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Regular Policies in Abstract Dynamic Programming

Dimitri P. Bertsekas†

Abstract

We consider challenging dynamic programming models where the associated Bellman equation, and

the value and policy iteration algorithms commonly exhibit complex and even pathological behavior. Our

analysis is based on the new notion of regular policies. These are policies that are well-behaved with respect

to value and policy iteration, and are patterned after proper policies, which are central in the theory of

stochastic shortest path problems. We show that the optimal cost function over regular policies may have

favorable value and policy iteration properties, which the optimal cost function over all policies need not

have. We accordingly develop a unifying methodology to address long standing analytical and algorithmic

issues in broad classes of undiscounted models, including stochastic and minimax shortest path problems,

as well as positive cost, negative cost, risk-sensitive, and multiplicative cost problems.

1. INTRODUCTION

The purpose of this paper is to address complicating issues that relate to the solutions of Bellman’s equation,

and the convergence of the value and policy iteration algorithms in total cost infinite horizon dynamic

programming (DP for short). We do this in the context of abstract DP, which aims to unify the analysis of

DP models and to highlight their fundamental structures.

To describe broadly our analysis, let us note two types of models. The first is the contractive models ,

introduced in [Den67], which involve an abstract DP mapping that is a contraction over the space of bounded

functions over the state space. These models apply primarily in discounted infinite horizon problems of

various types, with bounded cost per stage. The second is the noncontractive models , developed in [Ber75]

and [Ber77] (see also [BeS78], Ch. 5), for which the abstract DP mapping is not a contraction of any kind

but is instead monotone. Among others, these models include shortest path problems of various types,

as well as the classical nonpositive and nonnegative cost DP problems, introduced in [Bla65] and [Str66],

respectively. It is well known that contractive models are analytically and computationally well-behaved,

while noncontractive models exhibit significant pathologies, which interfere with their effective solution.

In this paper we focus on semicontractive models that were introduced in the recent monograph [Ber13].

These models are characterized by an abstract DP mapping, which for some policies has a contraction-like

property, while for others it does not. A central notion in this regard is S-regularity of a stationary policy,

where S is a set of cost functions. This property, defined formally in Section 5, is related to classical notions

of asymptotic stability, and it roughly means that value iteration using that policy converges to the same

limit, the cost function of the policy, for every starting function in the set S.
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mation and Decision Systems, M.I.T., Cambridge, Mass., 02139. Many helpful discussions with Huizhen (Janey) Yu

on the subject of this paper are gratefully acknowledged.
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A prominent case where regularity concepts are central is finite-state problems of finding an optimal

stochastic shortest path (SSP for short). These are Markovian decision problems involving a termination

state, where one aims to drive the state of a Markov chain to a termination state at minimum expected

cost. They have been discussed in many sources, including the books [Pal67], [Der70], [Whi82], [Ber87],

[BeT89], [BeT91], [Put94], [HeL99], and [Ber12], where they are sometimes referred to by earlier names such

as “first passage problems” and “transient programming problems.” Here some stationary policies called

proper are guaranteed to terminate starting from every initial state, while others called improper are not.

The proper policies involve a (weighted sup-norm) contraction mapping and are S-regular (with S being the

set of real-valued functions over the state space), while the improper ones are not.

The notion of S-regularity of a stationary policy is patterned after the notion of a proper policy, but

applies more generally in abstract DP. It was used extensively in [Ber13], and in the subsequent papers

[Ber15a] and [Ber16] as a unifying analytical vehicle for a variety of total cost stochastic and minimax

problems. A key idea is that the optimal cost function over S-regular policies only, call it J*
S , is the one

produced by the standard algorithms, starting from functions J ∈ S with J ≥ J*
S . These are the value and

policy iteration algorithms (abbreviated as VI and PI, respectively), as well as algorithms based on linear

programming and related methods. By contrast, the optimal cost function over all policies J* may not be

obtainable by these algorithms, and indeed J* may not be a solution of Bellman’s equation; this can happen

in particular in SSP problems with zero length cycles (see an example due to [BeY16], which also applies to

multiplicative cost problems [Ber16]).

One purpose of this paper is to extend the notion of S-regularity to nonstationary policies, and to

demonstrate the use of this extension for establishing convergence of VI and PI. We show that for important

special cases of optimal control problems, our approach yields substantial improvements over the current

state of the art, and highlights the fundamental convergence mechanism of VI and PI in semicontractive

models. A second purpose of the paper is to use the insights of the nonstationary policies extension to

refine the stationary regular policies analysis of [Ber13], based on PI-related properties of the set S. The

paper focuses on issues of existence and uniqueness of solution of Bellman’s equation, and the convergence

properties of the VI and PI algorithms, well beyond the analysis of [Ber13]. A more extensive treatment

of the subject of the paper (over 100 pages), which includes elaborations of the analysis, examples, and

applications, is given in unpublished internet-posted updated versions of Chapters 3 and 4 of [Ber13], which

may be found in the author’s web site (http://web.mit.edu/dimitrib/www/abstractdp MIT.html).

The paper is organized as follows. After formulating our abstract DP model in Section 2, we develop

the main ideas of the regularity approach for nonstationary policies in Section 3. In Section 4 we illustrate

our results by applying them to nonnegative cost stochastic optimal control problems, and we discuss the

convergence of VI, following the analysis of the paper [YuB15]. In Sections 5-7, we specialize the notion of S-

regularity to stationary policies, and we refine and streamline the analysis given in the monograph [Ber13],

Chapter 3. As an example, we establish the convergence of VI and PI under new and easily verifiable

conditions in undiscounted deterministic optimal control problems with a terminal set of states. Other

applications of the theory of Sections 5 and 6 are given in [Ber15a] for robust (i.e., minimax) shortest path

planning problems, and in [Ber16] for the class of affine monotonic models, which includes multiplicative

and risk sensitive/exponential cost models.

2. ABSTRACT DYNAMIC PROGRAMMING MODEL

We review the abstract DP model that will be used throughout this paper (see Section 3.1 of [Ber13]). Let

2



X and U be two sets, which we refer to as a set of “states” and a set of “controls,” respectively. For each

x ∈ X , let U(x) ⊂ U be a nonempty subset of controls that are feasible at state x. We denote by M the set

of all functions µ : X 7→ U with µ(x) ∈ U(x), for all x ∈ X .

We consider policies, which are sequences π = {µ0, µ1, . . .}, with µk ∈ M for all k. We denote by Π

the set of all policies. We refer to a sequence {µ, µ, . . .}, with µ ∈ M, as a stationary policy. With slight

abuse of terminology, we will also refer to any µ ∈ M as a “policy” and use it in place of {µ, µ, . . .}, when

confusion cannot arise.

We denote by ℜ the set of real numbers, by R(X) the set of real-valued functions J : X 7→ ℜ, and

by E(X) the subset of extended real-valued functions J : X 7→ ℜ ∪ {−∞,∞}. We denote by E+(X) the

set of all nonnegative extended real-valued functions of x ∈ X . Throughout the paper, when we write lim,

lim sup, or lim inf of a sequence of functions we mean it to be pointwise. We also write Jk → J to mean that

Jk(x) → J(x) for each x ∈ X , and we write Jk ↓ J if {Jk} is monotonically nonincreasing and Jk → J .

We introduce a mapping H : X × U × E(X) 7→ ℜ ∪ {−∞,∞}, satisfying the following condition.

Assumption 2.1: (Monotonicity) If J, J ′ ∈ E(X) and J ≤ J ′, then

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x).

We define the mapping T that maps a function J ∈ E(X) to the function TJ ∈ E(X), given by

(TJ)(x) = inf
u∈U(x)

H(x, u, J), ∀ x ∈ X, J ∈ E(X).

Also for each µ ∈ M, we define the mapping Tµ : E(X) 7→ E(X) by

(TµJ)(x) = H
(
x, µ(x), J

)
, ∀ x ∈ X, J ∈ E(X).

The monotonicity assumption implies the following properties for all J, J ′ ∈ E(X), and k = 0, 1, . . .,

J ≤ J ′ ⇒ T kJ ≤ T kJ ′, T k
µJ ≤ T k

µJ ′, ∀ µ ∈ M,

J ≤ TJ ⇒ T kJ ≤ T k+1J, T k
µJ ≤ T k+1

µ J, ∀ µ ∈ M,

which will be used repeatedly in what follows. Here T k and T k
µ denote the composition of T and Tµ, respec-

tively, with itself k times. More generally, given µ0, . . . , µk ∈ M, we denote by Tµ0 · · ·Tµk
the composition

of Tµ0 , . . . , Tµk
, so for all J ∈ E(X),

(Tµ0 · · ·Tµk
J
)
(x) =

(
Tµ0

(
Tµ1 · · ·

(
Tµk−1

(Tµk
J)

)
· · ·

))
(x), ∀ x ∈ X.

We next consider cost functions associated with Tµ and T . We introduce a function J̄ ∈ E(X), and we

define the infinite horizon cost of a policy as the upper limit of its finite horizon costs with J̄ being the cost

function at the end of the horizon (limit cannot be used since it may not exist).
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Definition 2.1: Given a function J̄ ∈ E(X), for a policy π ∈ Π with π = {µ0, µ1, . . .}, we define the

cost function of π by

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J̄)(x), ∀ x ∈ X. (2.1)

The optimal cost function J* is defined by

J*(x) = inf
π∈Π

Jπ(x), ∀ x ∈ X.

A policy π∗ ∈ Π is said to be optimal if Jπ∗ = J*.

The model just described is broadly applicable, and includes as special cases nearly all the interesting

types of total cost infinite horizon DP problems, including stochastic and minimax, discounted and undis-

counted, semi-Markov, multiplicative, risk-sensitive, etc (see [Ber13]).† The following is a stochastic optimal

control problem, which we will use in this paper both to obtain new results and also as a vehicle to illustrate

our approach.

Example 2.1 (Stochastic Optimal Control - Markovian Decision Problems)

Consider an infinite horizon stochastic optimal control problem involving a stationary discrete-time dynamic

system where the state is an element of a space X, and the control is an element of a space U . The control uk

is constrained to take values in a given nonempty subset U(xk) of U , which depends on the current state xk

[uk ∈ U(xk), for all xk ∈ X]. For a policy π = {µ0, µ1, . . .}, the state evolves according to a system equation

xk+1 = f
(
xk, µk(xk), wk

)
, k = 0, 1, . . . , (2.2)

where wk is a random disturbance that takes values from a space W . We assume that wk, k = 0, 1, . . ., are

characterized by probability distributions P (· | xk, uk) that are identical for all k, where P (wk | xk, uk) is the

probability of occurrence of wk, when the current state and control are xk and uk, respectively. Thus the

probability of wk may depend explicitly on xk and uk, but not on values of prior disturbances wk−1, . . . , w0.

We allow infinite state and control spaces, as well as problems with discrete (finite or countable) state space

(in which case the underlying system is a Markov chain). However, for technical reasons that relate to measure

theoretic issues, we assume that W is a countable set. A recent analysis that has some common elements with

the present paper and addresses measure theoretic issues is given in [YuB15].

