashion going backwards: first compute
the optimal cost function for the “tail subproblem” involving the last stage,
then solve the “tail subproblem” involving the last two stages, and continue
in this manner until the optimal cost function for the entire problem is
constructed.

The DP algorithm is based on this idea: it proceeds sequentially, by
solving all the tail subproblems of a given time length, using the solution
of the tail subproblems of shorter time length. We illustrate the algorithm
with the scheduling problem of Example 1.2.1. The calculations are simple
but tedious, and may be skipped without loss of continuity. However, they
may be worth going over by a reader that has no prior experience in the
use of DP.

Example 1.2.1 (Scheduling Problem - Continued)

Let us consider the scheduling Example 1.2.1, and let us apply the principle of
optimality to calculate the optimal schedule. We have to schedule optimally
the four operations A, B, C, and D. There is a cost for a transition between
two operations, and the numerical values of the transition costs are shown in
Fig. 1.2.5 next to the corresponding arcs.

According to the principle of optimality, the “tail” portion of an optimal
schedule must be optimal. For example, suppose that the optimal schedule
is CABD. Then, having scheduled first C and then A, it must be optimal to
complete the schedule with BD rather than with DB. With this in mind, we

† In the words of Bellman [Bel57]: “An optimal trajectory has the
property that at an intermediate point, no matter how it was reached, the
rest of the trajectory must coincide with an optimal trajectory as computed
from this intermediate point as the starting point.”

14 Exact and Approximate Dynamic Programming Chap. 1

+1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

+1 Initial State A C AB AC CA CD ABC
+1 Initial State A C AB AC CA CD ABC

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2
3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10
6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

Figure 1.2.5 Transition graph of the deterministic scheduling problem, with
the cost of each decision shown next to the corresponding arc. Next to each
node/state we show the cost to optimally complete the schedule starting from
that state. This is the optimal cost of the corresponding tail subproblem (cf.
the principle of optimality). The optimal cost for the original problem is equal
to 10, as shown next to the initial state. The optimal schedule corresponds
to the thick-line arcs.

solve all possible tail subproblems of length two, then all tail subproblems of
length three, and finally the original problem that has length four (the sub-
problems of length one are of course trivial because there is only one operation
that is as yet unscheduled). As we will see shortly, the tail subproblems of
length k + 1 are easily solved once we have solved the tail subproblems of
length k, and this is the essence of the DP technique.

Tail Subproblems of Length 2 : These subproblems are the ones that involve
two unscheduled operations and correspond to the states AB, AC, CA, and
CD (see Fig. 1.2.5).

State AB : Here it is only possible to schedule operation C as the next op-
eration, so the optimal cost of this subproblem is 9 (the cost of schedul-
ing C after B, which is 3, plus the cost of scheduling D after C, which
is 6).

State AC : Here the possibilities are to (a) schedule operation B and then
D, which has cost 5, or (b) schedule operation D and then B, which has
cost 9. The first possibility is optimal, and the corresponding cost of
the tail subproblem is 5, as shown next to node AC in Fig. 1.2.5.

State CA: Here the possibilities are to (a) schedule operation B and then
D, which has cost 3, or (b) schedule operation D and then B, which has
cost 7. The first possibility is optimal, and the corresponding cost of

Sec. 1.2 Deterministic Dynamic Programming 15

the tail subproblem is 3, as shown next to node CA in Fig. 1.2.5.

State CD : Here it is only possible to schedule operation A as the next
operation, so the optimal cost of this subproblem is 5.

Tail Subproblems of Length 3 : These subproblems can now be solved using
the optimal costs of the subproblems of length 2.

State A: Here the possibilities are to (a) schedule next operation B (cost
2) and then solve optimally the corresponding subproblem of length 2
(cost 9, as computed earlier), a total cost of 11, or (b) schedule next
operation C (cost 3) and then solve optimally the corresponding sub-
problem of length 2 (cost 5, as computed earlier), a total cost of 8.
The second possibility is optimal, and the corresponding cost of the tail
subproblem is 8, as shown next to node A in Fig. 1.2.5.

State C : Here the possibilities are to (a) schedule next operation A (cost
4) and then solve optimally the corresponding subproblem of length 2
(cost 3, as computed earlier), a total cost of 7, or (b) schedule next
operation D (cost 6) and then solve optimally the corresponding sub-
problem of length 2 (cost 5, as computed earlier), a total cost of 11.
The first possibility is optimal, and the corresponding cost of the tail
subproblem is 7, as shown next to node C in Fig. 1.2.5.

Original Problem of Length 4 : The possibilities here are (a) start with oper-
ation A (cost 5) and then solve optimally the corresponding subproblem of
length 3 (cost 8, as computed earlier), a total cost of 13, or (b) start with
operation C (cost 3) and then solve optimally the corresponding subproblem
of length 3 (cost 7, as computed earlier), a total cost of 10. The second pos-
sibility is optimal, and the corresponding optimal cost is 10, as shown next
to the initial state node in Fig. 1.2.5.

Note that having computed the optimal cost of the original problem
through the solution of all the tail subproblems, we can construct the optimal
schedule: we begin at the initial node and proceed forward, each time choosing
the optimal operation, i.e., the one that starts the optimal schedule for the
corresponding tail subproblem. In this way, by inspection of the graph and the
computational results of Fig. 1.2.5, we determine that CABD is the optimal
schedule.

Finding an Optimal Control Sequence by DP

We now state the DP algorithm for deterministic finite horizon problems
by translating into mathematical terms the heuristic argument underlying
the principle of optimality. The algorithm constructs functions

J*
N (xN), J*

N−1(xN−1), . . . , J*
0 (x0),

sequentially, starting from J*
N , and proceeding backwards to J*

N−1, J
*
N−2,

etc. The value J*
k (xk) represents the optimal cost of the tail subproblem

that starts at state xk at time k.

16 Exact and Approximate Dynamic Programming Chap. 1

{

Cost 0 Cost

Tail subproblem Time

Tail subproblem Time

Tail subproblem Time
Future Stages Terminal Cost k N

k N

k N

k N

{

Cost 0 Cost

Future Stages Terminal Cost k N
k N

Tail subproblem Time

Optimal Cost J∗

k
(xk)) xk

xk

xk+1

+1 x

′

k+1

x

′′

k+1

uk

u

′

k

u

′′

k

Opt. Cost J∗

k+1
(xk+1) Opt. Cost

) Opt. Cost J∗

k+1
(x

′

k+1
) Opt. Cost

) Opt. Cost J∗

k+1
(x

′′

k+1
)

Figure 1.2.6 Illustration of the DP algorithm. The tail subproblem that starts
at xk at time k minimizes over {uk, . . . , uN−1} the “cost-to-go” from k to N ,

gk(xk , uk) +

N−1
∑

m=k+1

gm(xm, um) + gN (xN).

To solve it, we choose uk to minimize the (1st stage cost + Optimal tail problem
cost) or

J∗
k(xk) = min

uk∈Uk(xk)

[

gk(xk , uk) + J∗
k+1

(

fk(xk, uk)
)

]

.

DP Algorithm for Deterministic Finite Horizon Problems

Start with
J*
N (xN) = gN (xN), for all xN , (1.4)

and for k = 0, . . . , N − 1, let

J*
k (xk) = min

uk∈Uk(xk)

[

gk(xk, uk) + J*
k+1

(

fk(xk, uk)
)

]

, for all xk.

(1.5)

The DP algorithm together with the construction of the optimal cost-
to-go functions J*

k (xk) are illustrated in Fig. 1.2.6. Note that at stage k, the
calculation in Eq. (1.5) must be done for all states xk before proceeding
to stage k − 1. The key fact about the DP algorithm is that for every
initial state x0, the number J*

0 (x0) obtained at the last step, is equal to
the optimal cost J*(x0). Indeed, a more general fact can be shown, namely

Sec. 1.2 Deterministic Dynamic Programming 17

that for all k = 0, 1, . . . , N − 1, and all states xk at time k, we have

J*
k (xk) = min

um∈Um(xm)
m=k,...,N−1

J(xk;uk, . . . , uN−1), (1.6)

where J(xk;uk, . . . , uN−1) is the cost generated by starting at xk and using
subsequent controls uk, . . . , uN−1:

J(xk;uk, . . . , uN−1) = gN(xN) +

N−1
∑

t=k

gt(xt, ut). (1.7)

Thus, J*
k (xk) is the optimal cost for an (N − k)-stage tail subproblem

that starts at state xk and time k, and ends at time N .† Based on the
interpretation (1.6) of J∗

k (xk), we call it the optimal cost-to-go from state
xk at stage k, and refer to J∗

k as the optimal cost-to-go function or optimal
cost function at time k. In maximization problems the DP algorithm (1.5)
is written with maximization in place of minimization, and then J∗

k is
referred to as the optimal value function at time k.

Once the functions J*
0 , . . . , J

*
N have been obtained, we can use a for-

ward algorithm to construct an optimal control sequence {u∗
0, . . . , u

∗
N−1}

and corresponding state trajectory {x∗
1, . . . , x

∗
N} for the given initial state

x0.

† We can prove this by induction. The assertion holds for k = N in view of
the initial condition

J∗
N (xN) = gN (xN).

To show that it holds for all k, we use Eqs. (1.6) and (1.7) to write

J∗
k (xk) = min

ut∈Ut(xt)
t=k,...,N−1

[

gN(xN) +

N−1
∑

t=k

gt(xt, ut)

]

= min
uk∈Uk(xk)

[

gk(xk, uk)

+ min
ut∈Ut(xt)

t=k+1,...,N−1

[

gN (xN) +

N−1
∑

t=k+1

gt(xt, ut)

]]

= min
uk∈Uk(xk)

[

gk(xk, uk) + J∗
k+1

(

fk(xk, uk)
)

]

,

where for the last equality we use the induction hypothesis. A subtle mathe-

matical point here is that, through the minimization operation, the cost-to-go

functions J∗
k may take the value −∞ for some xk. Still the preceding induction

argument is valid even if this is so.

18 Exact and Approximate Dynamic Programming Chap. 1

Construction of Optimal Control Sequence {u∗
0, . . . , u

∗
N−1}

Set
u∗
0 ∈ arg min

u0∈U0(x0)

[

g0(x0, u0) + J*
1

(

f0(x0, u0)
)

]

,

and
x∗
1 = f0(x0, u∗

0).

Sequentially, going forward, for k = 1, 2, . . . , N − 1, set

u∗
k ∈ arg min

uk∈Uk(x
∗
k
)

[

gk(x∗
k, uk) + J*

k+1

(

fk(x∗
k, uk)

)

]

, (1.8)

and
x∗
k+1 = fk(x∗

k, u
∗
k).

The same algorithm can be used to find an optimal control sequence
for any tail subproblem. Figure 1.2.5 traces the calculations of the DP
algorithm for the scheduling Example 1.2.1. The numbers next to the
nodes, give the corresponding cost-to-go values, and the thick-line arcs
give the construction of the optimal control sequence using the preceding
algorithm.

DP Algorithm for General Discrete Optimization Problems

We have noted earlier that discrete deterministic optimization problems,
including challenging combinatorial problems, can be typically formulated
as DP problems by breaking down each feasible solution into a sequence of
decisions/controls, as illustrated with the scheduling Example 1.2.1. This
formulation often leads to an intractable DP computation because of an
exponential explosion of the number of states as time progresses. However,
a DP formulation brings to bear approximate DP methods, such as rollout
and others, to be discussed shortly, which can deal with the exponentially
increasing size of the state space.

The following example deals with the classical traveling salesman
problem involving N cities. Here, the number of states grows exponen-
tially with N , and so does the corresponding amount of computation for
exact DP. We will show later (Example 1.2.3) that with rollout, we can
solve the problem approximately with computation that grows polynomi-
ally with N .

Example 1.2.2 (The Traveling Salesman Problem)

Here we are given N cities and the travel time between each pair of cities.
We wish to find a minimum time travel that visits each of the cities exactly

Sec. 1.2 Deterministic Dynamic Programming 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCB

s Terminal State t

15 1 5 15 1 515 1 5 15 1 5

15 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 25

15 1 5 18 4 19 9 21 25 8 1215 1 5 18 4 19 9 21 25 8 12

15 1 5 18 4 19 9 21 25 8 12 13

Initial State x0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

Matrix of Intercity Travel Costs

Matrix of Intercity Travel Costs
(

6 13 14 24 27

6 13 14 24 27

A

B

C

D

Four Cities

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

) 45 20) 45 20

) 45 20 40

Figure 1.2.7 Example of a DP formulation of the traveling salesman problem.
The travel times between the four cities A, B, C, and D are shown in the matrix
at the bottom. We form a graph whose nodes are the k-city sequences and
correspond to the states of the kth stage, assuming that A is the starting city.
The transition costs/travel times are shown next to the arcs. The optimal
costs-to-go are generated by DP starting from the terminal state and going
backwards towards the initial state, and are shown next to the nodes. There is
a unique optimal sequence here (ABDCA), and it is marked with thick lines.
The optimal sequence can be obtained by forward minimization [cf. Eq. (1.8)],
starting from the initial state x0.

once and returns to the start city. To convert this problem to a DP problem,
we form a graph whose nodes are the sequences of k distinct cities, where
k = 1, . . . , N . The k-city sequences correspond to the states of the kth stage.
The initial state x0 consists of some city, taken as the start (city A in the
example of Fig. 1.2.7). A k-city node/state leads to a (k+1)-city node/state
by adding a new city at a cost equal to the travel time between the last two
of the k + 1 cities; see Fig. 1.2.7. Each sequence of N cities is connected
to an artificial terminal node t with an arc of cost equal to the travel time
from the last city of the sequence to the starting city, thus completing the
transformation to a DP problem.

20 Exact and Approximate Dynamic Programming Chap. 1

The optimal costs-to-go from each node to the terminal state can be
obtained by the DP algorithm and are shown next to the nodes. Note, how-
ever, that the number of nodes grows exponentially with the number of cities
N . This makes the DP solution intractable for large N . As a result, large
traveling salesman and related scheduling problems are typically addressed
with approximation methods, some of which are based on DP, and will be
discussed in future chapters.

Let us now extend the ideas of the preceding example to the general
discrete optimization problem:

minimize G(u)

subject to u ∈ U,

where U is a finite set of feasible solutions and G(u) is a cost function. We
assume that each solution u has N components; i.e., it has the form u =
(u0, . . . , uN−1), where N is a positive integer. We can then view the prob-
lem as a sequential decision problem, where the components u0, . . . , uN−1

are selected one-at-a-time. A k-tuple (u0, . . . , uk−1) consisting of the first
k components of a solution is called a k-solution. We associate k-solutions
with the kth stage of the finite horizon DP problem shown in Fig. 1.2.8.
In particular, for k = 1, . . . , N , we view as the states of the kth stage all
the k-tuples (u0, . . . , uk−1). For stage k = 0, . . . , N − 1, we view uk as the
control. The initial state is an artificial state denoted s. From this state,
by applying u0, we may move to any “state” (u0), with u0 belonging to the
set

U0 =
{

ũ0 | there exists a solution of the form (ũ0, ũ1, . . . , ũN−1) ∈ U
}

.

Thus U0 is the set of choices of u0 that are consistent with feasibility.
More generally, from a state (u0, . . . , uk−1), we may move to any state

of the form (u0, . . . , uk−1, uk), upon choosing a control uk that belongs to
the set

Uk(u0, . . . , uk−1) =
{

uk | for some uk+1, . . . , uN−1 we have

(u0, . . . , uk−1, uk, uk+1, . . . , uN−1) ∈ U
}

.

These are the choices of uk that are consistent with the preceding choices
u0, . . . , uk−1, and are also consistent with feasibility. The last stage cor-
responds to the N -solutions u = (u0, . . . , uN−1), and the terminal cost is
G(u); see Fig. 1.2.8. All other transitions in this DP problem formulation
have cost 0.

Let
J*
k (u0, . . . , uk−1)

denote the optimal cost starting from the k-solution (u0, . . . , uk−1), i.e.,
the optimal cost of the problem over solutions whose first k components

Sec. 1.2 Deterministic Dynamic Programming 21

Artificial Start State End State

)
...

)
...

)
...

)
...

)
...)

...

. . . i

. . . i

. . . i

. . . i

Set of States (
Set of States (Set of States (Set of States (

Cost G(u)

s t u

Stage 1 Stage 2 Stage 3 Stage
Stage 1 Stage 2 Stage 3 Stage
Stage 1 Stage 2 Stage 3 StageStage 1 Stage 2 Stage 3 Stage N

Initial State 15 1 5 18 4 19 9 21 25 8 12 13

(u0) (
) (u0, u1) () (u0, u1, u2)) u = (u0, . . . , uN−1)

u0

u1

u2

uN−1

)
A
p
p
rox

im
ate

..
)
A
p
p
rox

im
ate

..

)
A
p
p
rox

im
ate

..
)
A
p
p
rox

im
ate

..
)
A
p
p
rox

im
ate

..
)
A
p
p
rox

im
ate

..

)
A
p
p
rox

im
ate

..
)
A
p
p
rox

im
ate

..
)
A
p
p
rox

im
ate

..
)
A
p
p
rox

im
ate

..
)
A
p
p
rox

im
ate

..
)
A
p
p
rox

im
ate

..

)
A
p
p
rox

im
ate

..
)
A
p
p
rox

im
ate

..

)
A
p
p
rox

im
ate

..
)
A
p
p
rox

im
ate

..
)
A
p
p
rox

im
ate

..
)
A
p
p
rox

im
ate

..
)
A
p
p
rox

im
ate

..
)
A
p
p
rox

im
ate

..

Figure 1.2.8. Formulation of a discrete optimization problem as a DP prob-
lem with N stages. There is a cost G(u) only at the terminal stage on the arc
connecting an N-solution u = (u0, . . . , uN−1) upon reaching the terminal state.
Alternative formulations may use fewer states by taking advantage of the prob-
lem’s structure.

are constrained to be equal to u0, . . . , uk−1. The DP algorithm is described
by the equation

J*
k (u0, . . . , uk−1) = min

uk∈Uk(u0,...,uk−1)
J*
k+1(u0, . . . , uk−1, uk), (1.9)

with the terminal condition

J*
N (u0, . . . , uN−1) = G(u0, . . . , uN−1).

This algorithm executes backwards in time: starting with the known func-
tion J*

N = G, we compute J*
N−1, then J*

N−2, and so on up to computing J*
0 .

An optimal solution (u∗
0, . . . , u

∗
N−1) is then constructed by going forward

through the algorithm

u∗
k ∈ arg min

uk∈Uk(u
∗
0
,...,u∗

k−1
)
J*
k+1(u

∗
0, . . . , u

∗
k−1, uk), k = 0, . . . , N − 1,

(1.10)
first compute u∗

0, then u∗
1, and so on up to u∗

N−1; cf. Eq. (1.8).
Of course here the number of states typically grows exponentially with

N , but we can use the DP minimization (1.10) as a starting point for the use
of approximation methods. For example we may try to use approximation
in value space, whereby we replace J*

k+1 with some suboptimal J̃k+1 in Eq.
(1.10). One possibility is to use as

J̃k+1(u∗
0, . . . , u

∗
k−1, uk),

22 Exact and Approximate Dynamic Programming Chap. 1

the cost generated by a heuristic method that solves the problem sub-
optimally with the values of the first k + 1 decision components fixed at
u∗
0, . . . , u

∗
k−1, uk. This is the rollout algorithm, which is a very simple and

effective approach for approximate combinatorial optimization; see the next
section.

Let us finally note that while we have used a general cost function
G and constraint set C in our discrete optimization model of this section,
in many problems G and/or C may have a special structure, which is con-
sistent with a sequential decision making process. The traveling salesman
Example 1.2.2 is a case in point, where G consists of the sum of N compo-
nents (the intercity travel costs), one per stage.

Q-Factors and Q-Learning

An alternative (and equivalent) form of the DP algorithm (1.5), uses the
optimal cost-to-go functions J*

k indirectly. In particular, it generates the
optimal Q-factors , defined for all pairs (xk, uk) and k by

Q*
k(xk, uk) = gk(xk, uk) + J*

k+1

(

fk(xk, uk)
)

. (1.11)

Thus the optimal Q-factors are simply the expressions that are minimized
in the right-hand side of the DP equation (1.5).†

Note that the optimal cost function J*
k can be recovered from the

optimal Q-factor Q*
k by means of the minimization

J*
k (xk) = min

uk∈Uk(xk)
Q*

k(xk, uk). (1.12)

Moreover, the DP algorithm (1.5) can be written in an essentially equivalent
form that involves Q-factors only [cf. Eqs. (1.11)-(1.12)]:

Q*
k(xk, uk) = gk(xk, uk) + min

uk+1∈Uk+1(fk(xk,uk))
Q*

k+1

(

fk(xk, uk), uk+1

)

.

Exact and approximate forms of this and other related algorithms, includ-
ing counterparts for stochastic optimal control problems, comprise an im-
portant class of RL methods known as Q-learning. We will discuss various
forms of Q-learning later.

† The term “Q-factor” has been used in the books [BeT96], [Ber19a], [Ber20a]

and is adopted here as well. Another term used is “action value” (at a given

state). The terms “state-action value” and “Q-value” are also common in the

literature. The name “Q-factor” originated in reference to the notation used in

an influential Ph.D. thesis [Wat89] that proposed the use of Q-factors in RL.

Sec. 1.2 Deterministic Dynamic Programming 23

1.2.3 Approximation in Value Space and Rollout

The forward optimal control sequence construction of Eq. (1.8) is possible
only after we have computed J*

k (xk) by DP for all xk and k. Unfortu-
nately, in practice this is often prohibitively time-consuming, because the
number of possible xk and k can be very large. However, a similar forward
algorithmic process can be used if the optimal cost-to-go functions J*

k are

replaced by some approximations J̃k. This is the basis for an idea that is
central in RL: approximation in value space.† It constructs a suboptimal
solution {ũ0, . . . , ũN−1} in place of the optimal {u∗

0, . . . , u
∗
N−1}, based on

using J̃k in place of J*
k in the DP procedure (1.8).

Approximation in Value Space - Use of J̃k in Place of J*
k

Start with

ũ0 ∈ arg min
u0∈U0(x0)

[

g0(x0, u0) + J̃1
(

f0(x0, u0)
)

]

,

and set
x̃1 = f0(x0, ũ0).

Sequentially, going forward, for k = 1, 2, . . . , N − 1, set

ũk ∈ arg min
uk∈Uk(x̃k)

[

gk(x̃k, uk) + J̃k+1

(

fk(x̃k, uk)
)

]

, (1.13)

and
x̃k+1 = fk(x̃k, ũk).

In approximation in value space the calculation of the suboptimal
sequence {ũ0, . . . , ũN−1} is done by going forward (no backward calcula-
tion is needed once the approximate cost-to-go functions J̃k are available).
This is similar to the calculation of the optimal sequence {u∗

0, . . . , u
∗
N−1},

and is independent of how the functions J̃k are computed. The motivation
for approximation in value space for stochastic DP problems is vastly re-
duced computation relative to the exact DP algorithm (once J̃k have been
obtained): the minimization (1.13) needs to be performed only for the N
states x0, x̃1, . . . , x̃N−1 that are encountered during the on-line control of

† Approximation in value space is a simple idea that has been used quite

extensively for deterministic problems, well before the development of the mod-

ern RL methodology. For example it underlies the widely used A∗ method for

computing approximate solutions to large scale shortest path problems.

24 Exact and Approximate Dynamic Programming Chap. 1

the system, and not for every state within the potentially enormous state
space, as is the case for exact DP.

The algorithm (1.13) is said to involve a one-step lookahead minimiza-
tion, since it solves a one-stage DP problem for each k. In the next chapter
we will also discuss the possibility of multistep lookahead , which involves
the solution of an ℓ-step DP problem, where ℓ is an integer, 1 < ℓ < N −k,
with a terminal cost function approximation J̃k+ℓ. Multistep lookahead
typically (but not always) provides better performance over one-step looka-
head in RL approximation schemes, and will be discussed in Chapter 2. For
example in Alphazero chess, long multistep lookahead is critical for good
on-line performance. The intuitive reason is that with ℓ stages being treated
“exactly” (by optimization), the effect of the approximation error

J̃k+ℓ − J*
k+ℓ

tends to become less significant as ℓ increases. However, the solution of the
multistep lookahead optimization problem, instead of the one-step looka-
head counterpart of Eq. (1.13), becomes more time consuming.

Rollout, Cost Improvement, and On-Line Replanning

A major issue in value space approximation is the construction of suitable
approximate cost-to-go functions J̃k. This can be done in many different
ways, giving rise to some of the principal RL methods. For example, J̃k may
be constructed with a sophisticated off-line training method, as discussed in
Section 1.1. Alternatively, J̃k may be obtained on-line with rollout , which
will be discussed in detail in these notes. In rollout, the approximate values
J̃k(xk) are obtained when needed by running a heuristic control scheme,
called base heuristic or base policy, for a suitably large number of steps,
starting from the state xk.

The major theoretical property of rollout is cost improvement : the
cost obtained by rollout using some base heuristic is less or equal to the
corresponding cost of the base heuristic. This is true for any starting state,
provided the base heuristic satisfies some simple conditions, which will be
discussed in Chapter 2.†

There are also several variants of rollout, including versions involv-
ing multiple heuristics, combinations with other forms of approximation

† For an intuitive justification of the cost improvement mechanism, note that

the rollout control ũk is calculated from Eq. (1.13) to attain the minimum over

uk over the sum of two terms: the first stage cost gk(x̃k, uk) plus the cost of the

remaining stages (k+1 to N) using the heuristic controls. Thus rollout involves a

first stage optimization (rather than just using the base heuristic), which accounts

for the cost improvement. This reasoning also explains why multistep lookahead

tends to provide better performance than one-step lookahead in rollout schemes.

Sec. 1.2 Deterministic Dynamic Programming 25

x0 0 x1) . . .

uk x

k xNk xk+1

k u
′

k

′

k
u
′′

k
x

+1
x
′′

k+1

x
′

N

x
′′

N

. . . Q-Factors

-Factors Current State x

Current State xk

Nearest Neighbor Heuristic

Nearest Neighbor Heuristic

Nearest Neighbor Heuristic

Next Cities Next States

∗
x
′

k+1

Figure 1.2.9 Schematic illustration of rollout with one-step lookahead for a de-
terministic problem. At state xk, for every pair (xk, uk), uk ∈ Uk(xk), the base

heuristic generates an approximate Q-factor

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(

fk(xk, uk)
)

,

and selects the control µ̃k(xk) with minimal Q-factor.

in value space methods, multistep lookahead, and stochastic uncertainty.
We will discuss such variants later. For the moment we will focus on a
deterministic DP problem with a finite number of controls. Given a state
xk at time k, this algorithm considers all the tail subproblems that start
at every possible next state xk+1, and solves them suboptimally by using
some algorithm, referred to as base heuristic.

Thus when at xk, rollout generates on-line the next states xk+1 that
correspond to all uk ∈ Uk(xk), and uses the base heuristic to compute the
sequence of states {xk+1, . . . , xN} and controls {uk+1, . . . , uN−1} such that

xt+1 = ft(xt, ut), t = k, . . . , N − 1,

and the corresponding cost

Hk+1(xk+1) = gk+1(xk+1, uk+1) + · · ·+ gN−1(xN−1, uN−1) + gN (xN).

The rollout algorithm then applies the control that minimizes over uk ∈
Uk(xk) the tail cost expression for stages k to N :

gk(xk, uk) +Hk+1(xk+1).

Equivalently, and more succinctly, the rollout algorithm applies at
state xk the control µ̃k(xk) given by the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk), (1.14)

26 Exact and Approximate Dynamic Programming Chap. 1

x0 0 x1) . . .

uk x

k xNk xk+1

k u
′

k

′

k
u
′′

k
x

x
′

k+1

+1
x
′′

k+1

x
′

N

x
′′

N

Current State xk

Initial City Current Partial Tour Next Cities Nearest Neighbor
Initial City Current Partial Tour
Current Partial Tour

Current Partial Tour Next Cities Nearest Neighbor

Nearest Neighbor Heuristic
Nearest Neighbor Heuristic

Nearest Neighbor Heuristic
Nearest Neighbor Heuristic

Nearest Neighbor Heuristic
Nearest Neighbor Heuristic

Complete Tours

µ Next Partial Tour

Next Partial Tours

Figure 1.2.10 Rollout with the nearest neighbor heuristic for the traveling sales-
man problem of Example 1.2.3. The initial state x0 consists of a single city. The
final state xN is a complete tour of N cities, containing each city exactly once.

where Q̃k(xk, uk) is the approximate Q-factor defined by

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(

fk(xk, uk)
)

; (1.15)

see Fig. 1.2.9. Rollout defines a suboptimal policy π̃ = {µ̃0, . . . , µ̃N−1},
referred to as the rollout policy, where for each xk and k, µ̃k(xk) is the
control produced by the Q-factor minimization (1.14).

Note that the rollout algorithm requires running the base heuristic
for a number of times that is bounded by Nn, where n is an upper bound
on the number of control choices available at each state. Thus if n is
small relative to N , it requires computation equal to a small multiple of N
times the computation time for a single application of the base heuristic.
Similarly, if n is bounded by a polynomial in N , the ratio of the rollout
algorithm computation time to the base heuristic computation time is a
polynomial in N .

Example 1.2.3 (Traveling Salesman Problem)

Let us consider the traveling salesman problem of Example 1.2.2, whereby a
salesman wants to find a minimum cost tour that visits each of N given cities
c = 0, . . . , N − 1 exactly once and returns to the city he started from. With
each pair of distinct cities c, c′, we associate a traversal cost g(c, c′). Note
that we assume that we can go directly from every city to every other city.
There is no loss of generality in doing so because we can assign a very high
cost g(c, c′) to any pair of cities (c, c′) that is precluded from participation in
the solution. The problem is to find a visit order that goes through each city
exactly once and whose sum of costs is minimum.

There are many heuristic approaches for solving the traveling sales-
man problem. For illustration purposes, let us focus on the simple nearest
neighbor heuristic, which starts with a partial tour, i.e., an ordered collec-
tion of distinct cities, and constructs a sequence of partial tours, adding to
the each partial tour a new city that does not close a cycle and minimizes

Sec. 1.3 Stochastic Dynamic Programming 27

the cost of the enlargement. In particular, given a sequence {c0, c1, . . . , ck}
consisting of distinct cities, the nearest neighbor heuristic adds a city ck+1

that minimizes g(ck, ck+1) over all cities ck+1 6= c0, . . . , ck, thereby forming
the sequence {c0, c1, . . . , ck, ck+1}. Continuing in this manner, the heuristic
eventually forms a sequence of N cities, {c0, c1, . . . , cN−1}, thus yielding a
complete tour with cost

g(c0, c1) + · · ·+ g(cN−2, cN−1) + g(cN−1, c0). (1.16)

We can formulate the traveling salesman problem as a DP problem as
we discussed in Example 1.2.2. We choose a starting city, say c0, as the
initial state x0. Each state xk corresponds to a partial tour (c0, c1, . . . , ck)
consisting of distinct cities. The states xk+1, next to xk, are sequences of the
form (c0, c1, . . . , ck, ck+1) that correspond to adding one more unvisited city
ck+1 6= c0, c1, . . . , ck (thus the unvisited cities are the feasible controls at a
given partial tour/state). The terminal states xN are the complete tours of
the form (c0, c1, . . . , cN−1, c0), and the cost of the corresponding sequence of
city choices is the cost of the corresponding complete tour given by Eq. (1.16).
Note that the number of states at stage k increases exponentially with k, and
so does the computation required to solve the problem by exact DP.

Let us now use as a base heuristic the nearest neighbor method. The
corresponding rollout algorithm operates as follows: After k < N − 1 it-
erations, we have a state xk, i.e., a sequence {c0, . . . , ck} consisting of dis-
tinct cities. At the next iteration, we add one more city by running the
nearest neighbor heuristic starting from each of the sequences of the form
{c0, . . . , ck, c} where c 6= c0, . . . , ck. We then select as next city ck+1 the city
c that yielded the minimum cost tour under the nearest neighbor heuristic;
see Fig. 1.2.10. The overall computation for the rollout solution is bounded
by a polynomial in N , and is much smaller than the exact DP computation.
Figure 1.2.11 provides an example where the nearest neighbor heuristic and
the corresponding rollout algorithm are compared.

1.3 STOCHASTIC DYNAMIC PROGRAMMING

We will now extend the DP algorithm and our discussion of approximation
in value space to problems that involve stochastic uncertainty in their sys-
tem equation and cost function. We will first discuss the finite horizon case,
and the extension of the ideas underlying the principle of optimality and
approximation in value space schemes. We will then consider the infinite
horizon version of the problem, and provide an overview of the underlying
theory and algorithmic methodology.

1.3.1 Finite Horizon Problems

The stochastic optimal control problem differs from its deterministic coun-
terpat primarily in the nature of the discrete-time dynamic system that
governs the evolution of the state xk. This system includes a random

28 Exact and Approximate Dynamic Programming Chap. 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCB

s Terminal State t

15 1 5 15 1 5

15 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 25

15 1 5 18 4 19 9 21 25 8 12

15 1 5 18 4 19 9 21 25 8 12 13

Initial State x0

Matrix of Intercity Travel Costs

Matrix of Intercity Travel Costs
(

6 13 14 24 27

6 13 14 24 27

6 13 14 24 27 Rollout

Base Heuristic Corrected

Yields Rollout Policy µ̃ 20Yields Rollout Policy µ̃ 20

40 23

T0T1

Cost 28 Cost 27 Cost 13Cost 28 Cost 27 Cost 13

) T2

Cost 28 Cost 27 Cost 13

18

18

18

) 45 20 40 18) 45 20 40 18

) 45 20 40 18 2 6

) 45 20 40 18 2 6

) 45 20 40 18 2 6 22

Figure 1.2.11 A traveling salesman problem example of rollout with the
nearest neighbor base heuristic. At city A, the nearest neighbor heuristic
generates the tour ACDBA (labelled T0). At city A, the rollout algorithm
compares the tours ABCDA, ACDBA, and ADCBA, finds ABCDA (labelled
T1) to have the least cost, and moves to city B. At AB, the rollout algorithm
compares the tours ABCDA and ABDCA, finds ABDCA (labelled T2) to have
the least cost, and moves to city D. The rollout algorithm then moves to cities
C and A (it has no other choice). Note that the algorithm generates three
tours/solutions, T0, T1, and T2, of decreasing costs 28, 27, and 13, respectively.
The first tour T0 is generated by the base heuristic starting from the initial
state, while the last tour T2 is generated by rollout. This is suggestive of a
general result (see the RL books [Be19a], [Ber20a]): the rollout algorithm for
deterministic problems generates a sequence of solutions of decreasing cost.
In particular, the final rollout solution is no worse in terms of cost than the
base heuristic solution. In this example, the tour T2 generated by rollout is
optimal, but this is just a coincidence.

“disturbance” wk with a probability distribution Pk(· | xk, uk) that may
depend explicitly on xk and uk, but not on values of prior disturbances
wk−1, . . . , w0. The system has the form

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1,

Sec. 1.3 Stochastic Dynamic Programming 29

......) xk k xk+1 +1 xN) x0

Random Transition

Random Transition xk+1 = fk(xk, uk, wk) Random cost

) Random Cost
) Random Cost gk(xk, uk, wk)

Future Stages Terminal Cost
Future Stages Terminal Cost gN(xN)

Control uk

Stage k k Future Stages

Figure 1.3.1 Illustration of an N-stage stochastic optimal control problem.
Starting from state xk, the next state under control uk is generated randomly,
according to xk+1 = fk(xk, uk, wk), where wk is the random disturbance, and a
random stage cost gk(xk , uk, wk) is incurred.

where as earlier xk is an element of some state space, the control uk is an ele-
ment of some control space. The cost per stage is denoted by gk(xk, uk, wk)
and also depends on the random disturbance wk; see Fig. 1.3.1. The control
uk is constrained to take values in a given subset Uk(xk), which depends
on the current state xk.

Given an initial state x0 and a policy π = {µ0, . . . , µN−1}, the fu-
ture states xk and disturbances wk are random variables with distributions
defined through the system equation

xk+1 = fk
(

xk, µk(xk), wk

)

, k = 0, 1, . . . , N − 1,

and the given distributions Pk(· | xk, uk). Thus, for given functions gk,
k = 0, 1, . . . , N , the expected cost of π starting at x0 is

Jπ(x0) = E
wk

k=0,...,N−1

{

gN (xN) +

N−1
∑

k=0

gk
(

xk, µk(xk), wk

)

}

,

where the expected value operation E{·} is taken with respect to the joint
distribution of all the random variables wk and xk.† An optimal policy π∗

is one that minimizes this cost; i.e.,

Jπ∗(x0) = min
π∈Π

Jπ(x0),

where Π is the set of all policies.
An important difference from the deterministic case is that we opti-

mize not over control sequences {u0, . . . , uN−1} [cf. Eq. (1.3)], but rather
over policies (also called closed-loop control laws , or feedback policies) that
consist of a sequence of functions

π = {µ0, . . . , µN−1},

† We assume an introductory probability background on the part of the

reader. For an account that is consistent with our use of probability in this

book, see the text by Bertsekas and Tsitsiklis [BeT08].

30 Exact and Approximate Dynamic Programming Chap. 1

where µk maps states xk into controls uk = µk(xk), and satisfies the con-
trol constraints, i.e., is such that µk(xk) ∈ Uk(xk) for all xk. Policies
are more general objects than control sequences, and in the presence of
stochastic uncertainty, they can result in improved cost, since they allow
choices of controls uk that incorporate knowledge of the state xk. Without
this knowledge, the controller cannot adapt appropriately to unexpected
values of the state, and as a result the cost can be adversely affected. This
is a fundamental distinction between deterministic and stochastic optimal
control problems.

The optimal cost depends on x0 and is denoted by J*(x0); i.e.,

J*(x0) = min
π∈Π

Jπ(x0).

We view J* as a function that assigns to each initial state x0 the optimal
cost J*(x0), and call it the optimal cost function or optimal value function.

Finite Horizon Stochastic Dynamic Programming

The DP algorithm for the stochastic finite horizon optimal control problem
has a similar form to its deterministic version, and shares several of its
major characteristics:

(a) Using tail subproblems to break down the minimization over multiple
stages to single stage minimizations.

(b) Generating backwards for all k and xk the values J*
k (xk), which give

the optimal cost-to-go starting from state xk at stage k.

(c) Obtaining an optimal policy by minimization in the DP equations.

(d) A structure that is suitable for approximation in value space, whereby
we replace J*

k by approximations J̃k, and obtain a suboptimal policy
by the corresponding minimization.

DP Algorithm for Stochastic Finite Horizon Problems

Start with
J*
N (xN) = gN (xN),

and for k = 0, . . . , N − 1, let

J*
k (xk) = min

uk∈Uk(xk)
Ewk

{

gk(xk, uk, wk) + J*
k+1

(

fk(xk, uk, wk)
)

}

.

(1.17)
For each xk and k, define µ∗

k(xk) = u∗
k where u∗

k attains the min-
imum in the right side of this equation. Then, the policy π∗ =
{µ∗

0, . . . , µ
∗
N−1} is optimal.

Sec. 1.3 Stochastic Dynamic Programming 31

The key fact is that starting from any initial state x0, the optimal
cost is equal to the number J*

0 (x0), obtained at the last step of the above
DP algorithm. This can be proved by induction similar to the deterministic
case; we will omit the proof (which incidentally involves some mathematical
fine points; see the discussion of Section 1.3 in the textbook [Ber17]).

Simultaneously with the off-line computation of the optimal cost-
to-go functions J*

0 , . . . , J
*
N , we can compute and store an optimal policy

π∗ = {µ∗
0, . . . , µ

∗
N−1} by minimization in Eq. (1.17). We can then use this

policy on-line to retrieve from memory and apply the control µ∗
k(xk) once

we reach state xk. The alternative is to forego the storage of the policy π∗

and to calculate the control µ∗
k(xk) by executing the minimization (1.17)

on-line.
There are a few favorable cases where the optimal cost-to-go func-

tions J*
k and the optimal policies µ∗

k can be computed analytically using the
stochastic DP algorithm. A prominent such case involves a linear system
and a quadratic cost function, which is a fundamental problem in control
theory. We illustrate the scalar version of this problem next. The anal-
ysis can be generalized to multidimensional systems (see optimal control
textbooks such as [Ber17]).

Example 1.3.1 (Linear Quadratic Optimal Control)

Here the system is linear,

xk+1 = axk + buk +wk, k = 0, . . . , N − 1,

and the state, control, and disturbance are scalars. The cost is quadratic of
the form:

qx2
N +

N−1
∑

k=0

(qx2
k + ru2

k),

where q and r are known positive weighting parameters. We assume no
constraints on xk and uk (in reality such problems include constraints, but
it is common to neglect the constraints initially, and check whether they are
seriously violated later).

As an illustration, consider a vehicle that moves on a straight-line road
under the influence of a force uk and without friction. Our objective is to
maintain the vehicle’s velocity at a constant level v̄ (as in an oversimplified
cruise control system). The velocity vk at time k, after time discretization of
its Newtonian dynamics and addition of stochastic noise, evolves according
to

vk+1 = vk + buk +wk, (1.18)

where wk is a stochastic disturbance with zero mean and given variance σ2.
By introducing xk = vk − v̄, the deviation between the vehicle’s velocity vk
at time k from the desired level v̄, we obtain the system equation

xk+1 = xk + buk + wk.

32 Exact and Approximate Dynamic Programming Chap. 1

Here the coefficient b relates to a number of problem characteristics including
the weight of the vehicle, the road conditions. The cost function expresses
our desire to keep xk near zero with relatively little force.

We will apply the DP algorithm, and derive the optimal cost-to-go
functions J∗

k and optimal policy. We have

J∗
N (xN) = qx2

N ,

and by applying Eq. (1.17), we obtain

J∗
N−1(xN−1) = min

uN−1

E
{

qx2
N−1 + ru2

N−1 + J∗
N (axN−1 + buN−1 + wN−1)

}

= min
uN−1

E
{

qx2
N−1 + ru2

N−1 + q(axN−1 + buN−1 + wN−1)
2
}

= min
uN−1

[

qx2
N−1 + ru2

N−1 + q(axN−1 + buN−1)
2

+ 2qE{wN−1}(axN−1 + buN−1) + qE{w2
N−1}

]

,

and finally, using the assumptions E{wN−1} = 0, E{w2
N−1} = σ2, and bring-

ing out of the minimization the terms that do not depend on uN−1,

J∗
N−1(xN−1) = qx2

N−1 + qσ2 + min
uN−1

[

ru2
N−1 + q(axN−1 + buN−1)

2
]

. (1.19)

The expression minimized over uN−1 in the preceding equation is convex
quadratic in uN−1, so by setting to zero its derivative with respect to uN−1,

0 = 2ruN−1 + 2qb(axN−1 + buN−1),

we obtain the optimal policy for the last stage:

µ∗
N−1(xN−1) = − abq

r + b2q
xN−1.

Substituting this expression into Eq. (1.19), we obtain with a straightforward
calculation

J∗
N−1(xN−1) = PN−1x

2
N−1 + qσ2,

where

PN−1 =
a2rq

r + b2q
+ q.

We can now continue the DP algorithm to obtain J∗
N−2 from J∗

N−1.
An important observation is that J∗

N−1 is quadratic (plus an inconsequential
constant term), so with a similar calculation we can derive µ∗

N−2 and J∗
N−2

in closed form, as a linear and a quadratic (plus constant) function of xN−2,
respectively. This process can be continued going backwards, and it can be
verified by induction that for all k, we have the optimal policy and optimal
cost-to-go function in the form

µ∗
k(xk) = Lkxk, k = 0, 1, . . . , N − 1,

Sec. 1.3 Stochastic Dynamic Programming 33

J∗
k (xk) = Pkx

2
k + σ2

N−1
∑

t=k

Pt+1, k = 0, 1, . . . , N − 1,

where

Lk = − abPk+1

r + b2Pk+1
, k = 0, 1, . . . , N − 1, (1.20)

and the sequence {Pk} is generated backwards by the equation

Pk =
a2rPk+1

r + b2Pk+1
+ q, k = 0, 1, . . . , N − 1, (1.21)

starting from the terminal condition PN = q.
The process by which we obtained an analytical solution in this example

is noteworthy. A little thought while tracing the steps of the algorithm will
convince the reader that what simplifies the solution is the quadratic nature
of the cost and the linearity of the system equation. Indeed, it can be shown
in generality that when the system is linear and the cost is quadratic, the
optimal policy and cost-to-go function are given by closed-form expressions,
even for multi-dimensional linear systems (see [Ber17], Section 3.1). The
optimal policy is a linear function of the state, and the optimal cost function
is a quadratic in the state plus a constant.