Given an initial state x0, we want to find a policy π = {µ0, µ1, . . .}, where µk : X 7→ U , µk(xk) ∈ U(xk),

for all xk ∈ X, k = 0, 1, . . ., that minimizes

Jπ(x0) = lim sup
k→∞

E

{
k∑

t=0

α
k
g
(
xt, µt(xt), wt

)
}

,

† However, our model cannot address those stochastic DP models where measurability issues are an important

mathematical concern. In the stochastic optimal control problem of Example 2.1, we bypass these issues by assuming

that the disturbance space is countable, which includes the deterministic system case, and the case where the system

is stochastic with a countable state space (e.g., a countable state Markovian decision problem). Then, the expected

value needed to express the finite horizon cost of a policy [cf. Eq. (2.1)] can be written as a summation over a

countable index set, and is well-defined for all policies, measurable or not.
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subject to the system equation constraint (2.2), where g is the one-stage cost function, and α ∈ (0, 1] is the

discount factor. This is a classical problem, which is discussed extensively in various sources, such as the

books [BeS78], [Whi82], [Put94], [Ber12]. Under very mild conditions guaranteeing that Fubini’s theorem can

be applied (see [BeS78], Section 2.3.2), it coincides with the abstract DP problem that corresponds to the

mapping

H(x, u, J) = E
{
g(x, u,w) + αJ

(
f(x, u, w)

)}
, (2.3)

and J̄(x) ≡ 0. Here, (Tµ0 · · ·Tµk
J̄)(x) is the expected cost of the first k + 1 periods using π starting from x,

and with terminal cost 0 (the value of J̄ at the terminal state).

3. REGULAR POLICIES, VALUE ITERATION, AND FIXED POINTS OF T

Generally, in an abstract DP model, one expects to establish that J* is a fixed point of T . This is known to

be true for most DP models under reasonable conditions, and in fact it may be viewed as an indication of

exceptional behavior when it does not hold. The fixed point equation J = TJ , in the context of standard

special cases, is the classical Bellman equation, the centerpiece of infinite horizon DP. For some abstract

DP models, J* is the unique fixed point of T within a convenient subset of E(X); for example, contractive

models where Tµ is a contraction mapping for all µ ∈ M, with respect to some norm and with a common

modulus of contraction. However, in general T may have multiple fixed points within E(X), including for

some popular DP problems, while in exceptional cases, J* may not be among the fixed points of T (see

[BeY16] for a relatively simple SSP example of this type).

A related question is the convergence of VI. This is the algorithm that generates T kJ , k = 0, 1, . . . ,

starting from a function J ∈ E(X). Generally, for abstract DP models where J* is a fixed point of T ,

VI converges to J* starting from within some subset of initial functions J , but not from every J ; this is

certainly true when T has multiple fixed points. One of the purposes of this paper is to characterize the

set of functions starting from which VI converges to J*, and the related issue of multiplicity of fixed points,

through notions of regularity that we now introduce.

Definition 3.1: For a nonempty set of functions S ⊂ E(X), we say that a set C of policy-state pairs

(π, x), with π ∈ Π and x ∈ X , is S-regular if

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J)(x), ∀ (π, x) ∈ C, J ∈ S.

In what follows, when referring to a set C that is S-regular, we implicitly assume that C and S are

nonempty. A set C of policy-state pairs (π, x) may be S-regular for many different sets S. The largest such

set is

SC =

{
J ∈ E(X)

∣∣∣ Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J)(x), ∀ (π, x) ∈ C

}
,

and for any nonempty S ⊂ SC , we have that C is S-regular. Moreover, the set SC is nonempty, since it

contains J̄ . For a given C, consider the function J*
C ∈ E(X), given by

J*
C(x) = inf

{π | (π,x)∈C}
Jπ(x), x ∈ X.
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Note that J*
C(x) ≥ J*(x) for all x ∈ X [for those x ∈ X for which the set of policies {π | (π, x) ∈ C} is

empty, we have J*
C(x) = ∞]. We will try to characterize the sets of fixed points of T and limit points of VI

in terms of the function J*
C for an S-regular set C. The following is a key proposition.

Proposition 3.1: Given a set S ⊂ E(X), let C be an S-regular set.

(a) For all J ∈ S, we have

lim inf
k→∞

T kJ ≤ lim sup
k→∞

T kJ ≤ J*
C .

(b) For all J ′ ∈ E(X) with J ′ ≤ TJ ′, and all J ∈ E(X) such that J ′ ≤ J ≤ J̃ for some J̃ ∈ S, we

have

J ′ ≤ lim inf
k→∞

T kJ ≤ lim sup
k→∞

T kJ ≤ J*
C .

Proof: (a) Using the generic relation TJ ≤ TµJ , µ ∈ M, and the monotonicity of T and Tµ, we have for

all k

(T kJ)(x) ≤ (Tµ0 · · ·Tµk−1
J)(x), ∀ (π, x) ∈ C, J ∈ S.

By letting k → ∞ and by using the definition of S-regularity, it follows that

lim inf
k→∞

(T kJ)(x) ≤ lim sup
k→∞

(T kJ)(x) ≤ lim sup
k→∞

(Tµ0 · · ·Tµk−1
J)(x) = Jπ(x), ∀ (π, x) ∈ C, J ∈ S,

and taking infimum of the right side over
{
π | (π, x) ∈ C

}
, we obtain the result.

(b) Using the hypotheses J ′ ≤ TJ ′, and J ′ ≤ J ≤ J̃ for some J̃ ∈ S, and the monotonicity of T , we have

J ′(x) ≤ (TJ ′)(x) ≤ · · · ≤ (T kJ ′)(x) ≤ (T kJ)(x) ≤ (T kJ̃)(x).

Letting k → ∞ and using part (a), we obtain the result. Q.E.D.

Part (b) of the proposition shows that given a set S ⊂ E(X), a set C ⊂ Π×X that is S-regular, and a

function J ′ ∈ E(X) with J ′ ≤ TJ ′ ≤ J*
C , the convergence of VI is characterized by the valid start region

{
J ∈ E(X) | J ′ ≤ J ≤ J̃ for some J̃ ∈ S

}
,

and the limit region {
J ∈ E(X) | J ′ ≤ J ≤ J*

C

}
.

The VI algorithm, starting from the former, ends up asymptotically within the latter; cf. Fig. 3.1. Note that

both of these regions depend on C and J ′.

The significance of the preceding property depends of course on the choice of C and S. With an

appropriate choice, however, there are important implications regarding the location of the fixed points of

T and the convergence of VI from a broad range of starting points. Some of these implications are the

following:
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Limit Region Valid Start Region

Limit Region Valid Start Region

J J

VI Optimal Cost over CFixed Point of T

C E(X)

VI: T kJ

J̃ ∈ S

Figure 3.1. Illustration of Prop. 3.1. Neither J∗
C
nor J∗ need to be fixed points of T , but if C is

S-regular, and there exists J̃ ∈ S with J∗
C
≤ J̃ , then J∗

C
demarcates from above the range of fixed

points of T that lie below J̃ .

(a) J*
C is an upper bound to every fixed point J ′ of T that lies below some J̃ ∈ S (i.e., J ′ ≤ J̃).

(b) If J*
C is a fixed point of T (an important case for our subsequent development), then VI converges to

J*
C starting from any J ∈ E(X) such that J*

C ≤ J ≤ J̃ for some J̃ ∈ S. For future reference, we state

this result as a proposition.

Proposition 3.2: Given a set S ⊂ E(X), let C be an S-regular set and assume that J*
C is a fixed

point of T . Then J*
C is the only possible fixed point of T within the set of all J ∈ E(X) such that

J*
C ≤ J ≤ J̃ for some J̃ ∈ S. Moreover, T kJ → J*

C for all J ∈ E(X) such that J*
C ≤ J ≤ J̃ for some

J̃ ∈ S.

Proof: Let J ∈ E(x) and J̃ ∈ S be such that J*
C ≤ J ≤ J̃ . Using the fixed point property of J*

C and the

monotonicity of T , we have

J*
C = T kJ*

C ≤ T kJ ≤ T kJ̃ , k = 0, 1, . . . .

From Prop. 3.1(b), with J ′ = J*
C , it follows that T

kJ̃ → J*
C , so taking limit in the above relation as k → ∞,

we obtain T kJ → J*
C . Q.E.D.

The preceding proposition takes special significance when C is rich enough so that J*
C = J*, as for

example in the case where C is the set Π × X of all (π, x), or other choices to be discussed later. It then

follows that VI converges to J* starting from any J ∈ E(X) such that J* ≤ J ≤ J̃ for some J̃ ∈ S.† In the

particular applications to be discussed in Section 4 we will use such a choice.

The following example illustrates the preceding propositions in the context of a central problem in

optimal control. For simplicity we consider a one-dimensional special case, but the example can be generalized

to any finite-dimensional linear-quadratic (positive semidefinite) problem (see Example 6.1 in Section 6).

† For this statement to be meaningful, the set
{
J̃ ∈ E(X) | J∗ ≤ J̃

}
must be nonempty. Generally, it is possible

that this set is empty, even though S is assumed nonempty.
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Example 3.1 (Linear-Quadratic Optimal Control Problem)

Consider the mapping

H(x, u, J) = u
2 + J(γx+ u),

where x and u are scalars, γ > 1, and J : ℜ 7→ ℜ is a scalar function. This corresponds to the optimal control

problem involving the scalar system xk+1 = γxk +uk and the quadratic cost
∑∞

k=0
u2
k. A special feature of this

example is that there is no penalty on the state, so the standard observability assumption is not satisfied.

Let S be the set of nonnegative quadratic functions J(x) = Px2 with P ≥ 0. Let C be the set of pairs

(π, x), where x ∈ ℜ and π is a linear stable policy, i.e., a stationary policy π = {µ, µ, . . .} with µ linear, of the

form µ(x) = rx, r ∈ ℜ, such that the closed-loop system xk+1 = (γ + r)xk is stable, i.e., |γ + r| < 1. For such

a policy, the generated sequence of states is xk = (γ + r)kx0, and we have for every J ∈ C with J(x) = Px2,

(T k
µJ)(x0) = P (xk)

2 +

k−1∑

ℓ=0

(rxℓ)
2 = P (γ + r)2kx2

0 +

k−1∑

ℓ=0

r
2(γ + r)2ℓx2

0.

Since limk→∞ P (γ + r)2kx2
0 = 0, it follows that

lim
k→∞

(T k
µJ)(x0) = Jµ(x0) =

∞∑

ℓ=0

r
2(γ + r)2ℓx2

0 =
r2

1− (γ + r)2
x
2
, (3.1)

so limk→∞(T k
µJ)(x0) does not depend on J . Thus C is S-regular.

Let us consider the Bellman equation J = TJ restricted to quadratic functions of the form J(x) = Px2,

P ≥ 0. It takes the form Px2 = minu∈ℜ

[
u2 + P (γx+ u)2

]
, which after performing the minimization yields

P =
γ2P

P + 1
.

This is the well-known algebraic Riccati equation for the problem (see e.g., [AnM79], [Ber17a]). This equation

has two nonnegative solutions as shown in Fig. 3.2: P ∗ = 0 and P̂ = γ2 − 1. The solution P ∗ = 0 corresponds

to the optimal cost function, which is J∗(x) ≡ 0 with optimal policy µ∗(x) ≡ 0. The other solution corresponds

to Ĵ(x) = P̂ x2, which can be verified to be the restricted optimal cost function J*
C . To see this note that for a

linear stable policy µ(x) = rx, the corresponding cost function is quadratic of the form (3.1). By setting to 0

the derivative of the expression r2

1−(γ+r)2
[cf. Eq. (3.1)], we can verify that the optimal value of r is r̂ = 1−γ2

γ
,

and that the corresponding cost function is (γ2 − 1)x2 = Ĵ(x). Thus the fixed point Ĵ is equal to the optimal

cost function J∗
C that can be achieved with linear stable policies.

Another interesting fact is that the VI method generates the sequence Jk(x) = Pkx
2, where Pk+1 =

γ2Pk
Pk+1

,

and converges to the second solution J∗
C when started with any P0 > 0 (cf. Fig. 3.2). This is consistent with

Props. 3.1 and 3.2: J∗
C is the largest fixed point of T and is the limit of VI starting from any real-valued J0

with J0 ≥ J∗
C . Note that in this example, J∗ is a fixed point of T , but VI does not converge to J∗, except

when started at J∗. It can also be verified that the PI method, when started with a linear stable policy also

converges to J∗
C , and not to the optimal cost function J∗.

Propostion 3.2 does not say anything about fixed points of T that lie below J*
C . In particular, it does

not address the question whether J* is a fixed point of T , or whether VI converges to J* starting from J̄

or from below J*; these are major questions in abstract DP models, which are typically handled by special

analytical techniques that are tailored to the particular model’s structure and assumptions. Significantly,

however, these questions have been already answered in the context of various models, and when available,

they can be used to supplement the preceding propositions. For example, the DP books [Pal67], [Der70],
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Riccati Equation Iterates

γ
2
P

P+1

P0 Riccati Equation Iterates P PP1 P2
45◦

b P ∗ = 0 P = 0 P̂ = γ2
− 1

Figure 3.2. Illustration of the Riccati equation for the one-dimensional linear-quadratic problem

of Example 3.1, where q = 0. The solutions are P ∗ = 0 (corresponds to the optimal cost function

J∗) and P̂ = γ2 −1 (corresponds to the optimal cost function J∗
C
that can be achieved with linear

stable control laws).

[Whi82], [Put94], [HeL99], [Ber12], [Ber13] provide extensive analysis for the most common infinite horizon

stochastic optimal control problems: discounted, SSP, nonpositive cost, and nonnegative cost problems.

In particular, for discounted problems [the case of the mapping (2.3) with α ∈ (0, 1) and g being a

bounded function], underlying sup-norm contraction properties guarantee that J* is the unique fixed point

of T within the class of bounded real-valued functions over X , and that VI converges to J* starting from

within that class. This is also true for finite-state SSP problems, involving a cost-free termination state,

under some favorable conditions (there must exist a proper policy, i.e., a stationary policy that leads to the

termination state with probability 1, improper policies must have infinite cost for some states, and some

finiteness or compactness conditions on the control space U must be satisfied; see [BeT91], [Ber12]).

The paper [BeY16] also considers finite-state SSP problems, but under the weaker assumptions that

there exists at least one proper policy, that J* is real-valued, and U satisfies some finiteness or compactness

conditions. Under these assumptions, J* need not be a fixed point of T , as shown in [BeY16] with an

example. In the context of the present paper, a useful choice is to take C =
{
(µ, x) | µ : proper

}
, in which

case J*
C is the optimal cost function that can be achieved using proper policies only. It was shown in [BeY16]

that J*
C is a fixed point of T , so by Prop. 3.2, VI converges to J*

C starting from any real-valued J ≥ J*
C .

For nonpositive and nonnegative cost problems (cf. Example 2.1 with g ≤ 0 or g ≥ 0, respectively), J*

is a fixed point of T , but not necessarily unique. However, for nonnegative cost problems, some new results

on the existence of fixed points of T and convergence of VI were recently proved in [YuB15]. It turns out

that one may prove these results by using Prop. 3.2, with an appropriate choice of C. The proof uses the

arguments of Appendix E of [YuB15], and will be given in Section 4.1.

A class of DP problems with more complicated structure is the general convergence model discussed in

the thesis [Van81] and the survey paper [Fei02]. This is the case of Example 2.1 where the cost per stage g

can take both positive and negative values, under some restrictions that guarantee that Jπ is defined by Eq.

(2.1) as a limit. The paper [Yu15] describes the complex issues of convergence of VI for these models, and
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in an infinite space setting that addresses measurability issues. We note that there are examples of general

convergence models where X and U are finite sets, but VI does not converge to J* starting from J̄ (see

Example 3.2 of [Van81], Example 6.10 of [Fei02], and Example 4.1 of [Yu15]). The analysis of [Yu15] may

also be used to bring to bear Prop. 3.1 on the problem, but this analysis is beyond our scope in this paper.

The Case Where J*
C ≤ J̄

It is well known that the results for nonnegative cost and nonpositive cost infinite horizon stochastic optimal

control problems are markedly different. In particular, roughly speaking, PI behaves better when the cost

is nonnegative, while VI behaves better if the cost is nonpositive. These differences extend to the so-called

monotone increasing and monotone decreasing abstract DP models, where a principal assumption is that

TµJ̄ ≥ J̄ and TµJ̄ ≤ J̄ for all µ ∈ M, respectively (see [Ber13], Ch. 4). In the context of regularity, with

C being S-regular, it turns out that there are analogous significant differences between the cases J*
C ≥ J̄

and J*
C ≤ J̄ . The following proposition establishes some favorable aspects of the condition J*

C ≤ J̄ in the

context of VI. These can be attributed to the fact that J̄ can always be added to S without affecting the

S-regularity of C, so J̄ can serve as the element J̃ of S with J*
C ≤ J̃ in Props. 3.1 and 3.2 (see the proof of

the following proposition).

Proposition 3.3: Given a set S ⊂ E(X), let C be an S-regular set and assume that J*
C ≤ J̄ . Then:

(a) For all J ′ ∈ E(X) with J ′ ≤ TJ ′, we have

J ′ ≤ lim inf
k→∞

T kJ̄ ≤ lim sup
k→∞

T kJ̄ ≤ J*
C .

(b) If J*
C is a fixed point of T , then J* = J*

C and we have T kJ̄ → J* as well as T kJ → J* for every

J ∈ E(X) such that J* ≤ J ≤ J̃ for some J̃ ∈ S.

Proof: (a) If S does not contain J̄ , we can replace S with S̄ = S ∪ {J̄}, and C will still be S̄-regular. By

applying Prop. 3.1(b) with S replaced by S̄ and J̃ = J̄ , the result follows.

(b) Assume without loss of generality that J̄ ∈ S [cf. the proof of part (a)]. By using Prop. 3.2 with J̃ = J̄ ,

we have J*
C = limk→∞ T kJ̄ . This relation yields for any policy π = {µ0, µ1, . . .} ∈ Π,

J*
C = lim

k→∞
T kJ̄ ≤ lim sup

k→∞
Tµ0 · · ·Tµk−1

J̄ = Jπ,

so by taking the infimum over π ∈ Π, we obtain J*
C ≤ J*. Since generically we have J*

C ≥ J*, it follows that

J*
C = J*. Finally, from Prop. 3.2, we obtain T kJ → J* for all J ∈ E(X) such that J* ≤ J ≤ J̃ for some

J̃ ∈ S. Q.E.D.

As a special case of the preceding proposition, we have that if J* ≤ J̄ and J* is a fixed point of T ,

then J* = limk→∞ T kJ̄ , and for every other fixed point J ′ of T we have J ′ ≤ J* (apply the proposition

with C = Π × X and S = {J̄}, in which case J*
C = J* ≤ J̄). This special case is relevant, among others,

to the monotone decreasing models (see [Ber13], Section 4.3), where TµJ̄ ≤ J̄ for all µ ∈ M, in which case
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it is known that J* is a fixed point of T under mild conditions. We then obtain a classical result on the

convergence of VI for nonpositive cost models. The proposition also applies to a classical type of search

problem with both positive and negative costs per stage. This is Example 2.1, where at each x ∈ X we have

E
{
g(x, u, w)

}
≥ 0 for all u except one that leads to a termination state with probability 1 and nonpositive

cost. Note that without the assumption J*
C ≤ J̄ in the preceding proposition, it is possible that T kJ̄ does not

converge to J*, even if J*
C = J* = TJ*, as is well known in the theory of nonnegative cost infinite horizon

stochastic optimal control.

Generally, it is important to choose properly the set C in order to obtain meaningful results. Note,

however, that in a given problem the interesting choices of C are usually limited, and that the propositions

of this section can guide a favorable choice. One useful approach is to try the set

C =
{
(π, x) | Jπ(x) < ∞

}
,

so that J*
C = J*. By the definition of regularity, if S is any subset of the set

SC =

{
J ∈ E(X)

∣∣∣ Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J)(x), ∀ (π, x) ∈ C

}
,

then C is S-regular. One may then try to derive a suitable subset of SC that admits an interesting charac-

terization. This is the approach followed in the applications of the next section.

4. APPLICATIONS IN STOCHASTIC OPTIMAL CONTROL

In this section, we will consider the stochastic optimal control problem of Example 2.1, where

H(x, u, J) = E
{
g(x, u, w) + αJ

(
f(x, u, w)

)}
, (4.1)

and J̄(x) ≡ 0. Here α ∈ (0, 1] is the discount factor and we assume that the expected cost per stage is

nonnegative:

0 ≤ E
{
g(x, u, w)

}
< ∞, ∀ x ∈ X, u ∈ U(x). (4.2)

This is a classical problem, also known as the negative DP model [Str66].

We will use some known results for this problem, which we collect in the following proposition (for

proofs, see e.g., [BeS78], Props. 5.2, 5.4, and 5.10, or [Ber13], Props. 4.3.3, 4.3.9, and 4.3.14).

Proposition 4.1: Consider the stochastic optimal control problem where H is given by Eq. (4.1),

g satisfies the nonnegativity condition (4.2), and α ∈ (0, 1]. Then:

(a) J* = TJ* and if J ∈ E+(X) satisfies J ≥ TJ , then J ≥ J*.

(b) For all µ ∈ M we have Jµ = TµJµ.

(c) µ∗ ∈ M is optimal if and only if Tµ∗J* = TJ*.

(d) If U is a metric space and the sets

Uk(x, λ) =
{
u ∈ U(x) | H(x, u, T kJ̄) ≤ λ

}
(4.3)

are compact for all x ∈ X , λ ∈ ℜ, and k, then there exists at least one optimal stationary policy,

and we have T kJ → J* for all J ∈ E+(X) with J ≤ J*.
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Note that there may exist fixed points J ′ of T with J ′ ≥ J*, while VI or PI may not converge to J*

starting from above J*. However, convergence of VI to J* from above, if it occurs, is often much faster

than convergence from below, so starting points J ≥ J* may be desirable. One well-known such case is

deterministic finite-state shortest path problems where major algorithms, such as the Bellman-Ford method

or other label correcting methods have polynomial complexity, when started from J above J*, but only

pseudopolynomial complexity when started from other initial conditions.

We will now establish conditions for the uniqueness of J* as a fixed point of T , and the convergence of

VI and PI. We will consider separately the cases α = 1 and α < 1. Our analysis will proceed as follows:

(a) Define a set C such that J*
C = J*.

(b) Define a set S ⊂ E+(X) such that J* ∈ S and C is S-regular.

(c) Use Prop. 3.2 in conjunction with the fixed point properties of J* [cf. Prop. 4.1(a)] to show that J* is

the unique fixed point of T within S, and that the VI algorithm converges to J* starting from J within

the set {J ∈ S | J ≥ J*}.

(d) Use the compactness condition of Prop. 4.1(d), to enlarge the set of functions starting from which VI

converges to J*.

4.1. Nonnegative Undiscounted Cost Stochastic DP

Assume that the problem is undiscounted, i.e., α = 1. Consider the set

C =
{
(π, x) | Jπ(x) < ∞

}
,

for which we have J*
C = J*, and assume that C is nonempty.