Another remarkable feature of this example, which can also be extended
to multi-dimensional systems, is that the optimal policy does not depend on
the variance of wk, and remains unaffected when wk is replaced by its mean
(which is zero in our example). This is known as certainty equivalence, and
occurs in several types of problems involving a linear system and a quadratic
cost; see [Ber17], Sections 3.1 and 4.2. For example it holds even when wk

has nonzero mean. For other problems, certainty equivalence can be used as
a basis for problem approximation, e.g., assume that certainty equivalence
holds (i.e., replace stochastic quantities by some typical values, such as their
expected values) and apply exact DP to the resulting deterministic optimal
control problem.

The linear quadratic type of problem illustrated in the preceding ex-
ample is exceptional in that it admits an elegant analytical solution. Most
DP problems encountered in practice require a computational solution.

Q-Factors and Q-Learning for Stochastic Problems

We can define optimal Q-factors for a stochastic problem, similar to the
case of deterministic problems [cf. Eq. (1.11)], as the expressions that are
minimized in the right-hand side of the stochastic DP equation (1.17).
They are given by

Q*
k(xk, uk) = Ewk

{

gk(xk, uk, wk) + J*
k+1

(

fk(xk, uk, wk)
)

}

. (1.22)

The optimal cost-to-go functions J*
k can be recovered from the optimal

Q-factors Q*
k by means of

J*
k (xk) = min

uk∈Uk(xk)
Q*

k(xk, uk),

34 Exact and Approximate Dynamic Programming Chap. 1

and the DP algorithm can be written in terms of Q-factors as

Q*
k(xk, uk) =Ewk

{

gk(xk, uk, wk)

+ min
uk+1∈Uk+1(fk(xk,uk,wk))

Q*
k+1

(

fk(xk, uk, wk), uk+1

)

}

.

We will later be interested in approximate Q-factors, where J*
k+1 in

Eq. (1.22) is replaced by an approximation J̃k+1. Generally, a Q-factor
corresponding to a state-control pair (xk, uk) is the sum of the expected
first stage cost using (xk, uk), plus the expected cost of the remaining stages
starting from the next state as estimated by the function J̃k+1.

1.3.2 Approximation in Value Space for Stochastic DP

Generally the computation of the optimal cost-to-go functions J*
k can be

very time-consuming or impossible. One of the principal RL methods to
deal with this difficulty is approximation in value space. Here approxima-
tions J̃k are used in place of J*

k , similar to the deterministic case; cf. Eqs.
(1.8) and (1.13).

Approximation in Value Space - Use of J̃k in Place of J*
k

At any state xk encountered at stage k, set

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Ewk

{

gk(xk, uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)

}

.

(1.23)

Similar to the deterministic case, the one-step lookahead minimization
(1.23) needs to be performed only for the N states x0, . . . , xN−1 that are
encountered during the on-line control of the system. By contrast, exact
DP requires that this type of minimization be done for every state and
stage.

Our discussion of rollout of Section 1.2 also applies to stochastic prob-
lems: we select J̃k to be the cost function of a suitable base policy (perhaps
with some approximation). Note that any policy can be used on-line as base
policy, including policies obtained by a sophisticated off-line procedure, us-
ing for example neural networks and training data.† The rollout algorithm

† The principal role of neural networks within the context of these notes is to

provide the means for approximating various target functions from input-output

data. This includes cost functions and Q-factors of given policies, and optimal

cost-to-go functions and Q-factors; in this case the neural network is referred to

Sec. 1.3 Stochastic Dynamic Programming 35

Truncated Horizon Rollout
Approximation in Policy Space Heuristic Cost Approximation

for Stages Beyond Truncation

for Stages Beyond Truncation
for Stages Beyond Truncation

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Base Policy

Base Policy m-Step

Rollout with Base Policy

Multiagent Q-factor minimization xk

Possible States Possible States
Possible States xk+1 xk+m+1

, uk, wk)

Figure 1.3.2 Schematic illustration of truncated rollout. One-step lookahead is
followed by simulation of the base policy for m steps, and an approximate cost
J̃k+m+1(xk+m+1) is added to the cost of the simulation, which depends on the
state xk+m+1 obtained at the end of the rollout. If the base policy simulation
is omitted (i.e., m = 0), one recovers the general approximation in value space
scheme (1.23). There are also multistep lookahead versions of truncated rollout
(see Chapter 2).

has the cost improvement property, whereby it yields an improved cost
relative to its underlying base policy.

A major variant of rollout is truncated rollout , which combines the
use of one-step optimization, simulation of the base policy for a certain
number of steps m, and then adds an approximate cost J̃k+m+1(xk+m+1)
to the cost of the simulation, which depends on the state xk+m+1 obtained
at the end of the rollout (see Chapter 2). Note that if one foregoes the use
of a base policy (i.e., m = 0), one recovers as a special case the general
approximation in value space scheme (1.23); see Fig. 1.3.2. Note also that
versions of truncated rollout with multistep lookahead minimization are
possible. They will be discussed later. The terminal cost approximation is
necessary in infinite horizon problems, since an infinite number of stages
of the base policy rollout is impossible. However, even for finite horizon
problems it may be necessary and/or beneficial to artificially truncate the
rollout horizon. Generally, a large combined number of multistep lookahead
minimization and rollout steps is likely to be beneficial.

We may also simplify the lookahead minimization over uk ∈ Uk(xk)

as a value network (sometimes the alternative term critic network is also used). In

other cases the neural network represents a policy viewed as a function from state

to control, in which case it is called a policy network (the alternative term actor

network is also used). The training methods for constructing the cost function,

Q-factor, and policy approximations themselves from data are mostly based on

optimization and regression, and are discussed in many sources, including the RL

books [Ber19a] and [Ber20a].

36 Exact and Approximate Dynamic Programming Chap. 1

Steps “Future”Steps “Future” First Step

min
uk

E
{

gk(xk, uk, wk) + J̃k+1(xk+1)
}

At xk

Min Approximation

Min Approximation E{·} Approximation Cost-to-Go ApproximationOptimal Cost Approximation

Figure 1.3.3 Schematic illustration of approximation in value space for stochas-
tic problems, and the three approximations involved in its design. Typically the
approximations can be designed independently of each other. There are also mul-
tistep lookahead versions of approximation in value space, which will be discussed
later.

[cf. Eq. (1.17)]. In particular, in the multiagent case where the control
consists of multiple components, uk = (u1

k, . . . , u
m
k), a sequence of m single

component minimizations can be used instead, with potentially enormous
computational savings resulting.

There is one additional issue in approximation in value space for
stochastic problems: the computation of the expected value in Eq. (1.23)
may be very time-consuming. Then one may consider approximations in
the computation of this expected value, based for example on Monte Carlo
simulation or other schemes. Some of the possibilities along this line will
be discussed in the next chapter.

Figure 1.3.3 illustrates the three approximations involved in approx-
imation in value space for stochastic problems: cost-to-go approximation,
expected value approximation, and simplified minimization. They may be
designed largely independently of each other, and with a variety of meth-
ods. Much of the discussion in these notes will revolve around different
ways to organize these three approximations. Another major issue is the
mechanism by which the choice of the approximations J̃k affects the cost
function Jπ̃ of the one-step lookahead policy π̃ = {µ̃0, . . . , µ̃N−1}. We will
see later that J̃k and Jπ̃ are connected through a form of Newton’s method .

Cost Versus Q-Factor Approximations - Robustness and On-
Line Replanning

Similar to the deterministic case, Q-learning involves the calculation of
either the optimal Q-factors (1.22) or approximations Q̃k(xk, uk). The
approximate Q-factors may be obtained using approximation in value space
schemes, and can be used to obtain approximately optimal policies through
the Q-factor minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk). (1.24)

Sec. 1.4 Infinite Horizon Problems - An Overview 37

We have seen that it is possible to implement approximation in value
space by using cost function approximations [cf. Eq. (1.23)] or by using
Q-factor approximations [cf. Eq. (1.24)], so the question arises which one
to use in a given practical situation. One important consideration is the
facility of obtaining suitable cost or Q-factor approximations. This de-
pends largely on the problem and also on the availability of data on which
the approximations can be based. However, there are some other major
considerations.

In particular, the cost function approximation scheme

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Ewk

{

gk(xk, uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)

}

,

has an important disadvantage: the expected value above needs to be com-
puted on-line for all uk ∈ Uk(xk), and this may involve substantial compu-
tation. On the other hand it also has an important advantage in situations
where the system function fk, the cost per stage gk, or the control con-
straint set Uk(xk) can change as the system is operating. Assuming that
the new fk, gk, or Uk(xk) become known to the controller at time k, on-line
replanning may be used, and this may improve substantially the robustness
of the approximation in value space scheme, as discussed earlier for deter-
ministic problems.

By comparison, the Q-factor function approximation scheme (1.24)
does not allow for on-line replanning. On the other hand, for problems
where there is no need for on-line replanning, the Q-factor approximation
scheme does not require the on-line computation of expected values and
may allow a much faster on-line computation of the minimizing control
µ̃k(xk) via Eq. (1.24).

1.4 INFINITE HORIZON PROBLEMS - AN OVERVIEW

We will now provide an outline of infinite horizon stochastic DP with an
emphasis on its aspects that relate to our RL/approximation methods. We
will deal primarily with infinite horizon stochastic problems, where we aim
to minimize the total cost over an infinite number of stages, given by

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

; (1.25)

see Fig. 1.4.1. Here, Jπ(x0) denotes the cost associated with an initial state
x0 and a policy π = {µ0, µ1, . . .}, and α is a scalar in the interval (0, 1]. The
functions g and f that define the cost per stage and the system equation

xk+1 = f(xk, uk, wk),

38 Exact and Approximate Dynamic Programming Chap. 1

......) xk xk+1) x0

Random Transition

) Random Cost

xk+1 = f(xk, uk, wk)

) αkg(xk, uk, wk)

Termination State Infinite Horizon

Figure 1.4.1 Illustration of an infinite horizon problem. The system and cost
per stage are stationary, except for the use of a discount factor α. If α = 1, there
is typically a special cost-free termination state that we aim to reach.

do not change from one stage to the next. The stochastic disturbances,
w0, w1, . . ., have a common probability distribution P (· | xk, uk).

When α is strictly less that 1, it has the meaning of a discount factor ,
and its effect is that future costs matter to us less than the same costs
incurred at the present time. Among others, a discount factor guarantees
that the limit defining Jπ(x0) exists and is finite (assuming that the range
of values of the stage cost g is bounded). This is a nice mathematical
property that makes discounted problems analytically and algorithmically
tractable.

Thus, by definition, the infinite horizon cost of a policy is the limit
of its finite horizon costs as the horizon tends to infinity. The three types
of problems that we will focus on are:

(a) Stochastic shortest path problems (SSP for short). Here, α = 1 but
there is a special cost-free termination state; once the system reaches
that state it remains there at no further cost. In some types of prob-
lems, the termination state may represent a goal state that we are
trying to reach at minimum cost, while in others it may be a state
that we are trying to avoid for as long as possible. We will mostly
assume a problem structure such that termination is inevitable under
all policies. Thus the horizon is in effect finite, but its length is ran-
dom and may be affected by the policy being used. A significantly
more complicated type of SSP problems, which we will discuss selec-
tively, arises when termination can be guaranteed only for a subset
of policies, which includes all optimal policies. Some common types
of SSP belong to this category, including deterministic shortest path
problems that involve graphs with cycles.

(b) Discounted problems . Here, α < 1 and there need not be a termi-
nation state. However, we will see that a discounted problem with
a finite number of states can be readily converted to an SSP prob-
lem. This can be done by introducing an artificial termination state
to which the system moves with probability 1− α at every state and
stage, thus making termination inevitable. As a result, algorithms
and analysis for SSP problems can be easily adapted to discounted
problems.

Sec. 1.4 Infinite Horizon Problems - An Overview 39

(c) Deterministic nonnegative cost problems . Here, the disturbance wk

takes a single known value. Equivalently, there is no disturbance in
the system equation and the cost expression, which now take the form

xk+1 = f(xk, uk), k = 0, 1, . . . , (1.26)

and

Jπ(x0) = lim
N→∞

N−1
∑

k=0

αkg
(

xk, µk(xk)
)

. (1.27)

We assume further that there is a cost-free and absorbing termination
state t, and we have

g(x, u) ≥ 0, for all x 6= t, u ∈ U(x), (1.28)

and g(t, u) = 0 for all u ∈ U(t). This type of structure expresses the
objective to reach or approach t at minimum cost, a classical control
problem. An extensive analysis of the undiscounted version of this
problem was given in the author’s paper [Ber17b].
An important special case is finite-state deterministic problems . Fi-
nite horizon versions of these problems include challenging discrete
optimization problems, whose exact solution is practically impossi-
ble. It is possible to transform such problems to infinite horizon SSP
problems, so that the conceptual framework developed here applies.
The approximate solution of discrete optimization problems by RL
methods, and particularly by rollout, will be considered in Chapter 2,
and has been discussed at length in the books [Ber19a] and [Ber20a].

1.4.1 Infinite Horizon Methodology

There are several analytical and computational issues regarding our infinite
horizon problems. Many of them revolve around the relation between the
optimal cost function J* of the infinite horizon problem and the optimal
cost functions of the corresponding N -stage problems.

In particular, let JN (x) denote the optimal cost of the problem in-
volving N stages, initial state x, cost per stage g(x, u, w), and zero terminal
cost. This cost is generated after N iterations of the algorithm

Jk+1(x) = min
u∈U(x)

Ew

{

g(x, u, w) + αJk
(

f(x, u, w)
)

}

, k = 0, 1, . . . ,

(1.29)
starting from J0(x) ≡ 0.† The algorithm (1.29) is known as the value
iteration algorithm (VI for short). Since the infinite horizon cost of a given

† This is just the finite horizon DP algorithm of Section 1.3.1, except that we
have reversed the time indexing to suit our infinite horizon context. In particular,

40 Exact and Approximate Dynamic Programming Chap. 1

policy is, by definition, the limit of the corresponding N -stage costs as
N → ∞, it is natural to speculate that:

(1) The optimal infinite horizon cost is the limit of the corresponding
N -stage optimal costs as N → ∞; i.e.,

J*(x) = lim
N→∞

JN (x) (1.30)

for all states x.

(2) The following equation should hold for all states x,

J*(x) = min
u∈U(x)

Ew

{

g(x, u, w) + αJ*
(

f(x, u, w)
)

}

. (1.31)

This is obtained by taking the limit as N → ∞ in the VI algorithm
(1.29) using Eq. (1.30). The preceding equation, called Bellman’s
equation, is really a system of equations (one equation per state x),
which has as solution the optimal costs-to-go of all the states.

(3) If µ(x) attains the minimum in the right-hand side of the Bellman
equation (1.31) for each x, then the policy {µ, µ, . . .} should be op-
timal. This type of policy is called stationary. Intuitively, optimal
policies can be found within this class of policies, since optimization
of the future costs (the tail subproblem) when starting at a given
state looks the same regardless of the time when we start.

All three of the preceding results hold for finite-state discounted and
also finite-state SSP problems under reasonable assumptions. The results
also hold for infinite-state discounted problems, provided the cost per stage
function g is bounded over the set of possible values of (x, u, w), in which
case we additionally can show that J* is the unique solution of Bellman’s
equation. The VI algorithm is also valid under these conditions, in the
sense that Jk → J*, even if the initial function J0 is nonzero. The moti-
vation for a different choice of J0 is faster convergence to J*; generally the
convergence is faster as J0 is chosen closer to J*. The associated mathe-

consider the N-stages problem and let VN−k(x) be the optimal cost-to-go starting
at x with k stages to go, and with terminal cost equal to 0. Applying DP, we
have for all x,

VN−k(x) = min
u∈U(x)

Ew

{

αN−kg(x, u,w) + VN−k+1

(

f(x, u, w)
)

}

, VN(x) = 0.

By defining Jk(x) = VN−k(x)/α
N−k, we obtain the VI algorithm (1.29).

Sec. 1.4 Infinite Horizon Problems - An Overview 41

matical proofs can be found in several sources, e.g., [Ber12], Chapter 1, or
[Ber19a], Chapter 4.†

Note that the VI algorithm of Eq. (1.29) simply expresses the fact
that the optimal cost for k+1 stages is obtained by minimizing the sum of
the first stage cost and the optimal cost for the next k stages starting from
the next state f(x, u, w). The latter cost, however, should be discounted
by α in view of the cost definition (1.25). The intuitive interpretation of
the Bellman equation (1.31) is that it is the limit as k → ∞ of the VI
algorithm (1.29) assuming that Jk → J*.

Let us also consider stationary policies {µ, µ, . . .}. For simplicity we
will denote them by µ, and write Jµ for their cost functions. We expect
that Jµ satisfies the Bellman equation for µ, given by

Jµ(x) = Ew

{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)

}

, for all x. (1.32)

We can view this as just the Bellman equation (1.31) for a different problem,
where for each x, the control constraint set U(x) consists of just one control,
namely µ(x).

Moreover, we expect that Jµ is obtained in the limit by the VI algo-
rithm:

Jµ(x) = lim
N→∞

Jµ,N (x), for all x,

where Jµ,N is generated by

Jµ,k+1(x) = Ew

{

g
(

x, µ(x), w
)

+ αJµ,k
(

f(x, µ(x), w)
)

}

, k = 0, 1, . . . ,

(1.33)
starting from Jµ,0(x) ≡ 0 or some other initial condition; cf. Eqs. (1.29)-
(1.30).

It is important to note that for infinite horizon problems, there are
additional important algorithms that are amenable to approximation in
value space. Approximate policy iteration, Q-learning, temporal difference
methods, and their variants are some of these. For this reason, in the
infinite horizon case, there is a richer set of algorithmic options for approx-
imation in value space, despite the fact that the associated mathematical
theory is more complex. In these notes, we will only discuss approximate
forms and variations of the policy iteration algorithm, which we describe
next.

† For undiscounted problems and discounted problems with unbounded cost

per stage, we may still adopt the three preceding results as a working hypoth-

esis. However, we should also be aware that exceptional behavior is possible

under unfavorable circumstances, including nonuniqueness of solution of Bell-

man’s equation, and nonconvergence of the VI algorithm to J∗ from some initial

conditions; see the books [Ber12] and [Ber22a].

42 Exact and Approximate Dynamic Programming Chap. 1

Rollout Policy µ̃

Jµ

Policy Evaluation Policy Improvement Rollout Policy ˜
Policy Evaluation Policy Improvement Rollout Policy ˜

Jµ instead of J*

Bellman Eq. with

Policy Evaluation Policy Improvement Rollout Policy ˜
Policy Evaluation Policy Improvement Rollout Policy ˜

x µ

Base Policy Rollout Policy Approximation in Value Space
Base Policy Rollout Policy Approximation in Value Space

Figure 1.4.2 Schematic illustration of PI as repeated rollout. It generates a
sequence of policies, with each policy µ in the sequence being the base policy that
generates the next policy µ̃ in the sequence as the corresponding rollout policy.

Policy Iteration

A major class of infinite horizon algorithms is based on policy iteration
(PI for short). Figure 1.4.2 describes the method as repeated rollout, and
indicates that each of its iterations consists of two phases:

(a) Policy evaluation, which computes the cost function Jµ of the cur-
rent (or base) policy µ. One possibility is to solve the corresponding
Bellman equation

Jµ(x) = Ew

{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)

}

, for all x,

cf. Eq. (1.32). However, the value Jµ(x) for any x can also be
computed by Monte Carlo simulation, by averaging over many ran-
domly generated trajectories the cost of the policy starting from
x. Other, more sophisticated possibilities include the use of special-
ized simulation-based methods, such as temporal difference methods ,
for which there is extensive literature (see e.g., the books [[BeT96],
[SuB98], [Ber12]).

(b) Policy improvement , which computes the “improved” (or rollout) pol-
icy µ̃ using the one-step lookahead minimization

µ̃(x) ∈ arg min
u∈U(x)

Ew

{

g(x, u, w) + αJµ
(

f(x, u, w)
)

}

, for all x.

[We call µ̃ improved policy because we can generally prove that Jµ̃(x) ≤
Jµ(x) for all x, as we will see later.]

We will refer to the starting and ending policies µ and µ̃ as the base
and rollout policies of the iteration, respectively. We will discuss several
different forms of PI. We will also argue that PI is the DP concept that
forms the foundation for self-learning in RL, i.e., learning from data that is
self-generated (from the system itself as it operates) rather than from data
supplied from an external source.

Sec. 1.4 Infinite Horizon Problems - An Overview 43

Note that the rollout algorithm in its pure form is just a single itera-
tion of the PI algorithm. It starts from a given base policy µ and produces
a rollout policy µ̃. It may be viewed as one-step lookahead using Jµ as
terminal cost function approximation, and it has the advantage that it can
be applied on-line by computing the needed values of Jµ(x) by simulation.
By contrast, approximate forms of PI for challenging problems, involving
for example neural network training, can only be implemented off-line.

1.4.2 Approximation in Value Space

The approximation in value space approach that we discussed in connec-
tion with finite horizon problems can be extended in a natural way to
infinite horizon problems. Here in place of J*, we use an approximation
J̃ , and generate at any state x, a control µ̃(x) by the one-step lookahead
minimization

µ̃(x) ∈ arg min
u∈U(x)

E
{

g(x, u, w) + αJ̃
(

f(x, u, w)
)

}

. (1.34)

This minimization yields a stationary policy {µ̃, µ̃, . . .}, with cost function
denoted Jµ̃ [i.e., Jµ̃(x) is the total infinite horizon discounted cost obtained
when using µ̃ starting at state x]; see Fig. 1.4.3. Note that when J̃ = J*,
the one-step lookahead policy attains the minimum in the Bellman equation
(1.31) and is expected to be optimal. This suggests that one should try to
use J̃ as close as possible to J*, which is generally true as we will argue
later.

Generally, it is desirable that Jµ̃ is close to J* in some sense. However,
for classical control problems, which involve steering the state towards a
goal state (e.g., problems with a cost-free and absorbing terminal state,
and positive cost for all other states), stability of µ̃ may be a principal
objective. In these notes, we will focus on stability issues primarily for this
one class of problems, and we will consider the policy µ̃ to be stable if Jµ̃
is real-valued , i.e.,

Jµ̃(x) < ∞, for all x ∈ X.

Selecting J̃ so that µ̃ is stable is a question of major interest for some
application contexts, such as model predictive and adaptive control, and
will be discussed later.

ℓ-Step Lookahead

An important extension of one-step lookahead minimization is ℓ-step looka-
head , whereby at a state xk we minimize the cost of the first ℓ > 1 stages
with the future costs approximated by a function J̃ (see Fig. 1.4.3). This
minimization yields a control ũk and a sequence µ̃k+1, . . . , µ̃k+ℓ−1. The

44 Exact and Approximate Dynamic Programming Chap. 1

) At x

At xk min
uk,µk+1,...,µk+ℓ−1

E

{

g(xk, uk, wk) +

k+ℓ−1
∑

i=k+1

α
i−kg

(

xi, µi(xi), wi

)

+ α
ℓJ̃(xk+ℓ)

}

One-Step Lookahead Multistep Lookahead

One-Step Lookahead Multistep Lookahead

First Step First

First Step First ℓ Steps “Future”Steps “Future”

Steps “Future”

minu∈U(x) E
{

g(x, u, w) + αJ̃
(

f(x, u, w)
)

}

Figure 1.4.3 Schematic illustration of approximation in value space with one-
step and ℓ-step lookahead minimization. In the former case, the minimization
yields at state x a control ũ, which defines the one-step lookahead policy µ̃ via

µ̃(x) = ũ.

In the latter case, the minimization yields a control ũk policies µ̃k+1, . . . , µ̃k+ℓ−1.
The control ũk is applied at xk while the remaining sequence µ̃k+1, . . . , µ̃k+ℓ−1

is discarded. The control ũk defines the ℓ-step lookahead policy µ̃.

control ũk is applied at xk, and defines the ℓ-step lookahead policy µ̃ via
µ̃(xk) = ũk. The sequence µ̃k+1, . . . , µ̃k+ℓ−1 is discarded. Actually, we
may view ℓ-step lookahead minimization as the special case of its one-step
counterpart where the lookahead function is the optimal cost function of
an (ℓ−1)-stage DP problem with a terminal cost J̃(xk+ℓ) on the state xk+ℓ

obtained after ℓ− 1 stages.
The motivation for ℓ-step lookahead minimization is that by increas-

ing the value of ℓ, we may require a less accurate approximation J̃ to obtain
good performance. Otherwise expressed, for the same quality of cost func-
tion approximation, better performance may be obtained as ℓ becomes
larger. This will be explained visually later, and is also supported by error
bounds, given for example in the books [Ber19a], [Ber20a]. In particular,
for AlphaZero chess, long multistep lookahead is critical for good on-line
performance. Another motivation for multistep lookahead is to enhance the
stability properties of the generated on-line policy, as we will discuss later.
On the other hand, solving the multistep lookahead minimization problem,
instead of the one-step lookahead counterpart of Eq. (1.34), is more time
consuming.

Let us also note that one-step and multistep lookahead minimization
may be supplemented by truncated rollout, as we have discussed in Section
1.1. In one possible view of schemes like this, the effects of truncated rollout

Sec. 1.4 Infinite Horizon Problems - An Overview 45

Steps “Future”Steps “Future” First StepMin Approximation

Min Approximation E{·} Approximation Cost-to-Go Approximation

min
u∈U(x)

E
w

{

g(x, u, w) + αJ̃
(

f(x, u, w)
)

}

) At x

Approximate Q-Factor Q̃(x, u)

Optimal Cost Approximation

Figure 1.4.3 Schematic illustration of approximation in value space with one-
step and multistep lookahead for infinite horizon problems. There are three po-
tential areas of approximation, which can be considered independently of each
other: optimal cost approximation, expected value approximation, and minimiza-
tion approximation.

may be expressed through the terminal cost approximation J̃ .

The Three Approximations: Optimal Cost, Expected Value,
and Minimization Approximations

There are three potential areas of approximation for infinite horizon prob-
lems: optimal cost approximation, expected value approximation, and min-
imization approximation; cf. Fig. 1.4.3. They are similar to their finite
horizon counterparts. In particular, we have potentially:

(a) A terminal cost approximation J̃ of the optimal cost function J*:
A major advantage of the infinite horizon context is that only one
approximate cost function J̃ is needed, rather than the N functions
J̃1, . . . , J̃N of the N -step horizon case.

(b) An approximation of the expected value operation: This operation can
be very time consuming. It may be simplified in various ways. For
example the random quantity w may be replaced by a deterministic
quantity; this is known as the certainty equivalence approximation.
A major computational advantage of deterministic problems is that
they do not involve any expected values.

(c) A simplification of the minimization operation: For example in mul-
tiagent problems the control consists of multiple components,

u = (u1, . . . , um),

with each component ui chosen by a different agent/decision maker.
In this case the size of the control space can be enormous, but it
can be simplified in ways that will be discussed later (e.g., choosing
components sequentially, one-agent-at-a-time). This will form the
core of our approach to multiagent problems.

46 Exact and Approximate Dynamic Programming Chap. 1

We will next describe briefly various approaches for selecting the ter-
minal cost function approximation.

Constructing Terminal Cost Approximations

A major issue in value space approximation is the construction of a suitable
approximate cost function J̃ . This can be done in many different ways,
giving rise to some of the principal RL methods. For example, J̃ may be
constructed with a sophisticated off-line training method, as discussed in
Section 1.1, in connection with chess and backgammon. Alternatively, the
approximate values J̃(x) are obtained on-line as needed with truncated
rollout, by running an off-line obtained policy for a suitably large number
of steps, starting from x, and supplementing it with a suitable, perhaps
primitive, terminal cost approximation.

For orientation purposes, let us describe briefly four broad types of
approximation. We will return to these approaches later, and we also refer
to the RL and approximate DP literature for further details.

(a) Off-line problem approximation: Here the function J̃ is computed off-
line as the optimal or nearly optimal cost function of a simplified op-
timization problem, which is more convenient for computation. Sim-
plifications may include exploiting decomposable structure, reducing
the size of the state space, neglecting some of the constraints, and
ignoring various types of uncertainties. For example we may consider
using as J̃ the cost function of a related deterministic problem, ob-
tained through some form of “certainty equivalence” approximation,
thus allowing computation of J̃ by gradient-based optimal control
methods or shortest path-type methods.
A major type of problem approximation method is aggregation, which
is described and analyzed in the books [Ber12], [Ber19a], and the pa-
pers [Ber18b], [Ber18c]. Aggregation provides a systematic procedure
to simplify a given problem by grouping states together into a rela-
tively small number of subsets, called aggregate states. The optimal
cost function of the simpler aggregate problem is computed by exact
DP methods, possibly involving the use of simulation. This cost func-
tion is then used to provide an approximation J̃ to the optimal cost
function J* of the original problem, using some form of interpolation.

(b) On-line simulation: This possibility arises in rollout algorithms for
stochastic problems, where we use Monte-Carlo simulation and some
suboptimal policy µ (the base policy) to compute (whenever needed)
values J̃(x) that are exactly or approximately equal to Jµ(x). The
policy µ may be obtained by any method, e.g., one based on heuris-
tic reasoning (such as in the case of the traveling salesman Example
1.2.3), or off-line training based on a more principled approach, such
as approximate policy iteration or approximation in policy space.

Sec. 1.4 Infinite Horizon Problems - An Overview 47

Note that while simulation is time-consuming, it is uniquely well-
suited for the use of parallel computation. This may be an important
consideration for the practical implementation of rollout algorithms,
particularly for stochastic problems.

(c) On-line approximate optimization. This approach involves the solu-
tion of a suitably constructed shorter horizon version of the problem,
with a simple terminal cost approximation. It can be viewed as ei-
ther approximation in value space with multistep lookahead, or as a
form of rollout algorithm. It is often used in model predictive control
(MPC).

(d) Parametric cost approximation, where J̃ is obtained from a given
parametric class of functions J(x, r), where r is a parameter vector,
selected by a suitable algorithm. The parametric class typically in-
volves prominent characteristics of x called features , which can be
obtained either through insight into the problem at hand, or by using
training data and some form of neural network.

Let us also mention that for problems with special structure, J̃ may
be chosen so that the one-step lookahead minimization (1.34) is facilitated.
In fact, under favorable circumstances, the lookahead minimization may be
carried out in closed form. An example is when the control enters linearly
in the system equation and quadratically in the cost function, while the
terminal cost approximation is chosen to be quadratic.

Understanding Approximation in Value Space

We will now discuss some of our objectives as we will try to get insight
into the process of approximation in value space. Clearly, it makes sense to
approximate J* with a function J̃ that is as close as possible to J*. How-
ever, we should also try to understand quantitatively the relation between
J̃ and µ̃, the cost function of the resulting one-step lookahead (or multistep
lookahead) policy µ̃. Interesting questions in this regard are the following:

(a) How is the quality of the lookahead policy affected by the quality of the
off-line training? Here we are interested in whether Jµ̃(x) is smaller
than J̃(x) across a range of states x of interest, and by how much.

(b) How sensitive is the quality of the lookahead policy to the quality of
the off-line training? Here we are interested to understand how much
Jµ̃ changes when J̃ changes across a range of interest. For example,
how much should we care about improving J̃ through a longer and
more sophisticated training process?

(c) When is µ̃ stable? The question of stability is very important in many
control applications where the objective is to keep the state near some
reference point or trajectory. Indeed, in such applications, stability is
the dominant concern, and optimality is secondary by comparison. As

48 Exact and Approximate Dynamic Programming Chap. 1

noted earlier, we will use an optimization-based definition of stability,
calling the lookahead policy µ̃ stable if Jµ̃(x) < ∞, for all x. An
example is an SSP problem with positive cost per stage, where some
policies may not guarantee that the termination state will be reached;
these policies are viewed as unstable. An example of a context where
there are no stability concerns is discounted problems with bounded
cost per stage; here all policies are stable according to our definition.
While there are several alternative definitions of stability, which may
be better-matched to specific contexts, our definition of stability is
suitable for the very broad class of problems that we are dealing with.

(d) What is the region of stability? Here we may be interested to charac-
terize the set of terminal cost approximations J̃ that lead to a stable
lookahead policy.

(e) How does the length of lookahead minimization or the length of the
truncated rollout affect the stability and quality of the multistep looka-
head policy? While it is generally true that the length of lookahead
has a beneficial effect on quality, it turns out that it also has a ben-
eficial effect on the stability properties of the multistep lookahead
policy, and we are interested the mechanism by which this occurs.

In what follows we will try to give some answers to these questions,
first in the next section, in the context of simple linear quadratic problems,
and then in Chapter 2 within a more general context. The monograph
[Ber22b] addresses such issues in greater detail.

1.5 INFINITE HORIZON LINEAR QUADRATIC PROBLEMS

We will now aim to understand the character of the Bellman equation,
approximation in value space, and the VI and PI algorithms within the
context of an important deterministic nonnegative cost problem. This is
the classical continuous-spaces problem where the system is linear, with no
control constraints, and the cost function is quadratic. In its general form,
this problem deals with the case where the system is

xk+1 = Axk +Buk,

where xk and uk are elements of the Euclidean spaces ℜn and ℜm, respec-
tively, A is an n × n matrix, and B is an n × m matrix. It is assumed
that there are no control constraints. The cost per stage is quadratic of
the form

g(x, u) = x′Qx+ u′Ru,

where Q and R are positive definite symmetric matrices of dimensions
n× n and m×m, respectively (all finite-dimensional vectors in this work

Sec. 1.5 Infinite Horizon Linear Quadratic Problems 49

are viewed as column vectors, and a prime denotes transposition). The
analysis of this problem is well known and is given with proofs in several
control theory texts, including the author’s DP books [Ber17a], Chapter 3,
and [Ber12], Chapter 4.

In what follows, we will focus only on the one-dimensional version of
the problem, where the system has the form

xk+1 = axk + buk; (1.35)

cf. Example 1.3.1. Here the state xk and the control uk are scalars, and
the coefficients a and b are also scalars, with b 6= 0. The cost function is
undiscounted and has the form

∞
∑

k=0

(qx2
k + ru2

k), (1.36)

where q and r are positive scalars. The one-dimensional case allows a
convenient and insightful analysis of the algorithmic issues that are central
for our purposes.

The Riccati Equation and its Justification

The analytical results for our problem may be obtained by taking the limit
in the results derived in the finite horizon Example 1.3.1, as the horizon
length tends to infinity. In particular, we can show that the optimal cost
function is expected to be quadratic of the form

J*(x) = K∗x2, (1.37)

where the scalar K∗ solves the equation

K = F (K), (1.38)

with F defined by

F (K) =
a2rK

r + b2K
+ q. (1.39)

This is the limiting form of Eq. (1.21).
Moreover, the optimal policy is linear of the form

µ∗(x) = L∗x, (1.40)

where L∗ is the scalar given by

L∗ = −
abK∗

r + b2K∗
. (1.41)

50 Exact and Approximate Dynamic Programming Chap. 1

For justification of Eqs. (1.38)-(1.41), we show that J* as given by
Eq. (1.37), satisfies the Bellman equation

J(x) = min
u∈ℜ

{

qx2 + ru2 + J(ax+ bu)
}

, (1.42)

and that µ∗(x), as given by Eqs. (1.40)-(1.41), attains the minimum above
for every x when J = J*. Indeed for any quadratic cost function J(x) =
Kx2 with K ≥ 0, the minimization in Bellman’s equation (1.42) is written
as

min
u∈ℜ

{

qx2 + ru2 +K(ax+ bu)2
}

. (1.43)

Thus it involves minimization of a positive definite quadratic in u and can
be done analytically. By setting to 0 the derivative with respect to u of the
expression in braces in Eq. (1.43), we obtain

0 = 2ru + 2bK(ax+ bu),

so the minimizing control and corresponding policy are given by

µK(x) = LKx, (1.44)

where

LK = −
abK

r + b2K
. (1.45)

By substituting this control, the minimized expression (1.43) takes the form

(

q + rL2
K +K(a+ bLK)2

)

x2.

After straightforward algebra, using Eq. (1.45) for LK , it can be verified
that this expression is written as F (K)x2, with F given by Eq. (1.39).
Thus when J(x) = Kx2, the Bellman equation (1.42) takes the form

Kx2 = F (K)x2

or equivalently K = F (K) [cf. Eq. (1.38)].
In conclusion, when restricted to quadratic functions J(x) = Kx2

with K ≥ 0, the Bellman equation (1.42) is equivalent to the equation

K = F (K) =
a2rK

r + b2K
+ q. (1.46)

Sec. 1.5 Infinite Horizon Linear Quadratic Problems 51

We refer to this equation as the Riccati equation† and to the function F
as the Riccati operator .‡ Moreover, the policy corresponding to K∗, as
per Eqs. (1.44)-(1.45), attains the minimum in Bellman’s equation, and is
given by Eqs. (1.40)-(1.41).

The Riccati equation can be visualized and solved graphically as il-
lustrated in Fig. 1.5.1. As shown in the figure, the quadratic coefficient
K∗ that corresponds to the optimal cost function J* [cf. Eq. (1.37)] is the
unique solution of the Riccati equation K = F (K) within the nonnegative
real line.

The Riccati Equation for a Stable Linear Policy

We can also characterize the cost function of a policy µ that is linear of the
form µ(x) = Lx, and is also stable, in the sense that the scalar L satisfies
|a+ bL| < 1, so that the corresponding closed-loop system

xk+1 = (a+ bL)xk

is stable (its state xk converges to 0 as k → ∞). In particular, we can show
that its cost function has the form

Jµ(x) = KLx2,

where KL solves the equation

K = FL(K), (1.47)

† This is an algebraic form of the Riccati differential equation, which was in-

vented in its one-dimensional form by count Jacopo Riccati in the 1700s, and has

played an important role in control theory. It has been studied extensively in its

differential and difference matrix versions; see the book by Lancaster and Rod-

man [LR95], and the paper collection by Bittanti, Laub, and Willems [BLW91],

which also includes a historical account by Bittanti [Bit91] of Riccati’s remarkable

life and accomplishments.

‡ The Riccati operator is a special case of the Bellman operator , which trans-
forms a function J(x) into the right side of Bellman’s equation,

min
u∈U(x)

Ew

{

g(x,u, w) + αJ
(

f(x, u, w)
)

}

,

also a function of x. Bellman operators allow a succinct abstract description of

the problem’s data, and are fundamental in the theory of abstract DP (see the

author’s monograph [Ber22a]). They will be introduced formally in Chapter 2,

and they will be used to extend the analysis of the approximation in value space

ideas of the present section.

52 Exact and Approximate Dynamic Programming Chap. 1

0

K K

K K

45◦Line

q q F

q q F (K) = a
2
rK

r+b2K
+ q

a
2
r

b2
+ q q F

State 1 State 2 K∗K̄

Cost of µ̃ −

r

b2

Figure 1.5.1 Graphical construction of the solutions of the Riccati equation
(1.38)-(1.39) for the linear quadratic problem. The optimal cost function is
J∗(x) = K∗x2, where the scalar K∗ solves the fixed point equation K = F (K),
with F being the function given by

F (K) =
a2rK

r + b2K
+ q.

Note that F is concave and monotonically increasing in the interval (−r/b2,∞)
and “flattens out” as K → ∞, as shown in the figure. The quadratic Riccati
equation K = F (K) also has another solution, denoted by K̄, which lies within
the negative real line and is of no interest.

with FL defined by

FL(K) = (a+ bL)2K + q + rL2. (1.48)

This equation is called the Riccati equation for the stable policy µ(x) = Lx.
It is illustrated in Fig. 1.5.2, and it is linear, with linear coefficient (a+bL)2

that is strictly less than 1. Hence the line that represents the graph of FL

intersects the 45-degree line at a unique point, which defines the quadratic
cost coefficient KL.

The Riccati equation (1.47)-(1.48) for µ(x) = Lx may be justified by
verifying that it is in fact the Bellman equation for µ,

J(x) = (q + rL2)x2 + J
(

(a+ bL)x
)

,

[cf. Eq. (1.32)], restricted to quadratic functions of the form J(x) = Kx2.
We note, however, that Jµ(x) = KLx2 is the solution of the Riccati

equation (1.47)-(1.48) only when µ(x) = Lx is stable. If µ is unstable, i.e.,

Sec. 1.5 Infinite Horizon Linear Quadratic Problems 53

0

K K

K Kq q F

KL

FL(K) = (a+ bL)2K + q + rL2

q q F (K) = a
2
rK

r+b2K
+ q

a
2
r

b2
+ q q F

State 1 State 2 K∗

Unstable L

L |a+ bL| > 1

1 Stable L

L |a+ bL| < 1

Figure 1.5.2 Illustration of the construction of the cost function of a linear policy
µ(x) = Lx, which is stable, i.e., |a + bL| < 1. The cost function Jµ(x) has the
form

Jµ(x) = KLx
2,

with KL obtained as the unique solution of the linear equation K = FL(K), where

FL(K) = (a + bL)2K + q + rL2,

is the Riccati equation operator corresponding to µ(x) = Lx. If µ is unstable with
|a+ bL| > 1, we have Jµ(x) = ∞ for all x 6= 0, but the equation has K = FL(K)
still has a solution that is of no interest within our context.

|a + bL| ≥ 1, then (since q > 0 and r > 0) we have Jµ(x) = ∞ for all
x 6= 0. The Riccati equation (1.47)-(1.48) is still defined for an unstable
policy, but its solution is negative and is of no interest within our context.

Value Iteration

The VI algorithm for our linear quadratic problem is given by

Jk+1(x) = min
u∈ℜ

{

qx2 + ru2 + Jk(ax+ bu)
}

.

When Jk is quadratic of the form Jk(x) = Kkx2 withKk ≥ 0, it can be seen
that the VI iterate Jk+1 is also quadratic of the form Jk+1(x) = Kk+1x2,
where

Kk+1 = F (Kk),

with F being the Riccati operator of Eq. (1.46). The algorithm is illustrated
in Fig. 1.5.3. As can be seen from the figure, when starting from any

54 Exact and Approximate Dynamic Programming Chap. 1

0

K K

K K

Kk Kk+1

Kk+1

45◦Line

q q F

Cost of µ̃ −

r

b2

State 1 State 2 K∗K̄

q q F (K) = a
2
rK

r+b2K
+ q

a
2
r

b2
+ q q F

Figure 1.5.3 Graphical illustration of value iteration for the linear quadratic
problem. It has the form Kk+1 = F (Kk), where F is the Riccati operator,

F (K) =
a2rK

r + b2K
+ q.

The algorithm converges to K∗ starting from any K0 ≥ 0.

K0 ≥ 0, the algorithm generates a sequence {Kk} of nonnegative scalars
that converges to K∗.

1.5.1 Visualizing Approximation in Value Space - Newton’s
Method

The use of Riccati equations allows insightful visualization of approxi-
mation in value space. This visualization, although specialized to linear
quadratic problems, is consistent with related visualizations that we will
discuss in Chapter 2, in the context of more general infinite horizon prob-
lems. There we will use Bellman operators, which define the Bellman equa-
tions, in place of Riccati operators, which define the Riccati equations.

Let us consider one-step lookahead minimization with any terminal
cost function approximation of the form J̃(x) = Kx2, where K ≥ 0. We
have derived the one-step lookahead policy µK(x) in Eqs. (1.44)-(1.45), by
minimizing the right side of Bellman’s equation when J(x) = Kx2:

min
u∈ℜ

{

qx2 + ru2 +K(ax+ bu)2
}

.