Let us denote by Eπ
x0{·} the expected value with respect to the probability measure induced by π ∈ Π

under initial state x0, and let us consider the set

S =
{
J ∈ E+(X) | Eπ

x0

{
J(xk)

}
→ 0, ∀ (π, x0) ∈ C

}
. (4.4)

We will show that J* ∈ S and that C is S-regular. Once this is done, it will follow from Prop. 3.2 and the

fixed point property of J* [cf. Prop. 4.1(a)] that T kJ → J* for all J ∈ S that satisfy J ≥ J*. If the sets

Uk(x, λ) of Eq. (4.3) are compact, the convergence of VI starting from below J* will also be guaranteed. We

have the following proposition. The proof uses the line of argument of Appendix E of [YuB15].

Proposition 4.2: (Convergence of VI) Consider the stochastic optimal control problem of this

section, assuming α = 1 and the cost nonnegativity condition (4.2). Then J* is the unique fixed point

of T within S, and we have T kJ → J* for all J ≥ J* with J ∈ S. If in addition U is a metric space,

and the sets Uk(x, λ) of Eq. (4.3) are compact for all x ∈ X , λ ∈ ℜ, and k, we have T kJ → J* for all

J ∈ S, and an optimal stationary policy is guaranteed to exist.

Proof: We have for all J ∈ E(X), (π, x0) ∈ C, and k,

(Tµ0 · · ·Tµk−1
J)(x0) = Eπ

x0

{
J(xk)

}
+ Eπ

x0

{
k−1∑

t=0

g
(
xt, µt(xt), wt

)
}
, (4.5)
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where µt, t = 0, 1, . . ., denote generically the components of π. By the cost nonnegativity condition (4.2),

the rightmost term above converges to Jπ(x0) as k → ∞, so by taking upper limit, we obtain

lim sup
k→∞

(Tµ0 · · ·Tµk−1
J)(x0) = lim sup

k→∞
Eπ

x0

{
J(xk)

}
+ Jπ(x0).

Thus in view of the definition (4.4) of S, we see that for all (π, x0) ∈ C and J ∈ S, we have

lim sup
k→∞

(Tµ0 · · ·Tµk−1
J)(x0) = Jπ(x0),

so C is S-regular.

We next show that J* ∈ S. We have for all (π, x0) ∈ C

Jπ(x0) = Eπ
x0

{
g
(
x0, µ0(x0), w0

)}
+ Eπ

x0

{
Jπ(x1)

}
,

and more generally,

Eπ
x0

{
Jπ(xt)

}
= Eπ

x0

{
g
(
xt, µt(xt), wt

)}
+ Eπ

x0

{
Jπ(xt+1)

}
, ∀ t = 0, 1, . . . , (4.6)

where {xt} is the sequence generated starting from x0 and using π. Using the defining property Jπ(x0) < ∞

of C, it follows that all the terms in the above relations are finite, and in particular

Eπ
x0

{
Jπ(xt)

}
< ∞, ∀ (π, x0) ∈ C, t = 0, 1, . . . .

By adding Eq. (4.6) for t = 0, . . . , k − 1, and canceling the finite terms Eπ
x0

{
Jπ(xt)

}
for t = 1, . . . , k − 1,

Jπ(x0) = Eπ
x0

{
Jπ(xk)

}
+

k−1∑

t=0

Eπ
x0

{
g
(
xt, µt(xt), wt

)}
, ∀ (π, x0) ∈ C, k = 1, 2, . . . .

The rightmost term above tends to Jπ(x0) as k → ∞, so we obtain Eπ
x0

{
Jπ(xk)

}
→ 0 for all (π, x0) ∈ C.

Since 0 ≤ J* ≤ Jπ for all π, it follows that

Eπ
x0

{
J*(xk)

}
→ 0, ∀ x0 with J*(x0) < ∞.

Thus J* ∈ S.

From Prop. 3.2 it follows that J* is the unique fixed point of T within
{
J ∈ S | J ≥ J*

}
. On the other

hand, every fixed point J ∈ E+(X) of T satisfies J ≥ J* by Prop. 4.1(a), so J* is the unique fixed point of

T within S. Also from Prop. 3.2 we have that the VI sequence {T kJ} converges to J* starting from any

J ∈ S with J ≥ J*. Finally, for any J ∈ S, let us select J̃ ∈ S with J̃ ≥ J* and J̃ ≥ J , and note that by

the monotonicity of T , we have T kJ̄ ≤ T kJ ≤ T kJ̃ . If we also assume compactness of the sets Uk(x, λ) of

Eq. (4.3), then by Prop. 4.1(d), we have T kJ̄ → J*, which together with the convergence T kJ̃ → J* just

proved, implies that T kJ → J*. Q.E.D.

A consequence of the preceding proposition is an interesting condition for VI convergence from above,

which was first proved in [YuB15]. In particular, since J* ∈ S, any J satisfying J* ≤ J ≤ cJ* for some c > 0

belongs to S, so we have the following.
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Proposition 4.3: [YuB15] We have T kJ → J* for all J ∈ E(X) satisfying J* ≤ J ≤ cJ* for some

c > 0.

The preceding proposition highlights a requirement for the reliable implementation of VI: it is important

to know the sets Xs =
{
x ∈ X | J*(x) = 0

}
and X∞ =

{
x ∈ X | J*(x) = ∞

}
in order to obtain a suitable

initial condition J ∈ E(X) satisfying J* ≤ J ≤ cJ* for some c > 0. For finite state and control problems, the

set Xs can be computed in polynomial time as shown in the paper [BeY16], which also provides a method

for dealing with cases where X∞ is nonempty, based on adding a high cost artificial control at each state.

Regarding PI, we note that the analysis of Section 5.2 will guarantee its convergence for the stochastic

problem of this section if somehow it can be shown that J* is the unique fixed point of T within a subset

of {J | J ≥ J*} that contains the limit J∞ of PI. This result was given as Corollary 5.2 in [YuB15].

Alternatively, there is a mixed VI and PI algorithm proposed in [YuB15], which can be applied under the

condition of Prop. 4.3, and applies to a more general problem where w can take an uncountable number of

values and measurability issues are an important concern.

Finally, we note that in this section we do not consider any special structure, other than the expected

cost nonnegativity condition (4.2). In particular, we do not discuss the implications of the possible existence

of a termination state as in finite-state or countable-state SSP problems. The approach of this paper is

relevant to the convergence analysis of VI and PI for such problems, and for a corresponding analysis for

finite-state problems, we refer to the paper [BeY16].

4.2. Discounted Nonnegative Cost Stochastic DP

We will now consider the case where α < 1. The cost function of a policy π = {µ0, µ1, . . .} has the form

Jπ(x0) = lim
k→∞

Eπ
x0

{
k−1∑

t=0

αtg
(
xt, µt(xt), wt

)
}
,

where as earlier Eπ
x0{·} denotes expected value with respect to the probability measure induced by π ∈ Π

under initial state x0. We will assume that X is a normed space.

We introduce the set

Xf =
{
x ∈ X | J*(x) < ∞

}
,

which we assume to be nonempty. Given a state x ∈ Xf , we say that a policy π is stable from x if there

exists a bounded subset of Xf [that depends on (π, x)] such that the (random) sequence {xk} generated

starting from x and using π lies with probability 1 within that subset. We consider the set

C =
{
(π, x) | x ∈ Xf , π is stable from x

}
,

and we assume that C is nonempty.

Let us say that a function J ∈ E+(X) is bounded on bounded subsets of Xf if for every bounded subset

X̃ ⊂ Xf there is a scalar b such that J(x) ≤ b for all x ∈ X̃ . Let us also introduce the set

S =
{
J ∈ E+(X) | J is bounded on bounded subsets of Xf

}
.
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We will assume that J* ∈ S. In practical settings we may be able to guarantee this by finding a stationary

policy µ such that the function Jµ is bounded on bounded subsets of Xf . We also assume the following:

Assumption 4.1: In the discounted stochastic optimal control problem of this section, C is nonempty,

J* ∈ S, and for every x ∈ Xf and ǫ > 0, there exists a policy π that is stable from x and satisfies

Jπ(x) ≤ J*(x) + ǫ.

Note that Assumption 4.1 is natural in control contexts where the objective is to keep the state from

becoming unbounded, under the influence of random disturbances represented by wk. Clearly under this

assumption, J*
C = J*. We have the following proposition.

Proposition 4.4: Let Assumption 4.1 hold. Then J* is the unique fixed point of T within S, and

we have T kJ → J* for all J ∈ S with J* ≤ J . If in addition U is a metric space, and the sets Uk(x, λ)

of Eq. (4.3) are compact for all x ∈ X , λ ∈ ℜ, and k, we have T kJ → J* for all J ∈ S, and an optimal

stationary policy is guaranteed to exist.

Proof: Using the notation of Section 4.1, we have for all J ∈ E(X), (π, x0) ∈ C, and k,

(Tµ0 · · ·Tµk−1
J)(x0) = αkEπ

x0

{
J(xk)

}
+ Eπ

x0

{
k−1∑

t=0

αtg
(
xt, µt(xt), wt

)
}

[cf. Eq. (4.5)]. The fact (π, x0) ∈ C implies that there is a bounded subset of Xf such that {xk} belongs to

that subset with probability 1, so if J ∈ S it follows that αkEπ
x0

{
J(xk)

}
→ 0. Thus for all (π, x0) ∈ C and

J ∈ S, we have

lim
k→∞

(Tµ0 · · ·Tµk−1
J)(x0) = lim

k→∞
Eπ

x0

{
k−1∑

t=0

αtg
(
xt, µt(xt), wt

)
}

= Jπ(x0),

so C is S-regular. Since J*
C is equal to J* which is a fixed point of T [by Prop. 3.1(c)], it follows that

T kJ → J* for all J ∈ S. Under the compactness assumption on the sets Uk(x, λ), the result follows by using

Prop. 4.1(d). Q.E.D.

5. S-REGULAR STATIONARY POLICIES

We will now specialize the notion of S-regularity to stationary policies with the following definition from

[Ber13].
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Definition 5.1: For a nonempty set of functions S ⊂ E(X), we say that a stationary policy µ is

S-regular if Jµ ∈ S, Jµ = TµJµ, and T k
µJ → Jµ for all J ∈ S. A policy that is not S-regular is called

S-irregular .

Comparing this definition with Definition 3.1, we see that µ is S-regular if the set C =
{
(µ, x) | x ∈ X

}

is S-regular, and in addition Jµ ∈ S and Jµ = TµJµ. Thus a policy µ is S-regular if the VI algorithm

corresponding to µ, Jk+1 = TµJk, represents a dynamic system that has Jµ as its unique equilibrium within

S, and is asymptotically stable in the sense that the iteration converges to Jµ, starting from any J ∈ S.

5.1. Restricted Optimization over S-Regular Policies

Given a nonempty set S ⊂ E(X), let MS be the set of policies that are S-regular, and consider optimization

over the S-regular policies only. The corresponding optimal cost function is denoted J*
S :

J*
S(x) = inf

µ∈MS

Jµ(x), ∀ x ∈ X. (5.1)

We say that µ∗ is MS-optimal if

µ∗ ∈ MS and Jµ∗ = J*
S .

A technical point here is that while S is assumed nonempty, it is possible that MS is empty. In this case

our results will not be useful, but J*
S is still defined by Eq. (5.1) as J*

S(x) ≡ ∞. This is convenient in various

proof arguments.

An important question is whether J*
S is a fixed point of T and can be obtained by the VI algorithm.

The following proposition, essentially a specialization of Prop. 3.2, shows that if J*
S is a fixed point of T ,

then it can be obtained by VI, when started within the set

WS = {J ∈ E(X) | J*
S ≤ J ≤ J̃ for some J̃ ∈ S}, (5.2)

which we refer to as the well-behaved region. The proposition also provides a necessary and sufficient

condition for an S-regular policy µ∗ to be MS-optimal.

Proposition 5.1: Given a set S ⊂ E(X), assume that J*
S is a fixed point of T . Then:

(a) (Uniqueness of Fixed Point) J*
S is the unique fixed point of T within WS .

(b) (VI Convergence) We have T kJ → J*
S for every J ∈ WS .

(c) (Optimality Condition) If µ∗ is S-regular, J*
S ∈ S, and Tµ∗J*

S = TJ*
S , then µ∗ is MS-optimal.

Conversely, if µ∗ is MS-optimal, then Tµ∗J*
S = TJ*

S .

Proof: (a), (b) Follows from Prop. 3.2, with C =
{
(µ, x) | µ ∈ MS , x ∈ X

}
, in which case J*

C = J*
S .
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(c) Since Tµ∗J*
S = TJ*

S and TJ*
S = J*

S , we have Tµ∗J*
S = J*

S , and since J*
S ∈ S and µ∗ is S-regular, we have

J*
S = Jµ∗ . Thus µ∗ is MS-optimal. Conversely, if µ∗ is MS-optimal, we have Jµ∗ = J*

S , so the fixed point

property of J*
S and the S-regularity of µ imply that TJ*

S = J*
S = Jµ∗ = Tµ∗Jµ∗ = Tµ∗J*

S . Q.E.D.

The following example illustrates the preceding proposition and demonstrates some of the unusual

behaviors that can arise in the context of our model.

Example 5.1

Consider the deterministic shortest path example shown in Fig. 5.1. Here there is a single state 1 in addition

to the termination state t. At state 1 there are two choices: a self-transition, which costs a, and a transition to

t, which costs b. The mapping H , abbreviating J(1) with just the scalar J , is

H(1, u, J) =

{
a+ J if u: self transition,

b if u: transition to t,
J ∈ ℜ,

and the initial function J̄ is taken to be 0.

a

t b
a 1 2 1 2 t b

t b Destination

u Cost 1 Cost 1

u Cost 1 Cost 1

Figure 5.1. A shortest path problem with a single node 1 and a termination node t.

There are two policies: the policy µ that transitions from 1 to t, which is proper, and the policy µ′ that

self-transitions at state 1, which is improper. We have

TµJ = b, Tµ′J = a+ J, TJ = min{b, a+ J}, ∀ J ∈ ℜ.

For the proper policy µ, the mapping Tµ : ℜ 7→ ℜ is a contraction. For the improper policy µ′, the mapping

Tµ′ : ℜ 7→ ℜ is not a contraction, and it has a fixed point within ℜ only if a = 0, in which case every J ∈ ℜ is

a fixed point. Let S be equal to the real line ℜ [the set R(X)]. Then a policy is S-regular if and only if it is

proper (this is generally true for SSP problems, for S = ℜn). Thus µ is S–regular, while µ′ is not.

Let us consider the optimal cost J∗, the fixed points of T within ℜ, and the behavior of VI and PI for

different combinations of values of a and b.

(a) If a > 0, the optimal cost, J∗ = b, is the unique fixed point of T , and the proper policy is optimal.

(b) If a = 0, the set of fixed points of T (within ℜ) is the interval (−∞, b]. Here the improper policy is

optimal if b ≥ 0, and the proper policy is optimal if b ≤ 0.

(c) If a = 0 and b > 0, the proper policy is strictly suboptimal, yet its cost at state 1 (which is b) is a fixed

point of T . The optimal cost, J∗ = 0, lies in the interior of the set of fixed points of T , which is (−∞, b].

Thus the VI method that generates {T kJ} starting with J 6= J∗ cannot find J∗. In particular if J is a

fixed point of T , VI stops at J , while if J is not a fixed point of T (i.e., J > b), VI terminates in two

iterations at b 6= J∗. Moreover, the standard PI method is unreliable in the sense that starting with
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1 2 t b
a 1 2

t b Destination

t b c u′, Cost 0
Stationary policy costs Prob.

Jµ(1) = b, Jµ′(1) = 0 Optimal cost

(1) = 0 Optimal cost J∗(1) = min{b, 0} a destination t

Well-Behaved Region

Well-Behaved Region

J* = Jµ′ = 0

b Jµ′ = 0

Set of Fixed Points of T

Set of Fixed Points of T

J*
S = Jµ = b > 0

J* = J*
S = Jµ = b < 0

u, Cost b J

Figure 5.2. The well-behaved region of Eq. (5.2) for the deterministic shortest path Example

5.1 when where there is a zero length cycle (a = 0). For S = ℜ, the policy µ is S-regular, while

the policy µ′ is not. The figure illustrates the two cases where b > 0 and b < 0.

the suboptimal proper policy µ, it may stop with that policy because TµJµ = b = min{b, Jµ} = TJµ

(the improper/optimal policy µ′ also satisfies Tµ′Jµ = TJµ, so a rule for breaking the tie in favor of µ is

needed but such a rule may not be obvious in general).

(d) If a = 0 and b < 0, the improper policy is strictly suboptimal, and we have J∗ = b. Here it can be

seen that the VI sequence {T kJ} converges to J∗ for all J ≥ b, but stops at J for all J < b, since the

set of fixed points of T is (−∞, b]. Moreover, starting with either the proper or the improper policy, PI

may oscillate, since TµJµ′ = TJµ′ and Tµ′Jµ = TJµ, as can be easily verified [the optimal policy µ also

satisfies TµJµ = TJµ but it is not clear how to break the tie; compare also with case (c) above].

(e) If a < 0, the improper policy is optimal and we have J∗ = −∞. There are no fixed points of T within ℜ,

but J∗ is the unique fixed point of T within the set [−∞,∞]. Then VI will converge to J∗ starting from

any J ∈ [−∞,∞], while PI will also converge to the optimal policy starting from either policy.

Let us focus on the case where there is a zero length cycle (a = 0). The cost functions Jµ, Jµ′ , and J∗

are fixed points of the corresponding mappings, but the sets of fixed points of Tµ′ and T within S are ℜ and

(−∞, b], respectively. Figure 5.2 shows the well-behaved regions WS of Eq. (5.2) for the two cases b > 0 and

b < 0, and is consistent with the results of Prop. 5.1. In particular, the VI algorithm fails when started outside

the well-behaved region, while starting from within the region, it is attracted to J∗
S rather than to J∗.

Note that Prop. 5.1(b) asserts convergence of the VI algorithm to J*
S only for initial conditions J ≤ J̃

for some J̃ ∈ S. For an example where there is a single policy µ, which is S-regular, but {T k
µJ} does not

converge to Jµ starting from some J ≥ Jµ that lies outside S, consider a mapping Tµ : ℜ 7→ ℜ that has

two fixed points: Jµ and another fixed point J ′ > Jµ. Let J̃ = (Jµ + J ′)/2 and S = (−∞, J̃ ], and assume

that Tµ is a contraction mapping within S (a one-dimensional example of this type, where S = ℜ, can be

easily constructed graphically). Then, J̃ ∈ S, and starting from any J ∈ S, we have T kJ → Jµ, so that µ is

S-regular. However, since J ′ is a fixed point of T , the sequence {T kJ ′} stays at J ′ and does not converge to

Jµ. The difficulty here is that WS = [Jµ, J̃ ] and J ′ /∈ WS .
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In many contexts where Prop. 5.1 applies, there exists an MS-optimal policy µ∗ such that Tµ∗ is a

contraction with respect to a weighted sup-norm. This is true for example in several types of shortest path

problems. In such cases, VI converges to J*
S linearly, as shown in the following proposition first given in

[BeY16] for SSP problems.

Proposition 5.2: (Convergence Rate of VI) Let S be equal to B(X), the space of all functions

overX that are bounded with respect to a weighted sup-norm ‖·‖v corresponding to a positive function

v : X 7→ ℜ. Assume that J*
S is a fixed point of T , and that there exists an MS-optimal policy µ∗ such

that Tµ∗ is a contraction with respect to ‖ · ‖v, with corresponding modulus of contraction β. Then

∥∥TJ − J*
S‖v ≤ β‖J − J*

S‖v, ∀ J ∈ WS , (5.3)

and we have

‖J − J*
S‖v ≤

1

1− β
sup
x∈X

J(x) − (TJ)(x)

v(x)
, ∀ J ∈ WS . (5.4)

Proof: By using the MS-optimality of µ∗ and Prop. 5.1(c), we have J*
S = Tµ∗J*

S = TJ*
S, so that

(TJ)(x)− J*
S(x)

v(x)
≤

(Tµ∗J)(x) − (Tµ∗J*
S)(x)

v(x)
≤ βmax

x∈X

J(x)− J*
S(x)

v(x)
,

for all x ∈ X and J ∈ WS . By taking the supremum of the left-hand side over x ∈ X , and by using the fact

TJ ≥ TJ*
S = J*

S for all J ∈ WS , we obtain Eq. (5.3).

By using again the relation Tµ∗J*
S = TJ*

S, we have for all x ∈ X and all J ∈ WS ,

J(x)− J*
S(x)

v(x)
=

J(x)− (TJ)(x)

v(x)
+

(TJ)(x)− J*
S(x)

v(x)

≤
J(x)− (TJ)(x)

v(x)
+

(Tµ∗J)(x) − (Tµ∗J*
S)(x)

v(x)

≤
J(x)− (TJ)(x)

v(x)
+ β‖J − J*

S‖v.

By taking the supremum of both sides over x, we obtain Eq. (5.4). Q.E.D.

A critical assumption of Props. 5.1 and 5.2 is that J*
S is a fixed point of T . For a specific application,

this must be proved with a separate analysis after a suitable set S is chosen. There are several approaches

that guide the choice of S and facilitate the analysis. One approach applies to problems where J* is a fixed

point of T ; this is true generically in wide classes of problems, including deterministic and minimax models

(we give a proof for the deterministic case later, in Section 6). Then for every set S such that J*
S = J*,

Prop. 5.1 applies and shows that J* can be obtained by VI starting from any J ∈ WS . Other important

models where J* is guaranteed to be a fixed point of T are the monotone increasing and monotone decreasing

models of [Ber13], Section 4.3, a fact known since [Ber77]. In what follows we will use the PI algorithm as

the basis for a new and different line of analysis to show that J*
S is a fixed point of T .
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5.2. Policy Iteration-Based Analysis of Bellman’s Equation

The approach of this section is applicable under assumptions that guarantee that there is a sequence {µk}

of S-regular policies that can be generated by the PI algorithm, which generates a sequence of policies {µk}

according to

Tµk+1Jµk = TJµk , k = 0, 1, . . . , (5.5)

starting from an initial policy µ0. To be able to carry out the policy improvement step, which computes

µk+1(x) as a minimum over u ∈ U(x) of H(x, u, Jµk) for each x ∈ X [cf. Eq. (5.5)], there should be enough

assumptions to guarantee that this minimum is attained for every x. One such assumption is that U(x) is

a finite set for each x ∈ X . A more general assumption, involving a form of compactness of the constraint

set, is given in the next section (see Lemma 6.1).

The significance of all µk being S-regular lies in that the corresponding cost function sequence {Jµk}

lies within the well-behaved region of Eq. (5.2), and is monotonically nonincreasing. We have the following

proposition.