Sec. 1.5 Infinite Horizon Linear Quadratic Problems 55

0

FL(K) = (a+ bL)2K + q + rL2

State 1 State 2 K∗ KK̃ µ

F (K)

L̃ = −

abK̃

r+b2K̃

Tangent Riccati Operator at

Tangent Riccati Operator at K̃

Figure 1.5.4 Illustration of how the graph of the Riccati operator F can be
obtained as the lower envelope of the linear operators

FL(K) = (a + bL)2K + q + bL,

as L ranges over the real numbers. We have F (K) = minL∈ℜ FL(K), cf. Eq.
(1.49). Moreover, for any fixed K̃, the scalar L̃ that attains the minimum is given
by

L̃ = −
abK̃

r + b2K̃

[cf. Eq. (1.45)], and is such that the line corresponding to the graph of F
L̃

is

tangent to the graph of F at K̃, as shown in the figure.

We can break this minimization into a sequence of two minimizations as
follows:

F (K)x2 = min
L∈ℜ

min
u=Lx

{

qx2+ru2+K(ax+bu)2
}

= min
L∈ℜ

{

q+bL+K(a+bL)2
}

x2.

From this equation, it follows that

F (K) = min
L∈ℜ

FL(K), (1.49)

where the function FL(K) is defined by

FL(K) = (a+ bL)2K + q + bL. (1.50)

Figure 1.5.4 illustrates the relation (1.49)-(1.50), and shows how the
graph of the Riccati operator F can be obtained as the lower envelope of
the linear operators FL, as L ranges over the real numbers.

56 Exact and Approximate Dynamic Programming Chap. 1

One-Step Lookahead Minimization and Newton’s Method

Let us now fix the terminal cost function approximation to some K̃x2,
where K̃ ≥ 0, and consider the corresponding one-step lookahead policy,
which we will denote by µ̃. Figure 1.5.5 illustrates the corresponding linear
function FL̃, whose graph is a tangent line to the graph of F at the point
K [cf. Fig. 1.5.4 and Eq. (1.50)].

The function FL̃ can be viewed as a linearization of F at the point
K, and defines a linearized problem: to find a solution of the equation

K = FL̃(K) = q + bL̃2 +K(a+ bL̃)2.

The important point now is that the solution of this equation, denoted KL̃,
is the same as the one obtained from a single iteration of Newton’s method
for solving the Riccati equation, starting from the point K̃.†

Note also that if the one-step lookahead policy is stable, i.e.,

|a+ bL̃| < 1,

then KL̃ is the quadratic cost coefficient of its cost function, i.e.,

Jµ̃(x) = KL̃x
2.

The reason is that Jµ̃ solves the Bellman equation for policy µ̃. On the
other hand, if µ̃ is unstable, then in view of the positive definite quadratic
cost per stage, we have µ̃(x) = ∞ for all x 6= 0.

† The classical form of Newton’s method for solving a fixed point problem of
the form y = T (y), where y is an n-dimensional vector, operates as follows: At the
current iterate yk, we linearize T and find the solution yk+1 of the corresponding
linear fixed point problem. Assuming T is differentiable, the linearization is
obtained by using a first order Taylor expansion:

yk+1 = T (yk) +
∂T (yk)

∂y
(yk+1 − yk),

where ∂T (yk)/∂y is the n × n Jacobian matrix of T evaluated at the vector
yk. The most commonly given convergence rate property of Newton’s method is
quadratic convergence. It states that near the solution y∗, we have

‖yk+1 − y∗‖ = O
(

‖yk − y∗‖2
)

,

where ‖ · ‖ is the Euclidean norm, and holds assuming the Jacobian matrix ex-

ists and is Lipschitz continuous (see [Ber16], Section 1.4). There are extensions

of Newton’s method that are based on solving a linearized system at the cur-

rent iterate, but relax the differentiability requirement to piecewise differentiabil-

ity, and/or component concavity, while maintaining the superlinear convergence

property of the method; see the monograph [Ber22b] and the paper [Ber22c],

which also provide a convergence analysis.

Sec. 1.5 Infinite Horizon Linear Quadratic Problems 57

0

K K

K K

q q F

q K̃

F
L̃
(K)

K K
L̃

L̃ = −

abK̃

r + b2K̃

State 1 State 2 K∗

also Newton Step

F (K)

Figure 1.5.5 Illustration of approximation in value space with one-step lookahead
for the linear quadratic problem. Given a terminal cost approximation J̃ = K̃x2,
we compute the corresponding linear policy µ̃(x) = L̃x, where

L̃ = −
abK̃

r + b2K̃
,

and the corresponding cost function K
L̃
x2, using the Newton step shown.

Multistep Lookahead

In the case of ℓ-step lookahead minimization, a similar Newton step in-
terpretation is possible. Instead of linearizing F at K̃, we linearize at
Kℓ−1 = F ℓ−1(K̃), i.e., the result of ℓ− 1 successive applications of F start-
ing with K̃. Each application of F corresponds to a value iteration. Thus
the effective starting point for the Newton step is F ℓ−1(K̃). Figure 1.5.7
depicts the case ℓ = 2.

It is interesting to note that as the length of lookahead increases, the
effective starting point F ℓ−1(K̃) is pushed more and more within the region
of stability. In particular, for any given K ≥ 0, the corresponding ℓ-step
lookahead policy will be stable for all ℓ larger than some threshold .

Region of Stability

It is also useful to define the region of stability as the set of K ≥ 0 such
that

|a+ bLK | < 1.

58 Exact and Approximate Dynamic Programming Chap. 1

K K

F
L̃
(K)

K K
L̃

K1

1 L̃ = −

abK1

r + b2K1

State 1 State 2 K∗

also Newton Step

F (K)

q K̃

Figure 1.5.7 Illustration of approximation in value space with two-step looka-
head for the linear quadratic problem. Starting with a terminal cost approxima-
tion J̃ = K̃x2, we obtain K1 using a single value iteration. We then compute the
corresponding linear policy µ̃(x) = L̃x, where

L̃ = −
abK1

r + b2K1

and the corresponding cost function K
L̃
x2, using the Newton step shown. The

figure shows that for any K ≥ 0, the corresponding ℓ-step lookahead policy will
be stable for all ℓ larger than some threshold.

The region of stability may also be viewed as the region of convergence
of Newton’s method . It is the set of starting points K for which New-
ton’s method, applied to the Riccati equation F = F (K), converges to K∗

asymptotically, and with a quadratic convergence rate. Note that for our
one-dimensional problem, the region of stability is the interval (KS ,∞)
that is characterized by the single point KS where F has derivative equal
to 1; see Fig. 1.5.6.

For multidimensional problems, the region of stability may not be
characterized as easily. Still, however, it is generally true that the region
of stability is enlarged as the length of the lookahead increases .

We summarize the Riccati equation formulas and the relation between
linear policies of the form µ(x) = Lx and their quadratic cost functions in
the following table.

Sec. 1.5 Infinite Horizon Linear Quadratic Problems 59

0

State 1 State 2 K∗ K

Line Stable Policy Unstable Policy Region of stability

Line Stable Policy Unstable Policy Region of stabilityLine Stable Policy Unstable Policy Region of stability

Line Stable Policies Unstable Policy Optimal Policy

Instability Region Stability Region Slope=1

Also Region of Convergence of Newton’s Method
Also Region of Convergence of Newton’s Method

also

KS

Figure 1.5.6 Illustration the region of stability, i.e., the set of K ≥ 0 such that
the one-step lookahead policy µK is stable. This is also the set of initial conditions
for which Newton’s method converges to K∗ asymptotically.

Riccati Equation Formulas for One-Dimensional Problems

Riccati equation for minimization [cf. Eqs. (1.38) and (1.39)]

K = F (K), F (K) =
a2rK

r + b2K
+ q.

Riccati equation for a linear policy µ(x) = Lx

K = FL(K), FL(K) = (a+ bL)2K + q + rL2.

Cost coefficient KL of a stable linear policy µ(x) = Lx

KL =
q + rL2

1− (a+ bL)2
.

60 Exact and Approximate Dynamic Programming Chap. 1

Linear coefficient LK of the one-step lookahead linear policy
µK for K in the region of stability [cf. Eq. (1.45)]

LK = argmin
L

FL(K) = −
abK

r + b2K
.

Quadratic cost coefficient K̃ of a stable one-step lookahead
policy
Obtained as the solution of the linearized Riccati equation K̃ = FLK

(K̃),
or equivalently by a Newton iteration starting from K.

1.5.2 Rollout and Policy Iteration

The rollout algorithm starts from some stable base policy µ, and obtains
the rollout policy µ̃ using a policy improvement operation, which by defini-
tion, yields the one-step lookahead policy that corresponds to terminal cost
approximation Jµ. Figure 1.5.8 illustrates the rollout algorithm. It can be
seen from the figure that the rollout policy is in fact an improved policy,
in the sense that Jµ̃(x) ≤ Jµ(x) for all x. Among others, this implies that
the rollout policy is stable.

Since the rollout policy is a one-step lookahead policy, it can also be
described using the formulas that we developed earlier in this section. In
particular, let the base policy be linear and have the form

µ0(x) = L0x,

where L0 is a scalar. We require that the base policy must be stable, i.e.,
|a+ bL0| < 1. From our earlier calculations, we have that the cost function
of µ0 is

Jµ0(x) = K0x2, (1.51)

where

K0 =
q + rL2

0

1− (a+ bL0)2
. (1.52)

Moreover, the rollout policy µ1 has the form µ1(x) = L1x, where

L1 = −
abK0

r + b2K0
; (1.53)

cf. Eqs. (1.44)-(1.45).
The PI algorithm is simply the repeated application of untruncated

rollout, and generates a sequence of stable linear policies {µk}. By repli-
cating our earlier calculations, we see that the policies have the form

µk(x) = Lkx, k = 0, 1, . . . ,

Sec. 1.5 Infinite Horizon Linear Quadratic Problems 61

Value iterations Policy evaluations

Policy Improvement with Base Policy

Policy Improvement with Base Policy µ

Policy evaluations for µ and µ̃

K K

Optimal cost Cost of rollout policy ˜
State 1 State 2 K∗

also Newton Step

Cost of rollout policy µ̃Cost of rollout policy µ̃ Cost of base policy µ

Figure 1.5.8 Illustration of the rollout algorithm for the linear quadratic prob-
lem. Starting from a linear stable base policy µ, it generates a stable rollout
policy µ̃. The quadratic cost coefficient of µ̃ is obtained from the quadratic cost
coefficient of µ with a Newton step for solving the Riccati equation.

where Lk is generated by the iteration

Lk+1 = −
abKk

r + b2Kk

,

with Kk given by

Kk =
q + rL2

k

1− (a+ bLk)2
,

[cf. Eqs. (1.52)-(1.53)].
The corresponding cost function sequence has the form

Jµk(x) = Kkx2;

cf. Eq. (1.51). Part of the classical linear quadratic theory is that Jµk

converges to the optimal cost function J*, while the generated sequence of
linear policies {µk}, where µk(x) = Lkx, converges to the optimal policy,
assuming that the initial policy is linear and stable. The convergence rate of
the sequence {Kk} is quadratic, as indicated earlier. This result was proved
by Kleinman [Kle68] for the continuous-time multidimensional version of
the linear quadratic problem, and it was extended later to more general
problems; see the references given in the books [Ber20a] and [Ber22b].

62 Exact and Approximate Dynamic Programming Chap. 1

Optimal cost Cost of rollout policy ˜

Cost of Truncated Rollout Policy ˜
Cost of Truncated Rollout Policy µ̃

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

F
L̃
(K)

K Kq K̃ K K
L̃

K K

L̃ = −

abK̃

r + b2K̃

State 1 State 2 K∗

also Newton Step

Figure 1.5.9 Illustration of truncated rollout with a stable base policy µ(x) = Lx
and terminal cost approximation K̃ for the linear quadratic problem. In this
figure, we use one-step lookahead minimization and the number of rollout steps
is m = 4.

Truncated Rollout

An m-truncated rollout scheme with a stable linear base policy µ(x) =
Lx, one-step lookahead minimization, and terminal cost approximation
J̃(x) = K̃x2 is geometrically interpreted as in Fig. 1.5.9. The truncated
rollout policy µ̃ is obtained by starting at K̃, executing m VI steps using
µ, followed by a Newton step for solving the Riccati equation.

We mentioned some interesting performance issues in our discussion
of truncated rollout in Section 1.1, and we will now revisit these issues
within the context of our linear quadratic problem. In particular we noted
that:

(a) Lookahead by rollout with a stable policy has a beneficial effect on
the stability properties of the lookahead policy.

(b) Lookahead by rollout may be an economic substitute for lookahead by
minimization, in the sense that it may achieve a similar performance
for the truncated rollout policy at significantly reduced computational

Sec. 1.6 Examples, Variations, and Simplifications 63

cost.

These statements are difficult to establish analytically in some generality.
However, they can be intuitively understood in the context with our one-
dimensional linear quadratic problem, using geometrical constructions like
the one of Fig. 1.5.9. We refer to the monograph [Ber22b] for further
discussion.

1.6 EXAMPLES, VARIATIONS, AND SIMPLIFICATIONS

In this section we provide a few examples that illustrate problem formula-
tion techniques, exact and approximate solution methods, and adaptations
of the basic DP algorithm to various contexts. We refer to DP textbooks
for extensive additional discussions of modeling and problem formulation
techniques (see e.g, the many examples that can be found in the author’s
DP and RL textbooks [Ber12], [Ber17], [Ber19a], [Ber20a], as well as in the
neuro-dynamic programming monograph [BeT96]).

An important fact to keep in mind is that there are many ways to
model a given practical problem in terms of DP, and that there is no unique
choice for state and control variables. This will be brought out by the
examples in this section, and is facilitated by the generality of DP: its basic
algorithmic principles apply for arbitrary state, control, and disturbance
spaces, and system and cost functions.

1.6.1 A Few Words About Modeling

In practice, optimization problems seldom come neatly packaged as mathe-
matical problems that can be solved by DP/RL or some other methodology.
Generally, a practical problem is a prime candidate for a DP formulation
if it involves multiple sequential decisions separated by the collection of
information that can enhance the effectiveness of future decisions.

However, there are other types of problems that can be fruitfully for-
mulated by DP. These include the entire class of deterministic problems,
where there is no information to be collected: all the information needed
in a deterministic problem is either known or can be predicted from the
problem data that is available at time 0. Moreover, for deterministic prob-
lems there is a plethora of non-DP methods, such as linear, nonlinear, and
integer programming, random and nonrandom search, discrete optimiza-
tion heuristics, etc. Still, however, the use of RL methods for deterministic
optimization is a major subject in this book, which will be discussed in
Chapters 2 and 3. We will argue there that rollout, when suitably ap-
plied, can improve substantially on the performance of other heuristic or
suboptimal methods, however derived. Moreover, we will see that often
for discrete optimization problems the DP sequential structure is intro-

64 Exact and Approximate Dynamic Programming Chap. 1

duced artificially, with the aim to facilitate the use of approximate DP/RL
methods.

There are also problems that fit quite well into the sequential struc-
ture of DP, but can be fruitfully addressed by RL methods that do not have
a fundamental connection with DP. An important case in point is policy
gradient and policy searchmethods, which will be considered in these notes,
but will be discussed later in this class. Here the policy of the problem is
parametrized by a set of parameters, so that the cost of the policy becomes
a function of these parameters, and can be optimized by non-DP meth-
ods such as gradient or random search-based suboptimal approaches. This
generally relates to the approximation in policy space approach, which will
be discussed further in Chapter 2. We also refer to Section 5.7 of the RL
book [Ber19a] and to the end-of-chapter references.

As a guide for formulating optimal control problems in a manner that
is suitable for a DP solution the following two-stage process is suggested:

(a) Identify the controls/decisions uk and the times k at which these con-
trols are applied. Usually this step is fairly straightforward. However,
in some cases there may be some choices to make. For example in
deterministic problems, where the objective is to select an optimal
sequence of controls {u0, . . . , uN−1}, one may lump multiple controls
to be chosen together, e.g., view the pair (u0, u1) as a single choice.
This is usually not possible in stochastic problems, where distinct de-
cisions are differentiated by the information/feedback available when
making them.

(b) Select the states xk. The basic guideline here is that xk should en-
compass all the information that is relevant for future optimization,
i.e., the information that is known to the controller at time k and
can be used with advantage in choosing uk. In effect, at time k the
state xk should separate the past from the future, in the sense that
anything that has happened in the past (states, controls, and dis-
turbances from stages prior to stage k) is irrelevant to the choices
of future controls as long we know xk. Sometimes this is described
by saying that the state should have a “Markov property” to express
an analogy with states of Markov chains, where (by definition) the
conditional probability distribution of future states depends on the
past history of the chain only through the present state.

The control and state selection may also have to be refined or special-
ized in order to enhance the application of known results and algorithms.
This includes the choice of a finite or an infinite horizon, and the availability
of good base policies or heuristics in the context of rollout.

Note that there may be multiple possibilities for selecting the states,
because information may be packaged in several different ways that are
equally useful from the point of view of control. It may thus be worth con-

Sec. 1.6 Examples, Variations, and Simplifications 65

sidering alternative ways to choose the states; for example try to use states
that minimize the dimensionality of the state space. For a trivial example
that illustrates the point, if a quantity xk qualifies as state, then (xk−1, xk)
also qualifies as state, since (xk−1, xk) contains all the information con-
tained within xk that can be useful to the controller when selecting uk.
However, using (xk−1, xk) in place of xk, gains nothing in terms of optimal
cost while complicating the DP algorithm that would have to be executed
over a larger space.

The concept of a sufficient statistic, which refers to a quantity that
summarizes all the essential content of the information available to the
controller, may be useful in providing alternative descriptions of the state
space. An important paradigm is problems involving partial or imperfect
state information, where xk evolves over time but is not fully accessible
for measurement (for example, xk may be the position/velocity vector of
a moving vehicle, but we may obtain measurements of just the position).
If Ik is the collection of all measurements and controls up to time k (the
information vector), it is correct to use Ik as state in a reformulated DP
problem that involves perfect state observation. However, a better alter-
native may be to use as state the conditional probability distribution

Pk(xk | Ik),

called belief state, which (as it turns out) subsumes all the information
that is useful for the purposes of choosing a control. On the other hand,
the belief state Pk(xk | Ik) is an infinite-dimensional object, whereas Ik
may be finite dimensional, so the best choice may be problem-dependent.
Still, in either case, the stochastic DP algorithm applies, with the sufficient
statistic [whether Ik or Pk(xk | Ik)] playing the role of the state.

1.6.2 Problems with a Termination State

Many DP problems of interest involve a termination state, i.e., a state t
that is cost-free and absorbing in the sense that for all k,

gk(t, uk, wk) = 0, fk(t, uk, wk) = t, for all wk and uk ∈ Uk(t).

Thus the control process essentially terminates upon reaching t, even if this
happens before the end of the horizon. One may reach t by choice if a special
stopping decision is available, or by means of a random transition from
another state. Problems involving games, such as chess, Go, backgammon,
and others involve a termination state (the end of the game) and have
played an important role in the development of the RL methodology.†

† Games often involve two players/decision makers, in which case they can

be addressed by suitably modified exact or approximate DP algorithms. The

DP algorithm that we have discussed in this chapter involves a single decision

maker, but can be used to find an optimal policy for one player against a fixed

and known policy of the other player.

66 Exact and Approximate Dynamic Programming Chap. 1

j · · · j · · ·n 0 10 1 0 1 2

) C c

C c(1)

Garage

Stage 1 Stage 2 Stage 3 Stage N NN N − 1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0)

1) k k

(0) c(k)) c(k + 1)

+ 1) c(N − 1) Parked

1) Parking Spaces

k k + 1

Termination State

Figure 1.6.1 Cost structure of the parking problem. The driver may park at
space k = 0, 1, . . . , N − 1 at cost c(k), if the space is free, or continue to the
next space k+ 1 at no cost. At space N (the garage) the driver must park at
cost C.

Generally, when it is known that an optimal policy will reach the ter-
mination state with certainty within at most some given number of stages
N , the DP problem can be formulated as an N -stage horizon problem, with
a very large termination cost for the nontermination states.‡ The reason
is that even if the termination state t is reached at a time k < N , we can
extend our stay at t for an additional N − k stages at no additional cost,
so the optimal policy will still be optimal policy, since it will not incur the
large termination test at the end of the horizon.

Example 1.6.1 (Parking)

A driver is looking for inexpensive parking on the way to his destination.
The parking area contains N spaces, numbered 0, . . . , N − 1, and a garage
following space N − 1. The driver starts at space 0 and traverses the parking
spaces sequentially, i.e., from space k he goes next to space k + 1, etc. Each
parking space k costs c(k) and is free with probability p(k) independently of
whether other parking spaces are free or not. If the driver reaches the last
parking space N − 1 and does not park there, he must park at the garage,
which costs C. The driver can observe whether a parking space is free only
when he reaches it, and then, if it is free, he makes a decision to park in that
space or not to park and check the next space. The problem is to find the
minimum expected cost parking policy.

We formulate the problem as a DP problem with N stages, correspond-
ing to the parking spaces, and an artificial termination state t that corre-
sponds to having parked; see Fig. 1.6.1. At each stage k = 1, . . . , N − 1, we
have three states: the artificial termination state t, and the two states F and
F , corresponding to space k being free or taken, respectively. At stage 0, we
have only two states, F and F , and at the final stage there is only one state,
the termination state t. The decision/control is to park or continue at state F

‡ When an upper bound on the number of stages to termination is not known,

the problem may be formulated as an infinite horizon problem, a stochastic ver-

sion of a shortest path problem.

Sec. 1.6 Examples, Variations, and Simplifications 67

[there is no choice at states F and state t]. From location k, the termination
state t is reached at cost c(k) when a parking decision is made (assuming
location k is free). Otherwise, the driver continues to the next state at no
cost. At stage N , the driver must park at cost C.

Let us now derive the form of the DP algorithm, denoting:

J∗
k (F): The optimal cost-to-go upon arrival at a space k that is free.

J∗
k (F): The optimal cost-to-go upon arrival at a space k that is taken.

J∗
k (t): The cost-to-go of the “parked”/termination state t.

The DP algorithm for k = 0, . . . , N − 1 takes the form

J∗
k (F) =

{

min
[

c(k), p(k + 1)J∗
k+1(F) +

(

1− p(k + 1)
)

J∗
k+1(F)

]

if k < N − 1,

min
[

c(N − 1), C
]

if k = N − 1,

J∗
k (F) =

{

p(k + 1)J∗
k+1(F) +

(

1− p(k + 1)
)

J∗
k+1(F) if k < N − 1,

C if k = N − 1,

for the states other than the termination state t, while for t we have

J∗
k (t) = 0, k = 1, . . . , N.

The minimization above corresponds to the two choices (park or not park) at
the states F that correspond to a free parking space.

While this algorithm is easily executed, it can be written in a simpler
and equivalent form. This can be done by introducing the scalars

Ĵk = p(k)J∗
k (F) +

(

1− p(k)
)

J∗
k (F), k = 0, . . . , N − 1,

which can be viewed as the optimal expected cost-to-go upon arriving at space
k but before verifying its free or taken status. Indeed, from the preceding DP
algorithm, we have

ĴN−1 = p(N − 1)min
[

c(N − 1), C
]

+
(

1− p(N − 1)
)

C,

Ĵk = p(k)min
[

c(k), Ĵk+1

]

+
(

1− p(k)
)

Ĵk+1, k = 0, . . . , N − 2.

From this algorithm we can also obtain the optimal parking policy:

Park at space k = 0, . . . , N − 1 if it is free and we have c(k) ≤ Ĵk+1.

This is an example of DP simplification that occurs when the state involves
components that are not affected by the choice of control, and will be ad-
dressed in the next section.

68 Exact and Approximate Dynamic Programming Chap. 1

1.6.3 State Augmentation, Time Delays, Forecasts, and
Uncontrollable State Components

In practice, we are often faced with situations where some of the assump-
tions of our stochastic optimal control problem are violated. For example,
the disturbances may involve a complex probabilistic description that may
create correlations that extend across stages, or the system equation may
include dependences on controls applied in earlier stages, which affect the
state with some delay.

Generally, in such cases the problem can be reformulated into our
DP problem format through a technique, which is called state augmentation
because it typically involves the enlargement of the state space. The general
guideline in state augmentation is to include in the enlarged state at time
k all the information that is known to the controller at time k and can
be used with advantage in selecting uk. State augmentation allows the
treatment of time delays in the effects of control on future states, correlated
disturbances, forecasts of probability distributions of future disturbances,
and many other complications. We note, however, that state augmentation
often comes at a price: the reformulated problem may have a very complex
state space. We provide some examples.

Time Delays

In some applications the system state xk+1 depends not only on the pre-
ceding state xk and control uk, but also on earlier states and controls. Such
situations can be handled by expanding the state to include an appropriate
number of earlier states and controls.

As an example, assume that there is at most a single stage delay in
the state and control; i.e., the system equation has the form

xk+1 = fk(xk, xk−1, uk, uk−1, wk), k = 1, . . . , N − 1, (1.54)

x1 = f0(x0, u0, w0).

If we introduce additional state variables yk and sk, and we make the
identifications yk = xk−1, sk = uk−1, the system equation (1.54) yields





xk+1

yk+1

sk+1



 =





fk(xk, yk, uk, sk, wk)
xk

uk



 . (1.55)

By defining x̃k = (xk, yk, sk) as the new state, we have

x̃k+1 = f̃k(x̃k, uk, wk),

where the system function f̃k is defined from Eq. (1.55).

Sec. 1.6 Examples, Variations, and Simplifications 69

By using the preceding equation as the system equation and by ex-
pressing the cost function in terms of the new state, the problem is reduced
to a problem without time delays. Naturally, the control uk should now
depend on the new state x̃k, or equivalently a policy should consist of func-
tions µk of the current state xk, as well as the preceding state xk−1 and
the preceding control uk−1.

When the DP algorithm for the reformulated problem is translated
in terms of the variables of the original problem, it takes the form

J*
N (xN) = gN (xN),

JN−1(xN−1, xN−2, uN−2)

= min
uN−1∈UN−1(xN−1)

EwN−1

{

gN−1(xN−1, uN−1, wN−1)

+ J*
N

(

fN−1(xN−1, xN−2, uN−1, uN−2, wN−1)
)

}

,

J*
k (xk, xk−1, uk−1) = min

uk∈Uk(xk)
Ewk

{

gk(xk, uk, wk)

+ J*
k+1

(

fk(xk, xk−1, uk, uk−1, wk), xk, uk

)

}

, k = 1, . . . , N − 2,

J*
0 (x0) = min

u0∈U0(x0)
Ew0

{

g0(x0, u0, w0) + J*
1

(

f0(x0, u0, w0), x0, u0

)

}

.

Similar reformulations are possible when time delays appear in the
cost or the control constraints; for example, in the case where the cost has
the form

E

{

gN(xN , xN−1) + g0(x0, u0, w0) +

N−1
∑

k=1

gk(xk, xk−1, uk, wk)

}

.

The extreme case of time delays in the cost arises in the nonadditive form

E
{

gN (xN , xN−1, . . . , x0, uN−1, . . . , u0, wN−1, . . . , w0)
}

.

Then, the problem can be reduced to the standard problem format, by
using as augmented state

x̃k =
(

xk, xk−1, . . . , x0, uk−1, . . . , u0, wk−1, . . . , w0

)

and E
{

gN(x̃N)
}

as reformulated cost. Policies consist of functions µk of
the present and past states xk, . . . , x0, the past controls uk−1, . . . , u0, and
the past disturbances wk−1, . . . , w0. Naturally, we must assume that the
past disturbances are known to the controller. Otherwise, we are faced with
a problem where the state is imprecisely known to the controller, which will
be discussed in the next section.

70 Exact and Approximate Dynamic Programming Chap. 1

Forecasts

Consider a situation where at time k the controller has access to a forecast
yk that results in a reassessment of the probability distribution of the sub-
sequent disturbance wk and, possibly, future disturbances. For example, yk
may be an exact prediction of wk or an exact prediction that the probability
distribution of wk is a specific one out of a finite collection of distributions.
Forecasts of interest in practice are, for example, probabilistic predictions
on the state of the weather, the interest rate for money, and the demand for
inventory. Generally, forecasts can be handled by introducing additional
state variables corresponding to the information that the forecasts provide.
We will illustrate the process with a simple example.

Assume that at the beginning of each stage k, the controller receives
an accurate prediction that the next disturbance wk will be selected ac-
cording to a particular probability distribution out of a given collection of
distributions {P1, . . . , Pm}; i.e., if the forecast is i, then wk is selected ac-
cording to Pi. The a priori probability that the forecast will be i is denoted
by pi and is given.

The forecasting process can be represented by means of the equation

yk+1 = ξk,

where yk+1 can take the values 1, . . . ,m, corresponding to the m possible
forecasts, and ξk is a random variable taking the value i with probability
pi. The interpretation here is that when ξk takes the value i, then wk+1

will occur according to the distribution Pi.
By combining the system equation with the forecast equation yk+1 =

ξk, we obtain an augmented system given by

(

xk+1

yk+1

)

=

(

fk(xk, uk, wk)
ξk

)

.

The new state and disturbance are

x̃k = (xk, yk), w̃k = (wk, ξk).

The probability distribution of w̃k is determined by the distributions Pi

and the probabilities pi, and depends explicitly on x̃k (via yk) but not on
the prior disturbances.

Thus, by suitable reformulation of the cost, the problem can be cast
as a stochastic DP problem. Note that the control applied depends on
both the current state and the current forecast. The DP algorithm takes
the form

J*
N (xN , yN) = gN (xN),

Sec. 1.6 Examples, Variations, and Simplifications 71

J*
k (xk, yk) = min

uk∈Uk(xk)
Ewk

{

gk(xk, uk, wk)

+

m
∑

i=1

piJ*
k+1

(

fk(xk, uk, wk), i
) ∣

∣ yk

}

,

(1.56)
where yk may take the values 1, . . . ,m, and the expectation over wk is
taken with respect to the distribution Pyk .

Note that the preceding formulation admits several extensions. One
example is the case where forecasts can be influenced by the control action
(e.g., pay extra for a more accurate forecast), and may involve several
future disturbances. However, the price for these extensions is increased
complexity of the corresponding DP algorithm.

Problems with Uncontrollable State Components

In many problems of interest the natural state of the problem consists of
several components, some of which cannot be affected by the choice of
control. In such cases the DP algorithm can be simplified considerably,
and be executed over the controllable components of the state.

As an example, let the state of the system be a composite (xk, yk) of
two components xk and yk. The evolution of the main component, xk, is
affected by the control uk according to the equation

xk+1 = fk(xk, yk, uk, wk),

where the distribution Pk(wk | xk, yk, uk) is given. The evolution of the
other component, yk, is governed by a given conditional distribution Pk(yk |
xk) and cannot be affected by the control, except indirectly through xk.
One is tempted to view yk as a disturbance, but there is a difference: yk is
observed by the controller before applying uk, while wk occurs after uk is
applied, and indeed wk may probabilistically depend on uk.

It turns out that we can formulate a DP algorithm that is executed
over the controllable component of the state, with the dependence on the
uncontrollable component being “averaged out” as in the preceding ex-
ample (see also the parking Example 1.6.1). In particular, let J*

k (xk, yk)
denote the optimal cost-to-go at stage k and state (xk, yk), and define

Ĵk(xk) = Eyk

{

J*
k (xk, yk) | xk

}

.

Note that the preceding expression can be interpreted as an “average cost-
to-go” at xk (averaged over the values of the uncontrollable component
yk). Then, similar to the preceding parking example, a DP algorithm that

72 Exact and Approximate Dynamic Programming Chap. 1

generates Ĵk(xk) can be obtained, and has the following form:

Ĵk(xk) = Eyk

{

min
uk∈Uk(xk,yk)

Ewk

{

gk(xk, yk, uk, wk)

+ Ĵk+1

(

fk(xk, yk, uk, wk)
) ∣

∣ xk, yk, uk

}∣

∣

∣ xk

}

.

(1.57)
This is a consequence of the calculation

Ĵk(xk) = Eyk

{

J∗
k (xk, yk) | xk

}

= Eyk

{

min
uk∈Uk(xk,yk)

Ewk ,xk+1,yk+1

{

gk(xk, yk, uk, wk)

+ J∗
k+1(xk+1, yk+1)

∣

∣ xk, yk, uk

} ∣

∣ xk

}

= Eyk

{

min
uk∈Uk(xk,yk)

Ewk ,xk+1

{

gk(xk, yk, uk, wk)

+ Eyk+1

{

J∗
k+1(xk+1, yk+1)

∣

∣ xk+1

} ∣

∣ xk, yk, uk

}

∣

∣ xk

}

.

Note that the minimization in the right-hand side of the preceding
equation must still be performed for all values of the full state (xk, yk) in
order to yield an optimal control law as a function of (xk, yk). Nonetheless,
the equivalent DP algorithm (1.57) has the advantage that it is executed
over a significantly reduced state space. Later, when we consider approx-
imation in value space, we will find that it is often more convenient to
approximate Ĵk(xk) than to approximate J*

k (xk, yk); see the following dis-
cussions of forecasts and of the game of tetris.

As an example, consider the augmented state resulting from the incor-
poration of forecasts, as described earlier. Then, the forecast yk represents
an uncontrolled state component, so that the DP algorithm can be simpli-
fied as in Eq. (1.57). In particular, assume that the forecast yk can take
values i = 1, . . . ,m with probability pi. Then, by defining

Ĵk(xk) =

m
∑

i=1

piJ*
k (xk, i), k = 0, 1, . . . , N − 1,

and ĴN (xN) = gN (xN), we have, using Eq. (1.56),

Ĵk(xk) =

m
∑

i=1

pi min
uk∈Uk(xk)

Ewk

{

gk(xk, uk, wk)

+ Ĵk+1

(

fk(xk, uk, wk)
) ∣

∣ yk = i
}

,

which is executed over the space of xk rather than xk and yk. Note that
this is a simpler algorithm to approximate than the one of Eq. (1.56).

Sec. 1.6 Examples, Variations, and Simplifications 73

Figure 1.6.2 Illustration of a tetris board.

Uncontrollable state components often occur in arrival systems, such
as queueing, where action must be taken in response to a random event
(such as a customer arrival) that cannot be influenced by the choice of
control. Then the state of the arrival system must be augmented to include
the random event, but the DP algorithm can be executed over a smaller
space, as per Eq. (1.57). Here is an example of this type.

Example 1.6.2 (Tetris)

Tetris is a popular video game played on a two-dimensional grid. Each square
in the grid can be full or empty, making up a “wall of bricks” with “holes”
and a “jagged top” (see Fig. 1.6.2). The squares fill up as blocks of different
shapes fall from the top of the grid and are added to the top of the wall. As a
given block falls, the player can move horizontally and rotate the block in all
possible ways, subject to the constraints imposed by the sides of the grid and
the top of the wall. The falling blocks are generated independently according
to some probability distribution, defined over a finite set of standard shapes.
The game starts with an empty grid and ends when a square in the top row
becomes full and the top of the wall reaches the top of the grid. When a
row of full squares is created, this row is removed, the bricks lying above this
row move one row downward, and the player scores a point. The player’s
objective is to maximize the score attained (total number of rows removed)
up to termination of the game, whichever occurs first.

We can model the problem of finding an optimal tetris playing strategy
as a finite horizon stochastic DP problem, with very long horizon. The state
consists of two components:

(1) The board position, i.e., a binary description of the full/empty status
of each square, denoted by x.

(2) The shape of the current falling block, denoted by y.

74 Exact and Approximate Dynamic Programming Chap. 1

The control, denoted by u, is the horizontal positioning and rotation applied
to the falling block. There is also an additional termination state which is
cost-free. Once the state reaches the termination state, it stays there with no
change in score. Moreover there is a very large amount added to the score
when the end of the horizon is reached without the game having terminated.

The shape y is generated according to a probability distribution p(y),
independently of the control, so it can be viewed as an uncontrollable state
component. The DP algorithm (1.57) is executed over the space of board
positions x and has the intuitive form

Ĵk(x) =
∑

y

p(y)max
u

[

g(x, y, u) + Ĵk+1

(

f(x, y, u)
)

]

, for all x, (1.58)

where

g(x, y, u) is the number of points scored (rows removed),

f(x, y, u) is the next board position (or termination state),

when the state is (x, y) and control u is applied, respectively. The DP algo-
rithm (1.58) assumes a finite horizon formulation of the problem.

Alternatively, we may consider an undiscounted infinite horizon formu-
lation, involving a termination state (i.e., a stochastic shortest path problem).
The “reduced” form of Bellman’s equation, which corresponds to the DP al-
gorithm (1.58), has the form

Ĵ(x) =
∑

y

p(y)max
u

[

g(x, y, u) + Ĵ
(

f(x, y, u)
)

]

, for all x.

The value Ĵ(x) can be interpreted as an “average score” at x (averaged over
the values of the uncontrollable block shapes y).

Finally, let us note that despite the simplification achieved by elimi-
nating the uncontrollable portion of the state, the number of states x is still
enormous, and the problem can only be addressed by suboptimal methods,
which will be discussed later in this class.†

1.6.4 Partial State Information and Belief States

We have assumed so far that the controller has access to the exact value of
the current state xk, so a policy consists of a sequence of functions µk(·),
k = 0, . . . , N − 1. However, in many practical settings this assumption is
unrealistic, because some components of the state may be inaccessible for
observation, the sensors used for measuring them may be inaccurate, or
the cost of measuring them more accurately may be prohibitive.

† Tetris has received a lot of attention as a challenging testbed for RL al-
gorithms over a period spanning 20 years (1995-2015), starting with the papers
[TsV96], [BeI96], and the neuro-dynamic programming book [BeT96], and end-
ing with the papers [GGS13], [SGG15], which contain many references to related
works in the intervening years.

Sec. 1.6 Examples, Variations, and Simplifications 75

j · · · j · · ·n 0 10 1 0 1 2

) C c

C c(1)

Garage

Stage 1 Stage 2 Stage 3 Stage N NN N − 1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0)

1) k k

(0) c(k)) c(k + 1)

+ 1) c(N − 1) Parked

1) Parking Spaces

k k + 1

Termination State

Enlarged State Space t
+

k
t
−

k

Figure 1.6.3 Cost structure and transitions of the bidirectional parking problem.
The driver may park at space k = 0, 1, . . . , N − 1 at cost c(k), if the space is free,
can move to k − 1 at cost t−

k
or can move to k + 1 at cost t+

k
. At space N (the

garage) the driver must park at cost C.

Often in such situations the controller has access to only some of
the components of the current state, and the corresponding observations
may also be corrupted by stochastic uncertainty. For example in three-
dimensional motion problems, the state may consist of the six-tuple of po-
sition and velocity components, but the observations may consist of noise-
corrupted radar measurements of the three position components. This
gives rise to problems of partial or imperfect state information, which have
received a lot of attention in the optimization and artificial intelligence
literature (see e.g., [Ber17], [RuN16]; these problems are also popularly
referred to with the acronym POMDP for partially observed Markovian
Decision problem).

Generally, solving a POMDP exactly is typically intractable in prac-
tice, even though there are DP algorithms for doing so. The most com-
mon approach is to replace the state xk with a belief state, which we will
denote by bk. It is the probability distribution of xk given all the obser-
vations that have been obtained by the controller up to time k, and it
can serve as “state” in an appropriate DP algorithm. The belief state can
in principle be computed and updated by a variety of methods that are
based on Bayes’ rule, such as Kalman filtering (see e.g., [AnM79], [KuV86],
[Kri16], [ChC17]) and particle filtering (see e.g., [GSS93], [DoJ09], [Can16],
[Kri16]).

In problems where the state xk can take a finite but large number
of values, say n, the belief states comprise an n-dimensional simplex, so
discretization becomes problematic. As a result, alternative suboptimal so-
lution methods are often used in partial state information problems. Some
of these methods will be described in future chapters.

Example 1.6.3 (Bidirectional Parking)

Let us consider a more complex version of the parking problem of Example
1.6.1. As in that example, a driver is looking for inexpensive parking on the
way to his destination, along a line of N parking spaces with a garage at the

76 Exact and Approximate Dynamic Programming Chap. 1

end. The difference is that the driver can move in either direction, rather
than just forward towards the garage. In particular, at space i, the driver
can park at cost c(i) if i is free, can move to i− 1 at a cost t−i or can move to
i+1 at a cost t+i . Moreover, the driver records and remembers the free/taken
status of the spaces previously visited and may return to any of these spaces;
see Fig. 1.6.3.

Let us assume that the probability p(i) of a space i being free changes
over time, i.e., a space found free (or taken) at a given visit may get taken
(or become free, respectively) by the time of the next visit. The initial prob-
abilities p(i), before visiting any spaces, are known, and the mechanism by
which these probabilities change over time is also known to the driver. As an
example, we may assume that at each time stage, p(i) increases by a certain
known factor with some probability ξ and decreases by another known factor
with the complementary probability 1− ξ.

Here the belief state is the vector of current probabilities

(

p(0), . . . , p(N − 1)
)

,

and it can be updated with a simple algorithm at each time based on the new
observation: the free/taken status of the space visited at that time.

Despite their inherent computational difficulty, it turns out that con-
ceptually, partial state information problems are no different than the per-
fect state information problems we have been addressing so far. In fact by
various reformulations, we can reduce a partial state information problem
to one with perfect state information. Once this is done, it is possible to
state an exact DP algorithm that is defined over the set of belief states.
This algorithm has the form

J*
k (bk) = min

uk∈Uk

[

ĝk(bk, uk) + Ezk+1

{

J*
k+1

(

Fk(bk, uk, zk+1)
)

}

]

, (1.59)

where:

J*
k (bk) denotes the optimal cost-to-go starting from belief state bk at

stage k.

Uk is the control constraint set at time k (since the state xk is un-
known at stage k, Uk must be independent of xk).

ĝk(bk, uk) denotes the expected stage cost of stage k. It is calculated
as the expected value of the stage cost gk(xk, uk, wk), with the joint
distribution of (xk, wk) determined by the belief state bk and the
distribution of wk.

Fk(bk, uk, zk+1) denotes the belief state at the next stage, given that
the current belief state is bk, control uk is applied, and observation
zk+1 is received following the application of uk:

bk+1 = Fk(bk, uk, zk+1). (1.60)

Sec. 1.6 Examples, Variations, and Simplifications 77

k Controller

Controller µk

Belief State“Future” System x Belief State
∗

y bk

k Control uk = µk(bk)

+1 bk+1 = Fk(bk, uk, zk+1) ˆ

zk+1

) Cost ĝk(bk, uk)

Belief Estimator

Figure 1.6.4 Schematic illustration of the view of an imperfect state information
problem as one of perfect state information, whose state is the belief state bk, i.e.,
the conditional probability distribution of xk given all the observations up to time
k. The observation zk+1 plays the role of the stochastic disturbance. The function
Fk is a sequential estimator that updates the current belief state bk .

This is the system equation for a perfect state information problem
with state bk, control uk, “disturbance” zk+1, and cost per stage
ĝk(bk, uk). The function Fk is viewed as a sequential belief estimator ,
which updates the current belief state bk based on the new observation
zk+1. It is given by either an explicit formula or an algorithm (such as
Kalman filtering or particle filtering) that is based on the probability
distribution of zk and the use of Bayes’ rule.

The expected value Ezk+1
{·} is taken with respect to the distribu-

tion of zk+1, given bk and uk. Note that zk+1 is random, and its
distribution depends on xk and uk, so the expected value

Ezk+1

{

J*
k+1

(

Fk(bk, uk, zk+1)
)

}

in Eq. (1.59) is a function of bk and uk.

The algorithm (1.59) is just the ordinary DP algorithm for the perfect
state information problem shown in Fig. 1.6.4. It involves the system/belief
estimator (1.60) and the cost per stage ĝk(bk, uk). Note that since bk takes
values in a continuous space, the algorithm (1.59) can only be executed
approximately, using approximation in value space methods.

We refer to the textbook [Ber17], Chapter 4, for a detailed derivation
of the DP algorithm (1.59), and to the monograph [BeS78] for a mathe-
matical treatment that applies to infinite-dimensional state and disturbance
spaces as well.

1.6.5 Multiagent Problems and Multiagent Rollout

Let us consider the discounted infinite horizon problem and a special struc-

78 Exact and Approximate Dynamic Programming Chap. 1

2 Agent 1 Agent

State InfoState Info State Info

Agent 2 Agent 3 Agent 4 Agent 5

Agent 2 Agent 3 Agent 4 Agent 5

Agent 2 Agent 3 Agent 4 Agent 5

Agent 2 Agent 3 Agent 4 Agent 5

Agent 2 Agent 3 Agent 4 Agent 5 Environment Computing Cloud
Environment Computing Cloud

+1
u1

u2

u3

u4

u5

Single policy Info

Single policy Info Single policy Info

Single policy InfoSingle policy Info

Single policy Info

Single policy InfoSingle policy Info

Figure 1.6.5 Schematic illustration of a multiagent problem. There are multiple
“agents,” and each agent ℓ = 1, . . . ,m controls its own decision variable uℓ. At
each stage, agents exchange new information and also exchange information with
the “environment,” and then select their decision variables for the stage.

ture of the control space, whereby the control u consists of m components,
u = (u1, . . . , um), with a separable control constraint structure uℓ ∈ Uℓ(x),
ℓ = 1, . . . ,m. Thus the control constraint set is the Cartesian product

U(x) = U1(x)× · · · × Um(x), (1.61)

where the sets Uℓ(x) are given. This structure is inspired by applications
involving distributed decision making by multiple agents with communica-
tion and coordination between the agents; see Fig. 1.6.5.

In particular, we will view each component uℓ, ℓ = 1, . . . ,m, as being
chosen from within Uℓ(x) by a separate “agent” (a decision making entity).
For the sake of the following discussion, we assume that each set Uℓ(x) is
finite. Then the one-step lookahead minimization of the standard rollout
scheme with base policy µ is given by

ũ ∈ arg min
u∈U(x)

Ew

{

g(x, u, w) + αJµ
(

f(x, u, w)
)

}

, (1.62)

and involves as many as nm Q-factors, where n is the maximum number of
elements of the sets Uℓ(x) [so that nm is an upper bound to the number of
controls in U(x), in view of its Cartesian product structure (1.61)]. Thus
the standard rollout algorithm requires an exponential [order O(nm)] num-
ber of Q-factor computations per stage, which can be overwhelming even
for moderate values of m.

This potentially large computational overhead motivates a far more
computationally efficient rollout algorithm, whereby the one-step lookahead

Sec. 1.6 Examples, Variations, and Simplifications 79

minimization (1.62) is replaced by a sequence of m successive minimiza-
tions, one-agent-at-a-time, with the results incorporated into the subse-
quent minimizations. In particular, at state x we perform the sequence of
minimizations

µ̃1(x) ∈ arg min
u1∈U1(x)

Ew

{

g(x, u1, µ2(x), . . . , µm(x), w)

+ αJµ
(

f(x, u1, µ2(x), . . . , µm(x), w)
)

}

,

µ̃2(x) ∈ arg min
u2∈U2(x)

Ew

{

g(x, µ̃1(x), u2, µ3(x) . . . , µm(x), w)

+ αJµ
(

f(x, µ̃1(x), u2, µ3(x), . . . , µm(x), w)
)

}

,

.

µ̃m(x) ∈ arg min
um∈Um(x)

Ew

{

g(x, µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um, w)

+ αJµ
(

f(x, µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um, w)
)

}

.

Thus each agent component uℓ is obtained by a minimization with the pre-
ceding agent components u1, . . . , uℓ−1 fixed at the previously computed val-
ues of the rollout policy, and the following agent components uℓ+1, . . . , um

fixed at the values given by the base policy. This algorithm requires order
O(nm) Q-factor computations per stage, a potentially huge computational
saving over the order O(nm) computations required by standard rollout.

A key idea here is that the computational requirements of the rollout
one-step minimization (1.62) are proportional to the number of controls in
the set Uk(xk) and are independent of the size of the state space. This mo-
tivates a reformulation of the problem, first suggested in the book [BeT96],
Section 6.1.4, whereby control space complexity is traded off with state
space complexity, by “unfolding” the control uk into its m components,
which are applied one agent-at-a-time rather than all-agents-at-once.

In particular, we can reformulate the problem by breaking down the
collective decision uk into m individual component decisions, thereby re-
ducing the complexity of the control space while increasing the complexity
of the state space. The potential advantage is that the extra state space
complexity does not affect the computational requirements of some RL
algorithms, including rollout.

To this end, we introduce a modified but equivalent problem, involv-
ing one-at-a-time agent control selection. At the generic state x, we break
down the control u into the sequence of the m controls u1, u2, . . . , um, and
between x and the next state x̄ = f(x, u, w), we introduce artificial inter-
mediate “states” (x, u1), (x, u1, u2), . . . , (x, u1, . . . , um−1), and correspond-
ing transitions. The choice of the last control component um at “state”

80 Exact and Approximate Dynamic Programming Chap. 1

...

Random Transition

) Random Cost
x x x̄

x̄ x̄ = f(x, u, w)

) Control um

Stage

) g(x, u, w)

) u1

(x, u1)
) u2

(x, u1, u2)
u3 um−1

(x, u1, . . . , um−1) Control

Figure 1.6.6 Equivalent formulation of the N-stage stochastic optimal control
problem for the case where the control u consists of m components u1, u2, . . . , um:

u = (u1, . . . , um) ∈ U1(xk)× · · · × Um(xk).

The figure depicts the kth stage transitions. Starting from state x, we generate
the intermediate states

(x, u1), (xk, u1, u2), . . . , (x, u1, . . . , um−1),

using the respective controls u1, . . . , um−1. The final control um leads from
(x, u1, . . . , um−1) to x̄ = f(x, u,w), and the random cost g(x, u,w) is incurred.

(x, u1, . . . , um−1) marks the transition to the next state x̄ = f(x, u, w) ac-
cording to the system equation, while incurring cost g(x, u, w); see Fig.
1.6.6.

It is evident that this reformulated problem is equivalent to the origi-
nal, since any control choice that is possible in one problem is also possible
in the other problem, while the cost structure of the two problems is the
same. In particular, every policy

(

µ1(x), . . . , µm(x)
)

of the original prob-
lem, including a base policy in the context of rollout, is admissible for the
reformulated problem, and has the same cost function for the original as
well as the reformulated problem.

The motivation for the reformulated problem is that the control space
is simplified at the expense of introducing m−1 additional layers of states,
and the corresponding m− 1 cost-to-go functions

J1(x, u1), J2(x, u1, u2), . . . , Jm−1(x, u1, . . . , um−1).

The increase in size of the state space does not adversely affect the opera-
tion of rollout, since the Q-factor minimization (1.62) is performed for just
one state at each stage.

The major fact that can be proved about multiagent rollout (see the
end-of-chapter references) is that it still achieves cost improvement :

Jµ̃(x) ≤ Jµ(x), for all x,

where Jµ(x) is the cost function of the base policy µ, and Jµ̃(x) is the cost
function of the rollout policy µ̃ = (µ̃1, . . . , µ̃m), starting from state x. Fur-
thermore, this cost improvement property can be extended to multiagent PI

Sec. 1.6 Examples, Variations, and Simplifications 81

Figure 1.6.7 Illustration of a 2-dimensional spiders-and-fly problem with 20
spiders and 5 flies (cf. Example 1.6.4). The flies moves randomly, regardless of
the position of the spiders. During a stage, each spider moves to a neighboring
location or stays where it is, so there are 5 moves per spider (except for spiders
at the edges of the grid). The total number of possible joint spiders moves is a
little less than 520.

schemes that involve one-agent-at-a-time policy improvement operations,
and have sound convergence properties. Moreover, multiagent rollout be-
comes the starting point for various related PI schemes that are well suited
for distributed operation in important practical contexts involving multiple
autonomous decision makers; see the book [Ber20a].

Example 1.6.4 (Spiders and Flies)

This example is representative of a broad range of practical problems such as
multirobot service systems involving delivery, maintenance and repair, search
and rescue, firefighting, etc. Here there are m spiders and several flies moving
on a 2-dimensional grid; cf. Fig. 1.6.7. The objective is for the spiders to catch
all the flies as fast as possible.

During a stage, each fly moves to a some other position according to a
given state-dependent probability distribution. Each spider learns the current
state (the vector of spiders and fly locations) at the beginning of each stage,
and either moves to a neighboring location or stays where it is. Thus each
spider has as many as 5 choices at each stage. The control is u = (u1, . . . , um),
where uℓ is the choice of the ℓth spider, so there are about 5m possible values
of u.

To apply multiagent rollout, we need a base policy. A simple possibility
is to use the policy that directs each spider to move on the path of minimum

82 Exact and Approximate Dynamic Programming Chap. 1

distance to the closest fly position. According to the multiagent rollout for-
malism, the spiders choose their moves one-at-time in the order from 1 to m,
taking into account the current positions of the flies and the earlier moves
of other spiders, and assuming that future moves will be chosen according to
the base policy, which is a tractable computation.

In particular, at the beginning at the typical stage, spider 1 selects
its best move (out of the no more than 5 possible moves), assuming the
other spiders 2, . . . ,m will move towards their closest surviving fly during the
current stage, and all spiders will move towards their closest surviving fly
during the following stages, up to the time where no surviving flies remain.
Spider 1 then broadcasts its selected move to all other spiders. Then spider
2 selects its move taking into account the move already chosen by spider 1,
and assuming that spiders 3, . . . , m will move towards their closest surviving
fly during the current stage, and all spiders will move towards their closest
surviving fly during the following stages, up to the time where no surviving
flies remain. Spider 2 then broadcasts its choice to all other spiders. This
process of one-spider-at-a-time move selection is repeated for the remaining
spiders 3, . . . ,m, marking the end of the stage.

Note that while standard rollout computes and compares 5m Q-factors
(actually a little less to take into account edge effects), multiagent rollout
computes and compares ≤ 5 moves per spider, for a total of less than 5m.
Despite this tremendous computational economy, experiments with this type
of spiders and flies problems have shown that multiagent rollout achieves a
comparable performance to the one of standard rollout.

1.6.6 Problems with Unknown Parameters - Adaptive and
Model Predictive Control

Our discussion so far dealt with problems with a known mathematical
model, i.e., one where the system equation, cost function, control con-
straints, and probability distributions of disturbances are perfectly known.
The mathematical model may be available through explicit mathematical
formulas and assumptions, or through a computer program that can em-
ulate all of the mathematical operations involved in the model, including
Monte Carlo simulation for the calculation of expected values.

It is important to note here that from our point of view, it makes no
difference whether the mathematical model is available through closed form
mathematical expressions or through a computer simulator : the methods
that we discuss are valid either way, only their suitability for a given prob-
lem may be affected by the availability of mathematical formulas. More-
over, problems with a known mathematical model are the only type that we
will formally address in this book with DP and approximate DP methods .

Of course in practice, it is common that the system parameters are
either not known exactly or may change over time.† As an example consider

† The difficulties of decision and control within a changing environment are

often underestimated. Among others, they complicate the balance between off-

Sec. 1.6 Examples, Variations, and Simplifications 83

our oversimplified cruise control system of Example 1.3.1 or its infinite
horizon version. The state evolves according to

xk+1 = xk + buk + wk, (1.63)

where xk is the deviation vk−v̄ of the vehicle’s velocity vk from the nominal
v̄, uk is the force that propels the car forward, and wk is the disturbance
that has nonzero mean. However, the coefficient b and the distribution of
wk change frequently, and cannot be modeled with any precision because
they depend on unpredictable time-varying conditions, such as the slope
and condition of the road, and the weight of the car (which is affected by
the number of passengers). Moreover, the nominal velocity v̄ is set by the
driver, and when it changes it may affect the parameter b in the system
equation, and other parameters.†

In this section, we will briefly review some of the most commonly used
approaches for dealing with unknown parameters in optimal control theory
and practice. We should note also that unknown problem environments are
an integral part of the artificial intelligence view of RL. In particular, to
quote from the popular book by Sutton and Barto [SuB18], RL is viewed
as “a computational approach to learning from interaction,” and “learning
from interaction with the environment is a foundational idea underlying
nearly all theories of learning and intelligence.” The idea of learning from
interaction with the environment is often connected with the idea of ex-
ploring the environment to identify its characteristics. In control theory
this is often viewed as part of the system identification methodology, which
aims to construct mathematical models of dynamic systems. The system
identification process is often combined with the control process to deal
with unknown or changing problem parameters. This is one of the most
challenging areas of stochastic optimal and suboptimal control, and has
been studied since the early 1960s.

Robust and Adaptive Control

Given a controller design that has been obtained assuming a nominal DP
problem model, one possibility is to simply ignore changes in problem pa-
rameters. We may then try to investigate the performance of the current

line training and on-line play, which we discussed in Section 1.1 in connection

the AlphaZero. It is worth keeping in mind that as much as learning to play

high quality chess is a great challenge, the rules of play are stable and do not

change unpredictably in the middle of a game! Problems with changing system

parameters can be far more challenging!

† Adaptive cruise control, which can also adapt the car’s velocity based on its

proximity to other cars, has been studied extensively and has been incorporated

in several commercially sold car models.

84 Exact and Approximate Dynamic Programming Chap. 1

design for a suitable range of problem parameter values, and ensure that it
is adequate for the entire range. This is sometimes called a robust controller
design. For example, consider the oversimplified cruise control system of
Eq. (1.63) with a linear controller of the form µ(x) = Lx for some scalar L.
Then we check the range of parameters b for which the current controller
is stable (this is the interval of values b for which |1+ bL| < 1), and ensure
that b remains within that range during the system’s operation.

The more general class of methods where the controller is modi-
fied in response to problem parameter changes is part of a broad field
known as adaptive control , i.e., control that adapts to changing parame-
ters. This is a rich methodology with many and diverse applications. We
will not discuss adaptive control in this book, except peripherally. Let
us just mention for the moment a simple time-honored adaptive control
approach for continuous-state problems called PID (Proportional-Integral-
Derivative) control , for which we refer to the control literature, including
the books by Aström and Hagglund [AsH95], [AsH06], and the end-of-
chapter references on adaptive control (also the discussion in Section 5.7 of
the RL textbook [Ber19a]).

In particular, PID control aims to maintain the output of a single-
input single-output dynamic system around a set point or to follow a given
trajectory, as the system parameters change within a relatively broad range.
In its simplest form, the PID controller is parametrized by three scalar pa-
rameters, which may be determined by a variety of methods, some of them
manual/heuristic. PID control is used widely and with success, although
its range of application is mainly restricted to single-input, single-output
continuous-state control systems.

Dealing with Unknown Parameters by System Identification

In PID control, no attempt is made to maintain a mathematical model and
to track unknown model parameters as they change. An alternative and
apparently reasonable form of suboptimal control is to separate the control
process into two phases, a system identification phase and a control phase.
In the first phase the unknown parameters are estimated, while the control
takes no account of the interim results of estimation. The final parameter
estimates from the first phase are then used to implement an optimal or
suboptimal policy in the second phase. This alternation of estimation and
control phases may be repeated several times during any system run in
order to take into account subsequent changes of the parameters. Moreover,
it is not necessary to introduce a hard separation between the identification
and the control phases. They may be going on simultaneously, with new
parameter estimates being introduced into the control process, whenever
this is thought to be desirable; see Fig. 1.6.8.

One drawback of this approach is that it is not always easy to deter-
mine when to terminate one phase and start the other. A second difficulty,

Sec. 1.6 Examples, Variations, and Simplifications 85

k Controller

) System Data Control Parameter Estimation

System Data Control Parameter Estimation

System State Data Control Parameter Estimation

System State Data Control Parameter Estimation

System State Data Control Parameter Estimation
System State Data Control Parameter Estimation

Figure 1.6.8 Schematic illustration of concurrent parameter estimation and sys-
tem control. The system parameters are estimated on-line and the estimates are
periodically passed on to the controller.

of a more fundamental nature, is that the control process may make some
of the unknown parameters invisible to the estimation process. This is
known as the problem of parameter identifiability, which is discussed in
the context of optimal control in several sources, including [BoV79] and
[Kum83]; see also [Ber17], Section 6.7. For a simple example, consider the
scalar system

xk+1 = axk + buk, k = 0, . . . , N − 1,

and the quadratic cost
N
∑

k=1

(xk)2.

Assuming perfect state information, if the parameters a and b are known,
it can be seen that the optimal control law is

µ∗
k(xk) = −

a

b
xk,

which sets all future states to 0. Assume now that the parameters a and b
are unknown, and consider the two-phase method. During the first phase
the control law

µ̃k(xk) = γxk (1.64)

is used (γ is some scalar; for example, γ = −a

b
, where a and b are some a

priori estimates of a and b, respectively). At the end of the first phase, the
control law is changed to

µk(xk) = −
â

b̂
xk,

86 Exact and Approximate Dynamic Programming Chap. 1

where â and b̂ are the estimates obtained from the estimation process.
However, with the control law (1.64), the closed-loop system is

xk+1 = (a+ bγ)xk,

so the estimation process can at best yield the value of (a + bγ) but not
the values of both a and b. In other words, the estimation process cannot
discriminate between pairs of values (a1, b1) and (a2, b2) such that

a1 + b1γ = a2 + b2γ.

Therefore, a and b are not identifiable when feedback control of the form
(1.64) is applied.

On-line parameter estimation algorithms, which address among oth-
ers the issue of identifiability, have been discussed extensively in the control
theory literature, but the corresponding methodology is complex and be-
yond our scope in this book. However, assuming that we can make the
estimation phase work somehow, we are free to revise the controller using
the newly estimated parameters in a variety of ways, in an on-line replan-
ning process.

Unfortunately, there is still another difficulty with this type of on-
line replanning: it may be hard to recompute an optimal or near-optimal
policy on-line, using a newly identified system model. In particular, it may
be impossible to use time-consuming methods that involve for example the
training of a neural network. A simpler possibility is to use rollout, which
we discuss next.

Adaptive Control by Rollout and On-Line Replanning

We will now consider an approach for dealing with unknown or changing
parameters, which is based on on-line replanning. We have discussed this
approach in the context of rollout and multiagent rollout, where we stressed
the importance of fast on-line policy improvement.

Let us assume that some problem parameters change and the current
controller becomes aware of the change “instantly” (i.e., very quickly be-
fore the next stage begins). The method by which the problem parameters
are recalculated or become known is immaterial for the purposes of the fol-
lowing discussion. It may involve a limited form of parameter estimation,
whereby the unknown parameters are “tracked” by data collection over a
few time stages, with due attention paid to issues of parameter identifi-
ability; or it may involve new features of the control environment, such
as a changing number of servers and/or tasks in a service system (think
of new spiders and/or flies appearing or disappearing unexpectedly in the
spiders-and-flies Example 1.6.4).

We thus assume away/ignore issues of parameter estimation, and fo-
cus on revising the controller by on-line replanning based on the newly ob-
tained parameters. This revision may be based on any suboptimal method,

Sec. 1.6 Examples, Variations, and Simplifications 87

Multiagent Q-factor minimization xk

Possible States

Possible States xk+1

Rollout with Base Policy
Rollout with Base Policy

Changing System, Cost, and Constraint Parameters

Changing System, Cost, and Constraint Parameters
Changing System, Cost, and Constraint Parameters

Lookahead Minimization

Lookahead Minimization

Figure 1.6.9 Schematic illustration of adaptive control by rollout. One-step
lookahead is followed by simulation with the base policy, which stays fixed. The
system, cost, and constraint parameters are changing over time, and the most
recent values are incorporated into the lookahead minimization and rollout oper-
ations. For the discussion in this section, we may assume that all the changing
parameter information is provided by some computation and sensor “cloud” that
is beyond our control. The base policy may also be revised based on various
criteria.

but rollout with the current policy used as the base policy is particularly
attractive. Here advantage of rollout is that it is simple and reliable. In
particular, it does not require a complicated training procedure to revise
the current policy, based for example on the use of neural networks or
other approximation architectures, so no new policy is explicitly computed
in response to the parameter changes . Instead the current policy is used as
the base policy for rollout, and the available controls at the current state
are compared by a one-step or mutistep minimization, with cost function
approximation provided by the base policy (cf. Fig. 1.6.9). Note also that
over time the base policy may also be revised (on the basis of an unspecified
rationale), in which case the rollout policy will be revised both in response
to the changed current policy and in response to the changing parameters.

The principal requirement for using rollout in an adaptive control
context is that the rollout control computation should be fast enough to
be performed between stages. Note, however, that accelerated/truncated
versions of rollout, as well as parallel computation, can be used to meet
this time constraint.

The following example considers on-line replanning with the use of

88 Exact and Approximate Dynamic Programming Chap. 1

rollout in the context of the simple one-dimensional linear quadratic prob-
lem that we discussed earlier in this chapter. The purpose of the example
is to illustrate analytically how rollout with a policy that is optimal for a
nominal set of problem parameters works well when the parameters change
from their nominal values. This property is not practically useful in linear
quadratic problems because when the parameter change, it is possible to
calculate the new optimal policy in closed form, but it is indicative of the
performance robustness of rollout in other contexts. Generally, adaptive
control by rollout and on-line replanning makes sense in situations where
the calculation of the rollout controls for a given set of problem parameters
is faster and/or more convenient than the calculation of the optimal con-
trols for the same set of parameter values. These problems include cases
involving nonlinear systems and/or difficult (e.g., integer) constraints.

Example 1.6.5 (On-Line Replanning for Linear Quadratic
Problems Based on Rollout)

Consider the deterministic undiscounted infinite horizon linear quadratic prob-
lem. It involves the linear system

xk+1 = xk + buk,

and the quadratic cost function

lim
N→∞

N−1
∑

k=0

(x2
k + ru2

k).

The optimal cost function is given by

J∗(x) = K∗x2,

where K∗ is the unique positive solution of the Riccati equation

K =
rK

r + b2K
+ 1. (1.65)

The optimal policy has the form

µ∗(x) = L∗x, (1.66)

where

L∗ = − bK∗

r + b2K∗
. (1.67)

As an example, consider the optimal policy that corresponds to the
nominal problem parameters b = 2 and r = 0.5: this is the policy (1.66)-
(1.67), with K obtained as the positive solution of the quadratic Riccati Eq.
(1.65) for b = 2 and r = 0.5. We thus obtain

K =
2 +

√
6

4
.

Sec. 1.6 Examples, Variations, and Simplifications 89

From Eq. (1.67) we then have

L = − 2 +
√
6

5 + 2
√
6
. (1.68)

We will now consider changes of the values of b and r while keeping L constant,
and we will compare the quadratic cost coefficient of the following three cost
functions as b and r vary:

(a) The optimal cost function K∗x2, where K∗ is given by the positive
solution of the Riccati Eq. (1.65).

(b) The cost function KLx
2 that corresponds to the base policy

µL(x) = Lx,

where L is given by Eq. (1.68). From our earlier discussion, we have

KL =
1 + rL2

1− (1 + bL)2
.

(c) The cost function K̃Lx
2 that corresponds to the rollout policy

µ̃L(x) = L̃x,

obtained by using the policy µL as base policy. Using the formulas
given earlier, we have

L̃ = − bKL

r + b2KL

,

and

K̃L =
1 + rL̃2

1− (1 + bL̃)2
.

Figure 1.6.10 shows the coefficients K∗, KL, and K̃L for a range of
values of r and b. We have

K∗ ≤ K̃L ≤ KL.

The differenceKL−K∗ is indicative of the robustness of the policy µL, i.e., the
performance loss incurred by ignoring the values of b and r, and continuing
to use the policy µL, which is optimal for the nominal values b = 2 and
r = 0.5, but suboptimal for other values of b and r. The difference K̃L−K∗ is
indicative of the performance loss due to using on-line replanning by rollout
rather than using optimal replanning. Finally, the difference KL − K̃L is
indicative of the performance improvement due to on-line replanning using
rollout rather than keeping the policy µL unchanged.

90 Exact and Approximate Dynamic Programming Chap. 1

0 5 10 15 20 25 30

1

2

3

4

5

6

7

8

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Cost of rollout policy ˜ Optimal Base Rolllout

Optimal Base Rolllout

Optimal Base Rollout

Optimal Base Rollout

Cost of rollout policy ˜ Optimal Base Rolllout

Optimal Base Rolllout

Figure 1.6.10 Illustration of control by rollout under changing problem pa-
rameters. The quadratic cost coefficients K∗ (optimal, denoted by solid line),
KL (base policy, denoted by circles), and K̃L (rollout policy, denoted by as-
terisks) for the two cases where r = 0.5 and b varies, and b = 2 and r varies.
The value of L is fixed at the value that is optimal for b = 2 and r = 0.5 [cf.
Eq. (1.68)]. The rollout policy is very close to optimal, even when the base
policy is far from optimal. This is related to the size of the second derivative
of the Riccati Eq. (1.65); see Exercise 1.3.

Note that, as the figure illustrates, we have

lim
J→J∗

J̃ − J∗

J − J∗
= 0,

where for a given initial state, J̃ is the rollout performance, J∗ is the optimal
performance, and J is the base policy performance. This is a consequence of
the superlinear/quadratic convergence rate of Newton’s method that underlies
rollout, and guarantees that the rollout performance approaches the optimal
much faster than the base policy performance does.

Sec. 1.6 Examples, Variations, and Simplifications 91

Note that Fig. 1.6.10 illustrates the behavior of the error ratio

J̃ − J∗

J − J∗
,

where for a given initial state, J̃ is the rollout performance, J∗ is the optimal
performance, and J is the base policy performance. This ratio approaches 0
as J − J∗ becomes smaller because of the superlinear/quadratic convergence
rate of Newton’s method that underlies the rollout algorithm.

The next example summarizes how rollout and on-line replanning
connect with model predictive control (MPC). A detailed discussion will
be given later; see also the author’s papers [Ber05a], [Ber05b], where the
relations between rollout and MPC were first explored.

Example 1.6.6 (Model Predictive Control, Rollout, and
On-Line Replanning)

Let us briefly discuss the MPC methodology, with a view towards its connec-
tion with the rollout algorithm. Consider an undiscounted infinite horizon
deterministic problem, involving the system

xk+1 = f(xk, uk),

whose state xk and control uk are finite-dimensional vectors. The cost per
stage is assumed nonnegative

g(xk, uk) ≥ 0, for all (xk, uk),

(e.g., a quadratic cost). There are control constraints uk ∈ U(xk), and to
simplify the following discussion, we will assume that there are no state con-
straints. We assume that the system can be kept at the origin at zero cost,
i.e.,

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ U(0).

For a given initial state x0, we want to obtain a sequence {u0, u1, . . .} that
satisfies the control constraints, while minimizing the total cost. This is a
classical problem in control system design, where the aim is to keep the state
of the system near the origin (or more generally some desired set point), in
the face of disturbances and/or parameter changes.

The MPC algorithm at each encountered state xk applies a control that
is computed as follows; see Fig. 1.6.11:

(a) It solves an ℓ-stage optimal control problem involving the same cost
function and the requirement xk+ℓ = 0. This is the problem

min
ut, t=k,...,k+ℓ−1

k+ℓ−1
∑

t=k

g(xt, ut), (1.69)

92 Exact and Approximate Dynamic Programming Chap. 1

uk x

k xk+1

-Factors Current State x

Current State xk

Next Cities Next States

Sample Q-Factors Simulation Control 1 Control 2 Control 3

,n Stage k k Stages
Stages k+1, . . . , k+ℓ−1

Sample Q-Factors Simulation Control 1 State
Sample Q-Factors Simulation Control 1 State xk+ℓ = 0

1)-Stages Base Heuristic Minimization
k (ℓ− 1)-Stages Base Heuristic Minimization

Figure 1.6.11 Illustration of the problem solved by MPC at state xk. We
minimize the cost function over the next ℓ stages while imposing the require-
ment that xk+ℓ = 0. We then apply the first control of the optimizing se-
quence. In the context of rollout, the minimization over uk is the one-step
lookahead, while the minimization over uk+1, . . . , uk+ℓ−1 that drives xk+ℓ to
0 is the base heuristic.

subject to the system equation constraints

xt+1 = f(xt, ut), t = k, . . . , k + ℓ− 1,

the control constraints

ut ∈ U(xt), t = k, . . . , k + ℓ− 1,

and the terminal state constraint xk+ℓ = 0. Here ℓ is an integer with
ℓ > 1, which is chosen in some largely empirical way.

(b) If {ũk, . . . , ũk+ℓ−1} is the optimal control sequence of this problem,
MPC applies ũk and discards the other controls ũk+1, . . . , ũk+ℓ−1.

(c) At the next stage, MPC repeats this process, once the next state xk+1

is revealed.

To make the connection of MPC with rollout, we note that the one-
step lookahead function J̃ implicitly used by MPC [cf. Eq. (1.69)] is the cost-
to-go function of a certain base heuristic. This is the heuristic that drives
to 0 the state after ℓ − 1 stages (not ℓ stages) and keeps the state at 0
thereafter, while observing the state and control constraints, and minimizing
the associated (ℓ − 1)-stages cost. This rollout view of MPC, first discussed
in the author’s paper [Ber05a], is useful for making a connection with the
approximate DP/RL techniques that are the main subject of this book, such
as truncated rollout, cost function approximations, PI, etc.

Returning to the issue of dealing with changing problem parameters,
it is natural to consider on-line replanning as per our earlier discussion. In
particular, once new estimates of system and/or cost function parameters

Sec. 1.7 Reinforcement Learning and Optimal Control 93

become available, MPC can adapt accordingly by introducing the new pa-
rameter estimates into the ℓ-stage optimization problem in (a) above.

Let us also note a common variant of MPC, where the requirement of
driving the system state to 0 in ℓ steps in the ℓ-stage MPC problem (1.69), is
replaced by a terminal cost G(xk+ℓ). Thus at state xk, we solve the problem

min
ut, t=k,...,k+ℓ−1

[

G(xk+ℓ) +

k+ℓ−1
∑

t=k

g(xt, ut)

]

,

instead of problem (1.69) where we require that xk+ℓ = 0. This variant can
also be viewed as rollout with one-step lookahead, and a base heuristic, which
at state xk+1 applies the first control ũk+1 of the sequence {ũk+1, . . . , ũk+ℓ−1}
that minimizes

G(xk+ℓ) +

k+ℓ−1
∑

t=k+1

g(xt, ut).

Note that the performance of the MPC controller may be much better
than the performance of this base heuristic (in relative terms) if the base
heuristic is close to optimal [which is true if G(xk+ℓ) ≈ J∗(xk+ℓ)]. This is
because in view of the superlinear/quadratic convergence rate of Newton’s
method that underlies rollout, we have

lim
J→J∗

J̃ − J∗

J − J∗
= 0,

where for a given initial state, J̃ is the rollout performance, J∗ is the optimal
performance, and J is the base policy performance.

The on-line replanning scheme suffers from a potential computational
bottleneck, associated with fast estimation of new system parameter values
and the associated policy recalculation. A variation of on-line replanning,
aims to deal with this difficulty by precomputation. In particular, assume
that the set of problem parameters may take a known finite set of val-
ues.† Then we may precompute a separate controller for each of these
values. Once the control scheme detects a change in problem parameters,
it switches to the corresponding predesigned current controller. This is
sometimes called a multiple model control design or gain scheduling, and
has been applied with success in various settings over the years.

1.7 REINFORCEMENT LEARNING AND OPTIMAL
CONTROL - SOME TERMINOLOGY

The current state of RL has greatly benefited from the cross-fertilization of
ideas from optimal control and from artificial intelligence. The strong con-
nections between these two fields are now widely recognized. Still, however,

† For example each set of parameter values may correspond to a distinct

maneuver of a vehicle, motion of a robotic arm, flying regime of an aircraft, etc.

94 Exact and Approximate Dynamic Programming Chap. 1

substantial differences in language and emphasis remain between RL-based
discussions (where artificial intelligence-related terminology is used) and
DP-based discussions (where optimal control-related terminology is used).

The terminology used in this book is standard in DP and optimal con-
trol, and in an effort to forestall confusion of readers that are accustomed
to either the artificial intelligence or the optimal control terminology, we
provide a list of terms commonly used in RL, and their optimal control
counterparts.

(a) Environment = System.

(b) Agent = Decision maker or controller.

(c) Action = Decision or control.

(d) Reward of a stage = (Opposite of) Cost of a stage.

(e) State value = (Opposite of) Cost starting from a state.

(f) Value (or reward) function = (Opposite of) Cost function.

(g) Maximizing the value function = Minimizing the cost function.

(h) Action (or state-action) value = Q-factor (or Q-value) of a state-
control pair. (Q-value is also used often in RL.)

(i) Planning = Solving a DP problem with a known mathematical
model.

(j) Learning = Solving a DP problem without using an explicit mathe-
matical model. (This is the principal meaning of the term “learning”
in RL. Other meanings are also common.)

(k) Self-learning (or self-play in the context of games) = Solving a DP
problem using some form of policy iteration.

(l) Deep reinforcement learning = Approximate DP using value
and/or policy approximation with deep neural networks.

(m) Prediction = Policy evaluation.

(n) Generalized policy iteration = Optimistic policy iteration.

(o) State abstraction = State aggregation.

(p) Temporal abstraction = Time aggregation.

(q) Learning a model = System identification.

(r) Episodic task or episode = Finite-step system trajectory.

(s) Continuing task = Infinite-step system trajectory.

(t) Experience replay = Reuse of samples in a simulation process.

(u) Bellman operator = DP mapping or operator.

(v) Backup = Applying the DP operator at some state.

Sec. 1.7 Reinforcement Learning and Optimal Control 95

(w) Sweep = Applying the DP operator at all states.

(x) Greedy policy with respect to a cost function J = Minimizing
policy in the DP expression defined by J .

(y) Afterstate = Post-decision state.

(z) Ground truth = Empirical evidence or information provided by
direct observation.

Some of the preceding terms will be introduced in future chapters; see also
the RL textbook [Ber19a]. The reader may then wish to return to this
section as an aid in connecting with the relevant RL literature.

Notation

Unfortunately the confusion arising from different terminology has been
exacerbated by the use of different notations. The present book roughly
follows the “standard” notation of the Bellman/Pontryagin optimal con-
trol era; see e.g., the classical books by Athans and Falb [AtF66], Bellman
[Bel67], and Bryson and Ho [BrH75]. This notation is consistent with
the author’s other DP books, and is the most appropriate for a unified
treatment of the subject, which simultaneously addresses discrete and con-
tinuous spaces problems.

A summary of our most prominently used symbols is as follows:

(a) x: state.

(b) u: control.

(c) J : cost function.

(d) g: cost per stage.

(e) f : system function.

(f) i: discrete state.

(g) pxy(u): transition probability from state x to state y under control u.

(h) α: discount factor in discounted problems.

The x-u-J notation is standard in optimal control textbooks (e.g., the
books by Athans and Falb [AtF66], and Bryson and Ho [BrH75], as well as
the more recent book by Liberzon [Lib11]). The notations f and g are also
used most commonly in the literature of the early optimal control period as
well as later (unfortunately the more natural symbol “c” has not been used
much in place of “g” for the cost per stage). The discrete system notations i
and pij(u) are very common in the discrete-state Markov decision problem
and operations research literature, where discrete-state problems have been
treated extensively [sometimes the alternative notation p(j | i, u) is used for
the transition probabilities].

The artificial intelligence literature addresses for the most part finite-
state Markov decision problems, most frequently the discounted and sto-

96 Exact and Approximate Dynamic Programming Chap. 1

chastic shortest path infinite horizon problems that are discussed in Chap-
ter 5. The most commonly used notation is s for state, a for action,
r(s, a, s′) for reward per stage, p(s′ | s, a) or p(s, a, s′) for transition prob-
ability from s to s′ under action a, and γ for discount factor. However,
this type of notation is not well suited for continuous spaces models, which
are of major interest for this book. The reason is that it requires the use
of transition probability distributions defined over continuous spaces, and
it leads to more complex and less intuitive mathematics. Moreover the
transition probability notation makes no sense for deterministic problems,
which involve no probabilistic structure at all.

1.8 NOTES, SOURCES, AND EXERCISES

Sections 1.1-1.4: Our discussion of exact DP in this chapter has been
brief since our focus in this course will be on approximate DP and RL. The
author’s DP textbook [Ber17] provides an extensive discussion of finite
horizon exact DP, and its applications to discrete and continuous spaces
problems, using a notation and style that is consistent with the one used
here. The books by Puterman [Put94] and by the author [Ber12] provide
detailed treatments of infinite horizon finite-state stochastic DP problems.
The book [Ber12] also covers continuous/infinite state and control spaces
problems, including the linear quadratic problems that we have discussed
in this chapter through examples. Continuous spaces problems present
special analytical and computational challenges, which are at the forefront
of research of the RL methodology.

Some of the more complex mathematical aspects of exact DP are
discussed in the monograph by Bertsekas and Shreve [BeS78], particularly
the probabilistic/measure-theoretic issues associated with stochastic op-
timal control, including partial state information problems. The second
volume of the author’s DP book [Ber12] provides in an appendix an ac-
cessible summary introduction of the measure-theoretic framework of the
book [BeS78], while a long paper by Yu and Bertsekas [YuB15] contains
recent supplementary research with a particular focus on the analysis of
policy iteration methods, which were not treated in [BeS78].

The author’s abstract DP monograph [Ber18a], [Ber22a] aims at a
unified development of the core theory and algorithms of total cost sequen-
tial decision problems, and addresses simultaneously stochastic, minimax,
game, risk-sensitive, and other DP problems, through the use of abstract
DP operators (or Bellman operators as we call them here). The idea here
is to gain insight through abstraction. In particular, the structure of a
DP model is encoded in its abstract Bellman operator, which serves as the
“mathematical signature” of the model. Thus, characteristics of this opera-
tor (such as monotonicity and contraction) largely determine the analytical
results and computational algorithms that can be applied to that model.

Sec. 1.8 Notes, Sources, and Exercises 97

Abstract DP ideas are also useful for visualizations and interpretations of
RL methods using the Newton method formalism that we discuss in these
notes.

Rollout algorithms for discrete optimization problems were intro-
duced in the paper by Bertsekas, Tsitsiklis, and Wu [BTW97], and the
neuro-dynamic programming book [BeT96]. They are described in vary-
ing levels of detail in the RL books [Ber19a], [Ber20a], which also include
extensive journal references to successful applications.

Approximation in value space, rollout, policy iteration, and the asso-
ciated Newton method formalism are the principal subjects of these notes.†
These are very powerful and general techniques: they can be applied to de-
terministic and stochastic problems, finite and infinite horizon problems,
discrete and continuous spaces problems, and mixtures thereof. Rollout is
reliable, easy to implement, and can be used in conjunction with on-line
replanning.

As we have noted, rollout with a given base policy is simply the first
iteration of the policy iteration algorithm starting from the base policy.
Truncated rollout will be interpreted later in this course as an “optimistic”
form of a single policy iteration, whereby a policy is evaluated inexactly,
by using a limited number of value iterations.‡

† The name “rollout” (also called “policy rollout”) was introduced by Tesauro

and Galperin [TeG96] in the context of rolling the dice in the game of backgam-

mon. In Tesauro’s proposal, a given backgammon position is evaluated by “rolling

out” many games starting from that position to the end of the game. To quote

from the paper [TeG96]: “In backgammon parlance, the expected value of a po-

sition is known as the “equity” of the position, and estimating the equity by

Monte-Carlo sampling is known as performing a “rollout.” This involves playing

the position out to completion many times with different random dice sequences,

using a fixed policy P to make move decisions for both sides.”

‡ Truncated rollout was also proposed in [TeG96]. To quote from this paper:

“Using large multi-layer networks to do full rollouts is not feasible for real-time

move decisions, since the large networks are at least a factor of 100 slower than

the linear evaluators described previously. We have therefore investigated an

alternative Monte-Carlo algorithm, using so-called “truncated rollouts.” In this

technique trials are not played out to completion, but instead only a few steps in

the simulation are taken, and the neural net’s equity estimate of the final position

reached is used instead of the actual outcome. The truncated rollout algorithm

requires much less CPU time, due to two factors: First, there are potentially many

fewer steps per trial. Second, there is much less variance per trial, since only a few

random steps are taken and a real-valued estimate is recorded, rather than many

random steps and an integer final outcome. These two factors combine to give at

least an order of magnitude speed-up compared to full rollouts, while still giving

a large error reduction relative to the base player.” Analysis and computational

experience with truncated rollout since 1996 are consistent with the preceding

98 Exact and Approximate Dynamic Programming Chap. 1

Policy iteration, which will be viewed here as the repeated use of
rollout, is more ambitious and challenging than rollout. It requires off-line
training, possibly in conjunction with the use of neural networks. Together
with its neural network and distributed implementations, it will be dis-
cussed in more detail later.

Section 1.5: There is a vast literature on linear quadratic problems. The
connection of policy iteration with Newton’s method within this context
and its quadratic convergence rate was first derived by Kleinman [Kle68] for
continuous-time problems (the corresponding discrete-time result was given
by Hewer [Hew71]). For followup work, which relates to policy iteration
with approximations, see Feitzinger, Hylla, and Sachs [FHS09], and Hylla
[Hyl11].

The connection of approximation in value space with Newton’s method,
and its connections with MPC and adaptive control was first presented in
the author’s papers [Ber21], [Ber22c], and monograph [Ber22b]. This con-
nection is the starting point for the new research presented in this course.

Section 1.6: Many applications of DP are presented in the 1st volume of
the author’s DP book [Ber17]. This book also covers a broad variety of
state augmentation and problem reformulation techniques, including the
mathematics of how problems with imperfect state information (POMDP)
can be transformed to perfect state information problems.

Multiagent problem research has a long history (Marschak [Mar55],
Radner [Rad62], Witsenhausen [Wit68], [Wit71a], [Wit71b]), and was re-
searched extensively in the 70s; see the review paper by Ho [Ho80] and
the references cited there. The names used for the field at that time were
team theory and decentralized control . For a sampling of subsequent works
in team theory and multiagent optimization, we refer to the papers by
Krainak, Speyer, and Marcus [KLM82a], [KLM82b], and de Waal and van
Schuppen [WaS00]. For more recent works, see Nayyar, Mahajan, and
Teneketzis [NMT13], Nayyar and Teneketzis [NaT19], Li et al. [LTZ19], Qu
and Li [QuL19], Gupta [Gup20], the book by Zoppoli, Sanguineti, Gnecco,
and Parisini [ZSG20], and the references quoted there. In addition to the
aforementioned works, surveys of multiagent sequential decision making
from an RL perspective were given by Busoniu, Babuska, and De Schutter
[BBD08], [BBD10b].

We note that the term “multiagent” has been used with several differ-
ent meanings in the literature. For example some authors place emphasis
on the case where the agents do not have common information when se-
lecting their decisions. This gives rise to sequential decision problems with
“nonclassical information patterns,” which can be very complex, partly be-
cause they cannot be addressed by exact DP. Other authors adopt as their
starting point a problem where the agents are “weakly” coupled through

assessment.

Sec. 1.8 Notes, Sources, and Exercises 99

the system equation, the cost function, or the constraints, and consider
methods whereby the weak coupling is exploited to address the problem
through (suboptimal) decoupled computations.

Agent-by-agent minimization in multiagent approximation in value
space and rollout was proposed in the author’s paper [Ber19c], which also
discusses extensions to infinite horizon policy iteration algorithms, and ex-
plores connections with the concept of person-by-person optimality from
team theory; see also the textbook [Ber20a], and the papers [Ber19d],
[Ber20b]. A computational study where several of the multiagent algo-
rithmic ideas were tested and validated is the paper by Bhattacharya et al.
[BKB20]. This paper considers a large-scale multi-robot routing and repair
problem, involving partial state information, and explores some of the at-
tendant implementation issues, including autonomous multiagent rollout,
through the use of policy neural networks and other precomputed signaling
policies.

The subject of adaptive control has a long history and its litera-
ture is very extensive; see the books by Aström and Wittenmark [AsW94],
Aström and Hagglund [AsH95], [AsH06], Goodwin and Sin [GoS84], Ioan-
nou and Sun [IoS96], Jiang and Jiang [JiJ17], Krstic, Kanellakopoulos, and
Kokotovic [KKK95], Kumar and Varaiya [KuV86], Liu, et al. [LWW17],
Lavretsky and Wise [LaW13], Narendra and Annaswamy [NaA12], Sastry
and Bodson [SaB11], Slotine and Li [SlL91], and Vrabie, Vamvoudakis,
and Lewis [VVL13], Bodson [Bod20]. These books describe a vast array of
methods spanning 60 years, and ranging from adaptive and PID model-free
approaches, to simultaneous or sequential control and identification (also
known as the “dual control problem”), to ARMAX/time series models, to
extremum-seeking methods, to simulation-based RL techniques, etc.†

The research on problems involving unknown models and using data
for model identification prior to or simultaneously with control was rekin-
dled with the advent of the artificial intelligence side of RL and its focus
on the active exploration of the environment. Here there is emphasis in
“learning from interaction with the environment” [SuB18] through the use
of (possibly hidden) Markov decision models, machine learning, and neural
networks, in a wide array of methods that are under active development at
present. This is more or less the same as the classical problems of dual and
adaptive control that have been discussed since the 60s from a control the-
ory perspective. In these notes we will not deal with control of unknown
models, except tangentially, and in the context of on-line replanning for
problems with changing model parameters.