Proposition 5.3: (Policy Improvement Under S-Regularity) Given a set S ⊂ E(X), assume

that {µk} is a sequence generated by the PI algorithm (5.5) that consists of S-regular policies. Then

Jµk ≥ Jµk+1 for all k.

Proof: Using the S-regularity of µk, we have

Jµk = TµkJµk ≥ TJµk = Tµk+1Jµk . (5.6)

By repeatedly applying Tµk+1 to both sides, we obtain

Jµk ≥ lim
m→∞

Tm
µk+1Jµk = Jµk+1 ,

where the equation on the right holds since µk+1 is S-regular and Jµk ∈ S (since µk is S-regular). Q.E.D.

The preceding proposition shows that for a sequence of S-regular policies {µk} that is generated by PI,

the cost function sequence {Jµk} converges pointwise to a limit J∞. Under mild conditions, we will show

that J∞ is a fixed point of T and is equal to J*
S , thus bringing to bear Prop. 5.1. Let us first formalize the

property that the PI algorithm can generate a sequence of S-regular policies.

Definition 5.2: (Weak PI Property) A set S ⊂ E(X) has the weak PI property if there exists a

sequence {µk} that satisfies Eq. (5.5) and consists of S-regular policies.

The following proposition shows that J*
S is a fixed point of T , assuming the weak PI property and a

mild continuity-type condition.
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Proposition 5.4: (Weak PI Property Theorem) Given a set S ⊂ E(X), assume that:

(1) S has the weak PI property.

(2) For each sequence {Jm} ⊂ S with Jm ↓ J for some J ∈ E(X), we have

H (x, u, J) = lim
m→∞

H(x, u, Jm), ∀ x ∈ X, u ∈ U(x). (5.7)

Then:

(a) J*
S is a fixed point of T and the conclusions of Prop. 5.1 hold.

(b) (PI Convergence) A sequence of S-regular policies {µk} that can be generated by PI satisfies

Jµk ↓ J*
S . If in addition the set of S-regular policies is finite, there exists k̄ ≥ 0 such that µk̄ is

MS-optimal.

Proof: (a) Let {µk} be a sequence of S-regular policies generated by the PI algorithm (there exists such a

sequence by the weak PI property). Then by Prop. 5.3, the sequence {Jµk} is monotonically nonincreasing

and must converge to some J∞ ≥ J*
S . We will show that J∞ is a fixed point of T and then invoke Prop. 3.2.

Indeed, we have

Jµk ≥ TJµk ≥ TJ∞

[cf. Eq. (5.6)], so by letting k → ∞, we obtain J∞ ≥ TJ∞. To prove the reverse inequality, we first note

that from the definition of the PI iteration and the nonincreasing property Jµk ≥ Jµk+1 , we have

TJµk = Tµk+1Jµk ≥ Tµk+1Jµk+1 = Jµk+1 .

By using Eq. (5.7) together with the preceding relation, we obtain for all x ∈ X and u ∈ U(x),

H(x, u, J∞) = lim
k→∞

H(x, u, Jµk) ≥ lim
k→∞

(TJµk)(x) ≥ lim
k→∞

Jµk+1 = J∞(x).

By taking the infimum of the left-hand side over u ∈ U(x), it follows that TJ∞ ≥ J∞. Thus J∞ = TJ∞.

Finally, by applying Prop. 3.2 with C =
{
(µ, x) | µ ∈ MS, x ∈ X

}
, we have J∞ = J*

C = J*
S .

(b) The limit of {Jµk} was shown to be equal to J*
S in the preceding proof. Moreover, the finiteness of MS

and the policy improvement property of Prop. 5.3 imply that some µk̄ is MS-optimal. Q.E.D.

Note that the preceding proposition shows that under the weak PI property, PI converges to J*
S .

However, this does not imply convergence to J*. We next introduce a stronger type of PI property, which

we will use to obtain stronger results.

21



Definition 5.3: (Strong PI Property) A set S ⊂ E(X) has the strong PI property if:

(a) There exists at least one S-regular policy.

(b) For every S-regular policy µ, any policy µ̄ such that Tµ̄Jµ = TJµ is S-regular, and there exists

at least one such µ̄.

The strong PI property clearly implies the weak PI property. On the other hand, the strong PI property

may be harder to verify in a given setting. The following proposition provides conditions guaranteeing the

strong PI property. The key implication of these conditions is that they preclude optimality of an S-irregular

policy [see condition (4) of the proposition]. Condition (3) of the proposition is implied by finiteness of the

constraint set or by a more general compactness assumption that will be given in the next section.

Proposition 5.5: (Verifying the Strong PI Property) Given a set S ⊂ E(X), assume that:

(1) J(x) < ∞ for all J ∈ S and x ∈ X .

(2) There exists at least one S-regular policy.

(3) For every J ∈ S there exists a policy µ such that TµJ = TJ .

(4) For every J ∈ S and S-irregular policy µ, there exists a state x ∈ X such that

lim sup
k→∞

(T k
µJ)(x) = ∞. (5.8)

Then:

(a) If a policy µ satisfies TµJ ≤ J for some function J ∈ S, then µ is S-regular.

(b) S has the strong PI property.

Proof: (a) By the monotonicity of Tµ, we have lim supk→∞ T k
µJ ≤ J , and since by condition (1), J(x) < ∞

for all x, it follows from Eq. (5.8) that µ is S-regular.

(b) In view of condition (3), it will suffice to show that for every S-regular µ, any µ̄ such that Tµ̄Jµ = TJµ

is also S-regular. Indeed we have

Tµ̄Jµ = TJµ ≤ TµJµ = Jµ,

so µ̄ is S-regular by part (a). Q.E.D.

By using the strong PI property and assuming also that J*
S ∈ S, we will now show that J*

S is the unique

fixed point of T within S. This result will be the starting point for the analysis of Section 6.
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Proposition 5.6: (Strong PI Property Theorem) Let S satisfy the conditions of Prop. 5.5.

(a) (Uniqueness of Fixed Point) If T has a fixed point within S, then this fixed point is equal to J*
S .

(b) (Fixed Point Property and Optimality Condition) If J*
S ∈ S, then J*

S is the unique fixed point of

T within S. Moreover, every policy µ that satisfies TµJ*
S = TJ*

S is MS-optimal and there exists

at least one such policy.

(c) (PI Convergence) If for each sequence {Jm} ⊂ S with Jm ↓ J for some J ∈ E(X), we have

H (x, u, J) = lim
m→∞

H(x, u, Jm), ∀ x ∈ X, u ∈ U(x), (5.9)

then J*
S is a fixed point of T , and a sequence {µk} generated by the PI algorithm starting from

an S-regular policy µ0 satisfies Jµk ↓ J*
S . Moreover, if the set of S-regular policies is finite, there

exists k̄ ≥ 0 such that µk̄ is MS-optimal.

Proof: (a) Let J ′ ∈ S be a fixed point of T . By applying Prop. 3.2 with C =
{
(µ, x) | µ ∈ MS , x ∈ X

}
,

we have J ′ ≤ J*
C = J*

S . For the reverse inequality, let µ′ be such that J ′ = TJ ′ = Tµ′J ′ [cf. condition (3)

of Prop. 5.5]. Then by Prop. 5.5(a), it follows that µ′ is S-regular, and since J ′ ∈ S, by the definition of

S-regularity, we have J ′ = Jµ′ ≥ J*
S , showing that J ′ = J*

S .

(b) For every µ ∈ MS we have Jµ ≥ J*
S , so that Jµ = TµJµ ≥ TµJ*

S ≥ TJ*
S. Taking the infimum over all

µ ∈ MS , we obtain J*
S ≥ TJ*

S. Let µ be a policy such that TJ*
S = TµJ*

S , [there exists one by condition (3) of

Prop. 5.5, since we assume that J*
S ∈ S]. The preceding two relations yield J*

S ≥ TµJ*
S , so by Prop. 5.5(a),

µ is S-regular. Therefore, we have

J*
S ≥ TJ*

S = TµJ*
S ≥ lim

k→∞
T k
µJ*

S = Jµ ≥ J*
S ,

where the second equality holds by S-regularity of µ and J*
S ∈ S by assumption. Hence equality holds

throughout in the above relation, proving that J*
S is a fixed point of T and that µ is MS-optimal.

(c) Since the strong PI property [which holds by Prop. 5.5(b)] implies the weak PI property, the result follows

from Prop. 5.4. Q.E.D.

The preceding proposition does not address the question whether J* is a fixed point of T , and does not

guarantee that VI converges to J*
S or J* starting from every J ∈ S. We will consider both of these issues

in the next section. Note a simple consequence of part (a): if J* is known to be a fixed point of T and to

belong to S, then J* = J*
S .

Note that for PI to be valid, as per Prop. 5.6(c), an initial S-regular policy must be available. Chapter

3 of [Ber13] describe a combined VI and PI algorithm, which does not require an initial S-regular policy, and

can tolerate the generation of S-irregular policies. Let us also consider two additional algorithmic approaches

for computing J*
S , not given in [Ber13], which can be justified based on the preceding analysis.
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A Mathematical Programming Solution Method

We will show that J*
S is an upper bound to all functions J ∈ S that satisfy J ≤ TJ , and we will exploit this

fact to obtain an algorithm to compute J*
S . We have the following proposition.

Proposition 5.7: Given a set S ⊂ E(X), for all functions J ∈ S satisfying J ≤ TJ , we have

J ≤ J*
S .

Proof: If J ∈ S and J ≤ TJ , by repeatedly applying T to both sides and using the monotonicity of T , we

obtain J ≤ T kJ ≤ T k
µJ for all k and S-regular policies µ. Taking the limit as k → ∞, we obtain J ≤ Jµ, so

by taking the infimum over µ ∈ MS , we obtain J ≤ J*
S . Q.E.D.

Assuming that J*
S is a fixed point of T , we can use the preceding proposition to compute J*

S by

maximizing an appropriate monotonically increasing function of J subject to the constraints J ∈ S and

J ≤ TJ . † This approach is well-known in finite-state finite-control Markovian decision problems, where it is

usually referred to as the linear programming solution method , because in this case the resulting optimization

problem is a linear program (see e.g., the books [Kal83], [Put94], [Ber12]).

For a more general finite-state case, suppose that X = {1, . . . , n} and S = ℜn. Then Prop. 5.7 shows

that J*
S =

(
J*
S(1), . . . , J

*
S(n)

)
is the unique solution of the following optimization problem:

maximize

n∑

i=1

βiJ(i)

subject to J(i) ≤ H(i, u, J), i = 1, . . . , n, u ∈ U(i),

where β1, . . . , βn are any positive scalars. If H is linear in J and each U(i) is a finite set, this is a linear

program, which can be solved with standard methods.

An Optimistic Form of PI

Let us finally consider an optimistic variant of PI, where policies are evaluated inexactly, with a finite

number of VIs. In particular, this algorithm starts with some J0 ∈ E(X) such that J0 ≥ TJ0, and generates

a sequence {Jk, µk} according to

TµkJk = TJk, Jk+1 = T
mk

µk Jk, k = 0, 1, . . . , (5.10)

where mk is a positive integer for each k.