† The ideas of PID control originated even earlier. According to Wikipedia,

“a formal control law for what we now call PID or three-term control was first

developed using theoretical analysis, by Russian American engineer Nicolas Mi-

norsky” [Min22].

100 Exact and Approximate Dynamic Programming Chap. 1

The literature on MPC is voluminous. Some early widely cited papers
are Clarke, Mohtadi, and Tuffs [CMT87a], [CMT87b], and Keerthi and
Gilbert [KeG88]. For surveys, which give many of the early references,
see Morari and Lee [MoL99], Mayne et al. [MRR00], and Findeisen et al.
[FIA03], and for a more recent review, see Mayne [May14]. The connections
between MPC and rollout were discussed in the author’s survey [Ber05a].
Textbooks on MPC include Maciejowski [Mac02], Goodwin, Seron, and De
Dona [GSD06], Camacho and Bordons [CaB07], Kouvaritakis and Cannon
[KoC16], Borrelli, Bemporad, and Morari [BBM17], and Rawlings, Mayne,
and Diehl [RMD17].

Reinforcement Learning Sources

The approximate DP and RL literature has expanded tremendously since
the connections between DP and RL became apparent in the late 80s and
early 90s. We restrict ourselves to mentioning textbooks, research mono-
graphs, and broad surveys, which supplement our discussions, express re-
lated viewpoints, and collectively provide a guide to the literature. More-
over, inevitably our referencing reflects a cultural bias, and an overemphasis
on sources that are familiar to the author and are written in a similar style
to the present book (including the author’s own works). Thus we wish to
apologize in advance for the many omissions of important research refer-
ences that are somewhat outside our own understanding and view of the
field.

Two books were written in the 1990s, setting the tone for subsequent
developments in the field. One in 1996 by Bertsekas and Tsitsiklis [BeT96],
which reflects a decision, control, and optimization viewpoint, and another
in 1998 by Sutton and Barto, which reflects an artificial intelligence view-
point (a 2nd edition, [SuB18], was published in 2018). We refer to the
former book and also to the author’s DP textbooks [Ber12], [Ber17] for a
broader discussion of some of the topics of this book, including algorithmic
convergence issues and additional DP models, such as those based on aver-
age cost and semi-Markov problem optimization. Note that both of these
books deal with finite-state Markovian decision models and use a transition
probability notation, as they do not address continuous spaces problems,
which are also of major interest in this book.

More recent books are by Gosavi [Gos15] (a much expanded 2nd
edition of his 2003 monograph), which emphasizes simulation-based op-
timization and RL algorithms, Cao [Cao07], which focuses on a sensi-
tivity approach to simulation-based methods, Chang, Fu, Hu, and Mar-
cus [CFH13] (a 2nd edition of their 2007 monograph), which emphasizes
finite-horizon/multistep lookahead schemes and adaptive sampling, Buso-
niu, Babuska, De Schutter, and Ernst [BBD10a], which focuses on function
approximation methods for continuous space systems and includes a dis-
cussion of random search methods, Szepesvari [Sze10], which is a short

Sec. 1.8 Notes, Sources, and Exercises 101

monograph that selectively treats some of the major RL algorithms such
as temporal differences, armed bandit methods, and Q-learning, Powell
[Pow11], which emphasizes resource allocation and operations research ap-
plications, Powell and Ryzhov [PoR12], which focuses on specialized topics
in learning and Bayesian optimization, Vrabie, Vamvoudakis, and Lewis
[VVL13], which discusses neural network-based methods and on-line adap-
tive control, Kochenderfer et al. [KAC15], which selectively discusses ap-
plications and approximations in DP and the treatment of uncertainty,
Jiang and Jiang [JiJ17], which addresses adaptive control and robustness
issues within an approximate DP framework, Liu, Wei, Wang, Yang, and Li
[LWW17], which deals with forms of adaptive dynamic programming, and
topics in both RL and optimal control, and Zoppoli, Sanguineti, Gnecco,
and Parisini [ZSG20], which addresses neural network approximations in
optimal control as well as multiagent/team problems with nonclassical in-
formation patterns.

There are also several books that, while not exclusively focused on
DP and/or RL, touch upon several of the topics of this book. The book by
Borkar [Bor08] is an advanced monograph that addresses rigorously many
of the convergence issues of iterative stochastic algorithms in approximate
DP, mainly using the so called ODE approach. The book by Meyn [Mey07]
is broader in its coverage, but discusses some of the popular approximate
DP/RL algorithms. The book by Haykin [Hay08] discusses approximate
DP in the broader context of neural network-related subjects. The book
by Krishnamurthy [Kri16] focuses on partial state information problems,
with discussion of both exact DP, and approximate DP/RL methods. The
textbooks by Kouvaritakis and Cannon [KoC16], Borrelli, Bemporad, and
Morari [BBM17], and Rawlings, Mayne, and Diehl [RMD17] collectively
provide a comprehensive view of the MPC methodology. The book by
Brandimarte [Bra21] is a tutorial introduction to DP/RL that emphasizes
operations research applications and includes MATLAB codes. The book
by Hardt and Recht [HaR21] focuses on broader subjects of machine learn-
ing, but covers selectively approximate DP and RL topics as well.

The present notes are similar in style, terminology, and notation to
the author’s recent RL textbooks [Ber19a], [Ber20a], and the 3rd edition
of the abstract DP monograph [Ber22a], which collectively provide a fairly
comprehensive account of the subject. In particular, the 2019 RL text-
book includes a broader coverage of approximation in value space meth-
ods, including certainty equivalent control and aggregationmethods. It also
covers substantially policy gradient methods for approximation in policy
space, which we will not address here. The 2020 book focuses more closely
on rollout, policy iteration, and multiagent problems. The abstract DP
monograph is an advanced treatment of exact DP, which however connects
with some of the visualizations used in the present notes.

In addition to textbooks, there are many surveys and short research
monographs relating to our subject, which are rapidly multiplying in num-

102 Exact and Approximate Dynamic Programming Chap. 1

ber. Influential early surveys were written, from an artificial intelligence
viewpoint, by Barto, Bradtke, and Singh [BBS95] (which dealt with the
methodologies of real-time DP and its antecedent, real-time heuristic search
[Kor90], and the use of asynchronous DP ideas [Ber82], [Ber83], [BeT89]
within their context), and by Kaelbling, Littman, and Moore [KLM96]
(which focused on general principles of RL). The volume by White and
Sofge [WhS92] also contains several surveys describing early work in the
field.

Several overview papers in the volume by Si, Barto, Powell, and Wun-
sch [SBP04] describe some approximation methods that we will not be
covering in much detail in this book: linear programming approaches (De
Farias [DeF04]), large-scale resource allocation methods (Powell and Van
Roy [PoV04]), and deterministic optimal control approaches (Ferrari and
Stengel [FeS04], and Si, Yang, and Liu [SYL04]). Updated accounts of
these and other related topics are given in the survey collections by Lewis,
Liu, and Lendaris [LLL08], and Lewis and Liu [LeL13].

Recent extended surveys and short monographs are Borkar [Bor09] (a
methodological point of view that explores connections with other Monte
Carlo schemes), Lewis and Vrabie [LeV09] (a control theory point of view),
Szepesvari [Sze10] (which discusses approximation in value space from a
RL point of view), Deisenroth, Neumann, and Peters [DNP11], and Grond-
man et al. [GBL12] (which focus on policy gradient methods), Browne et
al. [BPW12] (which focuses on Monte Carlo Tree Search), Mausam and
Kolobov [MaK12] (which deals with Markovian decision problems from
an artificial intelligence viewpoint), Schmidhuber [Sch15], Arulkumaran et
al. [ADB17], Li [Li17], Busoniu et al. [BDT18], and Caterini and Chang
[CaC18] (which deal with reinforcement learning schemes that are based on
the use of deep neural networks), the author’s [Ber05a] (which focuses on
rollout algorithms and model predictive control), [Ber11a] (which focuses
on approximate policy iteration), and [Ber18b] (which focuses on aggre-
gation methods), and Recht [Rec18a] (which focuses on continuous spaces
optimal control).

Sec. 1.8 Notes, Sources, and Exercises 103

E X E R C I S E S

1.1 (Computational Exercise - Traveling Salesman Problem)

Consider a modified version of the traveling salesman problem of Example 1.2.3,
where there is a fifth city E. The distances from each of the cities A, B, C, D
to city C are all equal to 10. The distance from city E to cities A, B, C, D are
equal to 20, 10, 0, 10, respectively. All other distances are as in Example 1.2.3
and Fig. 1.2.11.

(a) Use exact DP to verify that the optimal tour is AEDBCA with total dis-
tance 26.

(b) Verify that the nearest neighbor heuristic starting with city A generates
the tour ACDBEA with total distance 38.

(c) Apply rollout with one-step lookahead minimization, using as base heuristic
the nearest neighbor heuristic. Show that it generates the tour AECDBA
with total distance 27.

(d) Apply rollout with two-step lookahead minimization, using as base heuristic
the nearest neighbor heuristic, and show that it generates the optimal tour.
This rollout algorithm operates as follows. For k = 1, 2, 3, it starts with
a k-city partial tour, it generates every possible two-city addition to this
tour, uses the nearest neighbor heuristic to complete the tour, and selects
as next city to add to the k-city partial tour the city that corresponds to
the best tour thus obtained (only one city is added to the current tour at
each step of the algorithm, not two).

(e) Estimate roughly the complexity of the computations in parts (a), (b), (c),
and (d), assuming a generic n-city traveling salesman problem.

1.2 (Computational Exercise - Investing in American Style
Options)

This exercise deals with a computational comparison of the optimal policy, a
heuristic policy, and on-line approximation in value space using the heuristic
policy, in the context of the following problem.

An investor has bought the right to sell an amount of stock at any one of
N time periods. The initial price of the stock is x0, and its price xk at the kth
time period evolves according to

xk+1 =

{

xk + 1 with probability p,
xk with probability 1-2p,
xk − 1 with probability p,

where p has a known value with 0 < p < 1/2 (if xk = 0 we assume that xk+1 =
1 with probability p and xk+1 = 0 with probability 1 − p). At each period

104 Exact and Approximate Dynamic Programming Chap. 1

k = 0, . . . , N − 1 for which the stock has not yet been sold, the investor (with
knowledge of the current price xk), can either sell the stock at price xk or postpone
the sale for a future period. If the stock has not been sold at any of the periods
k = 0, . . . , N − 1, it must be sold at period N at price xN . The investor wants
to maximize the expected value of the sale. For the following computations, use
reasonable values of your choice for N , p, and x0 (for example N = 100, p = 1/4,
x0 = 500). You are encouraged to experiment with different sets of values.

(a) Formulate the problem as a finite horizon DP problem by identifying the
state, control, and disturbance spaces, the system equation, the cost func-
tion, and the probability distribution of the disturbance.

(b) Verify that if x0 > N , the exact DP algorithm is given by

JN (xN) = xN

and for k = 0, . . . , N − 1,

Jk(xk) = max{xk, pJk+1(xk + 1) + (1− 2p)Jk+1(xk) + pJk+1(xk − 1)}.

Use the algorithm to compute the optimal selling policy of the investor and
the corresponding optimal expected value of the sale. Write also the DP
algorithm for the case where x0 < N . How would you define the “value”
of an N-period option that starts at a given price x0?

(c) Suppose the investor adopts a heuristic policy, whereby he/she sells the
stock if its price exceeds βx0, where β is some number with β > 1 (choose
a reasonable value of β, such as β = 1.1). Use exact DP as well as Monte
Carlo simulation to compute the expected value of the sale under this policy.

(d) Apply approximation in value space with function approximation that is
based on the heuristic policy of part (c). In particular, use J̃N (xN) = xN ,
and for k = 1, . . . , N − 1, use J̃k(xk) that is equal to the expected value
of the sale when starting at xk and using the heuristic policy that sells the
stock when its price exceeds βxk. Again use exact DP as well as Monte
Carlo simulation to compute on-line the needed values J̃k(xk). Compare
the expected values of sale price computed with the optimal, heuristic, and
approximation in value space methods.

(e) In a more general version of the problem, the price xk evolves instead
according to

xk+1 =

{

xk + 1 with probability p+,
xk with probability 1− p+ − p−,
xk − 1 with probability p−,

where p+ and p− have known values with

0 < p+, 0 < p−, p+ + p− < 1.

Speculate how this change will affect the optimal policy that you computed
in part (b).

Sec. 1.8 Notes, Sources, and Exercises 105

1.3 (Computational Exercise - Spiders and Flies)

Consider the spiders and flies problem of Example 1.6.4 with two differences: the
five flies are stationary (rather than moving randomly), and there are only two
spiders that start at the fourth square from the right at the top row of the grid
of Fig. 1.6.7. The base heuristic is to move each spider one square towards its
nearest fly, with distance measured by the Manhattan metric, and with preference
given to a horizontal direction over a vertical direction in case of a tie. Apply the
multiagent rollout algorithm of Section 1.6, and compare its performance with
the one of the ordinary rollout algorithm, and with the one of the base heuristic.

1.4 (Computational Exercise - Linear Quadratic Problem)

In a more realistic version of the cruise control system of Example 1.3.1, the
system has the form

xk+1 = axk + buk + wk,

where the coefficient a satisfies 0 < a ≤ 1, and the disturbance wk has zero mean
and variance σ2. The cost function has the form

(xN − x̄N)2 +

N−1
∑

k=0

(

(xk − x̄k)
2 + ru2

k)
)

,

where x̄0, . . . , x̄N are given nonpositive target values (a velocity profile) that
serve to adjust the vehicle’s velocity, in order to maintain a safe distance from
the vehicle ahead, etc. In a practical setting, the velocity profile is recalculated
by using on-line radar measurements.

Design an experiment to compare the performance of a fixed linear policy
π, derived for a fixed nominal velocity profile as in part (a), and the performance
of the algorithm that uses on-line replanning, whereby the optimal policy π∗ is re-
calculated each time the velocity profile changes. Compare with the performance
of the rollout policy π̃ that uses π as the base policy and on-line replanning.

1.5 (Computational Exercise - Parking Problem)

In reference to Example 1.6.3, a driver aims to park at an inexpensive space on
the way to his destination. There are L parking spaces available and a garage at
the end. The driver can move in either direction. For example if he is in space
i he can either move to i − 1 with a cost t − i , or to i + 1 with a cost t + i, or
he can park at a cost c(i) (if the parking space i is free). The only exception is
when he arrives at the garage (indicated by index N) and he has to park there
at a cost C. Moreover, after the driver visits a parking space he remembers its
free/taken status and has an option to return to any parking space he has already
visited. However, the driver must park within a given number of stages N , so
that the problem has a finite horizon. The initial probability of space i being
free is given, and the driver can only observe the free/taken status of a parking
only after he/she visits the space. Moreover, the free/taken status of a parking
visited so far does not change over time.

106 Exact and Approximate Dynamic Programming Chap. 1

Write a program to calculate the optimal solution using exact dynamic
programming over a state space that is as small as possible. Try to experiment
with different problem data, and try to visualize the optimal cost/policy with
suitable graphical plots. Comment on run-time as you increase the number of
parking spots L.

1.6 (Computational Exercise - PI and Newton’s Method for
Linear Quadratic Problems)

The purpose of this exercise is to demonstrate the fast convergence of the PI algo-
rithm. Consider the undiscounted deterministic one-dimensional linear quadratic
problem for a = 1 and q = 1.

(a) Verify that the Bellman equation,

Kx2 = min
u

[

x2 + ru2 +K(x+ bu)2
]

,

can be written as the equation F (K) = 0, where

F (K) = K − rK

r + b2K
− 1.

(b) Verify computationally that

lim
J→J∗

J̃ − J∗

J − J∗
= 0,

for the two cases where r = 0.5 and b varies, and b = 2 and r varies. Here
for a given initial state, J̃ is the rollout performance, J∗ is the optimal
performance, and J is the performance of the base policy µL(x) = Lx,
where L is given by Eq. (1.68).

(c) Rollout cost improvement over base policy in adaptive control : Consider a
range of values of b, r, and L0, and study computationally the effect of the
second derivative of F on the ratio K1/K0 of rollout to base policy costs,
and on the ratio K1/K

∗ of rollout to optimal policy costs.

1.7 (Post-Decision States)

The purpose of this exercise is to demonstrate a type of DP simplification that
arises often (see [Ber12], Section 6.1.5 for further discussion). Consider the finite
horizon stochastic DP problem and assume that the system equation has a special
structure whereby from state xk after applying uk we move to an intermediate
“post-decision state”

yk = pk(xk, uk)

at cost gk(xk, uk). Then from yk we move at no cost to the new state xk+1

according to
xk+1 = hk(yk, wk) = hk(pk(xk, uk), wk), (1.70)

Sec. 1.8 Notes, Sources, and Exercises 107

where the distribution of the disturbance wk depends only on yk, and not on
prior disturbances, states, and controls. Denote by Jk(xk) the optimal cost-to-go
starting at time k from state xk, and by Vk(yk) the optimal cost-to-go starting
at time k from post-decision state yk.

(a) Use Eq. (1.70) to verify that a DP algorithm that generates only Jk is given
by

Jk(xk) = min
uk∈Uk(xk)

[

g(xk, uk) + Ewk

{

Jk+1

(

hk(pk(xk, uk), wk)
)

}

]

.

(b) Show that a DP algorithm that generates both Jk and Vk is given by

Jk(xk) = min
uk∈Uk(xk)

[

g(xk, uk) + Vk

(

pk(xk, uk)
)

]

,

Vk(yk) = Ewk

{

Jk+1

(

hk(yk, wk), wk

)

}

.

(c) Show that a DP algorithm that generates only Vk for all k is given by

Vk(yk) = Ewk

{

min
uk+1∈Uk+1(hk(yk,wk))

[

gk+1(hk(yk, wk), uk+1)

+ Vk+1(pk+1(hk(yk, wk), uk+1))
]

}

.

2

Principles of Approximation in

Value Space

Contents

2.1. Approximation in Value and Policy Space p. 112
2.1.1. Approximation in Value Space - One-Step and

Multistep Lookahead p. 113
2.1.2. Approximation in Policy Space p. 117
2.1.3. Combined Approximation in Value and

Policy Space p. 118
2.2. Off-Line Training, On-Line Play, and Newton’s Method p. 123

2.2.1. Approximation in Value Space and Newton’s
Method p. 130

2.2.2. Region of Stability p. 132
2.2.3. Policy Iteration, Rollout, and Newton’s Method . p. 138
2.2.4. How Sensitive is On-Line Play to the Off-Line

Training Process? p. 144
2.2.5. Why Not Just Train a Policy Network and Use it . . .

Without On-Line Play? p. 146

109

110 Principles of Approximation in Value Space Chap. 2

As we noted in Chapter 1, the exact solution of optimal control problems
by DP is often impossible in practice. To a great extent, the reason lies
in what Bellman has called the “curse of dimensionality.” This refers to a
rapid increase of the required computation and memory storage as the size
of the problem increases. Moreover, there are many circumstances where
the structure of the given problem is known well in advance, but some of
the problem data, such as various system parameters, may be unknown un-
til shortly before control is needed, thus seriously constraining the amount
of time available for the DP computation. The same is true when the sys-
tem parameters change while we are in the process of applying control, in
which case on-line replanning is needed. These difficulties motivate subop-
timal control schemes that strike a reasonable balance between convenient
implementation and adequate performance.

We have already provided in Chapter 1 a summary of some of the
main approximation ideas in RL. In this chapter, we provide a more de-
tailed presentation, focusing primarily on finite horizon methods. Much
of our methodology can be adapted to infinite horizon DP. Our discussion
will center on the key ideas of approximation in value space, one-step and
multistep lookahead, and policy improvement by rollout, as well as various
possibilities for their implementation, including off-line training.

2.1 APPROXIMATION IN VALUE AND POLICY SPACE

There are two general types of approximation in DP-based suboptimal
control. The first is approximation in value space, where we aim to ap-
proximate the optimal cost function or the cost function of a given policy,
often using some process based on data collection. The second is approx-
imation in policy space, where we select a policy from a suitable class of
policies based on some criterion; the selection process often uses data, op-
timization, and neural network approximations. In some settings the value
space and policy space approximation approaches may be combined.

In this section we provide a broad overview of the main ideas for these
two types of approximation. In this connection, it is important to keep in
mind the two types of algorithms underlying AlphaZero and related game
programs that we discussed in Section 1.1. The first type is off-line train-
ing, which computes cost functions and policies before the actual control
process begins; for example by using data and training algorithms for neu-
ral networks. The second type is on-line play, which selects and applies
controls during the actual control process of the system. Approximation
in policy space is strictly an off-line training-type of algorithm. On the
other hand, approximation in value space is primarily an on-line play-type
of algorithm, which however, may use cost functions and policies obtained
by extensive off-line training.

Sec. 2.1 Approximation in Value and Policy Space 111

Steps “Future”Steps “Future” First Step

min
uk

E
{

gk(xk, uk, wk)+J̃k+1(xk+1)
}

At xk

Approximate Q-Factor Q̃k(xk, uk)

Min Approximation

Min Approximation E{·} Approximation Cost-to-Go ApproximationApproximation Cost-to-Go Approximation

Figure 2.1.1 Schematic illustration of one-step lookahead and the three principal
types of approximations. At each state xk, it uses the control obtained from the
minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

E

{

gk(xk , uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)

}

,

or equivalently in terms of Q-factors,

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk , uk).

This defines the suboptimal policy

π̃ = {µ̃0, . . . , µ̃N−1},

referred to as the one-step lookahead policy based on J̃k+1, k = 0, . . . , N − 1.
There are three potential areas of approximation here, which can be considered
independently of each other: cost-to-go approximation, expected value approxi-
mation, and minimization approximation.

2.1.1 Approximation in Value Space - One-Step and Multistep
Lookahead

Let us consider the finite horizon stochastic DP problem of Section 1.2. In
the principal form of approximation in value space discussed in this book,
we replace the optimal cost-to-go function J*

k+1 in the DP equation with

J̃k+1. In particular, at state xk, we use the control obtained from the
minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

E
{

gk(xk, uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)

}

. (2.1)

This process defines a suboptimal policy π̃ = {µ̃0, . . . , µ̃N−1} and will of-
ten be referred to as one-step lookahead ; see Fig. 2.1.1. There are several
possibilities for selecting or computing the functions J̃k+1, many of which
are discussed in this book. In some schemes the expected value and mini-
mization operations may also be carried out approximately; see Fig. 2.1.1.
For example, we discussed the possibility of approximate minimization for
multiagent problems in Section 1.6.

112 Principles of Approximation in Value Space Chap. 2

Note that the expected value expression appearing in the right-hand
side of Eq. (2.1) can be viewed as an approximate Q-factor,

Q̃k(xk, uk) = E
{

gk(xk, uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)

}

,

and the minimization in Eq. (2.1) can be written as

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk).

This suggests a variant of approximation in value space, which is based on
using Q-factor approximations that may be obtained directly, i.e., with-
out the intermediate step of obtaining the cost function approximations
J̃k. We will focus primarily on cost function approximation, but we will
occasionally digress to discuss direct Q-factor approximation.

Multistep Lookahead

An important extension of one-step lookahead is multistep lookahead (also
referred to as ℓ-step lookahead), whereby at state xk we minimize the cost
of the first ℓ > 1 stages with the future costs approximated by a function
J̃k+ℓ. For example, in two-step lookahead the function J̃k+1 is given by

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+ J̃k+2

(

fk+1(xk+1, uk+1, wk+1)
)

}

,

where J̃k+2 is some approximation of the optimal cost-to-go function J*
k+2.

More generally, at state xk we solve the ℓ-stage problem

min
uk,µk+1,...,µk+ℓ−1

E

{

gk(xk, uk, wk) +

k+ℓ−1
∑

t=k+1

gt
(

xt, µt(xt), wt

)

+ J̃k+ℓ(xk+ℓ)

}

to obtain a corresponding optimal sequence {ũk, µ̃k+1, . . . , µ̃k+ℓ−1}. We
then use the first control ũk in this sequence, discard µ̃k+1, . . . , µ̃k+ℓ−1,
obtain the next state

xk+1 = fk(xk, ũk, wk),

and repeat the process with xk replaced by xk+1; see Fig. 2.1.2.
Actually, one may view ℓ-step lookahead as the special case of one-

step lookahead where the lookahead function is the optimal cost function of
an (ℓ − 1)-stage DP problem with a terminal cost J̃k+ℓ(xk+ℓ) on the state
xk+ℓ obtained after ℓ − 1 stages. However, it is often important to view
ℓ-step lookahead separately, in order to address special implementation
issues that do not arise in the context of one-step lookahead. Moreover, it

Sec. 2.1 Approximation in Value and Policy Space 113

First ℓ Steps “Future”Steps “Future”

At xk min
uk,µk+1,...,µk+ℓ−1

E

{

gk(xk, uk, wk) +
k+ℓ−1
∑

i=k+1

gi
(

xi, µi(xi), wi

)

+ J̃k+ℓ(xk+ℓ)

}

Figure 2.1.2 Schematic illustration of ℓ-step lookahead with approximation in
value space. At each state xk, we solve an ℓ-stage DP problem to obtain a se-
quence {ũk, µ̃k+1, . . . , µ̃k+ℓ−1}, and then use the first control ũk in this sequence.
This involves the same three approximations as one-step lookahead: cost-to-go
approximation, expected value approximation, and minimization approximation.
The minimization of the expected value is more time consuming, but the cost-to-
go approximation after ℓ need not be chosen as accurately/carefully as one-step
lookahead.

is important to understand how the choice ℓ affects the performance of the
ℓ-step lookahead policy.

The motivation for ℓ-step lookahead is that by increasing the value
of ℓ, one may require a less accurate approximation J̃k+ℓ to obtain good
performance. Otherwise expressed, for the same quality of cost function
approximation, better performance may be obtained as ℓ becomes larger.
This makes intuitive sense, since with multistep lookahead, the cost of
more stages is treated with optimization exactly, and is also supported
by error bounds given in the books [Ber19a], [Ber20a]. Moreover, after
many stages, due to randomness, discounting, or other factors, the cost
of the remaining stages may become negligible or may not depend much
on the choice of the control uk at the current stage k. Indeed, in practice,
longer lookahead results in better performance, although one can construct
artificial examples where this is not so (see [Ber19a], Section 2.2.1). In
Section 2.2 we will also aim to understand how the length of lookahead
plays an important role in the context the Newton step-based visualizations
of approximation in value space.

Note that in a deterministic setting, the lookahead problems are also
deterministic, and may be addressed by efficient shortest path methods.
This makes deterministic problems particularly good candidates for the use
of multistep lookahead. Generally, the implementation of ℓ-step lookahead
can be prohibitively time-consuming for stochastic problems, because it
requires at each step the solution of a stochastic DP problem with an ℓ-
step horizon. As a practical guideline, one should at least try to use the
largest value of ℓ for which the computational overhead for solving the
ℓ-step lookahead minimization problem on-line is acceptable.

In our discussion of approximation in value space of the present sec-
tion, we will focus primarily on one-step lookahead. Usually, there are
straightforward extensions of the main ideas to the multistep context.

114 Principles of Approximation in Value Space Chap. 2

Steps “Future”Steps “Future” First StepMin Approximation

Min Approximation E{·} Approximation Cost-to-Go Approximation

min
u∈U(x)

E
w

{

g(x, u, w) + αJ̃
(

f(x, u, w)
)

}

) At x

Approximate Q-Factor Q̃(x, u)

Optimal Cost Approximation

First ℓ Steps “Future”Steps “Future”

At xk
min

uk,µk+1,...,µk+ℓ−1

E

{

g(xk, uk, wk) +

k+ℓ−1
∑

i=k+1

α
i−kg

(

xi, µi(xi), wi

)

+ α
ℓJ̃(xk+ℓ)

}

One-Step Lookahead Multistep Lookahead

One-Step Lookahead Multistep Lookahead

Figure 2.1.3 Schematic illustration of approximation in value space with one-
step and multistep lookahead for infinite horizon problems, and the associated
three approximations: cost-to-go approximation, expected value approximation,
and minimization approximation.

Infinite Horizon Problems

We have provided an introductory discussion of infinite horizon problems,
and their basic analytical and algorithmic theory in Section 1.4. In this
chapter we will focus on finite horizon problems. However, approximation
in value space, with both one-step and multistep lookahead is conceptually
very similar in infinite horizon problems. This is convenient, as it will
allow us to develop much of the approximation methodology within the
conceptually simpler finite horizon context, which is also suited for our
discussion of discrete optimization problems.

Regarding approximation in value space, there are three potential
areas of approximation for infinite horizon problems, which can be con-
sidered independently of each other: cost-to-go approximation, expected
value approximation, and minimization approximation; cf. Fig. 2.1.3. This
is similar to the finite horizon case; cf. Fig. 2.1.1.

A major advantage of the infinite horizon context is that only one ap-
proximate cost function J̃ is needed, rather than the N functions J̃1, . . . , J̃N
of the N -step horizon case. Moreover, for infinite horizon problems, there
are additional important algorithms that are amenable to approximation
in value space. Approximate policy iteration, Q-learning, temporal differ-
ence methods, and their variants are some of these (we will only discuss
approximate policy iteration in this book). For this reason, in the infinite
horizon case, there is a richer set of algorithmic options for approximation

Sec. 2.1 Approximation in Value and Policy Space 115

in value space, despite the fact that the associated mathematical theory is
more complex.

2.1.2 Approximation in Policy Space

The major alternative to approximation in value space is approximation in
policy space, whereby we select the policy from a suitably restricted class
of policies, usually a parametric class of some form. In particular, we can
introduce a parametric family of policies,

µ̃k(xk, rk), k = 0, . . . , N − 1,

where rk is a parameter, and then estimate the parameters rk using some
type of training process or optimization; cf. Fig. 2.1.4.

Note an important conceptual difference between approximation in
value space and approximation in policy space. The former is primarily
an on-line method (with off-line training used optionally to construct cost
function approximations for one-step or multistep lookahead). The later
is primarily an off-line training method (which may be used optionally to
provide a policy for on-line rollout).

Neural networks are often used to generate the parametric class of
policies, in which case rk is the vector of weights/parameters of the neural
network. Later in this course we will also discuss methods for obtaining
the training data required for obtaining the parameters rk, and we will
consider several other classes of approximation architectures. An important
advantage of approximation in policy space is that once the parametrized
policy is obtained, the computation of controls

uk = µ̃k(xk, rk), k = 0, . . . , N − 1,

during on-line operation of the system is often much easier compared with
the lookahead minimization (2.1). For this reason, one of the major uses of
approximation in policy space is to provide an approximate implementation
of a known policy (no matter how obtained) for the purpose of convenient
on-line use.

Later in this course, we will discuss in some detail the approximation
of policies for the case where the number of controls available at xk is finite.
In this case, we will see that µ̃k(xk, rk) is computed as a randomized policy,
i.e., a set of probabilities of applying each of the available controls at xk (a
parametrized policy may be computed in randomized form for reasons of
algorithmic/training convenience; in practice it is typically implemented by
applying at state xk the control of maximum probability; for example the
training algorithm of AlphaZero uses randomized policies). The methods
to obtain the parameter rk are similar to classification methods used in
pattern recognition. This is not surprising because when the control space

116 Principles of Approximation in Value Space Chap. 2

Uncertainty System Environment Cost Control Current State

Uncertainty System Environment Cost Control Current State

Uncertainty System Environment Cost Control Current State

Controller

uk = µ̃k(xk, rk) Current State
(x , u)

) Current State xk

µ̃k(·, rk) Approximate Q-Factor

1 Training Data

Figure 2.1.4 Schematic illustration of parametric approximation in policy space.
A policy

µ̃k(xk , rk), k = 0, 1, . . . , N − 1,

from a parametric class is computed off-line based on data, and it is used to
generate the control uk = µ̃k(xk , rk) on-line, when at state xk.

is finite, it is possible to view different controls as distinct categories of
objects, and to view any policy π = {µ0, . . . , µN−1} as a classifier that
assigns a state xk at time k to category µk(xk).

There are also alternative optimization-based approaches, where the
main idea is that once we use a vector (r0, r1, . . . , rN−1) to parametrize
the policies π, the expected cost Jπ(x0) is parametrized as well, and can
be viewed as a function of (r0, r1, . . . , rN−1). We can then optimize this
cost by using a gradient-like or random search method. This is a widely
used approach for optimization in policy space, which, however, will not be
discussed in this book (for details and many references to the literature, see
the RL book [Ber19a], Section 5.7). Actually, this type of approach is used
most often in an infinite horizon context, where the policies of interest
are stationary, so a single function µ needs to be approximated rather
than the N functions µ0, . . . , µN−1. In this chapter, we focus on finite
horizon problems, postponing the discussion of infinite horizon problems
for later. Many of the finite horizon methods, however, also apply with
small modifications to infinite horizon problems.

2.1.3 Combined Approximation in Value and Policy Space

In this section, we discuss various ways to combine approximation in value
and in policy space. In particular, we first describe how approximation in
policy space can be built starting from approximation in value space. We
then describe a reverse process, namely how we can start from some policy,
and construct an approximation in value or Q-factor space, which in turn
can be used to construct a new policy through one-step or multistep looka-
head. This is the rollout approach, which we will discuss at length in this

Sec. 2.1 Approximation in Value and Policy Space 117

chapter and the next one. Finally, we show how to combine the two types
of approximation in a perpetual cycle of repeated approximations in value
and policy space. This involves the use of approximation architectures,
such as neural networks, which we will consider later in this course.

From Values to Policies

A general scheme for parametric approximation in policy space is to obtain
a large number of sample state-control pairs (xs

k, u
s
k), s = 1, . . . , q, such

that for each s, us
k is a “good” control at state xs

k. We can then choose the
parameter rk by solving the least squares/regression problem

min
rk

q
∑

s=1

∥

∥us
k − µ̃k(xs

k, rk)
∥

∥

2

(possibly modified to add regularization).† In particular, we may determine
us
k using a human or a software “expert” that can choose “near-optimal”

controls at given states, so µ̃k is trained to match the behavior of the expert.
Methods of this type are commonly referred to as supervised learning in
artificial intelligence.

A special case of the above procedure, which connects with approxi-
mation in value space, is to generate the sample state-control pairs (xs

k, u
s
k)

through a one-step lookahead minimization of the form

us
k ∈ arg min

u∈Uk(x
s
k
)
E
{

gk(xs
k, u, wk) + J̃k+1

(

fk(xs
k, u, wk)

)

}

,

where J̃k+1 is a suitable (separately obtained) approximation in value
space, or an approximate Q-factor based minimization

us
k ∈ arg min

uk∈Uk(x
s
k
)
Q̃k(xs

k, uk),

† Throughout this book ‖·‖ denotes the standard quadratic Euclidean norm.

It is implicitly assumed here (and in similar situations later) that the controls

are members of a Euclidean space (i.e., the space of finite dimensional vectors

with real-valued components) so that the distance between two controls can be

measured by their normed difference (randomized controls, i.e., probabilities that

a particular action will be used, fall in this category). Regression problems of this

type arise in the training of parametric classifiers based on data, including the

use of neural networks. Assuming a finite control space, the classifier is trained

using the data
(

xs
k, u

s
k

)

, s = 1, . . . , q, which are viewed as state-category pairs,

and then a state xk is classified as being of “category” µ̃k(xk, rk). Parametric

approximation architectures, and their training through the use of classification

and regression techniques will be described later in this course. An important

modification is to use regularized regression where a quadratic regularization term

is added to the least squares objective. This term is a positive multiple of the

squared deviation ‖r − r̂‖2 of r from some initial guess r̂.

118 Principles of Approximation in Value Space Chap. 2

where Q̃k is a separately obtained Q-factor approximation. We may view
this as approximation in policy space built on top of approximation in value
space.

From Policies to Values to New Policies - Rollout

An important approach for approximation in value space is to use one-step
or ℓ-step lookahead with cost function approximation J̃k+ℓ(xk+ℓ) equal
to the tail problem cost Jk+ℓ,π(xk+ℓ) starting from xk+ℓ and using some
known policy π = {µ0, . . . , µN−1}. Thus, in the case of one-step lookahead,
we use the control

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

E
{

gk(xk, uk, wk) + Jk+1,π

(

fk(xk, uk, wk)
)

}

.

Equivalently, we can use one-step lookahead with the Q-factorsQk,π(xk, uk)
of the policy, i.e., use the control

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Qk,π(xk, uk).

This has the advantage of simplifying the one-step lookahead minimization.
In practice, for computational expediency, an approximation to Jk,π(xk) or
Qk,π(xk, uk) is often used instead, as we will discuss shortly.

Using the cost function or the Q-factors of a policy as a basis for
approximation in value space and obtaining a new policy by lookahead
minimization, constitutes the rollout algorithm. This is one of the principal
subjects of this book. When the values Jk+1,π(xk+1) are not available
analytically (which is the typical case), it is necessary to compute them
as needed by some form of simulation. In particular, for a deterministic
finite horizon problem, we may compute Jk+1,π(xk+1) by accumulating the
stage costs along the (unique) trajectory that starts at xk+1 and uses π to
the end of the horizon. For a stochastic problem it is necessary to obtain
Jk+1,π(xk+1) by Monte Carlo simulation, i.e., generate a number of random
trajectories starting from xk+1 and using π up to the end of the horizon,
and then average the corresponding random trajectory costs.

Thus, starting with a policy π, which we will call the base policy, the
process of one-step or multistep lookahead with cost approximations Jk,π ,
defines a new policy π̃ = {µ̃0, . . . , µ̃N−1}, which we will call the rollout
policy; see Fig. 2.1.5. One of the fundamental facts in DP is that the
rollout policy has a policy improvement property: π̃ has no worse cost than
π, i.e.,

Jk,π̃(xk) ≤ Jk,π(xk), (2.2)

for all xk and k. We will discuss this property later in this class.
Since we generally cannot expect to be able to compute the base

policy cost function values Jk,π(xk) at all states xk, we may use instead cost

Sec. 2.1 Approximation in Value and Policy Space 119

Selective Depth Lookahead Tree

Truncated Horizon Rollout

Truncated Horizon Rollout

with π

States xk+1

proximation

Current State xkApproximation in Policy Space Heuristic Cost Approximation

Stages Beyond Truncation
Stages Beyond Truncation

for Stages Beyond Truncation

for Stages Beyond Truncation
for Stages Beyond Truncation

One-Step or Multistep Lookahead for stages Possible

One-Step or Multistep Lookahead for stages Possible Terminal Cost
. . .x0

-Factors Current State x

Figure 2.1.5 Schematic illustration of rollout, which involves approximation in
value space using a base policy

π = {µ0, . . . , µN−1}.

We use one-step or ℓ-step lookahead where J̃k+ℓ(xk+ℓ) is equal to the tail problem
cost Jk+ℓ,π(xk+ℓ) starting from xk+ℓ and using policy π. To economize in com-
putation cost, we may use truncated rollout, whereby we perform the simulation
with π for a limited number of stages starting from each possible next state xk+ℓ,
and either neglect the costs of the remaining stages or add some heuristic cost
approximation at the end to compensate for these costs. The figure illustrates the
case ℓ = 1.

function approximations that are constructed from data. One possibility is
to use Monte Carlo simulation to collect many pairs of state and base policy
costs

(

xs
k, Jk,π(x

s
k)
)

, from which to obtain cost function approximations J̃k,
for each of the stages k = 1, . . . , N , through some form of training process.
The functions J̃k approximate the base policy cost functions Jk,π , thus
yielding an approximate rollout policy π̃ = {µ̃0, . . . , µ̃N−1} through one-
step or multistep lookahead. This policy satisfies the cost improvement
property (2.2) in an approximate sense (within some error bound, which is
small if J̃k is close to Jk,π ; see the RL textbook [Ber19a], Section 5.2.6, for
more precise statements).

Let us also note the computationally expedient possibility of truncated
rollout , which is particularly useful for problems with a long horizon; see
Fig. 2.1.5. This is to perform the simulation with π for a limited number
of stages, and either neglect the costs of the remaining stages or use some

120 Principles of Approximation in Value Space Chap. 2

Base Policy Rollout Policy Approximation in Value Space
Base Policy Rollout Policy Approximation in Value Space

Base Policy Rollout Policy Approximation in Value SpaceBase Policy Rollout Policy Approximation in Value Space
Base Policy Rollout Policy Approximation in Value SpaceApproximation in Policy Space

Cost Data Policy Data System:

x µ

Rollout Policy µ̃

Value Network Policy Network Value Data

-Step Value Network Policy Network-Step Value Network Policy Network

Figure 2.1.6 Schematic illustration of sequential approximation in value and
policy space (or perpetual rollout). It produces a sequence of policies and their
cost function approximations. Each generated policy is viewed as the rollout
policy with the preceding policy viewed as the base policy. The rollout policy is
then approximated in policy space, and viewed as the base policy for the next
iteration. The approximation in value space may involve either costs or Q-factors
of the base policy.

heuristic cost approximation at the end to compensate for these costs. The
terminal cost approximation could itself be an approximation of the cost
function of the base policy. We will discuss truncated rollout later.

Perpetual Rollout and Approximate Policy Iteration

The rollout process starts with a base policy, which, through approxima-
tion in value space, can generate state-control samples of the rollout policy.
Once this is done, the rollout policy may be implemented by approximation
in policy space and training using state-control pairs generated by the roll-
out policy, as discussed earlier. Thus the rollout process can be repeated
in perpetuity, so we can obtain a sequence of policies (through approxima-
tion in policy space) and corresponding sequence of cost approximations
(through approximation in value space); see Fig. 2.1.6.

When neural networks are used, the approximations in value and
policy space are commonly referred to as the value network and the policy
network , respectively. For example, the AlphaGo and AlphaZero programs
([SHM16], [SHS17], [SHS17]), use both value and policy networks for ap-
proximation in value space and policy space. Note that the value and policy
networks must be constructed off-line (before the control process begins),
since their training involves a lot of data collection and computation.

The process just described also applies and indeed becomes simpler
for infinite horizon problems. It underlies the class of approximate policy
iteration methods, which we discussed briefly in Chapter 1, and we will
revisit later in this course. An important type of such a method is known
as optimistic approximate policy iteration, where the approximations in
value and policy space are done using limited amounts of data (e.g., use
just a few samples of state-control pairs to perform one or more gradient-
type iterations to update the parameters of a value network and/or a policy
network). Methods of this type include algorithms such as Q-learning and

Sec. 2.2 Off-Line Training, On-Line Play, and Newton’s Method 121

policy evaluation by temporal differences . Together with their variations,
which depend on the details of the data collection, and the amount of
data used for the value and policy space approximations, these algorithms
underlie a large part of the RL methodology.

2.2 OFF-LINE TRAINING, ON-LINE PLAY, AND NEWTON’S
METHOD

In this section we will focus on infinite horizon problems, as introduced
in Section 1.4, and we will use geometric constructions to obtain insight
into Bellman’s equation, the value and policy iteration algorithms, approx-
imation in value space, and some of the properties of the corresponding
one-step or multistep lookahead policy µ̃. To understand these construc-
tions, we focus on infinite horizon problems, and we will use the abstract
notational framework that we introduced briefly in Chapter 1. In particu-
lar, we denote by TJ the function of x that appears in the right-hand side
of Bellman’s equation. Its value at state x is given by†

(TJ)(x) = min
u∈U(x)

E
{

g(x, u, w) + αJ
(

f(x, u, w)
)

}

, for all x. (2.3)

Also for each policy µ, we introduce the corresponding function TµJ , which
has value at x given by

(TµJ)(x) = E
{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)

}

, for all x. (2.4)

Thus T and Tµ can be viewed as operators (broadly referred to as the
Bellman operators), which map functions J to other functions (TJ or TµJ ,
respectively).‡

In Chapter 1 we elaborated on visualizations of a special case of the
Bellman operators, namely the Riccati operators that arise in the context
of the linear quadratic problem. As discussed in Section 1.5, the Riccati

† Recall here our convention that we will be using “min” instead of the more

formal “inf,” even we are not sure that minimum is attained.

‡ Within the context of this work, the functions J on which T and Tµ operate

will be real-valued functions of x. We will assume throughout that the expected

values in Eqs. (2.3) and (2.4) are well-defined and finite when J is real-valued.

This implies that TµJ will also be real-valued functions of x. On the other

hand (TJ)(x) may take the value −∞ because of the minimization in Eq. (2.3).

We allow this possibility, although our illustrations will primarily depict the case

where TJ is real-valued. Note that the general theory of abstract DP is developed

with the use of extended real-valued functions; see the abstract DP book [Ber22a].

122 Principles of Approximation in Value Space Chap. 2

operators are simply the Bellman operators, restricted to quadratic func-
tions J . In this section we extend these visualization ideas to the general
infinite horizon problem of Section 1.4. Despite the restrictive framework
of our analysis of the linear quadratic problem of Section 1.5, we will argue
that the principal algorithmic insights relating to approximation in value
space, rollout, policy iteration, and Newton’s method survive intact within
the general infinite horizon context.

An important property of the operators T and Tµ is that they are
monotone, in the sense that if J and J ′ are two functions of x such that

J(x) ≥ J ′(x), for all x,

then we have

(TJ)(x) ≥ (TJ ′)(x), (TµJ)(x) ≥ (TµJ ′)(x), for all x and µ.
(2.5)

This is evident from Eqs. (2.3) and (2.4).
Another important property is that the Bellman operator Tµ is linear ,

in the sense that it has the form TµJ = G+AµJ , where G ∈ R(X) is some
function and Aµ : R(X) 7→ R(X) is an operator such that for any functions
J1, J2, and scalars γ1, γ2, we have†

Aµ(γ1J1 + γ2J2) = γ1AµJ1 + γ2AµJ2.

Moreover, from the definitions (2.3) and (2.4), we have

(TJ)(x) = min
µ∈M

(TµJ)(x), for all x,

whereM is the set of stationary policies. This is true because for any policy
µ, there is no coupling constraint between the controls µ(x) and µ(x′) that
correspond to two different states x and x′. It follows that (TJ)(x) is a
concave function of J for every x, something that will be important for our
interpretation of one-step and multistep lookahead as a Newton iteration
for solving the Bellman equation J = TJ .

Example 2.2.1 (A Two-State and Two-Control Example)

Assume that there are two states 1 and 2, and two controls u and v. Consider
the policy µ that applies control u at state 1 and control v at state 2. Then
the operator Tµ takes the form

(TµJ)(1) =

2
∑

y=1

p1y(u)
(

g(1, u, y) + αJ(y)
)

, (2.6)

† An operator Tµ with this property is often called “affine,” but in this work

we just call it “linear.” Also we use abbreviated notation to express pointwise

equalities and inequalities, so that we write J = J ′ or J ≥ J ′ to express the fact

that J(x) = J ′(x) or J(x) ≥ J ′(x), for all x, respectively.

Sec. 2.2 Off-Line Training, On-Line Play, and Newton’s Method 123

(TµJ)(2) =

2
∑

y=1

p2y(v)
(

g(2, v, y) + αJ(y)
)

, (2.7)

where pxy(u) and pxy(v) are the probabilities that the next state will be y,
when the current state is x, and the control is u or v, respectively. Clearly,
(TµJ)(1) and (TµJ)(2) are linear functions of J . Also the operator T of the
Bellman equation J = TJ takes the form

(TJ)(1) = min

[

2
∑

y=1

p1y(u)
(

g(1, u, y) + αJ(y)
)

,

2
∑

y=1

p1y(v)
(

g(1, v, y) + αJ(y)
)

]

,

(2.8)

(TJ)(2) = min

[

2
∑

y=1

p2y(u)
(

g(2, u, y) + αJ(y)
)

,

2
∑

y=1

p2y(v)
(

g(2, v, y) + αJ(y)
)

]

.

(2.9)

Thus, (TJ)(1) and (TJ)(2) are concave and piecewise linear as functions of
the two-dimensional vector J (with two pieces; more generally, as many linear
pieces as the number of controls). This concavity property holds in general
since (TJ)(x) is the minimum of a collection of linear functions of J , one for
each u ∈ U(x). Figure 2.2.1 illustrates (TµJ)(1) for the cases where µ(1) = u
and µ(1) = v, (TµJ)(2) for the cases where µ(2) = u and µ(2) = v, (TJ)(1),
and (TJ)(2), as functions of J =

(

J(1), J(2)
)

.

Mathematically the concavity property of T manifests itself in that
the set

C =
{

(J, ξ) ∈ R(X)×R(X) | (TJ)(x) ≥ ξ(x), for all x ∈ X
}

(2.10)

is convex as a subset of R(X)×R(X), where R(X) is the set of real-valued
functions over the state space X . This convexity property is verified by
showing that given (J1, ξ1) and (J2, ξ2) in C, and γ ∈ [0, 1], we have

(

γJ1 + (1 − γ)J2, γξ1 + (1− γ)ξ2
)

∈ C.

The proof of this is straightforward by using the concavity of (TJ)(x) for
each x.

Critical properties from the DP point of view are whether T and Tµ

have fixed points; equivalently, whether the Bellman equations J = TJ
and J = TµJ have solutions within the class of real-valued functions, and
whether the set of solutions includes J* and Jµ, respectively. It may thus
be important to verify that T or Tµ are contraction mappings. This is true

124 Principles of Approximation in Value Space Chap. 2

State 1 State 2
State 1 State 2

One-step lookahead J∗

J∗(1)

(2) (TJ∗)(1) = J∗(1) (

One-step lookahead J∗

(1) J∗(2)

(1) (TJ∗)(2) = J∗(2)

Figure 2.2.1 Geometric illustrations of the Bellman operators Tµ and T for
states 1 and 2 in Example 2.2.1; cf. Eqs. (2.6)-(2.9). The problem’s transition
probabilities are: p11(u) = 0.3, p12(u) = 0.7, p21(u) = 0.4, p22(u) = 0.6, p11(v) =
0.6, p12(v) = 0.4, p21(v) = 0.9, p22(v) = 0.1. The stage costs are g(1, u, 1) =
3, g(1, u, 2) = 10, g(2, u, 1) = 0, g(2, u, 2) = 6, g(1, v, 1) = 7, g(1, v, 2) = 5,
g(2, v, 1) = 3, g(2, v, 2) = 12. The discount factor is α = 0.9, and the optimal
costs are J∗(1) = 50.59 and J∗(2) = 47.41. The optimal policy is µ∗(1) = v and
µ∗(2) = u. The figure also shows two one-dimensional slices of T that are parallel
to the J(1) and J(2) axes and pass through J∗.

Sec. 2.2 Off-Line Training, On-Line Play, and Newton’s Method 125

for example in the benign case of discounted problems with bounded cost
per stage. However, for undiscounted problems, asserting the contraction
property of T or Tµ may be more complicated, and even impossible; the ab-
stract DP book [Ber18a] deals extensively with such questions, and related
issues regarding the solution sets of the Bellman equations.

Geometrical Interpretations

We will now interpret the Bellman operators geometrically, starting with
Tµ. Figure 2.2.2 illustrates its form. Note here that the functions J and
TµJ are multidimensional. They have as many scalar components J(x)
and (TµJ)(x), respectively, as there are states x, but they can only be
shown projected onto one dimension. The function TµJ for each policy µ
is linear. The cost function Jµ satisfies Jµ = TµJµ, so it is obtained from
the intersection of the graph of TµJ and the 45 degree line, when Jµ is real-
valued. Later we will interpret the situation where Jµ is not real-valued
with lack of system stability under µ [we have Jµ(x) = ∞ for some initial
states x].

The form of the Bellman operator T is illustrated in Fig. 2.2.3. Again
the functions J , J∗, TJ , TµJ , etc, are multidimensional, but they are
shown projected onto one dimension (alternatively they are illustrated for a
system with a single state, plus possibly a termination state). The Bellman
equation J = TJ may have one or many real-valued solutions. It may also
have no real-valued solution in exceptional situations, as we will discuss
later in this class. The figure assumes a unique real-valued solution of the
Bellman equations J = TJ and J = TµJ , which is true if T and Tµ are
contraction mappings, as is the case for discounted problems with bounded
cost per stage. Otherwise, these equations may have no solution or multiple
solutions within the class of real-valued functions. The equation J = TJ
typically has J∗ as a solution, but may have more than one solution in
cases where either α = 1, or α < 1 and the cost per stage is unbounded.

Note that the visualizations of the Bellman operators are consistent
with the ones for Riccati operators that we gave in Section 1.5. This is also
true for subsequent visualizations in this section, involving for example
Newton step interpretations for various forms of approximation in value
space.

Visualization of Value Iteration

The operator notation simplifies algorithmic descriptions, derivations, and
proofs related to DP. For example, we can write the VI algorithm in the
compact form

Jk+1 = TJk, k = 0, 1, . . . ,

126 Principles of Approximation in Value Space Chap. 2

1 J J

1 J J

45◦Line

TµJ

Cost of µ

Player/Policy Jµ = TµJµ

(1) = 0

Generic stable policy
Generic stable policy µJ Generic unstable policy

Generic unstable policy µ′

Tµ′J

Figure 2.2.2 Geometric interpretation of the linear Bellman operator Tµ and
the corresponding Bellman equation. The graph of Tµ is a plane in the space
R(X) × R(X), and when projected on a one-dimensional plane that corresponds
to a single state and passes through Jµ, it becomes a line. Then there are three
cases:

(a) The line has slope less than 45 degrees, so it intersects the 45-degree line at
a unique point, which is equal to Jµ, the solution of the Bellman equation
J = TµJ . This is true if Tµ is a contraction mapping, as is the case for
discounted problems with bounded cost per stage.

(b) The line has slope greater than 45 degrees. Then it intersects the 45-
degree line at a unique point, which is a solution of the Bellman equation
J = TµJ , but is not equal to Jµ. Then Jµ is not real-valued; we will call
such µ unstable under µ.

(c) The line has slope exactly equal to 45 degrees. This is an exceptional case
where the Bellman equation J = TµJ has an infinite number of real-valued
solutions or no real-valued solution at all; we will provide examples where
this occurs later.

as illustrated in Fig. 2.2.4. Moreover, the VI algorithm for a given policy

Sec. 2.2 Off-Line Training, On-Line Play, and Newton’s Method 127

J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

Optimal cost Cost of rollout policy ˜

45◦Line

TµJ

Cost of µ

TJ = minµ TµJ

Final Features Optimal Policy
Final Features Optimal Policy

J̃

Position Evaluation Policy µ̃ withON-LINE PLAY Lookahead Tree States

Tµ̃J̃ = T J̃

One-step lookahead

One-step lookahead Generic policy µ

= 4 Model minµ TµJ̃

Player/Policy Jµ = TµJµ

(1) = 0

Tµ̃J

ective Cost Approximation Value Space Approximation

Cost of µ̃
Jµ̃ = Tµ̃Jµ̃

Figure 2.2.3 Geometric interpretation of the Bellman operator T , and the cor-
responding Bellman equation. For a fixed x, the function (TJ)(x) can be written
as minµ(TµJ)(x), so it is concave as a function of J . The optimal cost function
J∗ satisfies J∗ = TJ∗, so it is obtained from the intersection of the graph of TJ
and the 45 degree line shown, assuming J∗ is real-valued.

Note that the graph of T lies below the graph of every operator Tµ, and is
in fact obtained as the lower envelope of the graphs of Tµ as µ ranges over the
set of policies M. In particular, for any given function J̃ , for every x, the value
(T J̃)(x) is obtained by finding a support hyperplane/subgradient of the graph of
the concave function (TJ)(x) at J = J̃, as shown in the figure. This support
hyperplane is defined by the control µ(x) of a policy µ̃ that attains the minimum
of (TµJ̃)(x) over µ:

µ̃(x) ∈ arg min
µ∈M

(TµJ̃)(x)

(there may be multiple policies attaining this minimum, defining multiple support
hyperplanes). This construction also shows how the minimization

(T J̃)(x) = min
µ∈M

(TµJ̃)(x)

corresponds to a linearization of the mapping T at the point J̃ .

µ can be written as

Jk+1 = TµJk, k = 0, 1, . . . ,

and it can be similarly interpreted, except that the graph of the function
TµJ is linear. Also we will see shortly that there is a similarly compact
description for the policy iteration algorithm.

128 Principles of Approximation in Value Space Chap. 2

J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

J0 J1

J1

J2

J2

Optimal cost Cost of rollout policy ˜

TJ

45◦Line

provement Bellman Equation Value Iterations

Stability Region 0

Figure 2.2.4 Geometric interpretation of the VI algorithm Jk+1 = TJk, start-
ing from some initial function J0. Successive iterates are obtained through the
staircase construction shown in the figure. The VI algorithm Jk+1 = TµJk for a
given policy µ can be similarly interpreted, except that the graph of the function
TµJ is linear.

To keep the presentation simple, we will focus our attention on the
abstract DP framework as it applies to the infinite horizon problems intro-
duced in Section 1.4. In particular, we will assume without further mention
that T and Tµ have the monotonicity property (2.5), that TµJ is linear for
all µ, and that (as a consequence) the component (TJ)(x) is concave as
a function of J for every state x. We note, however, that the abstract
notation facilitates the extension of the infinite horizon DP theory to mod-
els beyond the ones that we discuss in this work. Such models include
semi-Markov problems, minimax control problems, risk sensitive problems,
Markov games, and others (see the DP textbook [Ber12], and the abstract
DP monograph [Ber18a]).

2.2.1 Approximation in Value Space and Newton’s Method

Let us now consider approximation in value space and an abstract geomet-
ric interpretation, first provided in the author’s book [Ber20a]. By using
the operators T and Tµ, for a given J̃ , a one-step lookahead policy µ̃ is

Sec. 2.2 Off-Line Training, On-Line Play, and Newton’s Method 129

characterized by the equation

Tµ̃J̃ = T J̃,

as in Fig. 2.2.5. Furthermore, this equation implies that the graph of Tµ̃J
just touches the graph of TJ at J̃ , as shown in the figure. In mathematical
terms, the set

Cµ̃ =
{

(J, ξ) | Tµ̃J ≥ ξ
}

,

contains the convex set C of Eq. (2.10) (since TJ ≥ ξ implies that Tµ̃J ≥ ξ),
and has a common point (J̃ , Tµ̃J̃) with C. Moreover, for each state x ∈ X
the hyperplane Hµ̃(x)

Hµ̃(x) =
{

(

J(x), ξ(x)
)

| (Tµ̃J)(x) = ξ(x)
}

,

supports from above the convex set

{

(

J(x), ξ(x)
)

| (TJ)(x) ≥ ξ(x)
}

at the point
(

J̃(x), (T J̃)(x)
)

and defines a subgradient of (TJ)(x) at J̃ .
Note that the one-step lookahead policy µ̃ need not be unique, since T
need not be differentiable.

Thus, the equation J = Tµ̃J is a pointwise (for each x) linearization
of the equation J = TJ at J̃ , and its solution, Jµ̃, can be viewed as the
result of a Newton iteration at the point J̃ . In summary, the Newton iterate
at J̃ is Jµ̃, the solution of the linearized equation J = Tµ̃J .†

† The classical Newton’s method for solving a fixed point problem of the form
y = T (y), where y is an n-dimensional vector, operates as follows: At the current
iterate yk, we linearize T and find the solution yk+1 of the corresponding linear
fixed point problem. Assuming T is differentiable, the linearization is obtained
by using a first order Taylor expansion:

yk+1 = T (yk) +
∂T (yk)

∂y
(yk+1 − yk),

where ∂T (yk)/∂y is the n × n Jacobian matrix of T evaluated at the vector
yk. The most commonly given convergence rate property of Newton’s method is
quadratic convergence. It states that near the solution y∗, we have

‖yk+1 − y∗‖ = O
(

‖yk − y∗‖2
)

,

where ‖ · ‖ is the Euclidean norm, and holds assuming the Jacobian matrix ex-
ists and is Lipschitz continuous (see [Ber16], Section 1.4). There are extensions
of Newton’s method that are based on solving a linearized system at the cur-
rent iterate, but relax the differentiability requirement to piecewise differentiabil-
ity, and/or component concavity, while maintaining the superlinear convergence
property of the method; see the monograph [Ber22b], and the paper [Ber22c].

130 Principles of Approximation in Value Space Chap. 2

As noted earlier, approximation in value space with ℓ-step lookahead
using J̃ is the same as approximation in value space with one-step lookahead
using the (ℓ−1)-fold operation of T on J̃ , T ℓ−1J̃ . Thus it can be interpreted
as a Newton step starting from T ℓ−1J̃ , the result of ℓ − 1 value iterations
applied to J̃ . This is illustrated in Fig. 2.2.6. In this connection, we note
that several variants of Newton’s method that involve combinations of first-
order iterative methods, such as the Gauss-Seidel and Jacobi algorithms,
and Newton’s method, are well-known in numerical analysis. They belong
to the general family of Newton-SOR methods (SOR stands for “successive
over-relaxation”); see the classic book by Ortega and Rheinboldt [OrR70]
(Section 13.4). Their convergence rate is superlinear, similar to Newton’s
method, as long as they involve a pure Newton step, along with the first-
order steps.

2.2.2 Region of Stability

For any control system design method, the stability of the policy obtained
is of paramount importance. It is thus essential to investigate and verify
the stability of controllers obtained through approximation in value space
schemes. Historically, there have been several proposed definitions of sta-
bility in control theory. Within the context of this work, our focus on
stability issues will be for problems with a termination state t, which is
cost-free, and with a cost per stage that is positive outside the termination
state, such as the undiscounted positive cost deterministic problem intro-
duced earlier [cf. Eqs. (1.26)-(1.28)]. Moreover, it is best for our purposes
to adopt an optimization-based definition. In particular, we say that a pol-
icy µ is unstable if Jµ(x) = ∞ for some states x. Equivalently, we say that
the policy µ stable if Jµ(x) < ∞ for all states x. This definition has the
advantage that it applies to general state and control spaces. Naturally, it
can be made more specific in particular problem instances.†

The structure of the Bellman operators (2.3) and (2.4), with their mono-

tonicity and concavity properties, tends to enhance the convergence and rate of

convergence properties of Newton’s method, even in the absence of differentiabil-

ity, as evidenced by the convergence analysis of PI, and the extensive favorable

experience with rollout, PI, and MPC. In this connection, it is worth noting that

in the case of Markov games, where the concavity property does not hold, the

PI method may oscillate, as shown by Pollatschek and Avi-Itzhak [PoA69], and

needs to be modified to restore its global convergence; see the author’s paper

[Ber21c].

† For the undiscounted positive cost deterministic problem introduced earlier

[cf. Eqs. (1.26)-(1.28)], it can be shown that if a policy µ is stable, then Jµ is

the “smallest” solution of the Bellman equation J = TµJ within the class of

nonnegative real-valued functions, and under mild assumptions it is the unique

solution of J = TµJ within the class of nonnegative real-valued functions J with

Sec. 2.2 Off-Line Training, On-Line Play, and Newton’s Method 131

J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ

Tµ̃J

J̃ Jµ̃ = Tµ̃Jµ̃

One-Step Lookahead Policy Cost l

One-Step Lookahead Policy Cost l

One-Step Lookahead Policy Cost

One-Step Lookahead Policy µ̃

Corresponds to One-Step Lookahead Policy ˜

Stability Region 0 J̃

Cost Approximation Value Space Approximation

Newton step from J̃

J̃ for solving J = TJ

Approximations Result of

also Newton Step

Off-Line Training On-Line Play
-Line Training On-Line Play

Figure 2.2.5 Geometric interpretation of approximation in value space and the
one-step lookahead policy µ̃ as a step of Newton’s method. Given J̃ , we find a
policy µ̃ that attains the minimum in the relation T J̃ = minµ TµJ̃ . This policy

satisfies T J̃ = Tµ̃J̃ , so the graph of TJ and Tµ̃J touch at J̃ , as shown. It may
not be unique. Because TJ has concave components, the equation J = Tµ̃J is
the linearization of the equation J = TJ at J̃ . The linearized equation is solved
at the typical step of Newton’s method to provide the next iterate, which is just
Jµ̃.

In the context of approximation in value space we are interested in
the region of stability, which is the set of cost function approximations
J̃ ∈ R(X) for which the corresponding one-step or multistep lookahead
policies µ̃ are stable. For discounted problems with bounded cost per stage,
all policies have real-valued cost functions, so questions of stability do not
arise. In general, however, the region of stability may be a strict subset
of the set of real-valued functions; this will be illustrated later for the
undiscounted deterministic case of the linear quadratic problem of Section
2.1 [cf. Eqs. (1.35), (1.36)]. Figure 2.2.7 illustrates the region of stability
for approximation in value space with one-step lookahead.

J(t) = 0; see the author’s paper [Ber17b]. Moreover, if µ is unstable, then

the Bellman equation J = TµJ has no solution within the class of nonnegative

real-valued functions.

132 Principles of Approximation in Value Space Chap. 2

J J∗ = TJ∗

0 Prob. = 1

1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ

J̃

Tµ̃J

J̃ Jµ̃ = Tµ̃Jµ̃

One-Step Lookahead Policy Cost l

One-Step Lookahead Policy µ̃

Corresponds to One-Step Lookahead Policy ˜

Stability Region 0

Multistep Lookahead Policy Cost l

Multistep Lookahead Policy Cost

Cost Approximation Value Space Approximation

Cost Approximation Value Space Approximation

Multistep Lookahead Policy Cost T 2J̃

Effective Cost Approximation Value Space ApproximationJ̃ for solving J = TJ

Newton step from T ℓ−1J̃

Approximations Result of

Linear policy parameter Optimal ℓ = 3

also Newton Step

-Line Training On-Line PlayOff-Line Training On-Line Play

Figure 2.2.6 Geometric interpretation of approximation in value space with ℓ-
step lookahead (in this figure ℓ = 3). It is the same as approximation in value
space with one-step lookahead using T ℓ−1J̃ as cost approximation. It can be
viewed as a Newton step at the point T ℓ−1J̃ , the result of ℓ − 1 value iterations
applied to J̃. Note that as ℓ increases the cost function Jµ̃ of the ℓ-step lookahead
policy µ̃ approaches more closely the optimal J∗, and that limℓ→∞ Jµ̃ = J∗.

An interesting observation from Fig. 2.2.7 is that if J̃ does not be-
long to the region of stability and µ̃ is a corresponding one-step lookahead
unstable policy, the Bellman equation J = Tµ̃J may have real-valued so-
lutions. However, these solutions will not be equal to Jµ̃, as this would
violate the definition of region of stability. Generally, if Tµ is not a con-
traction mapping, Tµ may have real-valued fixed points, none of which is
equal to Jµ.

Figure 2.2.8 illustrates the region of stability for the case of multi-
step lookahead. The insights from this figure are similar to the one-step
lookahead case of Fig. 2.2.7. However, the figure indicates that the region
of stability of the ℓ-step lookahead controller µ̃ depends on ℓ, and tends to
become larger as ℓ increases . The reason is that ℓ-step lookahead with ter-
minal cost J̃ is equivalent to one-step lookahead with terminal cost T ℓ−1J̃ ,
which tends to be closer to the optimal cost function J* than J̃ (assuming
convergence of the VI method).

Sec. 2.2 Off-Line Training, On-Line Play, and Newton’s Method 133

J J∗ = TJ∗

0 Prob. = 1

1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ45◦Line

Instability Region Stability Region 0Instability Region

Tµ̃J

J̃ Jµ̃Without the Newton Step Base Player Threshold

Figure 2.2.7 Illustration of the regions of stability and instability for approxi-
mation in value space with one-step lookahead. The stability region is the set of
all J̃ such that the policy µ̃ with T J̃ = Tµ̃J̃ satisfies Jµ̃(x) < ∞ for all x.

How Can we Obtain Function Approximations J̃ Within the
Region of Stability?

Naturally, identifying and obtaining cost function approximations J̃ that
lie within the region of stability with either one-step or multistep lookahead
is very important within our context. We will focus on this question for
the special case where the expected cost per stage is nonnegative

E
{

g(x, u, w)
}

≥ 0, for all x, u ∈ U(x),

and assume that J* is real-valued. This is the case of most interest in model
predictive control, but also arises in other problems of interest, including
stochastic shortest path problems that involve a termination state.

From Fig. 2.2.8 it can be conjectured that if the sequence {T kJ̃} gen-
erated by the VI algorithm converges to J* for all J̃ such that 0 ≤ J̃ ≤ J*

(which is true under very general conditions; see [Ber12], [Ber18a]), then
T ℓ−1J̃ belongs to the region of stability for sufficiently large ℓ. Related
ideas have been discussed in the adaptive DP literature by Liu and his col-
laborators [HWL21], [LXZ21], [WLL16], and by Heydari [Hey17], [Hey18],
who provide extensive references; see also Winnicki et al. [WLL21]. We

134 Principles of Approximation in Value Space Chap. 2

J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ

Instability Region Stability Region 0Instability Region

45◦Line

J̃ T J̃J̃

= 3 ℓ = 2

Without the Newton Step Base Player Threshold

Figure 2.2.8 Illustration of the regions of stability and instability for approxi-
mation in value space with multistep lookahead. The stability region is the set of
all J̃ for which the policy µ̃ such that T ℓJ̃ = Tµ̃T

ℓ−1J̃ satisfies Jµ̃(x) < ∞ for all
x (the figure shows the case ℓ = 2). The region of instability tends to be reduced
as ℓ increases.

will revisit this issue in the context of linear quadratic problems. This
conjecture is generally true, but requires that, in addition to J*, all func-
tions J̃ within a neighborhood of J* belong to the region of stability. Our
subsequent discussion will aim to address this difficulty.

An important fact in our context is that the region of stability includes
all real-valued nonnegative functions J̃ such that

T J̃ ≤ J̃ . (2.11)

Indeed if µ̃ is the corresponding one-step lookahead policy, we have

Tµ̃J̃ = T J̃ ≤ J̃ ,

and from a well-known result on nonnegative cost infinite horizon problems
[see [Ber12], Prop. 4.1.4(a)], it follows that

Jµ̃ ≤ J̃ ;

(the proof argument is that if Tµ̃J̃ ≤ J̃ then T k+1
µ̃ J̃ ≤ T k

µ̃ J̃ for all k, so,

using also the fact 0 ≤ J̃ , the limit of T k
µ̃ J̃ , call it J∞, satisfies Jµ̃ ≤ J∞ ≤

J̃). Thus if J̃ is nonnegative and real-valued, Jµ̃ is also real-valued, so µ̃ is

Sec. 2.2 Off-Line Training, On-Line Play, and Newton’s Method 135

stable. It follows that J̃ belongs to the region of stability. This is a known
result in specific contexts, such as MPC (see the book by Rawlings, Mayne,
and Diehl [RMD17], Section 2.4, which contains extensive references to
prior work on stability issues).

An important special case where the condition T J̃ ≤ J̃ is satisfied is
when J̃ is the cost function of a stable policy, i.e., J̃ = Jµ. Then we have
that Jµ is real-valued and satisfies TµJµ = Jµ, so it follows that TJµ ≤ Jµ.
This case relates to the rollout algorithm and shows that rollout with a
stable policy yields a stable lookahead policy. It also suggests that if µ is
stable, then Tm

µ J̃ belongs to the region of stability for sufficiently large m.
Besides Jµ, with stable µ, and J*, there are other interesting functions

J̃ satisfying the stability condition T J̃ ≤ J̃ . In particular, let β be a scalar
with β > 1, and for a stable policy µ, consider the β-amplified operator
Tµ,β defined by

(Tµ,βJ)(x) = E
{

βg
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)

}

, for all x.

Then it can be seen that the function

Jµ,β = βJµ

is a fixed point of Tµ,β and satisfies TJµ,β ≤ Jµ,β . This follows by writing

Jµ,β = Tµ,βJµ,β ≥ TµJµ,β ≥ TJµ,β. (2.12)

Thus Jµ,β lies within the region of stability, and lies “further to the right” of
Jµ. Thus we may conjecture that it can be more reliably approximated by
Tm
µ,βJ̃ than Jµ is approximated by Tm

µ J̃ in the context of m-step truncated
rollout.

To illustrate this fact, consider a stable policy µ, and assume that the
expected cost per stage at states other than a termination state t (if one
exists) is bounded away from 0, i.e.,

C = min
x 6=t

E
{

g
(

x, µ(x), w
)

}

> 0.

Then we claim that given a scalar β > 1, any function Ĵ ∈ R(X) with
Ĵ(t) = 0, that satisfies

max
x

∣

∣Ĵ(x) − Jµ,β(x)
∣

∣ ≤ δ, for all x, (2.13)

where

δ =
(β − 1)C

1 + α
,

also satisfies the stability condition T Ĵ ≤ Ĵ . From this it follows that for
a given nonnegative and real-valued J̃ , and for sufficiently large m, so that

136 Principles of Approximation in Value Space Chap. 2

the function Ĵ = Tm
µ,βJ̃ satisfies Eq. (2.13), we have that Ĵ lies within the

region of stability.
To see this, note that for all x 6= t, we have

Jµ,β(x) = βE
{

g
(

x, µ(x), w
)

}

+ αJµ,β
(

f(x, µ(x), w)
)

}

,

so that by using Eq. (2.13), we have

Ĵ(x) + δ ≥ βE
{

g
(

x, µ(x), w
)

}

+ αE
{

Ĵ
(

f(x, µ(x), w)
)

}

− αδ.

It follows that

Ĵ(x) ≥ E
{

g
(

x, µ(x), w
)

}

+ αE
{

Ĵ
(

f(x, µ(x), w)
)

}

+ (β − 1)E
{

g
(

x, µ(x), w
)

}

− (1 + α)δ

≥ E
{

g
(

x, µ(x), w
)

}

+ αE
{

Ĵ
(

f(x, µ(x), w)
)

}

+ (β − 1)C − (1 + α)δ

= (TµĴ)(x)

≥ (T Ĵ)(x),

so the stability condition T Ĵ ≤ Ĵ is satisfied.
Similarly the function

J*
β = βJ*

is a fixed point of the operator Tβ defined by

(TβJ)(x) = min
u∈U(x)

E
{

βg(x, u, w) + αJ
(

f(x, u, w)
)

}

, for all x.

It can be seen, using an argument similar to Eq. (2.12), that J*
β satisfies

TJ*
β ≤ J*

β , so it lies within the region of stability. Furthermore, similar to

the case of truncated rollout discussed earlier, we may conjecture that J*
β

can be more reliably approximated by T ℓ−1
β J̃ than J* is approximated by

T ℓ−1J̃ in the context of ℓ-step lookahead.

2.2.3 Policy Iteration, Rollout, and Newton’s Method

Another major class of infinite horizon algorithms is based on policy itera-
tion (PI for short), which involves the repeated use of policy improvement,
in analogy with the AlphaZero/TD-Gammon off-line training algorithms,
described in Section 1.1. Each iteration of the PI algorithm starts with a
stable policy (which we call current or base policy), and generates another
stable policy (which we call new or rollout policy, respectively). For the in-
finite horizon problem of Section 2.1, given the base policy µ, the iteration
consists of two phases, as we have discussed in Chapter 1:

Sec. 2.2 Off-Line Training, On-Line Play, and Newton’s Method 137

(a) Policy evaluation, which computes the cost function Jµ. One possi-
bility is to solve the corresponding Bellman equation

Jµ(x) = E
{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)

}

, for all x.

(2.14)
However, the value Jµ(x) for any x can also be computed by Monte
Carlo simulation, by averaging over many randomly generated tra-
jectories the cost of the policy starting from x.

(b) Policy improvement , which computes the rollout policy µ̃ using the
one-step lookahead minimization

µ̃(x) ∈ arg min
u∈U(x)

E
{

g(x, u, w) + αJµ
(

f(x, u, w)
)

}

, for all x.

(2.15)
It is generally expected (and can be proved under mild conditions)
that the rollout policy is improved in the sense that Jµ̃(x) ≤ Jµ(x)
for all x.

Thus PI generates a sequence of stable policies {µk}, by obtaining
µk+1 through a policy improvement operation using Jµk in place of Jµ
in Eq. (2.15), which is obtained through policy evaluation of the preced-
ing policy µk using Eq. (2.14). It is well known that (exact) PI has solid
convergence properties; see the DP textbooks cited earlier, as well as the
author’s RL book [Ber19a]. These properties hold even when the method
is implemented (with appropriate modifications) in unconventional com-
puting environments, involving asynchronous distributed computation, as
shown in a series of papers by Bertsekas and Yu [BeY10], [BeY12], [YuB13].

In terms of our abstract notation, the PI algorithm can be written
in a compact form. For the generated policy sequence {µk}, the policy
evaluation phase obtains Jµk from the equation

Jµk = TµkJµk , (2.16)

while the policy improvement phase obtains µk+1 through the equation

Tµk+1Jµk = TJµk . (2.17)

As Fig. 2.2.9 illustrates, PI can be viewed as Newton’s method for solving
the Bellman equation in the function space of cost functions J . In partic-
ular, the policy improvement Eq. (2.17) is the Newton step starting from
Jµk , and yields µk+1 as the corresponding one-step lookahead/rollout pol-
icy. Figure 2.2.10 illustrates the rollout algorithm, which is just the first
iteration of PI.

In contrast to approximation in value space, the interpretation of PI
in terms of Newton’s method has a long history. We refer to the original

138 Principles of Approximation in Value Space Chap. 2

∗ TJ

Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1

1 J J

Optimal cost Cost of rollout policy ˜

Policy Evaluation for

Policy Evaluation for µk

and for µk+1

Cost of µkCost of µk+1

J
µk = T

µkJµkJ
µk+1 = T

µk+1Jµk+1

Linearized Bellman Eq. at

Linearized Bellman Eq. at J
µk

also Newton Step

Figure 2.2.9 Geometric interpretation of a policy iteration. Starting from the
stable current policy µk, it evaluates the corresponding cost function Jµk , and

computes the next policy µk+1 according to

Tµk+1Jµk = TJµk .

The corresponding cost function Jµk+1 is obtained as the solution of the linearized
equation J = Tµk+1J , so it is the result of a Newton step for solving the Bellman
equation J = TJ , starting from Jµk . Note that in policy iteration, the Newton
step always starts at a function Jµ, which satisfies Jµ ≥ J∗ as well as TJµ ≤ Jµ
(cf. our discussion on stability in Section 3.2).

works for linear quadratic problems by Kleinman [Klei68],† and for finite-
state infinite horizon discounted and Markov game problems by Pollatschek
and Avi-Itzhak [PoA69] (who also showed that the method may oscillate
in the game case). Subsequent works, which discuss algorithmic varia-
tions and approximations, include Hewer [Hew71], Puterman and Brumelle
[PuB78], [PuB79], Saridis and Lee [SaL79] (following Rekasius [Rek64]),
Beard [Bea95], Beard, Saridis, andWen [BSW99], Santos and Rust [SaR04],

† This was part of Kleinman’s Ph.D. thesis [Kle67] at M.I.T., supervised by

M. Athans. Kleinman gives credit for the one-dimensional version of his results to

Bellman and Kalaba [BeK65]. Note also that the first proposal of the PI method

was given by Bellman in his classic book [Bel57], under the name “approximation

in policy space.”

Sec. 2.2 Off-Line Training, On-Line Play, and Newton’s Method 139

∗ TJ

Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1
1 J J

Cost-to-go approximation Expected value approximation TµJ

Cost-to-go approximation Expected value approximation

Jµ = TµJµJµ̃ = Tµ̃Jµ̃

Policy Improvement with Base Policy

Policy Improvement with Base Policy µ

Linearized Bellman Eq. at Jµ
Yields Rollout Policy µ̃

Through Tµ̃Jµ = TJµ

Optimal cost Cost of rollout policy ˜

Optimal cost Cost of rollout policy µ̃Optimal cost Cost of rollout policy ˜ Cost of base policy µ

Policy Evaluation for

Policy Evaluation for µ and for ˜

µ and for µ̃

also Newton Step

Figure 2.2.10 Geometric interpretation of rollout. Each policy µ defines the
linear function TµJ of J , given by Eq. (2.4), and TJ is the function given by Eq.
(2.3), which can also be written as TJ = minµ TµJ . The figure shows a policy
iteration starting from a base policy µ. It computes Jµ by policy evaluation
(by solving the linear equation J = TµJ as shown). It then performs a policy
improvement using µ as the base policy to produce the rollout policy µ̃ as shown:
the cost function of the rollout policy, Jµ̃, is obtained by solving the version of
Bellman’s equation that is linearized at the point Jµ, as in Newton’s method.

Bokanowski, Maroso, and Zidani [BMZ09], Hylla [Hyl11], Magirou, Vassa-
los, and Barakitis [MVB20], Bertsekas [Ber21c], Ber22] and Kundu and Ku-
nitsch [KuK21]. Some of these papers address broader classes of problems
(such as continuous-time optimal control, minimax problems, and Markov
games), include superlinear convergence rate results, as well as extensive
references to related works. For a recent proof of quadratic convergence
for linear discrete-time quadratic problems, see Lopez, Alsalti, and Muller
[LAM21].

Rollout

Generally, rollout with a stable base policy µ can be viewed as a single
iteration of Newton’s method starting from Jµ, as applied to the solution
of the Bellman equation (see Fig. 2.2.10). Note that rollout/policy im-
provement is applied just at the current state during real-time operation
of the system. This makes the on-line implementation possible, even for
problems with very large state space, provided that the policy evaluation

140 Principles of Approximation in Value Space Chap. 2

∗ TJ

Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1

1 J J

Cost-to-go approximation Expected value approximation TµJ

Optimal cost Cost of rollout policy ˜

J̃

Cost of Truncated Rollout Policy ˜
Cost of Truncated Rollout Policy µ̃

Stability Region 0 Tm
µ J̃J̃ Jµ̃

Yields Truncated Rollout Policy µ̃

Yields Truncated Rollout Policy ˜ Defined by

Tµ̃(Tm
µ J̃) = T (Tm

µ J̃) Yields Truncated Rollout Policy ˜

1 J J
= 2 m = 4

also Newton Step

Figure 2.2.11 Geometric interpretation of truncated rollout with one-step looka-
head minimization, m value iterations with the base policy µ, and a terminal cost
function approximation J̃ (here m = 4).

of the base policy can be done on-line as needed. For this we often need
on-line deterministic or stochastic simulation from each of the states xk

generated by the system in real time.
As Fig. 2.2.10 illustrates, the cost function of the rollout policy Jµ̃ is

obtained by constructing a linearized version of Bellman’s equation at Jµ
(its linear approximation at Jµ), and then solving it. If the function TJ
is nearly linear (i.e., has small “curvature”) the rollout policy performance
Jµ̃(x) is very close to the optimal J*(x), even if the base policy µ is far
from optimal. This explains the large cost improvements that are typically
observed in practice with the rollout algorithm.

Truncated Rollout

Variants of rollout may involve multistep lookahead, truncation, and termi-
nal cost function approximation, as in the case of AlphaZero/TD-Gammon,
cf. Section 1. These variants admit geometric interpretations that are sim-
ilar to the ones given earlier; see Fig. 2.2.11. Truncated rollout uses m VIs
with the base policy µ and a terminal cost function approximation J̃ to
approximate the cost function Jµ.

In the case of one-step lookahead, the truncated rollout policy µ̃ is
defined by

Tµ̃(Tm
µ J̃) = T (Tm

µ J̃),

Sec. 2.2 Off-Line Training, On-Line Play, and Newton’s Method 141

i.e., µ̃ attains the minimum when the Bellman operator T is applied to the
function Tm

µ J̃ (the cost obtained by using the base policy µ for m steps
followed by terminal cost approximation J̃); see Fig. 2.2.11. In the case of
ℓ-step lookahead, the truncated rollout policy µ̃ is defined by

Tµ̃(T ℓ−1Tm
µ J̃) = T (T ℓ−1Tm

µ J̃).

Truncated rollout is related to a variant of PI called optimistic. This vari-
ant approximates the policy evaluation step by using m value iterations
using the base policy µ; see [BeT96], [Ber12], [Ber19a] for a more detailed
discussion of this relation.

As noted earlier, variants of Newton’s method that involve multi-
ple fixed point iterations, before and after each Newton step, but without
truncated rollout, i.e.,

Tµ̃(T ℓ−1J̃) = T (T ℓ−1J̃), (2.18)

are well-known. The classical numerical analysis book by Ortega and
Rheinboldt [OrR70] (Sections 13.3 and 13.4) provides various convergence
results, under assumptions that include differentiability and convexity of
the components of T , and nonnegativity of the inverse Jacobian of T . These
assumptions, particularly differentiability, may not be satisfied within our
DP context. Moreover, for methods of the form (2.18), the initial point
must satisfy an additional assumption, which ensures that the convergence
to J* is monotonic from above (in this case, if in addition the Jacobian of
T is isotone, an auxiliary sequence can be constructed that converges to J*

monotonically from below; see [OrR70], 13.3.4, 13.4.2). This is similar to
existing convergence results for the optimistic PI method in DP; see e.g.,
[BeT96], [Ber12].

Geometrical interpretations such as the ones of Fig. 2.2.11 suggest,
among others, that:

(a) The cost improvement Jµ − Jµ̃, from base to rollout policy, tends to
become larger as the length ℓ of the lookahead increases.

(b) Truncated rollout with ℓ-step lookahead minimization, followed by m
steps of a base policy µ, and then followed by terminal cost function
approximation J̃ may be viewed, under certain conditions, as an eco-
nomic alternative to (ℓ+m)-step lookahead minimization using J̃ as
terminal cost function approximation.

We next discuss the issues of selection of ℓ and m.

Lookahead Length Issues in Truncated Rollout

A question of practical interest is how to choose the lookahead lengths ℓ and
m in truncated rollout schemes. It is clear that large values ℓ for lookahead

142 Principles of Approximation in Value Space Chap. 2

minimization are beneficial (in the sense of producing improved lookahead
policy cost functions Jµ̃), since additional VI iterations bring closer to J*

the starting point T ℓ−1J̃ of the Newton step. On the other hand, large
values m for truncated rollout bring the starting point for the Newton
step closer to Jµ, and not necessarily closer to J*. Indeed computational
experiments suggest that increasing values for m may be counterproductive
beyond some threshold , and that this threshold generally depends on the
problem and the terminal cost approximation J̃ . This is also consistent
with long standing experience with optimistic policy iteration, which is
closely connected with truncated rollout, as noted earlier. Unfortunately,
however, there is no analysis that can illuminate this issue, and the available
error bounds for truncated rollout (see [Ber19a], [Ber20a]) are conservative
and provide limited guidance in this regard.

An interesting property, which holds in some generality, is that trun-
cated rollout with a stable policy has a beneficial effect on the stability prop-
erties of the lookahead policy. The reason is that the cost function Jµ of
the base policy µ lies well inside the region of stability, as noted in Section
3.2. Moreover value iterations with µ (i.e., truncated rollout) tend to push
the starting point of the Newton step towards Jµ. Thus a sufficient number
of these value iterations will bring the starting point of the Newton step
within the region of stability.

Another important fact to keep in mind is that the truncated rollout
steps are much less demanding computationally than the lookahead min-
imization steps. In particular, large values of m may be computationally
tolerable, but even relatively small values ofm can be computationally pro-
hibitive. This is especially true for stochastic problems where the width of
the lookahead tree tends to grow quickly. Thus, with other concerns weigh-
ing equally, it is computationally preferable to use large values of m rather
than large values of ℓ (this was the underlying motivation for truncated
rollout in Tesauro’s TD-Gammon [TeG96]).

The preceding discussion suggests the following qualitative question:
is lookahead by rollout an economic substitute for lookahead by minimiza-
tion? The answer to this seems to be a qualified yes: for a given compu-
tational budget, judiciously balancing the values of m and ℓ tends to give
better lookahead policy performance than simply increasing ℓ as much as
possible, while setting m = 0 (which corresponds to no rollout). This is
consistent with intuition obtained through geometric constructions such as
Fig. 2.2.11, but it is difficult to establish conclusively; see also the subse-
quent discussion on linear quadratic problems in Section 4.6.