The following proposition shows that optimistic PI converges under mild assumptions to a fixed point

of T , independently of any S-regularity framework. However, when such a framework is introduced, and the

sequence generated by optimistic PI generates a sequence of S-regular policies, then the algorithm converges

† For the mathematical programming approach to apply, it is sufficient that J∗
S ≤ TJ∗

S . However, we generally

have J∗
S ≥ TJ∗

S (this follows by writing for all µ ∈ MS , Jµ = TµJµ ≥ TJµ ≥ TJ∗
S , and taking the infimum over all

µ ∈ MS), so the condition J∗
S ≤ TJ∗

S is equivalent to J∗
S being a fixed point of T .
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to J*
S , which is in turn a fixed point of T , similar to the PI convergence result under the weak PI property;

cf. Prop. 5.4(b). Thus the proposition serves both an analytical purpose (as a tool for establishing that J*
S

is a fixed point of T ), and a computational purpose [establishing the validity of the optimistic PI algorithm

(5.10) as a means for computing J*
S ].

Proposition 5.8: (Convergence of Optimistic PI) Let J0 ∈ E(X) be a function such that

J0 ≥ TJ0, and assume that:

(1) For all µ ∈ M, we have Jµ = TµJµ, and for all J ∈ E(X) with J ≤ J0, there exists µ̄ ∈ M such

that Tµ̄J = TJ .

(2) For each sequence {Jm} ⊂ E(X) with Jm ↓ J for some J ∈ E(X), we have

H (x, u, J) = lim
m→∞

H(x, u, Jm), ∀ x ∈ X, u ∈ U(x).

Then the optimistic PI algorithm (5.10) is well defined and the following hold:

(a) The sequence {Jk} generated by the algorithm satisfies Jk ↓ J∞, where J∞ is a fixed point of T .

(b) If for a set S ⊂ E(X), the sequence {µk} generated by the algorithm consists of S-regular policies

and we have Jk ∈ S for all k, then Jk ↓ J*
S and J*

S is a fixed point of T .

Proof: (a) Condition (1) guarantees that the sequence {Jk, µk} is well defined in the following argument.

We also have

J0 ≥ TJ0 = Tµ0J0 ≥ Tm0

µ0 J0 = J1 ≥ Tm0+1

µ0 J0 = Tµ0J1 ≥ TJ1 = Tµ1J1 ≥ · · · ≥ J2, (5.11)

and continuing similarly, we obtain Jk ≥ TJk ≥ Jk+1 for all k = 0, 1, . . . . Thus Jk ↓ J∞ for some J∞. The

proof that J∞ is a fixed point of T is the same as in the case of the PI algorithm (5.5) in Prop. 5.4.

(b) In the case where all the policies µk are S-regular and {Jk} ⊂ S, from Eq. (5.11), we have Jk+1 ≥ Jµk

for all k, so it follows that

J∞ = lim
k→∞

Jk ≥ lim inf
k→∞

Jµk ≥ J*
S .

We will also show that the reverse inequality holds, so that J∞ = J*
S . Indeed, for every S-regular policy µ

and all k ≥ 0, we have

J∞ = T kJ∞ ≤ T k
µJ∞ ≤ T k

µJ0,

from which by taking limit as k → ∞ and using the assumption J0 ∈ S, we obtain

J∞ ≤ lim
k→∞

T k
µJ0 = Jµ, ∀ µ ∈ MS .

Taking the infimum over µ ∈ MS , it follows that J∞ ≤ J*
S . Thus, J∞ = J*

S , and by using the properties of

J∞ proved in part (a), the result follows. Q.E.D.

Note that the fixed point J∞ in Prop. 5.8(a) need not be equal to J*
S or J*. As an illustration, consider

the shortest path Example 5.1 with S = ℜ, and a = 0, b > 0. Then if 0 < J0 < b, it can be seen that Jk = J0

for all k, so J* = 0 < J∞ and J∞ < J*
S = b.
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6. INFINITE AND FINITE COST CASES FOR IRREGULAR POLICIES

The results of the preceding section do not assert that J* is a fixed point of T or that J* = J*
S . In this

section we address this issue with some additional assumptions. A critical part of the analysis is based on

the strong PI property theorem of Prop. 5.6.

6.1. The Case where all Irregular Policies have Infinite Cost

We will first assume that all S-irregular policies have infinite cost for some initial state [cf. Eq. (5.8)]. The

following assumption and proposition were given in Section 3.2 of [Ber13], but the line of proof given here

is considerably streamlined thanks to the use of the strong PI property analysis of the preceding section,

which was developed after [Ber13] was published.

Assumption 6.1: We have a subset S ⊂ R(X) satisfying the following:

(a) S contains J̄ , and has the property that if J1, J2 are two functions in S, then S contains all

functions J with J1 ≤ J ≤ J2.

(b) The function J*
S = infµ∈MS

Jµ belongs to S.

(c) For each S-irregular policy µ and each J ∈ S, there is at least one state x ∈ X such that

lim sup
k→∞

(T k
µJ)(x) = ∞. (6.1)

(d) The control set U is a metric space, and the set

{
u ∈ U(x) | H(x, u, J) ≤ λ

}

is compact for every J ∈ S, x ∈ X , and λ ∈ ℜ.

(e) For each sequence {Jm} ⊂ S with Jm ↑ J for some J ∈ S,

lim
m→∞

H(x, u, Jm) = H (x, u, J) , ∀ x ∈ X, u ∈ U(x).

(f) For each function J ∈ S, there exists a function J ′ ∈ S such that J ′ ≤ J and J ′ ≤ TJ ′.

The conditions (b) and (c) of the preceding assumption were introduced in Props. 5.5 and 5.6. New

conditions are (a), (d), (e), and (f). In the case where S is the set of real-valued functions R(X) and

J̄ ∈ R(X), condition (a) is automatically satisfied, while condition (e) is typically verified easily. The

verification of condition (f) may be nontrivial in some cases. We postpone the discussion of this issue for

later (see Prop. 6.2).

The main result of this section is the following proposition.
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Proposition 6.1: Let Assumption 6.1 hold. Then:

(a) The optimal cost function J* is the unique fixed point of T within the set S.

(b) We have T kJ → J* for all J ∈ S.

(c) A policy µ is optimal if and only if TµJ* = TJ*. Moreover, there exists an optimal S-regular

policy.

(d) For any J ∈ S, if J ≤ TJ we have J ≤ J*, and if J ≥ TJ we have J ≥ J*.

(e) If in addition for each sequence {Jm} ⊂ S with Jm ↓ J for some J ∈ S, we have

H (x, u, J) = lim
m→∞

H(x, u, Jm), ∀ x ∈ X, u ∈ U(x), (6.2)

then a sequence {µk} generated by the PI algorithm starting from an S-regular policy µ0 satisfies

Jµk ↓ J*. Moreover, if the set of S-regular policies is finite, there exists k̄ ≥ 0 such that µk̄ is

optimal.

The proof of Prop. 6.1 will be developed through a sequence of lemmas. We first state without proof a

result given as Lemma 3.2.1 of [Ber13]. It guarantees that starting from an S-regular policy, the PI algorithm

is well defined. Similar results are well-known in DP theory.

Lemma 6.1: Let Assumption 6.1(d) hold. For every J ∈ S, there exists a policy µ such that

TµJ = TJ .

Next we restate, for easy reference, some of the results of the preceding section in the next two lemmas.

Lemma 6.2: Let Assumption 6.1(c) hold. A policy µ that satisfies TµJ ≤ J for some J ∈ S is

S-regular.

Proof: This is Prop. 5.5(b). Q.E.D.

Lemma 6.3: Let Assumption 6.1(b),(c),(d) hold. Then:

(a) The function J*
S of Assumption 6.1(b) is the unique fixed point of T within S.

(b) Every policy µ satisfying TµJ*
S = TJ*

S is optimal within the set of S-regular policies, i.e., µ is

S-regular and Jµ = J*
S . Moreover, there exists at least one such policy.

27



Proof: This is Prop. 5.6, parts (a) and (b) [Assumption 6.1(d) guarantees that for every J ∈ S, there

exists a policy µ such that TµJ = TJ (cf. Lemma 6.1)]. Q.E.D.

Let us also prove the following technical lemma that relies on the continuity Assumption 6.1(e).

Lemma 6.4: Let Assumption 6.1(d),(e) hold. Then if J ∈ S, {T kJ} ⊂ S, and T kJ ↑ J∞ for some

J∞ ∈ S, we have J∞ = J*
S .

Proof: We fix x ∈ X , and consider the sets

Uk(x) =
{
u ∈ U(x) | H(x, u, T kJ) ≤ J∞(x)

}
, k = 0, 1, . . . , (6.3)

which are compact by assumption. Let uk ∈ U(x) be such that

H(x, uk, T kJ) = inf
u∈U(x)

H(x, u, T kJ) = (T k+1J)(x) ≤ J(x)

(such a point exists by Lemma 6.1). Then uk ∈ Uk(x).

For every k, consider the sequence {ui}∞i=k. Since T kJ ↑ J∞, it follows that for all i ≥ k,

H(x, ui, T kJ) ≤ H(x, ui, T iJ) ≤ J∞(x).

Therefore from the definition (6.3), we have {ui}∞i=k ⊂ Uk(x). Since Uk(x) is compact, all the limit points

of {ui}∞i=k belong to Uk(x) and at least one limit point exists. Hence the same is true for the limit points of

the whole sequence {ui}. Thus if ũ is a limit point of {ui}, we have

ũ ∈ ∩∞
k=0Uk(x).

By Eq. (6.3), this implies that

H
(
x, ũ, T kJ

)
≤ J∞(x), k = 0, 1, . . . .

Taking the limit as k → ∞ and using Assumption 6.1(e), we obtain

(TJ∞)(x) ≤ H(x, ũ, J∞) ≤ J∞(x).

Thus, since x was chosen arbitrarily within X , we have TJ∞ ≤ J∞. To show the reverse inequality, we write

T kJ ≤ J∞, apply T to this inequality, and take the limit as k → ∞, so that J∞ = limk→∞ T k+1J ≤ TJ∞.

It follows that J∞ = TJ∞. Since J∞ ∈ S, by part (a) we have J∞ = J*
S . Q.E.D.

We are now ready to show Prop. 6.1 by using the additional parts (a) and (f) of Assumption 6.1.

Proof of Prop. 6.1: (a), (b) We will first prove that T kJ → J*
S for all J ∈ S, and we will use this to prove

that J*
S = J* and that there exists an optimal S-regular policy. Thus parts (a) and (b), together with the

existence of an optimal S-regular policy, will be shown simultaneously.
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We fix J ∈ S, and choose J ′ ∈ S such that J ′ ≤ J and J ′ ≤ TJ ′ [cf. Assumption 6.1(f)]. By the

monotonicity of T , we have T kJ ′ ↑ J∞ for some J∞ ∈ E(X). Let µ be an S-regular policy such that Jµ = J*
S

[cf. Lemma 6.3(b)]. Then we have, using again the monotonicity of T ,

J∞ = lim
k→∞

T kJ ′ ≤ lim sup
k→∞

T kJ ≤ lim
k→∞

T k
µJ = Jµ = J*

S . (6.4)

Since J ′ and J*
S belong to S, and J ′ ≤ T kJ ′ ≤ J∞ ≤ J*

S , Assumption 6.1(a) implies that {T kJ ′} ⊂ S, and

J∞ ∈ S. From Lemma 6.4, it then follows that J∞ = J*
S . Thus equality holds throughout in Eq. (6.4),

proving that limk→∞ T kJ = J*
S .

There remains to show that J*
S = J* and that there exists an optimal S-regular policy. To this end,

we note that by the monotonicity Assumption 2.1, for any policy π = {µ0, µ1, . . .}, we have

Tµ0 · · ·Tµk−1
J̄ ≥ T kJ̄ .