2.2.4 How Sensitive is On-Line Play to the Off-Line Training
Process?

An important issue to consider in approximation in value space is errors
in the one-step or multistep minimization, or in the choice of terminal cost

Sec. 2.2 Off-Line Training, On-Line Play, and Newton’s Method 143

approximation J̃ . Such errors are often unavoidable because the control
constraint set U(x) is infinite, or because the minimization is simplified
for reasons of computational expediency (see our subsequent discussion of
multiagent problems). Moreover, to these errors, we may add the effect
of errors due to rollout truncation, and errors due to changes in problem
parameters, which are reflected in changes in Bellman’s equation (see our
subsequent discussion of robust and adaptive control).

Under these circumstances the linearization of the Bellman equation
at the point J̃ in Fig. 2.2.11 is perturbed, and the corresponding point
Tm
µ J̃ in Fig. 2.2.11 is also perturbed. However, the effect of these pertur-

bations tends to be mitigated by the Newton step that produces the policy
µ̃ and the corresponding cost function Jµ̃. The Newton step has a super-
linear convergence property, so for an O(ǫ)-order error [i.e., O(ǫ)/ǫ stays
bounded as ǫ → 0] in the calculation of Tm

µ J̃ , the error in Jµ̃ will be of
the much smaller order o(ǫ) [i.e., o(ǫ)/ǫ → 0 as ǫ → 0], when Jµ̃ is near
J*.† This is a significant insight, as it suggests that extreme accuracy and
fine-tuning of the choice of J̃ may not produce significant effects in the re-
sulting performance of the one-step and particularly a multistep lookahead
policy; see also the discussion on linear quadratic problems in Section 1.5.

Approximate Policy Iteration and Implementation Errors

Both policy evaluation and policy improvement can be approximated, pos-
sibly by using training with data and approximation architectures, such as
neural networks; see Fig. 2.2.12. Other approximations include simulation-
based methods such as truncated rollout, and temporal difference methods
for policy evaluation, which involve the use of basis functions. Moreover,
multistep lookahead may be used in place of one-step lookahead, and sim-
plified minimization, based for example on multiagent rollout, may also
be used. Let us also mention the possibility of a combined rollout and PI
algorithm, whereby we use PI for on-line policy improvement of the base
policy, by using data collected during the rollout process.

Long-standing practical experience with approximate PI is consistent
with the view of the effect of implementation errors outlined above, and
suggests that substantial changes in the policy evaluation and policy im-
provement operations often have small but largely unpredictable effects on
the performance of the policies generated. For example, when TD(λ)-type
methods are used for policy evaluation, the choice of λ has a large effect
on the generated policy cost function approximations, but often has little
and unpredictable effect on the performance of the generated policies. A
plausible conjecture here is that the superlinear convergence property of

† A rigorous proof of this requires differentiability of T at J̃ . Since T is

differentiable at almost all points J , the sensitivity property just stated, will

likely hold in practice even if T is not differentiable.

144 Principles of Approximation in Value Space Chap. 2

Base Policy Rollout Policy Approximation in Value Space
Base Policy Rollout Policy Approximation in Value Space

Base Policy Rollout Policy Approximation in Value SpaceBase Policy Rollout Policy Approximation in Value Space
Base Policy Rollout Policy Approximation in Value SpaceApproximation in Policy Space

Cost Data Policy Data System:

x µ

Rollout Policy µ̃

Value Network Policy Network Value Data

-Step Value Network Policy Network-Step Value Network Policy Network

Figure 2.2.12 Schematic illustration of approximate PI. Either the policy evalu-
ation and policy improvement phases (or both) are approximated with a value or
a policy network, respectively. These could be neural networks, which are trained
with (state, cost function value) data that is generated using the current base

policy µ, and with (state, rollout policy control) data that is generated using the
rollout policy µ̃.

Note that there are three different types of approximate implementation
involving: 1) a value network but no policy network (here the value network
defines a policy via one-step or multistep lookahead), or 2) a policy network but
no value network (here the policy network has a corresponding value function
that can be computed by rollout), or 3) both a policy and a value network (the
approximation architecture of AlphaZero is a case in point).

the exact Newton step “smooths out” the effect of off-line approximation
errors.

2.2.5 Why Not Just Train a Policy Network and Use it
Without On-Line Play?

This is a sensible and common question, which stems from the mindset that
neural networks have extraordinary function approximation properties. In
other words, why go through the arduous on-line process of lookahead min-
imization, if we can do the same thing off-line and represent the lookahead
policy with a trained policy network? More generally, it is possible to use
approximation in policy space, a major alternative approach to approxima-
tion in value space, whereby we select the policy from a suitably restricted
class of policies, such as a parametric class of the form µ(x, r), where r is
a parameter vector. We may then estimate r using some type of off-line
training process. There are quite a few methods for performing this type of
training, such as policy gradient and random search methods (see the books
[SuB18] and [Ber19a] for an overview). Alternatively, some approximate
DP or classical control system design method may be used.

An important advantage of approximation in policy space is that once
the parametrized policy is obtained, the on-line computation of controls
µ(x, r) is often much faster compared with on-line lookahead minimiza-
tion. For this reason, approximation in policy space can be used to provide
an approximate implementation of a known policy (no matter how ob-
tained) for the purpose of convenient use. On the negative side, because

Sec. 2.2 Off-Line Training, On-Line Play, and Newton’s Method 145

-1 -0.8 -0.6 -0.4 -0.2 0

0

2

4

6

8

10

12

Linear policy parameter

Without the Newton Step

With the Newton Step

Linear policy parameter Optimal

Figure 2.2.13 Illustration of the performance enhancement obtained by rollout
with an off-line trained base policy for the linear quadratic problem. Here the
system equation is xk+1 = xk +2uk, and the cost function parameters are q = 1,
r = 0.5. The optimal policy is µ∗(x) = L∗x with L∗ ≈ −0.4, and the optimal
cost function is J∗(x) = K∗x2, where K∗ ≈ 1.1. We consider policies of the form
µ(x) = Lx, where L is the parameter, with cost function of the form Jµ(x) =
KLx

2. The figure shows the quadratic cost coefficient differences KL − K∗ and
K

L̃
−K∗ as a function of L, where KL and K

L̃
are the quadratic cost coefficients

of µ (without one-step lookahead/Newton step) and the corresponding one-step
lookahead policy µ̃ (with one-step lookahead/Newton step).

parametrized approximations often involve substantial calculations, they
are not well suited for on-line replanning.

From our point of view in this book, there is another important reason
why approximation in value space is needed on top of approximation in
policy space: the off-line trained policy may not perform nearly as well as
the corresponding one-step or multistep lookahead/rollout policy, because it
lacks the extra power of the associated exact Newton step (cf. our discussion
of AlphaZero and TD-Gammon in Section 1). Figure 2.2.13 illustrates this
fact with a one-dimensional linear-quadratic example, and compares the
performance of a linear policy, defined by a scalar parameter, with its
corresponding one-step lookahead policy.

References

[ABB19] Agrawal, A., Barratt, S., Boyd, S., and Stellato, B., 2019. “Learning Convex
Optimization Control Policies,” arXiv preprint arXiv:1912.09529.

[ACF02] Auer, P., Cesa-Bianchi, N., and Fischer, P., 2002. “Finite Time Analysis of the
Multiarmed Bandit Problem,” Machine Learning, Vol. 47, pp. 235-256.

[ADH19] Arora, S., Du, S. S., Hu, W., Li, Z., and Wang, R., 2019. “Fine-Grained
Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural

Networks,” arXiv preprint arXiv:1901.08584.

[AHZ19] Arcari, E., Hewing, L., and Zeilinger, M. N., 2019. “An Approximate Dynamic
Programming Approach for Dual Stochastic Model Predictive Control,” arXiv preprint
arXiv:1911.03728.

[ALZ08] Asmuth, J., Littman, M. L., and Zinkov, R., 2008. “Potential-Based Shaping
in Model-Based Reinforcement Learning,” Proc. of 23rd AAAI Conference, pp. 604-609.

[AMS09] Audibert, J.Y., Munos, R., and Szepesvari, C., 2009. “Exploration-Exploitation
Tradeoff Using Variance Estimates in Multi-Armed Bandits,” Theoretical Computer
Science, Vol. 410, pp. 1876-1902.

[ASR20] Andersen, A. R., Stidsen, T. J. R., and Reinhardt, L. B., 2020. “Simulation-
Based Rolling Horizon Scheduling for Operating Theatres,” in SN Operations Research
Forum, Vol. 1, pp. 1-26.

[AXG16] Ames, A. D., Xu, X., Grizzle, J. W., and Tabuada, P., 2016. “Control Barrier
Function Based Quadratic Programs for Safety Critical Systems,” IEEE Transactions
on Automatic Control, Vol. 62, pp. 3861-3876.

[Abr90] Abramson, B., 1990. “Expected-Outcome: A General Model of Static Evalua-
tion,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 12, pp. 182-193.

[Agr95] Agrawal, R., 1995. “Sample Mean Based Index Policies with O(logn) Regret for
the Multiarmed Bandit Problem,” Advances in Applied Probability, Vol. 27, pp. 1054-

1078.

[AnH14] Antunes, D., and Heemels, W.P.M.H., 2014. “Rollout Event-Triggered Control:
Beyond Periodic Control Performance,” IEEE Transactions on Automatic Control, Vol.
59, pp. 3296-3311.

[AnM79] Anderson, B. D. O., and Moore, J. B., 1979. Optimal Filtering, Prentice-Hall,
Englewood Cliffs, N. J.

[AsH06] Aström, K. J., and Hagglund, T., 2006. Advanced PID Control, Instrument
Society of America, Research Triangle Park, N. C.

147

148 References

[AsW94] Aström, K. J., and Wittenmark, B., 1994. Adaptive Control, 2nd Edition,
Prentice-Hall, Englewood Cliffs, N. J.

[Ast83] Aström, K. J., 1983. “Theory and Applications of Adaptive Control - A Survey,”
Automatica, Vol. 19, pp. 471-486.

[AtF66] Athans, M., and Falb, P., 1966. Optimal Control, McGraw-Hill, N. Y.

[AvB20] Avrachenkov, K., and Borkar, V. S., 2020. “Whittle Index Based Q-Learning
for Restless Bandits with Average Reward,” arXiv preprint arXiv:2004.14427.

[BBD08] Busoniu, L., Babuska, R., and De Schutter, B., 2008. “A Comprehensive Sur-
vey of Multiagent Reinforcement Learning,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C, Vol. 38, pp. 156-172.

[BBD10a] Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D., 2010. Reinforcement
Learning and Dynamic Programming Using Function Approximators, CRC Press, N. Y.

[BBD10b] Busoniu, L., Babuska, R., and De Schutter, B., 2010. “Multi-Agent Reinforce-
ment Learning: An Overview,” in Innovations in Multi-Agent Systems and Applications,
Springer, pp. 183-221.

[BBG13] Bertazzi, L., Bosco, A., Guerriero, F., and Lagana, D., 2013. “A Stochastic
Inventory Routing Problem with Stock-Out,” Transportation Research, Part C, Vol. 27,
pp. 89-107.

[BBM17] Borrelli, F., Bemporad, A., and Morari, M., 2017. Predictive Control for Linear
and Hybrid Systems, Cambridge Univ. Press, Cambridge, UK.

[BBP13] Bhatnagar, S., Borkar, V. S., and Prashanth, L. A., 2013. “Adaptive Feature
Pursuit: Online Adaptation of Features in Reinforcement Learning,” in Reinforcement

Learning and Approximate Dynamic Programming for Feedback Control , by F. Lewis
and D. Liu (eds.), IEEE Press, Piscataway, N. J., pp. 517-534.

[BBW20] Bhattacharya, S., Badyal, S., Wheeler, T., Gil, S., Bertsekas, D. P., 2020.
“Reinforcement Learning for POMDP: Partitioned Rollout and Policy Iteration with
Application to Autonomous Sequential Repair Problems,” to appear in IEEE Robotics
and Automation Letters, 2020; arXiv preprint arXiv:2002.04175.

[BCD10] Brochu, E., Cora, V. M., and De Freitas, N., 2010. “A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active User Modeling
and Hierarchical Reinforcement Learning,” arXiv preprint arXiv:1012.2599.

[BCN18] Bottou, L., Curtis, F. E., and Nocedal, J., 2018. “Optimization Methods for
Large-Scale Machine Learning,” SIAM Review, Vol. 60, pp. 223-311.

[BKB20] Bhattacharya, S., Kailas, S., Badyal, S., Gil, S., and Bertsekas, D. P., 2020.
“Multiagent Rollout and Policy Iteration for POMDP with Application to Multi-Robot
Repair Problems,” in Proc. of Conference on Robot Learning (CoRL); also arXiv preprint,
arXiv:2011.04222.

[BLL19] Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A., 2019. “Benign Over-
fitting in Linear Regression,” arXiv preprint arXiv:1906.11300.

[BMM18] Belkin, M., Ma, S., and Mandal, S., 2018. “To Understand Deep Learning we
Need to Understand Kernel Learning,” arXiv preprint arXiv:1802.01396.

[BPW12] Browne, C., Powley, E., Whitehouse, D., Lucas, L., Cowling, P. I., Rohlfsha-
gen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S., 2012. “A Survey of
Monte Carlo Tree Search Methods,” IEEE Trans. on Computational Intelligence and AI
in Games, Vol. 4, pp. 1-43.

References 149

[BRT18] Belkin, M., Rakhlin, A., and Tsybakov, A. B., 2018. “Does Data Interpolation
Contradict Statistical Optimality?” arXiv preprint arXiv:1806.09471.

[BTW97] Bertsekas, D. P., Tsitsiklis, J. N., and Wu, C., 1997. “Rollout Algorithms for
Combinatorial Optimization,” Heuristics, Vol. 3, pp. 245-262.

[BWL19] Beuchat, P. N., Warrington, J., and Lygeros, J., 2019. “Accelerated Point-
Wise Maximum Approach to Approximate Dynamic Programming,” arXiv preprint
arXiv:1901.03619.

[BYB94] Bradtke, S. J., Ydstie, B. E., and Barto, A. G., 1994. “Adaptive Linear
Quadratic Control Using Policy Iteration,” Proc. IEEE American Control Conference,
Vol. 3, pp. 3475-3479.

[BaF88] Bar-Shalom, Y., and Fortman, T. E., 1988. Tracking and Data Association,
Academic Press, N. Y.

[BaL19] Banjac, G., and Lygeros, J., 2019. “A Data-Driven Policy Iteration Scheme
Based on Linear Programming,” Proc. 2019 IEEE CDC, pp. 816-821.

[BaP12] Bauso, D., and Pesenti, R., 2012. “Team Theory and Person-by-Person Opti-
mization with Binary Decisions,” SIAM Journal on Control and Optimization, Vol. 50,
pp. 3011-3028.

[Bai93] Baird, L. C., 1993. “Advantage Updating,” Report WL-TR-93-1146, Wright
Patterson AFB, OH.

[Bai94] Baird, L. C., 1994. “Reinforcement Learning in Continuous Time: Advantage
Updating,” International Conf. on Neural Networks, Orlando, Fla.

[Bar90] Bar-Shalom, Y., 1990. Multitarget-Multisensor Tracking: Advanced Applica-
tions, Artech House, Norwood, MA.

[BeC89] Bertsekas, D. P., and Castañon, D. A., 1989. “The Auction Algorithm for
Transportation Problems,” Annals of Operations Research, Vol. 20, pp. 67-96.

[BeC99] Bertsekas, D. P., and Castanon, D. A., 1999. “Rollout Algorithms for Stochastic
Scheduling Problems,” Heuristics, Vol. 5, pp. 89-108.

[BeC02] Ben-Gal, I., and Caramanis, M., 2002. “Sequential DOE via Dynamic Program-
ming,” IIE Transactions, Vol. 34, pp. 1087-1100.

[BeC08] Besse, C., and Chaib-draa, B., 2008. “Parallel Rollout for Online Solution of
DEC-POMDPs,” Proc. of 21st International FLAIRS Conference, pp. 619-624.

[BeL14] Beyme, S., and Leung, C., 2014. “Rollout Algorithm for Target Search in a
Wireless Sensor Network,” 80th Vehicular Technology Conference (VTC2014), IEEE,
pp. 1-5.

[BeI96] Bertsekas, D. P., and Ioffe, S., 1996. “Temporal Differences-Based Policy Iter-
ation and Applications in Neuro-Dynamic Programming,” Lab. for Info. and Decision
Systems Report LIDS-P-2349, Massachusetts Institute of Technology.

[BeP03] Bertsimas, D., and Popescu, I., 2003. “Revenue Management in a Dynamic
Network Environment,” Transportation Science, Vol. 37, pp. 257-277.

[BeR71a] Bertsekas, D. P., and Rhodes, I. B., 1971. “On the Minimax Reachability of
Target Sets and Target Tubes,” Automatica, Vol. 7, pp. 233-247.

[BeR71b] Bertsekas, D. P., and Rhodes, I. B., 1971. “Recursive State Estimation for a
Set-Membership Description of the Uncertainty,” IEEE Trans. Automatic Control, Vol.
AC-16, pp. 117-128.

150 References

[BeR73] Bertsekas, D. P., and Rhodes, I. B., 1973. “Sufficiently Informative Functions
and the Minimax Feedback Control of Uncertain Dynamic Systems,” IEEE Trans. Au-
tomatic Control, Vol. AC-18, pp. 117-124.

[BeS78] Bertsekas, D. P., and Shreve, S. E., 1978. Stochastic Optimal Control: The
Discrete Time Case, Academic Press, N. Y.; republished by Athena Scientific, Belmont,
MA, 1996 (can be downloaded in from the author’s website).

[BeS18] Bertazzi, L., and Secomandi, N., 2018. “Faster Rollout Search for the Vehicle
Routing Problem with Stochastic Demands and Restocking,” European J. of Operational
Research, Vol. 270, pp.487-497.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., 1989. Parallel and Distributed Computa-
tion: Numerical Methods, Prentice-Hall, Englewood Cliffs, N. J.; republished by Athena
Scientific, Belmont, MA, 1997 (can be downloaded from the author’s website).

[BeT91] Bertsekas, D. P., and Tsitsiklis, J. N., 1991. “An Analysis of Stochastic Shortest
Path Problems,” Math. Operations Res., Vol. 16, pp. 580-595.

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming,
Athena Scientific, Belmont, MA.

[BeT97] Bertsimas, D., and Tsitsiklis, J. N., 1997. Introduction to Linear Optimization,
Athena Scientific, Belmont, MA.

[BeT00] Bertsekas, D. P., and Tsitsiklis, J. N., 2000. “Gradient Convergence of Gradient
Methods with Errors,” SIAM J. on Optimization, Vol. 36, pp. 627-642.

[BeT08] Bertsekas, D. P., and Tsitsiklis, J. N., 2008. Introduction to Probability, 2nd
Edition, Athena Scientific, Belmont, MA.

[BeY09] Bertsekas, D. P., and Yu, H., 2009. “Projected Equation Methods for Approxi-
mate Solution of Large Linear Systems,” J. of Computational and Applied Math., Vol.
227, pp. 27-50.

[BeY10] Bertsekas, D. P., and Yu, H., 2010. “Asynchronous Distributed Policy Iteration
in Dynamic Programming,” Proc. of Allerton Conf. on Communication, Control and
Computing, Allerton Park, Ill, pp. 1368-1374.

[BeY12] Bertsekas, D. P., and Yu, H., 2012. “Q-Learning and Enhanced Policy Iteration
in Discounted Dynamic Programming,” Math. of Operations Research, Vol. 37, pp. 66-
94.

[BeY16] Bertsekas, D. P., and Yu, H., 2016. “Stochastic Shortest Path Problems Under
Weak Conditions,” Lab. for Information and Decision Systems Report LIDS-2909, MIT.

[Bel56] Bellman, R., 1956. “A Problem in the Sequential Design of Experiments,”
Sankhya: The Indian Journal of Statistics, Vol. 16, pp. 221-229.

[Bel57] Bellman, R., 1957. Dynamic Programming, Princeton University Press, Prince-
ton, N. J.

[Bel67] Bellman, R., 1967. Introduction to the Mathematical Theory of Control Pro-
cesses, Academic Press, Vols. I and II, New York, N. Y.

[Bel84] Bellman, R., 1984. Eye of the Hurricane, World Scientific Publishing, Singapore.

[Ben09] Bengio, Y., 2009. “Learning Deep Architectures for AI,” Foundations and Trends
in Machine Learning, Vol. 2, pp. 1-127.

[Ber71] Bertsekas, D. P., 1971. “Control of Uncertain Systems With a Set-Member-
ship Description of the Uncertainty,” Ph.D. Dissertation, Massachusetts Institute of
Technology, Cambridge, MA (can be downloaded from the author’s website).

References 151

[Ber72] Bertsekas, D. P., 1972. “Infinite Time Reachability of State Space Regions by
Using Feedback Control,” IEEE Trans. Automatic Control, Vol. AC-17, pp. 604-613.

[Ber73] Bertsekas, D. P., 1973. “Linear Convex Stochastic Control Problems over an
Infinite Horizon,” IEEE Trans. Automatic Control, Vol. AC-18, pp. 314-315.

[Ber77] Bertsekas, D. P., 1977. “Monotone Mappings with Application in Dynamic Pro-
gramming,” SIAM J. on Control and Opt., Vol. 15, pp. 438-464.

[Ber79] Bertsekas, D. P., 1979. “A Distributed Algorithm for the Assignment Problem,”
Lab. for Information and Decision Systems Report, MIT, May 1979.

[Ber82] Bertsekas, D. P., 1982. “Distributed Dynamic Programming,” IEEE Trans. Au-
tomatic Control, Vol. AC-27, pp. 610-616.

[Ber83] Bertsekas, D. P., 1983. “Asynchronous Distributed Computation of Fixed Points,”
Math. Programming, Vol. 27, pp. 107-120.

[Ber91] Bertsekas, D. P., 1991. Linear Network Optimization: Algorithms and Codes,
MIT Press, Cambridge, MA (can be downloaded from the author’s website).

[Ber96] Bertsekas, D. P., 1996. “Incremental Least Squares Methods and the Extended
Kalman Filter,” SIAM J. on Optimization, Vol. 6, pp. 807-822.

[Ber97a] Bertsekas, D. P., 1997. “A New Class of Incremental Gradient Methods for
Least Squares Problems,” SIAM J. on Optimization, Vol. 7, pp. 913-926.

[Ber97b] Bertsekas, D. P., 1997. “Differential Training of Rollout Policies,” Proc. of the
35th Allerton Conference on Communication, Control, and Computing, Allerton Park,
Ill.

[Ber98] Bertsekas, D. P., 1998. Network Optimization: Continuous and Discrete Models,
Athena Scientific, Belmont, MA (can be downloaded from the author’s website).

[Ber05a] Bertsekas, D. P., 2005. “Dynamic Programming and Suboptimal Control: A
Survey from ADP to MPC,” European J. of Control, Vol. 11, pp. 310-334.

[Ber05b] Bertsekas, D. P., 2005. “Rollout Algorithms for Constrained Dynamic Pro-
gramming,” Lab. for Information and Decision Systems Report LIDS-P-2646, MIT.

[Ber07] Bertsekas, D. P., 2007. “Separable Dynamic Programming and Approximate
Decomposition Methods,” IEEE Trans. on Aut. Control, Vol. 52, pp. 911-916.

[Ber10a] Bertsekas, D. P., 2010. “Incremental Gradient, Subgradient, and Proximal
Methods for Convex Optimization: A Survey,” Lab. for Information and Decision Sys-
tems Report LIDS-P-2848, MIT; a condensed version with the same title appears in
Optimization for Machine Learning, by S. Sra, S. Nowozin, and S. J. Wright, (eds.),
MIT Press, Cambridge, MA, 2012, pp. 85-119.

[Ber10b] Bertsekas, D. P., 2010. “Williams-Baird Counterexample for Q-Factor Asyn-
chronous Policy Iteration,”
http://web.mit.edu/dimitrib/www/Williams-Baird Counterexample.pdf.

[Ber11a] Bertsekas, D. P., 2011. “Incremental Proximal Methods for Large Scale Convex
Optimization,” Math. Programming, Vol. 129, pp. 163-195.

[Ber11b] Bertsekas, D. P., 2011. “Approximate Policy Iteration: A Survey and Some
New Methods,” J. of Control Theory and Applications, Vol. 9, pp. 310-335; a somewhat
expanded version appears as Lab. for Info. and Decision Systems Report LIDS-2833,
MIT, 2011.

[Ber12] Bertsekas, D. P., 2012. Dynamic Programming and Optimal Control, Vol. II,
4th Edition, Athena Scientific, Belmont, MA.

152 References

[Ber13a] Bertsekas, D. P., 2013. “Rollout Algorithms for Discrete Optimization: A Sur-
vey,” Handbook of Combinatorial Optimization, Springer.

[Ber13b] Bertsekas, D. P., 2013. “λ-Policy Iteration: A Review and a New Implementa-
tion,” in Reinforcement Learning and Approximate Dynamic Programming for Feedback
Control, by F. Lewis and D. Liu (eds.), IEEE Press, Piscataway, N. J., pp. 381-409.

[Ber15a] Bertsekas, D. P., 2015. Convex Optimization Algorithms, Athena Scientific,
Belmont, MA.

[Ber15b] Bertsekas, D. P., 2015. “Incremental Aggregated Proximal and Augmented
Lagrangian Algorithms,” Lab. for Information and Decision Systems Report LIDS-P-
3176, MIT; arXiv preprint arXiv:1507.1365936.

[Ber16] Bertsekas, D. P., 2016. Nonlinear Programming, 3rd Edition, Athena Scientific,
Belmont, MA.

[Ber17] Bertsekas, D. P., 2017. Dynamic Programming and Optimal Control, Vol. I, 4th
Edition, Athena Scientific, Belmont, MA.

[Ber18a] Bertsekas, D. P., 2018. Abstract Dynamic Programming, 2nd Edition, Athena
Scientific, Belmont, MA (can be downloaded from the author’s website).

[Ber18b] Bertsekas, D. P., 2018. “Feature-Based Aggregation and Deep Reinforcement
Learning: A Survey and Some New Implementations,” Lab. for Information and De-
cision Systems Report, MIT; arXiv preprint arXiv:1804.04577; IEEE/CAA Journal of
Automatica Sinica, Vol. 6, 2019, pp. 1-31.

[Ber18c] Bertsekas, D. P., 2018. “Biased Aggregation, Rollout, and Enhanced Policy
Improvement for Reinforcement Learning,” Lab. for Information and Decision Systems
Report, MIT; arXiv preprint arXiv:1910.02426.

[Ber18d] Bertsekas, D. P., 2018. “Proximal Algorithms and Temporal Difference Methods
for Solving Fixed Point Problems,” Computational Optim. Appl., Vol. 70, pp. 709-736.

[Ber19a] Bertsekas, D. P., 2019. Reinforcement Learning and Optimal Control, Athena
Scientific, Belmont, MA.

[Ber19b] Bertsekas, D. P., 2019. “Robust Shortest Path Planning and Semicontractive
Dynamic Programming,” Naval Research Logistics, Vol. 66, pp. 15-37.

[Ber19c] Bertsekas, D. P., 2019. “Multiagent Rollout Algorithms and Reinforcement
Learning,” arXiv preprint arXiv:1910.00120.

[Ber19d] Bertsekas, D. P., 2019. “Constrained Multiagent Rollout and Multidimensional
Assignment with the Auction Algorithm,” arXiv preprint, arxiv.org/abs/2002.07407.

[Ber20a] Bertsekas, D. P., 2020. Rollout, Policy Iteration, and Distributed Reinforcement
Learning, Athena Scientific, Belmont, MA.

[Ber20b] Bertsekas, D. P., 2020. “Multiagent Reinforcement Learning: Rollout and Pol-
icy Iteration,” ASU Report; appears in IEEE/CAA Journal of Automatica Sinica, Vol.

8, 2021, pp. 249-271.

[Ber20c] Bertsekas, D. P., 2020. “Multiagent Value Iteration Algorithms in Dynamic
Programming and Reinforcement Learning,” arXiv preprint, arxiv.org/abs/2005.01627;
appears in Results in Control and Optimization Journal, Vol. 1, 2020.

[Ber21] Bertsekas, D. P., 2021. “Lessons from AlphaZero for Optimal, Model Predictive,
and Adaptive Control,” arXiv preprint, arXiv:2108.10315.

[Ber22a] Bertsekas, D. P., 2022. Abstract Dynamic Programming, 3rd Edition, Athena
Scientific, Belmont, MA (can be downloaded from the author’s website).

References 153

[Ber22b] Bertsekas, D. P., 2022. Lessons from AlphaZero for Optimal, Model Predictive,
and Adaptive Control, Athena Scientific, Belmont, MA.

[Ber22c] Bertsekas, D. P., 2022. “Newton’s Method for Reinforcement Learning and
Model Predictive Control,” ASU Report, January 2022; to appear in Results in Control
and Optimization J.

[Bet10] Bethke, B. M., 2010. Kernel-Based Approximate Dynamic Programming Using
Bellman Residual Elimination, Ph.D. Thesis, MIT.

[BiL97] Birge, J. R., and Louveaux, 1997. Introduction to Stochastic Programming,
Springer, New York, N. Y.

[Bia16] Bianchi, P., 2016. “Ergodic Convergence of a Stochastic Proximal Point Algo-
rithm,” SIAM J. on Optimization, Vol. 26, pp. 2235-2260.

[Bis95] Bishop, C. M, 1995. Neural Networks for Pattern Recognition, Oxford University
Press, N. Y.

[Bis06] Bishop, C. M, 2006. Pattern Recognition and Machine Learning, Springer, N. Y.

[BlG54] Blackwell, D., and Girshick, M. A., 1954. Theory of Games and Statistical
Decisions, Wiley, N. Y.

[BlM08] Blanchini, F., and Miani, S., 2008. Set-Theoretic Methods in Control, Birkhauser,
Boston.

[Bla86] Blackman, S. S., 1986. Multi-Target Tracking with Radar Applications, Artech
House, Dehdam, MA.

[Bla99] Blanchini, F., 1999. “Set Invariance in Control – A Survey,” Automatica, Vol.
35, pp. 1747-1768.

[Bod20] Bodson, M., 2020. Adaptive Estimation and Control, Independently Published.

[Bor08] Borkar, V. S., 2008. Stochastic Approximation: A Dynamical Systems View-
point, Cambridge Univ. Press.

[BrH75] Bryson, A., and Ho, Y. C., 1975. Applied Optimal Control: Optimization,
Estimation, and Control, (revised edition), Taylor and Francis, Levittown, Penn.

[Bra21] Brandimarte, P., 2021. From Shortest Paths to Reinforcement Learning: A
MATLAB-Based Tutorial on Dynamic Programming, Springer.

[BuK97] Burnetas, A. N., and Katehakis, M. N., 1997. “Optimal Adaptive Policies for
Markov Decision Processes,” Math. of Operations Research, Vol. 22, pp. 222-255.

[CBH09] Choi, H. L., Brunet, L., and How, J. P., 2009. “Consensus-Based Decentralized
Auctions for Robust Task Allocation,” IEEE Transactions on Robotics, Vol. 25, pp.
912-926.

[CFH05] Chang, H. S., Hu, J., Fu, M. C., and Marcus, S. I., 2005. “An Adaptive
Sampling Algorithm for Solving Markov Decision Processes,” Operations Research, Vol.

53, pp. 126-139.

[CFH13] Chang, H. S., Hu, J., Fu, M. C., and Marcus, S. I., 2013. Simulation-Based
Algorithms for Markov Decision Processes, 2nd Edition, Springer, N. Y.

[CLT19] Chapman, M. P., Lacotte, J., Tamar, A., Lee, D., Smith, K. M., Cheng, V.,
Fisac, J. F., Jha, S., Pavone, M., and Tomlin, C. J., 2019. “A Risk-Sensitive Finite-
Time Reachability Approach for Safety of Stochastic Dynamic Systems,” arXiv preprint
arXiv:1902.11277.

154 References

[CMT87a] Clarke, D. W., Mohtadi, C., and Tuffs, P. S., 1987. “Generalized Predictive
Control - Part I. The Basic Algorithm,” Automatica Vol. 23, pp. 137-148.

[CMT87b] Clarke, D. W., Mohtadi, C., and Tuffs, P. S., 1987. “Generalized Predictive
Control - Part II,” Automatica Vol. 23, pp. 149-160.

[CRV06] Cogill, R., Rotkowitz, M., Van Roy, B., and Lall, S., 2006. “An Approximate
Dynamic Programming Approach to Decentralized Control of Stochastic Systems,” in
Control of Uncertain Systems: Modelling, Approximation, and Design, Springer, Berlin,
pp. 243-256.

[CXL19] Chu, Z., Xu, Z., and Li, H., 2019. “New Heuristics for the RCPSP with Multiple
Overlapping Modes,” Computers and Industrial Engineering, Vol. 131, pp. 146-156.

[CaB07] Camacho, E. F., and Bordons, C., 2007. Model Predictive Control, 2nd Edition,
Springer, New York, N. Y.

[Can16] Candy, J. V., 2016. Bayesian Signal Processing: Classical, Modern, and Particle
Filtering Methods, Wiley-IEEE Press.

[Cao07] Cao, X. R., 2007. Stochastic Learning and Optimization: A Sensitivity-Based
Approach, Springer, N. Y.

[ChC17] Chui, C. K., and Chen, G., 2017. Kalman Filtering, Springer International
Publishing.

[ChS00] Christianini, N., and Shawe-Taylor, J., 2000. Support Vector Machines and
Other Kernel-Based Learning Methods, Cambridge Univ. Press.

[Che59] Chernoff, H., 1959. “Sequential Design of Experiments,” The Annals of Mathe-
matical Statistics, Vol. 30, pp. 755-770.

[Chr97] Christodouleas, J. D., 1997. “Solution Methods for Multiprocessor Network
Scheduling Problems with Application to Railroad Operations,” Ph.D. Thesis, Opera-
tions Research Center, Massachusetts Institute of Technology.

[Cou06] Coulom, R., 2006. “Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search,” International Conference on Computers and Games, Springer, pp. 72-83.

[CrS00] Cristianini, N., and Shawe-Taylor, J., 2000. An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods, Cambridge Univ. Press.

[Cyb89] Cybenko, 1989. “Approximation by Superpositions of a Sigmoidal Function,”
Math. of Control, Signals, and Systems, Vol. 2, pp. 303-314.

[DDF19] Daubechies, I., DeVore, R., Foucart, S., Hanin, B., and Petrova, G., 2019.
“Nonlinear Approximation and (Deep) ReLU Networks,” arXiv preprint arXiv:1905.02199.

[DFM12] Desai, V. V., Farias, V. F., and Moallemi, C. C., 2012. “Aproximate Dynamic
Programming via a Smoothed Approximate Linear Program,” Operations Research, Vol.
60, pp. 655-674.

[DFM13] Desai, V. V., Farias, V. F., and Moallemi, C. C., 2013. “Bounds for Markov
Decision Processes,” in Reinforcement Learning and Approximate Dynamic Program-
ming for Feedback Control, by F. Lewis and D. Liu (eds.), IEEE Press, Piscataway, N.
J., pp. 452-473.

[DFV03] de Farias, D. P., and Van Roy, B., 2003. “The Linear Programming Approach
to Approximate Dynamic Programming,” Operations Research, Vol. 51, pp. 850-865.

[DFV04] de Farias, D. P., and Van Roy, B., 2004. “On Constraint Sampling in the
Linear Programming Approach to Approximate Dynamic Programming,” Mathematics
of Operations Research, Vol. 29, pp. 462-478.

References 155

[DHS12] Duda, R. O., Hart, P. E., and Stork, D. G., 2012. Pattern Classification, J.
Wiley, N. Y.

[DNW16] David, O. E., Netanyahu, N. S., and Wolf, L., 2016. “Deepchess: End-to-End
Deep Neural Network for Automatic Learning in Chess,” in International Conference on
Artificial Neural Networks, pp. 88-96.

[DeF04] De Farias, D. P., 2004. “The Linear Programming Approach to Approximate
Dynamic Programming,” in Learning and Approximate Dynamic Programming, by J.
Si, A. Barto, W. Powell, and D. Wunsch, (Eds.), IEEE Press, N. Y.

[DeK11] Devlin, S., and Kudenko, D., 2011. “Theoretical Considerations of Potential-
Based Reward Shaping for Multi-Agent Systems,” in Proceedings of AAMAS.

[Den67] Denardo, E. V., 1967. “Contraction Mappings in the Theory Underlying Dy-
namic Programming,” SIAM Review, Vol. 9, pp. 165-177.

[DiL08] Dimitrakakis, C., and Lagoudakis, M. G., 2008. “Rollout Sampling Approximate
Policy Iteration,” Machine Learning, Vol. 72, pp. 157-171.

[DiM10] Di Castro, D., and Mannor, S., 2010. “Adaptive Bases for Reinforcement Learn-
ing,” Machine Learning and Knowledge Discovery in Databases, Vol. 6321, pp. 312-327.

[DiW02] Dietterich, T. G., and Wang, X., 2002. “Batch Value Function Approximation
via Support Vectors,” in Advances in Neural Information Processing Systems, pp. 1491-
1498.

[DoJ09] Doucet, A., and Johansen, A. M., 2009. “A Tutorial on Particle Filtering and
Smoothing: Fifteen Years Later,” Handbook of Nonlinear Filtering, Oxford University
Press, Vol. 12, p. 3.

[DrH01] Drezner, Z., and Hamacher, H. W. eds., 2001. Facility Location: Applications
and Theory, Springer Science and Business Media.

[DuV99] Duin, C., and Voss, S., 1999. “The Pilot Method: A Strategy for Heuristic Rep-
etition with Application to the Steiner Problem in Graphs,” Networks: An International
Journal, Vol. 34, pp. 181-191.

[EDS18] Efroni, Y., Dalal, G., Scherrer, B., and Mannor, S., 2018. “Beyond the One-Step
Greedy Approach in Reinforcement Learning,” in Proc. International Conf. on Machine
Learning, pp. 1387-1396.

[EMM05] Engel, Y., Mannor, S., and Meir, R., 2005. “Reinforcement Learning with
Gaussian Processes,” in Proc. of the 22nd ICML, pp. 201-208.

[FHS09] Feitzinger, F., Hylla, T., and Sachs, E. W., 2009. “Inexact Kleinman?Newton
Method for Riccati Equations,” SIAM Journal on Matrix Analysis and Applications,
Vol. 3, pp. 272-288.

[FIA03] Findeisen, R., Imsland, L., Allgower, F., and Foss, B.A., 2003. “State and
Output Feedback Nonlinear Model Predictive Control: An Overview,” European Journal
of Control, Vol. 9, pp. 190-206.

[FPB15] Farahmand, A. M., Precup, D., Barreto, A. M., and Ghavamzadeh, M., 2015.
“Classification-Based Approximate Policy Iteration,” IEEE Trans. on Automatic Con-
trol, Vol. 60, pp. 2989-2993.

[FeV02] Ferris, M. C., and Voelker, M. M., 2002. “Neuro-Dynamic Programming for
Radiation Treatment Planning,” Numerical Analysis Group Research Report NA-02/06,
Oxford University Computing Laboratory, Oxford University.

156 References

[FeV04] Ferris, M. C., and Voelker, M. M., 2004. “Fractionation in Radiation Treatment
Planning,” Mathematical Programming B, Vol. 102, pp. 387-413.

[Fel60] Feldbaum, A. A., 1960. “Dual Control Theory,” Automation and Remote Control,
Vol. 21, pp. 874-1039.

[FiV96] Filar, J., and Vrieze, K., 1996. Competitive Markov Decision Processes, Springer.

[FoK09] Forrester, A. I., and Keane, A. J., 2009. “Recent Advances in Surrogate-Based
Optimization. Progress in Aerospace Sciences,” Vol. 45, pp. 50-79.

[Fra18] Frazier, P. I., 2018. “A Tutorial on Bayesian Optimization,” arXiv preprint
arXiv:1807.02811.

[Fu17] Fu, M. C., 2017. “Markov Decision Processes, AlphaGo, and Monte Carlo Tree
Search: Back to the Future,” Leading Developments from INFORMS Communities,
INFORMS, pp. 68-88.

[Fun89] Funahashi, K., 1989. “On the Approximate Realization of Continuous Mappings
by Neural Networks,” Neural Networks, Vol. 2, pp. 183-192.

[GBC16] Goodfellow, I., Bengio, J., and Courville, A., Deep Learning, MIT Press, Cam-
bridge, MA.

[GBL19] Goodson, J. C., Bertazzi, L., and Levary, R. R., 2019. “Robust Dynamic Media
Selection with Yield Uncertainty: Max-Min Policies and Dual Bounds,” Report.

[GDM19] Guerriero, F., Di Puglia Pugliese, L., and Macrina, G., 2019. “A Rollout Algo-
rithm for the Resource Constrained Elementary Shortest Path Problem,” Optimization
Methods and Software, Vol. 34, pp. 1056-1074.

[GGS13] Gabillon, V., Ghavamzadeh, M., and Scherrer, B., 2013. “Approximate Dy-
namic Programming Finally Performs Well in the Game of Tetris,” in NIPS, pp. 1754-
1762.

[GGW11] Gittins, J., Glazebrook, K., and Weber, R., 2011. Multi-Armed Bandit Allo-
cation Indices, J. Wiley, N. Y.

[GLG11] Gabillon, V., Lazaric, A., Ghavamzadeh, M., and Scherrer, B., 2011. “Classi-
fication-Based Policy Iteration with a Critic,” in Proc. of ICML.

[GSD06] Goodwin, G., Seron, M. M., and De Dona, J. A., 2006. Constrained Control
and Estimation: An Optimisation Approach, Springer, N. Y.

[GSS93] Gordon, N. J., Salmond, D. J., and Smith, A. F., 1993. “Novel Approach to
Nonlinear/Non-Gaussian Bayesian State Estimation,” in IEE Proceedings, Vol. 140, pp.
107-113.

[GTA17] Gommans, T. M. P., Theunisse, T. A. F., Antunes, D. J., and Heemels, W.
P. M. H., 2017. “Resource-Aware MPC for Constrained Linear Systems: Two Rollout
Approaches,” Journal of Process Control, Vol. 51, pp. 68-83.

[GTO15] Goodson, J. C., Thomas, B. W., and Ohlmann, J. W., 2015. “Restocking-
Based Rollout Policies for the Vehicle Routing Problem with Stochastic Demand and
Duration Limits,” Transportation Science, Vol. 50, pp. 591-607.

[GTO17] Goodson, J. C., Thomas, B. W., and Ohlmann, J. W., 2017. “A Rollout Al-
gorithm Framework for Heuristic Solutions to Finite-Horizon Stochastic Dynamic Pro-
grams,” European Journal of Operational Research, Vol. 258, pp. 216-229.

[GoS84] Goodwin, G. C., and Sin, K. S. S., 1984. Adaptive Filtering, Prediction, and
Control, Prentice-Hall, Englewood Cliffs, N. J.

References 157

[Gos15] Gosavi, A., 2015. Simulation-Based Optimization: Parametric Optimization
Techniques and Reinforcement Learning, 2nd Edition, Springer, N. Y.

[Grz17] Grzes, M., 2017. “Reward Shaping in Episodic Reinforcement Learning,” in Proc.
of the 16th Conference on Autonomous Agents and MultiAgent Systems, pp. 565-573.

[GuM01] Guerriero, F., and Musmanno, R., 2001. “Label Correcting Methods to Solve
Multicriteria Shortest Path Problems,” J. Optimization Theory Appl., Vol. 111, pp.
589-613.

[GuM03] Guerriero, F., and Mancini, M., 2003. “A Cooperative Parallel Rollout Algo-
rithm for the Sequential Ordering Problem,” Parallel Computing, Vol. 29, pp. 663-677.

[Gup20] Gupta, A., 2020. “Existence of Team-Optimal Solutions in Static Teams with
Common Information: A Topology of Information Approach,” SIAM J. on Control and
Optimization, Vol. 58, pp.998-1021.

[HCR21] Hoffmann, F., Charlish, A., Ritchie, M., and Griffiths, H., 2021. “Policy Rollout
Action Selection in Continuous Domains for Sensor Path Planning,” IEEE Trans. on
Aerospace and Electronic Systems.

[HJG16] Huang, Q., Jia, Q. S., and Guan, X., 2016. “Robust Scheduling of EV Charging
Load with Uncertain Wind Power Integration,” IEEE Trans. on Smart Grid, Vol. 9, pp.
1043-1054.

[HLS06] Han, J., Lai, T. L. and Spivakovsky, V., 2006. “Approximate Policy Optimiza-
tion and Adaptive Control in Regression Models,” Computational Economics, Vol. 27,
pp. 433-452.

[HMR19] Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J., 2019. “Surprises
in High-Dimensional Ridgeless Least Squares Interpolation,” arXiv preprint arXiv:1903-
.08560.

[HLZ19] Ho, T. Y., Liu, S., and Zabinsky, Z. B., 2019. “A Multi-Fidelity Rollout
Algorithm for Dynamic Resource Allocation in Population Disease Management,” Health
Care Management Science, Vol. 22, pp. 727-755.

[HSS08] Hofmann, T., Scholkopf, B., and Smola, A. J., 2008. “Kernel Methods in
Machine Learning,” The Annals of Statistics, Vol. 36, pp. 1171-1220.

[HSW89] Hornick, K., Stinchcombe, M., and White, H., 1989. “Multilayer Feedforward
Networks are Universal Approximators,” Neural Networks, Vol. 2, pp. 359-159.

[HWM19] Hewing, L., Wabersich, K. P., Menner, M., and Zeilinger, M. N., 2019.
“Learning-Based Model Predictive Control: Toward Safe Learning in Control,” Annual
Review of Control, Robotics, and Autonomous Systems.

[HaR21] Hardt, M., and Recht, B., 2021. Patterns, Predictions, and Actions: A Story
About Machine Learning, arXiv preprint arXiv:2102.05242.

[Han98] Hansen, E. A., 1998. “Solving POMDPs by Searching in Policy Space,” in Proc.
of the 14th Conf. on Uncertainty in Artificial Intelligence, pp. 211-219.

[Hay08] Haykin, S., 2008. Neural Networks and Learning Machines, 3rd Edition, Prentice-
Hall, Englewood-Cliffs, N. J.

[HeZ19] Hewing, L., and Zeilinger, M. N., 2019. “Scenario-Based Probabilistic Reach-
able Sets for Recursively Feasible Stochastic Model Predictive Control,” IEEE Control
Systems Letters, Vol. 4, pp. 450-455.

[Hew71] Hewer, G., 1971. “An Iterative Technique for the Computation of the Steady
State Gains for the Discrete Optimal Regulator,” IEEE Trans. on Automatic Control,

158 References

Vol. 16, pp. 382-384.

[Ho80] Ho, Y. C., 1980. “Team Decision Theory and Information Structures,” Proceed-
ings of the IEEE, Vol. 68, pp. 644-654.

[HuM16] Huan, X., and Marzouk, Y. M., 2016. “Sequential Bayesian Optimal Experi-
mental Design via Approximate Dynamic Programming,” arXiv preprint arXiv:1604.08320.

[Hua15] Huan, X., 2015. Numerical Approaches for Sequential Bayesian Optimal Ex-
perimental Design, Ph.D. Thesis, MIT.

[Hyl11] Hylla, T., 2011. Extension of Inexact Kleinman-Newton Methods to a General
Monotonicity Preserving Convergence Theory, PhD Thesis, Univ. of Trier.

[IFT19] Issakkimuthu, M., Fern, A., and Tadepalli, P., 2019. “The Choice Function
Framework for Online Policy Improvement,” arXiv preprint arXiv:1910.00614.

[IJT18] Iusem, Jofre, A., and Thompson, P., 2018. “Incremental Constraint Projec-
tion Methods for Monotone Stochastic Variational Inequalities,” Math. of Operations
Research, Vol. 44, pp. 236-263.

[IoS96] Ioannou, P. A., and Sun, J., 1996. Robust Adaptive Control, Prentice-Hall,
Englewood Cliffs, N. J.

[JCG20] Jiang, S., Chai, H., Gonzalez, J., and Garnett, R., 2020. “BINOCULARS for
Efficient, Nonmyopic Sequential Experimental Design,” in Proc. Intern. Conference on

Machine Learning, pp. 4794-4803.

[JGJ18] Jones, M., Goldstein, M., Jonathan, P., and Randell, D., 2018. “Bayes Lin-
ear Analysis of Risks in Sequential Optimal Design Problems,” Electronic Journal of
Statistics, Vol. 12, pp. 4002-4031.

[JJB20] Jiang, S., Jiang, D. R., Balandat, M., Karrer, B., Gardner, J. R., and Garnett,
R., 2020. “Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees,”
arXiv preprint arXiv:2006.15779.

[JiJ17] Jiang, Y., and Jiang, Z. P., 2017. Robust Adaptive Dynamic Programming, J.
Wiley, N. Y.

[Jon90] Jones, L. K., 1990. “Constructive Approximations for Neural Networks by Sig-
moidal Functions,” Proceedings of the IEEE, Vol. 78, pp. 1586-1589.

[JuP07] Jung, T., and Polani, D., 2007. “Kernelizing LSPE(λ),” Proc. 2007 IEEE Sym-
posium on Approximate Dynamic Programming and Reinforcement Learning, Honolulu,
Ha., pp. 338-345.

[KAC15] Kochenderfer, M. J., with Amato, C., Chowdhary, G., How, J. P., Davison
Reynolds, H. J., Thornton, J. R., Torres-Carrasquillo, P. A., Ore, N. K., Vian, J., 2015.
Decision Making under Uncertainty: Theory and Application, MIT Press, Cambridge,
MA.

[KAH15] Khashooei, B. A., Antunes, D. J. and Heemels, W.P.M.H., 2015. “Rollout

Strategies for Output-Based Event-Triggered Control,” in Proc. 2015 European Control
Conference, pp. 2168-2173.

[KLC98] Kaelbling, L. P., Littman, M. L., and Cassandra, A. R., 1998. “Planning and
Acting in Partially Observable Stochastic Domains,” Artificial Intelligence, Vol. 101, pp.
99-134.

[KLM82a] Krainak, J. L. S. J. C., Speyer, J., and Marcus, S., 1982. “Static Team
Problems - Part I: Sufficient Conditions and the Exponential Cost Criterion,” IEEE
Transactions on Automatic Control, Vol. 27, pp. 839-848.

References 159

[KLM82b] Krainak, J. L. S. J. C., Speyer, J., and Marcus, S., 1982. “Static Team Prob-
lems - Part II: Affine Control Laws, Projections, Algorithms, and the LEGT Problem,”
IEEE Transactions on Automatic Control, Vol. 27, pp. 848-859.

[KLM96] Kaelbling, L. P., Littman, M. L., and Moore, A. W., 1996. “Reinforcement
Learning: A Survey,” J. of Artificial Intelligence Res., Vol. 4, pp. 237-285.

[KMP06] Keller, P. W., Mannor, S., and Precup, D., 2006. “Automatic Basis Function
Construction for Approximate Dynamic Programming and Reinforcement Learning,”
Proc. of the 23rd ICML, Pittsburgh, Penn.

[KaW94] Kall, P., and Wallace, S. W., 1994. Stochastic Programming, Wiley, Chichester,
UK.

[KeG88] Keerthi, S. S., and Gilbert, E. G., 1988. “Optimal, Infinite Horizon Feedback
Laws for a General Class of Constrained Discrete Time Systems: Stability and Moving-
Horizon Approximations,” J. Optimization Theory Appl., Vo. 57, pp. 265-293.

[Kle68] Kleinman, D. L., 1968. “On an Iterative Technique for Riccati Equation Com-
putations,” IEEE Trans. Aut. Control, Vol. AC-13, pp. 114-115.

[KoC16] Kouvaritakis, B., and Cannon, M., 2016. Model Predictive Control: Classical,
Robust and Stochastic, Springer, N. Y.

[KoG98] Kolmanovsky, I.. and Gilbert, E. G., 1998. “Theory and Computation of Distur-
bance Invariant Sets for Discrete-Time Linear Systems,” Math. Problems in Engineering,
Vol. 4, pp. 317-367.

[KoS06] Kocsis, L., and Szepesvari, C., 2006. “Bandit Based Monte-Carlo Planning,”
Proc. of 17th European Conference on Machine Learning, Berlin, pp. 282-293.

[Kre19] Krener, A. J., 2019. “Adaptive Horizon Model Predictive Control and Al’brekht’s
Method,” arXiv preprint arXiv:1904.00053.

[Kri16] Krishnamurthy, V., 2016. Partially Observed Markov Decision Processes, Cam-
bridge Univ. Press.

[KuV86] Kumar, P. R., and Varaiya, P. P., 1986. Stochastic Systems: Estimation, Iden-
tification, and Adaptive Control, Prentice-Hall, Englewood Cliffs, N. J.

[Kun14] Kung, S. Y., 2014. Kernel Methods and Machine Learning, Cambridge Univ.
Press.

[LEC20] Lee, E. H., Eriksson, D., Cheng, B., McCourt, M., and Bindel, D., 2020. “Effi-
cient Rollout Strategies for Bayesian Optimization,” arXiv preprint arXiv:2002.10539.

[LGM10] Lazaric, A., Ghavamzadeh, M., and Munos, R., 2010. “Analysis of a Classifica-
tion-Based Policy Iteration Algorithm,” INRIA Report.

[LGW16] Lan, Y., Guan, X., and Wu, J., 2016. “Rollout Strategies for Real-Time Multi-
Energy Scheduling in Microgrid with Storage System,” IET Generation, Transmission
and Distribution, Vol. 10, pp. 688-696.

[LJM19] Li, Y., Johansson, K. H., and Martensson, J., 2019. “Lambda-Policy Iteration
with Randomization for Contractive Models with Infinite Policies: Well Posedness and
Convergence,” arXiv preprint arXiv:1912.08504.

[LLL19] Liu, Z., Lu, J., Liu, Z., Liao, G., Zhang, H. H., and Dong, J., 2019. “Patient
Scheduling in Hemodialysis Service,” J. of Combinatorial Optimization, Vol. 37, pp.
337-362.

[LLP93] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S., 1993. “Multilayer Feed-
forward Networks with a Nonpolynomial Activation Function can Approximate any

160 References

Function,” Neural Networks, Vol. 6, pp. 861-867.

[LPS21] Liu, M., Pedrielli, G., Sulc, P., Poppleton, E., Bertsekas, D. P., 2021. “Ex-
pertRNA: A New Framework for RNA Structure Prediction,” bioRxiv.

[LTZ19] Li, Y., Tang, Y., Zhang, R., and Li, N., 2019. “Distributed Reinforcement Learn-
ing for Decentralized Linear Quadratic Control: A Derivative-Free Policy Optimization
Approach,” arXiv preprint arXiv:1912.09135.

[LWT17] Lowe, L., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I., 2017. “Multi-
Agent Actor-Critic for Mixed Cooperative-Competitive Environments,” in Advances in
Neural Information Processing Systems, pp. 6379-6390.

[LWW16] Lam, R., Willcox, K., and Wolpert, D. H., 2016. “Bayesian Optimization with
a Finite Budget: An Approximate Dynamic Programming Approach,” In Advances in
Neural Information Processing Systems, pp. 883-891.

[LWW17] Liu, D., Wei, Q., Wang, D., Yang, X., and Li, H., 2017. Adaptive Dynamic
Programming with Applications in Optimal Control, Springer, Berlin.

[LZS20] Li, H., Zhang, X., Sun, J., and Dong, X., 2020. “Dynamic Resource Levelling
in Projects under Uncertainty,” International J. of Production Research.

[LaP03] Lagoudakis, M. G., and Parr, R., 2003. “Reinforcement Learning as Classifica-
tion: Leveraging Modern Classifiers,” in Proc. of ICML, pp. 424-431.

[LaR85] Lai, T., and Robbins, H., 1985. “Asymptotically Efficient Adaptive Allocation
Rules,” Advances in Applied Math., Vol. 6, pp. 4-22.

[LaW13] Lavretsky, E., andWise, K., 2013. Robust and Adaptive Control with Aerospace
Applications, Springer.

[LaW17] Lam, R., and Willcox, K., 2017. “Lookahead Bayesian Optimization with In-
equality Constraints,” in Advances in Neural Information Processing Systems, pp. 1890-
1900.

[Lee20] Lee, E. H., 2020. “Budget-Constrained Bayesian Optimization, Doctoral disser-
tation, Cornell University.

[LiS16] Liang, S., and Srikant, R., 2016. “Why Deep Neural Networks for Function
Approximation?” arXiv preprint arXiv:1610.04161.

[LiW14] Liu, D., and Wei, Q., 2014. “Policy Iteration Adaptive Dynamic Programming
Algorithm for Discrete-Time Nonlinear Systems,” IEEE Trans. on Neural Networks and
Learning Systems, Vol. 25, pp. 621-634.

[LiW15] Li, H., and Womer, N. K., 2015. “Solving Stochastic Resource-Constrained
Project Scheduling Problems by Closed-Loop Approximate Dynamic Programming,”
European J. of Operational Research, Vol. 246, pp. 20-33.

[Lib11] Liberzon, D., 2011. Calculus of Variations and Optimal Control Theory: A
Concise Introduction, Princeton Univ. Press.

[KKK95] Krstic, M., Kanellakopoulos, I., Kokotovic, P., 1995. Nonlinear and Adaptive
Control Design, J. Wiley, N. Y.

[MCT10] Mishra, N., Choudhary, A. K., Tiwari, M. K., and Shankar, R., 2010. “Rollout
Strategy-Based Probabilistic Causal Model Approach for the Multiple Fault Diagnosis,”
Robotics and Computer-Integrated Manufacturing, Vol. 26, pp. 325-332.

[MLM20] Montenegro, M., Lopez, R., Menchaca-Mendez, R., Becerra, E., and Menchaca-
Mendez, R., 2020. “A Parallel Rollout Algorithm for Wildfire Suppression,” in Proc.
Intern. Congress of Telematics and Computing, pp. 244-255.

References 161

[MMB02] McGovern, A., Moss, E., and Barto, A., 2002. “Building a Basic Building
Block Scheduler Using Reinforcement Learning and Rollouts,” Machine Learning, Vol.
49, pp. 141-160.

[MMS05] Menache, I., Mannor, S., and Shimkin, N., 2005. “Basis Function Adaptation
in Temporal Difference Reinforcement Learning,” Ann. Oper. Res., Vol. 134, pp. 215-
238.

[MPK99] Meuleau, N., Peshkin, L., Kim, K. E., and Kaelbling, L. P., 1999. “Learning
Finite-State Controllers for Partially Observable Environments,” in Proc. of the 15th
Conference on Uncertainty in Artificial Intelligence, pp. 427-436.

[MPP04] Meloni, C., Pacciarelli, D., and Pranzo, M., 2004. “A Rollout Metaheuristic for
Job Shop Scheduling Problems,” Annals of Operations Research, Vol. 131, pp. 215-235.

[MRR00] Mayne, D., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M., 2000. “Con-
strained Model Predictive Control: Stability and Optimality,” Automatica, Vol. 36, pp.
789-814.

[MVS19] Muthukumar, V., Vodrahalli, K., and Sahai, A., 2019. “Harmless Interpolation
of Noisy Data in Regression,” arXiv preprint arXiv:1903.09139.

[MYF03] Moriyama, H., Yamashita, N., and Fukushima, M., 2003. “The Incremental
Gauss-Newton Algorithm with Adaptive Stepsize Rule,” Computational Optimization
and Applications, Vol. 26, pp. 107-141.

[MaJ15] Mastin, A., and Jaillet, P., 2015. “Average-Case Performance of Rollout Algo-
rithms for Knapsack Problems,” J. of Optimization Theory and Applications, Vol. 165,
pp. 964-984.

[Mac02] Maciejowski, J. M., 2002. Predictive Control with Constraints, Addison-Wesley,
Reading, MA.

[Mar55] Marschak, J., 1975. “Elements for a Theory of Teams,” Management Science,
Vol. 1, pp. 127-137.

[Mar84] Martins, E. Q. V., 1984. “On a Multicriteria Shortest Path Problem,” European
J. of Operational Research, Vol. 16, pp. 236-245.

[May14] Mayne, D. Q., 2014. “Model Predictive Control: Recent Developments and
Future Promise,” Automatica, Vol. 50, pp. 2967-2986.

[MeB99] Meuleau, N., and Bourgine, P., 1999. “Exploration of Multi-State Environ-
ments: Local Measures and Back-Propagation of Uncertainty,” Machine Learning, Vol.
35, pp. 117-154.

[MeK20] Meshram, R.. and Kaza, K., 2020. “Simulation Based Algorithms for Markov
Decision Processes and Multi-Action Restless Bandits,” arXiv preprint arXiv:2007.12933.

[Mey07] Meyn, S., 2007. Control Techniques for Complex Networks, Cambridge Univ.
Press, N. Y.

[Min22] Minorsky, N., 1922. “Directional Stability of Automatically Steered Bodies,” J.
Amer. Soc. Naval Eng.,Vol. 34, pp. 280-309.

[MoL99] Morari, M., and Lee, J. H., 1999. “Model Predictive Control: Past, Present,
and Future,” Computers and Chemical Engineering, Vol. 23, pp. 667-682.

[Mon17] Montgomery, D. C., 2017. Design and Analysis of Experiments, J. Wiley.

[Mun14] Munos, R., 2014. “From Bandits to Monte-Carlo Tree Search: The Optimistic
Principle Applied to Optimization and Planning,” Foundations and Trends in Machine
Learning, Vol. 7, pp. 1-129.

162 References

[NHR99] Ng, A. Y., Harada, D., and Russell, S. J., 1999. “Policy Invariance Under
Reward Transformations: Theory and Application to Reward Shaping,” in Proc. of the
16th International Conference on Machine Learning, pp. 278-287.

[NMT13] Nayyar, A., Mahajan, A. and Teneketzis, D., 2013. “Decentralized Stochas-
tic Control with Partial History Sharing: A Common Information Approach,” IEEE
Transactions on Automatic Control, Vol. 58, pp. 1644-1658.

[NSE19] Nozhati, S., Sarkale, Y., Ellingwood, B., Chong, E. K., and Mahmoud, H.,
2019. “Near-Optimal Planning Using Approximate Dynamic Programming to Enhance
Post-Hazard Community Resilience Management,” Reliability Engineering and System
Safety, Vol. 181, pp. 116-126.

[NaA12] Narendra, K. S., and Annaswamy, A. M., 2012. Stable Adaptive Systems,
Courier Corporation.

[NaT19] Nayyar, A., and Teneketzis, D., 2019. “Common Knowledge and Sequential
Team Problems,” IEEE Trans. on Automatic Control, Vol. 64, pp. 5108-5115.

[Ned11] Nedić, A., 2011. “Random Algorithms for Convex Minimization Problems,”
Math. Programming, Ser. B, Vol. 129, pp. 225-253.

[OrS02] Ormoneit, D., and Sen, S., 2002. “Kernel-Based Reinforcement Learning,” Ma-
chine Learning, Vol. 49, pp. 161-178.

[PDB92] Pattipati, K. R., Deb, S., Bar-Shalom, Y., and Washburn, R. B., 1992. “A New
Relaxation Algorithm and Passive Sensor Data Association,” IEEE Trans. Automatic
Control, Vol. 37, pp. 198-213.

[PDC14] Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G., and Ljung, L., 2014.
“Kernel Methods in System Identification, Machine Learning and Function Estimation:
A Survey,” Automatica, Vol. 50, pp. 657-682.

[PPB01] Popp, R. L., Pattipati, K. R., and Bar-Shalom, Y., 2001. “m-Best SD As-
signment Algorithm with Application to Multitarget Tracking,” IEEE Transactions on
Aerospace and Electronic Systems, Vol. 37, pp. 22-39.

[PaB99] Patek, S. D., and Bertsekas, D. P., 1999. “Stochastic Shortest Path Games,”
SIAM J. on Control and Optimization, Vol. 37, pp. 804-824.

[PaR12] Papahristou, N., and Refanidis, I., 2012. “On the Design and Training of Bots to
Play Backgammon Variants,” in IFIP International Conference on Artificial Intelligence
Applications and Innovations, pp. 78-87.

[PaT00] Paschalidis, I. C., and Tsitsiklis, J. N., 2000. “Congestion-Dependent Pricing
of Network Services,” IEEE/ACM Trans. on Networking, Vol. 8, pp. 171-184.

[PeG04] Peret, L., and Garcia, F., 2004. “On-Line Search for Solving Markov Decision
Processes via Heuristic Sampling,” in Proc. of the 16th European Conference on Artificial
Intelligence, pp. 530-534.

[PoA69] Pollatschek, M. A. and Avi-Itzhak, B., 1969. “Algorithms for Stochastic Games
with Geometrical Interpretation,” Management Science, Vol. 15, pp. 399-415.

[PoB04] Poupart, P., and Boutilier, C., 2004. “Bounded Finite State Controllers,” in
Advances in Neural Information Processing Systems, pp. 823-830.

[PoF08] Powell, W. B. and Frazier, P., 2008. “Optimal Learning,” in State-of-the-Art
Decision-Making Tools in the Information-Intensive Age, INFORMS, pp. 213-246.

[PoR97] Poore, A. B., and Robertson, A. J. A., 1997. “New Lagrangian Relaxation
Based Algorithm for a Class of Multidimensional Assignment Problems,” Computational

References 163

Optimization and Applications, Vol. 8, pp. 129-150.

[PoR12] Powell, W. B., and Ryzhov, I. O., 2012. Optimal Learning, J. Wiley, N. Y.

[Poo94] Poore, A. B., 1994. “Multidimensional Assignment Formulation of Data As-
sociation Problems Arising from Multitarget Tracking and Multisensor Data Fusion,”
Computational Optimization and Applications, Vol. 3, pp. 27-57.

[Pow11] Powell, W. B., 2011. Approximate Dynamic Programming: Solving the Curses
of Dimensionality, 2nd Edition, J. Wiley and Sons, Hoboken, N. J.

[Pre95] Prekopa, A., 1995. Stochastic Programming, Kluwer, Boston.

[PuB78] Puterman, M. L., and Brumelle, S. L., 1978. “The Analytic Theory of Pol-
icy Iteration,” in Dynamic Programming and Its Applications, M. L. Puterman (ed.),
Academic Press, N. Y.

[PuB79] Puterman, M. L., and Brumelle, S. L., 1979. “On the Convergence of Policy
Iteration in Stationary Dynamic Programming,” Mathematics of Operations Research,
Vol. 4, pp. 60-69.

[PuS78] Puterman, M. L., and Shin, M. C., 1978. “Modified Policy Iteration Algorithms
for Discounted Markov Decision Problems,” Management Sci., Vol. 24, pp. 1127-1137.

[PuS82] Puterman, M. L., and Shin, M. C., 1982. “Action Elimination Procedures for
Modified Policy Iteration Algorithms,” Operations Research, Vol. 30, pp. 301-318.

[Put94] Puterman, M. L., 1994. Markovian Decision Problems, J. Wiley, N. Y.

[QHS05] Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., and
Tucker, P. K., 2005. “Surrogate-Based Analysis and Optimization,” Progress in Aerospace
Sciences, Vol. 41, pp. 1-28.

[QuL19] Qu, G., and Li, N., “Exploiting Fast Decaying and Locality in Multi-Agent
MDP with Tree Dependence Structure,” Proc. of 2019 CDC, Nice, France.

[RCR17] Rudi, A., Carratino, L., and Rosasco, L., 2017. “Falkon: An Optimal Large
Scale Kernel Method,” in Advances in Neural Information Processing Systems, pp. 3888-
3898.

[RGG21] Rimélé, A., Grangier, P., Gamache, M., Gendreau, M., and Rousseau, L. M.,
2021. “E-Commerce Warehousing: Learning a Storage Policy, arXiv:2101.08828.

[RMD17] Rawlings, J. B., Mayne, D. Q., and Diehl, M. M., 2017. Model Predictive
Control: Theory, Computation, and Design, 2nd Ed., Nob Hill Publishing.

[RPF12] Ryzhov, I. O., Powell, W. B., and Frazier, P. I., 2012. “The Knowledge Gradient
Algorithm for a General Class of Online Learning Problems,” Operations Research, Vol.
60, pp. 180-195.

[RSM08] Reisinger, J., Stone, P., and Miikkulainen, R., 2008. “Online Kernel Selection
for Bayesian Reinforcement Learning,” in Proc. of the 25th International Conference on
Machine Learning, pp. 816-823.

[RST20] Rusmevichientong, P., Sumida, M., Topaloglu, H., and Bai, Y., 2020. “Revenue
Management for Boutique Hotels: Resources with Unit Capacities and Itineraries over
Intervals of Resources,” Cornell Univ. Report.

[RaF91] Raghavan, T. E. S., and Filar, J. A., 1991. “Algorithms for Stochastic Games
- A Survey,” Zeitschrift fur Operations Research, Vol. 35, pp. 437-472.

[RaR17] Rawlings, J. B., and Risbeck, M. J., 2017. “Model Predictive Control with
Discrete Actuators: Theory and Application,” Automatica, Vol. 78, pp. 258-265.

164 References

[RaW06] Rasmussen, C. E., and Williams, C. K., 2006. Gaussian Processes for Machine
Learning, MIT Press, Cambridge, MA.

[Rad62] Radner, R., 1962. “Team Decision Problems,” Ann. Math. Statist., Vol. 33, pp.
857-881.

[RoB17] Rosolia, U., and Borrelli, F., 2017. “Learning Model Predictive Control for It-
erative Tasks. A Data-Driven Control Framework,” IEEE Trans. on Automatic Control,
Vol. 63, pp. 1883-1896.

[RoB19] Rosolia, U., and Borrelli, F., 2019. “Sample-Based Learning Model Predictive
Control for Linear Uncertain Systems,” 58th Conference on Decision and Control (CDC),
pp. 2702-2707.

[Rob52] Robbins, H., 1952. “Some Aspects of the Sequential Design of Experiments,”
Bulletin of the American Mathematical Society, Vol. 58, pp. 527-535.

[Ros70] Ross, S. M., 1970. Applied Probability Models with Optimization Applications,
Holden-Day, San Francisco, CA.

[Ros12] Ross, S. M., 2012. Simulation, 5th Edition, Academic Press, Orlando, Fla.

[Rot79] Rothblum, U. G., 1979. “Iterated Successive Approximation for Sequential De-
cision Processes,” in Stochastic Control and Optimization, by J. W. B. van Overhagen
and H. C. Tijms (eds), Vrije University, Amsterdam.

[RuK16] Rubinstein, R. Y., and Kroese, D. P., 2016. Simulation and the Monte Carlo
Method, 3rd Edition, J. Wiley, N. Y.

[RuN16] Russell, S. J., and Norvig, P., 2016. Artificial Intelligence: A Modern Approach,
Pearson Education Limited, Malaysia.

[RuS03] Ruszczynski, A., and Shapiro, A., 2003. “Stochastic Programming Models,” in
Handbooks in Operations Research and Management Science, Vol. 10, pp. 1-64.

[SGC02] Savagaonkar, U., Givan, R., and Chong, E. K. P., 2002. “Sampling Techniques
for Zero-Sum, Discounted Markov Games,” in Proc. 40th Allerton Conference on Com-
munication, Control and Computing, Monticello, Ill.

[SGG15] Scherrer, B., Ghavamzadeh, M., Gabillon, V., Lesner, B., and Geist, M., 2015.
“Approximate Modified Policy Iteration and its Application to the Game of Tetris,” J.
of Machine Learning Research, Vol. 16, pp. 1629-1676.

[SHB15] Simroth, A., Holfeld, D., and Brunsch, R., 2015. “Job Shop Production Plan-
ning under Uncertainty: A Monte Carlo Rollout Approach,” Proc. of the International
Scientific and Practical Conference, Vol. 3, pp. 175-179.

[SHM16] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., and Dieleman,
S., 2016. “Mastering the Game of Go with Deep Neural Networks and Tree Search,”
Nature, Vol. 529, pp. 484-489.

[SHS17] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,
Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., and Lillicrap, T., 2017. “Mastering
Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm,” arXiv
preprint arXiv:1712.01815.

[SJL18] Soltanolkotabi, M., Javanmard, A., and Lee, J. D., 2018. “Theoretical Insights
into the Optimization Landscape of Over-Parameterized Shallow Neural Networks,”
IEEE Trans. on Information Theory, Vol. 65, pp. 742-769.

[SLA12] Snoek, J., Larochelle, H., and Adams, R. P., 2012. “Practical Bayesian Opti-

References 165

mization of Machine Learning Algorithms,” in Advances in Neural Information Process-
ing Systems, pp. 2951-2959.

[SLJ13] Sun, B., Luh, P. B., Jia, Q. S., Jiang, Z., Wang, F., and Song, C., 2013. “Build-
ing Energy Management: Integrated Control of Active and Passive Heating, Cooling,
Lighting, Shading, and Ventilation Systems,” IEEE Trans. on Automation Science and
Engineering, Vol. 10, pp. 588-602.

[SNC18] Sarkale, Y., Nozhati, S., Chong, E. K., Ellingwood, B. R., and Mahmoud, H.,
2018. “Solving Markov Decision Processes for Network-Level Post-Hazard Recovery via
Simulation Optimization and Rollout,” in 2018 IEEE 14th International Conference on
Automation Science and Engineering, pp. 906-912.

[SSS17] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A. and Chen, Y., 2017. “Mastering the Game of
Go Without Human Knowledge,” Nature, Vol. 550, pp. 354-359.

[SSW16] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N., 2015.
“Taking the Human Out of the Loop: A Review of Bayesian Optimization,” Proc. of
IEEE, Vol. 104, pp. 148-175.

[SWM89] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., 1989. “Design and
Analysis of Computer Experiments,” Statistical Science, pp. 409-423.

[SYL17] Saldi, N., Yuksel, S., and Linder, T., 2017. “Finite Model Approximations for

Partially Observed Markov Decision Processes with Discounted Cost,” arXiv preprint
arXiv:1710.07009.

[SZL08] Sun, T., Zhao, Q., Lun, P., and Tomastik, R., 2008. “Optimization of Joint
Replacement Policies for Multipart Systems by a Rollout Framework,” IEEE Trans. on
Automation Science and Engineering, Vol. 5, pp. 609-619.

[SaB11] Sastry, S., and Bodson, M., 2011. Adaptive Control: Stability, Convergence and
Robustness, Courier Corporation.

[Sal21] Saldi, N., 2021. “Regularized Stochastic Team Problems,” Systems and Control
Letters, Vol. 149.

[Sas02] Sasena, M. J., 2002. Flexibility and Efficiency Enhancements for Constrained
Global Design Optimization with Kriging Approximations, PhD Thesis, Univ. of Michi-
gan.

[ScS02] Scholkopf, B., and Smola, A. J., 2002. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge, MA.

[Sch13] Scherrer, B., 2013. “Performance Bounds for Lambda Policy Iteration and Appli-
cation to the Game of Tetris,” J. of Machine Learning Research, Vol. 14, pp. 1181-1227.

[Sco10] Scott, S. L., 2010. “A Modern Bayesian Look at the Multi-Armed Bandit,”
Applied Stochastic Models in Business and Industry, Vol. 26, pp. 639-658.

[Sec00] Secomandi, N., 2000. “Comparing Neuro-Dynamic Programming Algorithms for
the Vehicle Routing Problem with Stochastic Demands,” Computers and Operations
Research, Vol. 27, pp. 1201-1225.

[Sec01] Secomandi, N., 2001. “A Rollout Policy for the Vehicle Routing Problem with
Stochastic Demands,” Operations Research, Vol. 49, pp. 796-802.

[Sec03] Secomandi, N., 2003. “Analysis of a Rollout Approach to Sequencing Problems
with Stochastic Routing Applications,” J. of Heuristics, Vol. 9, pp. 321-352.

166 References

[ShC04] Shawe-Taylor, J., and Cristianini, N., 2004. Kernel Methods for Pattern Anal-
ysis, Cambridge Univ. Press.

[Sha50] Shannon, C., 1950. “Programming a Digital Computer for Playing Chess,” Phil.
Mag., Vol. 41, pp. 356-375.

[Sha53] Shapley, L. S., 1953. “Stochastic Games,” Proc. of the National Academy of
Sciences, Vol. 39, pp. 1095-1100.

[SiK19] Singh, R., and Kumar, P. R., 2019. “Optimal Decentralized Dynamic Policies
for Video Streaming over Wireless Channels,” arXiv preprint arXiv:1902.07418.

[SlL91] Slotine, J.-J. E., and Li, W., Applied Nonlinear Control, Prentice-Hall, Engle-
wood Cliffs, N. J.

[StW91] Stewart, B. S., and White, C. C., 1991. “Multiobjective A∗,” J. ACM, Vol. 38,
pp. 775-814.

[SuB18] Sutton, R., and Barto, A. G., 2018. Reinforcement Learning, 2nd Edition, MIT
Press, Cambridge, MA.

[SuY19] Su, L., and Yang, P., 2019. ‘On Learning Over-Parameterized Neural Networks:
A Functional Approximation Perspective,” in Advances in Neural Information Process-
ing Systems, pp. 2637-2646.

[Sun19] Sun, R., 2019. “Optimization for Deep Learning: Theory and Algorithms,”

arXiv preprint arXiv:1912.08957.

[Sze10] Szepesvari, C., 2010. Algorithms for Reinforcement Learning, Morgan and Clay-
pool Publishers, San Franscisco, CA.

[TBP21] Tuncel, Y., Bhat, G., Park, J., and Ogras, U., 2021. “ECO: Enabling Energy-
Neutral IoT Devices through Runtime Allocation of Harvested Energy,” arXiv preprint
arXiv:2102.13605.

[TCW19] Tseng, W. J., Chen, J. C., Wu, I. C., and Wei, T. H., 2019. “Comparison
Training for Computer Chinese Chess,” IEEE Trans. on Games, Vol. 12, pp. 169-176.

[TGL13] Tesauro, G., Gondek, D. C., Lenchner, J., Fan, J., and Prager, J. M., 2013.
“Analysis of Watson’s Strategies for Playing Jeopardy!,” J. of Artificial Intelligence
Research, Vol. 47, pp. 205-251.

[TRV16] Tu, S., Roelofs, R., Venkataraman, S., and Recht, B., 2016. “Large Scale Kernel
Learning Using Block Coordinate Descent,” arXiv preprint arXiv:1602.05310.

[TaL20] Tanzanakis, A., and Lygeros, J., 2020. “Data-Driven Control of Unknown Sys-
tems: A Linear Programming Approach,” arXiv preprint arXiv:2003.00779.

[TeG96] Tesauro, G., and Galperin, G. R., 1996. “On-Line Policy Improvement Using
Monte Carlo Search,” NIPS, Denver, CO.

[Tes89a] Tesauro, G. J., 1989. “Neurogammon Wins Computer Olympiad,” Neural Com-
putation, Vol. 1, pp. 321-323.

[Tes89b] Tesauro, G. J., 1989. “Connectionist Learning of Expert Preferences by Com-
parison Training,” in Advances in Neural Information Processing Systems, pp. 99-106.

[Tes92] Tesauro, G. J., 1992. “Practical Issues in Temporal Difference Learning,” Ma-
chine Learning, Vol. 8, pp. 257-277.

[Tes94] Tesauro, G. J., 1994. “TD-Gammon, a Self-Teaching Backgammon Program,
Achieves Master-Level Play,” Neural Computation, Vol. 6, pp. 215-219.

References 167

[Tes95] Tesauro, G. J., 1995. “Temporal Difference Learning and TD-Gammon,” Com-
munications of the ACM, Vol. 38, pp. 58-68.

[Tes01] Tesauro, G. J., 2001. “Comparison Training of Chess Evaluation Functions,” in
Machines that Learn to Play Games, Nova Science Publishers, pp. 117-130.

[Tes02] Tesauro, G. J., 2002. “Programming Backgammon Using Self-Teaching Neural
Nets,” Artificial Intelligence, Vol. 134, pp. 181-199.

[ThS09] Thiery, C., and Scherrer, B., 2009. “Improvements on Learning Tetris with
Cross-Entropy,” International Computer Games Association J., Vol. 32, pp. 23-33.

[TsV96] Tsitsiklis, J. N., and Van Roy, B., 1996. “Feature-Based Methods for Large-Scale
Dynamic Programming,” Machine Learning, Vol. 22, pp. 59-94.

[Tse98] Tseng, P., 1998. “Incremental Gradient(-Projection) Method with Momentum
Term and Adaptive Stepsize Rule,” SIAM J. on Optimization, Vol. 8, pp. 506-531.

[TuP03] Tu, F., and Pattipati, K. R., 2003. “Rollout Strategies for Sequential Fault
Diagnosis,” IEEE Trans. on Systems, Man and Cybernetics, Part A, pp. 86-99.

[UGM18] Ulmer, M.W., Goodson, J. C., Mattfeld, D. C., and Hennig, M., 2018. “Offline-
Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochas-
tic Requests,” Transportation Science, Vol. 53, pp. 185-202.

[Ulm17] Ulmer, M. W., 2017. Approximate Dynamic Programming for Dynamic Vehicle

Routing, Springer, Berlin.

[VBC19] Vinyals, O., Babuschkin, I., Czarnecki, W. M., and thirty nine more authors,
2019. “Grandmaster Level in StarCraft II Using Multi-Agent Reinforcement Learning,”
Nature, Vol. 575, p. 350.

[VPA09] Vrabie, D., Pastravanu, O., Abu-Khalaf, M., and Lewis, F. L., 2009. “Adap-
tive Optimal Control for Continuous-Time Linear Systems Based on Policy Iteration,”
Automatica, Vol. 45, pp. 477-484.

[VVL13] Vrabie, D., Vamvoudakis, K. G., and Lewis, F. L., 2013. Optimal Adaptive
Control and Differential Games by Reinforcement Learning Principles, The Institution
of Engineering and Technology, London.

[Van76] Van Nunen, J. A., 1976. Contracting Markov Decision Processes, Mathematical
Centre Report, Amsterdam.

[WCG02] Wu, G., Chong, E. K. P., and Givan, R. L., 2002. “Burst-Level Congestion
Control Using Hindsight Optimization,” IEEE Transactions on Aut. Control, Vol. 47,
pp. 979-991.

[WCG03] Wu, G., Chong, E. K. P., and Givan, R. L., 2003. “Congestion Control Using
Policy Rollout,” Proc. 2nd IEEE CDC, Maui, Hawaii, pp. 4825-4830.

[WOB15] Wang, Y., O’Donoghue, B., and Boyd, S., 2015. “Approximate Dynamic Pro-
gramming via Iterated Bellman Inequalities,” International J. of Robust and Nonlinear

Control, Vol. 25, pp. 1472-1496.

[WaB14] Wang, M., and Bertsekas, D. P., 2014. “Incremental Constraint Projection
Methods for Variational Inequalities,” Mathematical Programming, pp. 1-43.

[WaB16] Wang, M., and Bertsekas, D. P., 2016. “Stochastic First-Order Methods with
Random Constraint Projection,” SIAM Journal on Optimization, Vol. 26, pp. 681-717.

[WaS00] de Waal, P. R., and van Schuppen, J. H., 2000. “A Class of Team Problems
with Discrete Action Spaces: Optimality Conditions Based on Multimodularity,” SIAM
J. on Control and Optimization, Vol. 38, pp. 875-892.

168 References

[Wat89] Watkins, C. J. C. H., Learning from Delayed Rewards, Ph.D. Thesis, Cambridge
Univ., England.

[WeB99] Weaver, L., and Baxter, J., 1999. “Learning from State Differences: STD(λ),”
Tech. Report, Dept. of Computer Science, Australian National University.

[WhS94] White, C. C., and Scherer, W. T., 1994. “Finite-Memory Suboptimal Design
for Partially Observed Markov Decision Processes,” Operations Research, Vol. 42, pp.
439-455.

[Whi88] Whittle, P., 1988. “Restless Bandits: Activity Allocation in a Changing World,”
J. of Applied Probability, pp. 287-298.

[Whi91] White, C. C., 1991. “A Survey of Solution Techniques for the Partially Observed
Markov Decision Process,” Annals of Operations Research, Vol. 32, pp. 215-230.

[WiB93] Williams, R. J., and Baird, L. C., 1993. “Analysis of Some Incremental Variants
of Policy Iteration: First Steps Toward Understanding Actor-Critic Learning Systems,”
Report NU-CCS-93-11, College of Computer Science, Northeastern University, Boston,
MA.

[Wie03] Wiewiora, E., 2003. “Potential-Based Shaping and Q-Value Initialization are
Equivalent,” J. of Artificial Intelligence Research, Vol. 19, pp. 205-208.

[Wit66] Witsenhausen, H. S., 1966. Minimax Control of Uncertain Systems, Ph.D. thesis,
MIT.

[Wit68] Witsenhausen, H., 1968. “A Counterexample in Stochastic Optimum Control,”
SIAM Journal on Control, Vol. 6, pp. 131-147.

[Wit71a] Witsenhausen, H. S., 1971. “On Information Structures, Feedback and Causal-
ity,” SIAM J. Control, Vol. 9, pp. 149-160.

[Wit71b] Witsenhausen, H., 1971. “Separation of Estimation and Control for Discrete
Time Systems,” Proceedings of the IEEE, Vol. 59, pp. 1557-1566.

[YDR04] Yan, X., Diaconis, P., Rusmevichientong, P., and Van Roy, B., 2004. “Solitaire:
Man Versus Machine,” Advances in Neural Information Processing Systems, Vol. 17, pp.
1553-1560.

[YYM20] Yu, L., Yang, H., Miao, L., and Zhang, C., 2019. “Rollout Algorithms for
Resource Allocation in Humanitarian Logistics,” IISE Transactions, Vol. 51, pp. 887-
909.

[Yar17] Yarotsky, D., 2017. “Error Bounds for Approximations with Deep ReLU Net-
works,” Neural Networks, Vol. 94, pp. 103-114.

[YuB08] Yu, H., and Bertsekas, D. P., 2008. “On Near-Optimality of the Set of Finite-
State Controllers for Average Cost POMDP,” Math. of OR, Vol. 33, pp. 1-11.

[YuB09] Yu, H., and Bertsekas, D. P., 2009. “Basis Function Adaptation Methods for
Cost Approximation in MDP,” Proceedings of 2009 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL 2009), Nashville, Tenn.

[YuB13] Yu, H., and Bertsekas, D. P., 2013. “Q-Learning and Policy Iteration Algorithms
for Stochastic Shortest Path Problems,” Annals of Operations Research, Vol. 208, pp.
95-132.

[YuB15] Yu, H., and Bertsekas, D. P., 2015. “A Mixed Value and Policy Iteration Method
for Stochastic Control with Universally Measurable Policies,” Math. of OR, Vol. 40, pp.
926-968.

References 169

[YuK20] Yue, X., and Kontar, R. A., 2020. “Lookahead Bayesian Optimization via
Rollout: Guarantees and Sequential Rolling Horizons,” arXiv preprint arXiv:1911.01004.

[Yu14] Yu, H., 2014. “Stochastic Shortest Path Games and Q-Learning,” arXiv preprint
arXiv:1412.8570.

[Yua19] Yuanhong, L. I. U., 2019. “Optimal Selection of Tests for Fault Detection and
Isolation in Multi-Operating Mode System,” Journal of Systems Engineering and Elec-
tronics, Vol. 30, pp. 425-434.

[ZBH16] Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O., 2016. “Un-
derstanding Deep Learning Requires Rethinking Generalization,” arXiv preprint arXiv:
1611.03530.

[ZBH21] Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O., 2021. “Under-
standing Deep Learning (Still) Requires Rethinking Generalization,” Communications
of the ACM, VOL. 64, pp. 107-115.

[ZOT18] Zhang, S., Ohlmann, J. W., and Thomas, B. W., 2018. “Dynamic Orienteering
on a Network of Queues,” Transportation Science, Vol. 52, pp. 691-706.

[ZSG20] Zoppoli, R., Sanguineti, M., Gnecco, G., and Parisini, T., 2020. Neural Ap-
proximations for Optimal Control and Decision, Springer.

[ZuS81] Zuker, M., and Stiegler, P., 1981. “Optimal Computer Folding of Larger RNA
Sequences Using Thermodynamics and Auxiliary Information,” Nucleic Acids Res., Vol.
9, pp. 133-148.