Taking the limit of both sides as k → ∞, we obtain

Jπ ≥ lim
k→∞

T kJ̄ = J*
S ,

where the equality follows since T kJ → J*
S for all J ∈ S (as shown earlier), and J̄ ∈ S [cf. Assumption

6.1(a)]. Thus for all π ∈ Π, Jπ ≥ J*
S = Jµ, implying that the policy µ that is optimal within the class of

S-regular policies is optimal over all policies, and that J*
S = J*.

(c) If µ is optimal, then Jµ = J* ∈ S, so by Assumption 6.1(c), µ is S-regular and therefore TµJµ = Jµ.

Hence, TµJ* = TµJµ = Jµ = J* = TJ*. Conversely, if J* = TJ* = TµJ*, µ is S-regular (cf. Lemma 6.2), so

J* = limk→∞ T k
µJ* = Jµ. Therefore, µ is optimal.

(d) If J ∈ S and J ≤ TJ , by repeatedly applying T to both sides and using the monotonicity of T , we obtain

J ≤ T kJ for all k. Taking the limit as k → ∞ and using the fact T kJ → J* [cf. part (b)], we obtain J ≤ J*.

The proof that J ≥ TJ implies J ≥ J* is similar.

(e) As in the proof of Prop. 5.4(b), the sequence {Jµk} converges monotonically to a fixed point of T , call it

J∞. Since J∞ lies between Jµ0 ∈ S and J*
S ∈ S, it must belong to S, by Assumption 6.1(a). Since the only

fixed point of T within S is J* [cf. part (a)], it follows that J∞ = J*. Q.E.D.

Finally let us give a proposition, which provides an approach to verify part (f) of Assumption 6.1. The

proposition will be used later in this section (cf. the proof of Prop. 6.4).

Proposition 6.2: Let S be equal to Rb(X), the subset of R(X) that consists of functions J that

are bounded below, i.e., for some b ∈ ℜ, satisfy J(x) ≥ b for all x ∈ X . Let parts (b), (c), and (d) of

Assumption 6.1 hold, and assume further that for all scalars r > 0, we have

TJ*
S − re ≤ T (J*

S − re), (6.5)

where e is the unit function, e(x) ≡ 1. Then part (f) of Assumption 6.1 also holds.
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Proof: Let J ∈ S, and let r > 0 be a scalar such that J*
S − re ≤ J [such a scalar exists since J*

S ∈ Rb(x)

by Assumption 6.1(b)]. Define J ′ = J*
S − re, and note that by Lemma 6.3, J*

S is a fixed point of T . By using

Eq. (6.5), we have

J ′ = J*
S − re = TJ*

S − re ≤ T (J*
S − re) = TJ ′,

thus proving part (f) of Assumption 6.1. Q.E.D.

Several examples of applications of Prop. 6.1 are given in recent papers of the author, such as [Ber15a]

that considers minimax-type of shortest problems, and [Ber16] that considers SSP problems with multiplica-

tive or exponential cost functions (see also [DeR79], [Pat01], [Ber13], [CaR14]). The paper [Ber15b] considers

an infinite-spaces optimal control problem with nonnegative cost per stage, where the objective is to steer a

deterministic system towards a set of termination states. We consider a similar but more general version of

this problem, where we remove the assumption of nonnegativity for the cost per stage (the paper [Ber15b]

considers also a related minimax problem, as well as PI-related methodology that we do not address here).

6.2. Application to Deterministic Continuous-State Problems

Let us consider a deterministic optimal control problem with the system equation

xk+1 = f(xk, uk), k = 0, 1, . . . , (6.6)

where xk and uk are the state and control at stage k, lying in sets X and U , respectively, and f is a function

mapping X × U to X . The control uk must be chosen from a constraint set U(xk). The cost per stage

is denoted g(x, u) (note that g can take both positive and negative values). No restrictions are placed on

X and U : for example, they may be finite sets as in deterministic shortest path problems, or they may be

continuous spaces as in classical problems of control to the origin or some other terminal set.

The cost function of a policy π = {µ0, µ1, . . .} starting at an initial state x0 is

Jπ(x0) = lim sup
N→∞

N−1∑

k=0

g
(
xk, µk(xk)

)
, x0 ∈ X, (6.7)

where
(
xk, µk(xk)

)
, k = 0, 1, . . . , are the state-control pairs using π. We assume that there is a nonempty

stopping set X0 ⊂ X , consisting of cost-free and absorbing states in the sense that

g(x, u) = 0, x = f(x, u), ∀ x ∈ X0, u ∈ U(x). (6.8)

Clearly, for x ∈ X0, we have J*(x) = 0, as well as Jπ(x) = 0 for all policies π ∈ Π. Besides X0, another

interesting subset of X is

Xf =
{
x ∈ X | J*(x) < ∞

}
.

Ordinarily, in practical applications, the states in Xf are those from which one can reach the stopping set

X0, at least asymptotically.

To formulate a corresponding abstract DP problem, we introduce the mapping Tµ : R(X) 7→ R(X) by

(TµJ)(x) = g
(
x, µ(x)

)
+ J

(
f(x, µ(x))

)
, x ∈ X, (6.9)
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and the mapping T : E(X) 7→ E(X) given by

(TJ)(x) = inf
u∈U(x)

{
g(x, u) + J

(
f(x, u)

)}
, x ∈ X.

The initial function J̄ is the zero function [J̄(x) ≡ 0]. An important fact is that because the problem is

deterministic, J* is a fixed point of T . †

We say that a policy µ is terminating if the state sequence {xk} generated starting from any x ∈ Xf

and using µ reaches X0 in finite time, i.e., satisfies xk̄ ∈ X0 for some index k̄. The set of terminating policies

is denoted by T . Our key assumption is that for x ∈ Xf , the optimal cost J*(x) can be approximated

arbitrarily closely by using terminating policies. In particular, we assume the following.

Assumption 6.2: (Near-Optimal Termination) For every pair (x, ǫ) with x ∈ Xf and ǫ > 0,

there exists a terminating policy µ that satisfies Jµ(x) ≤ J*(x) + ǫ.

This assumption implies in particular that the optimal cost function over terminating policies,

Ĵ(x) = inf
µ∈T

Jµ(x), x ∈ X,

is equal to J*. Moreover since J* is a fixed point of T (because we are dealing with a deterministic problem),

it follows that Ĵ is a fixed point of T , which brings to bear Prop. 5.1.

There are easily verifiable conditions that imply Assumption 6.2, some of which are discussed in

[Ber15b], where it is assumed in addition that g ≥ 0. A prominent case is when X and U are finite, so

the problem becomes a deterministic shortest path problem. If all cycles of the state transition graph have

positive length, all policies π that do not terminate from a state x ∈ Xf must satisfy Jπ(x) = ∞, implying

that there exists an optimal policy that terminates from all x ∈ Xf . Thus, in this case Assumption 6.2

is naturally satisfied. Another interesting case arises when g(x, u) = 0 for all (x, u) except if x /∈ X0 and

f(x, u) ∈ X0, in which case we have g(x, u) < 0, i.e., there no cost incurred except for a negative cost

(positive reward) upon termination. Then, assuming that X0 can be reached from all states, Assumption

6.2 is satisfied. This is also an example of a deterministic problem where zero length cycles are common.

When X is the n-dimensional Euclidean space ℜn, a primary case of interest in control system design

contexts, it may easily happen that the optimal policies are not terminating from some x ∈ Xf . Instead the

optimal state trajectories may approach X0 asymptotically. This is true for example in the classical linear-

quadratic optimal control problem, where under some natural controllability and observability conditions,

the optimal closed-loop system is linear and stable, so the state will typically never reach the termination

set X0 = {0} in finite time, although it will approach it asymptotically (see e.g., [Ber17a], Section 3.1).

However, the Assumption 6.2 is satisfied (see [Ber15b]).

† For any policy π = {µ0, µ1, . . .}, using the definition of Jπ, we have for all x,

Jπ(x) = g
(
x, µ0(x)

)
+ Jπ1

(
f(x, µ0(x))

)
, (6.10)

where π1 = {µ1, µ2, . . .}. By taking the infimum of the left-hand side over π and the infimum of the right-hand side

over π1 and then µ0, we obtain J∗ = TJ∗.
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Let us denote by S the set of functions

S =
{
J ∈ E(X) | J(x) = 0, ∀ x ∈ X0, J(x) ∈ ℜ, ∀ x ∈ Xf , J(x) > −∞, ∀ x ∈ X

}
. (6.11)

Since X0 consists of cost-free and absorbing states [cf. Eq. (6.8)], and J*(x) > −∞ for all x ∈ X (by

Assumption 6.2), the set S contains the cost function Jµ of all policies µ, as well as J*. Moreover it

can be seen that every terminating policy is S-regular, i.e., T ⊂ MS , which implies that J*
S = Ĵ = J*.

The reason is that the terminal cost is zero after termination for any terminal cost function J ∈ S, i.e.,

(T k
µJ)(x) = (T k

µ J̄)(x) = Jµ(x) for µ ∈ T , x ∈ Xf , and k sufficiently large.

The following proposition is a consequence of Prop. 5.1, the deterministic character of the problem

(which guarantees that J* is a fixed point of T ), and Assumption 6.2 (which guarantees that J*
S = Ĵ = J*).

Proposition 6.3: Let Assumption 6.2 hold. Then:

(a) J* is the only fixed point of T within the set of all J ∈ S such that J ≥ J*.

(b) We have T kJ → J* for every J ∈ S such that J ≥ J*.

(c) If µ∗ is terminating and Tµ∗J* = TJ*, then µ∗ is optimal. Conversely, if µ∗ is terminating and

is optimal, then Tµ∗J* = TJ*.

For an example of what may happen in the absence of Assumption 6.2, consider the deterministic

shortest path Example 5.1 with a = 0, b > 0, and S = ℜ. Here we have 0 = J* < Ĵ = b, while the set of

fixed points of T is the interval (−∞, b].

We will now consider additional assumptions, which guarantee the stronger conclusions of Prop. 6.1.

We first replace the set S of Eq. (6.11) with the following subset of functions that are bounded below:

Ŝ =
{
J ∈ E(X) | J(x) = 0, ∀ x ∈ X0, J(x) ∈ ℜ, ∀ x ∈ Xf , J is uniformly bounded below by a scalar

}
.

We have the following proposition.

Proposition 6.4: Let Assumption 6.2 hold, and assume further that:

(1) J*
Ŝ
∈ Ŝ.

(2) For each Ŝ-irregular policy µ and each J ∈ Ŝ, there is at least one state x ∈ X such that

lim supk→∞ (T k
µJ)(x) = ∞.

(3) The control set U is a metric space, and the set
{
u ∈ U(x) | g(x, u)+J

(
f(x, u)

)
≤ λ

}
is compact

for every J ∈ Ŝ, x ∈ X , and λ ∈ ℜ.

Then:

(a) The optimal cost function J* is the unique fixed point of T within the set Ŝ.

(b) We have T kJ → J* for all J ∈ Ŝ.
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(c) A policy µ is optimal if and only if TµJ* = TJ*. Moreover, there exists an optimal Ŝ-regular

policy.

(d) For any J ∈ Ŝ, if J ≤ TJ we have J ≤ J*, and if J ≥ TJ we have Ĵ ≥ J*.

(e) A sequence {µk} generated by the PI algorithm starting from an Ŝ-regular policy µ0 satisfies

Jµk ↓ J*.

Proof: The proof consists of showing that all parts of Assumption 6.1 are satisfied with Ŝ used in place

of S, so Prop. 6.1 applies. Indeed, parts (a) and (e) of this assumption are trivially satisfied, while parts

(b)-(d) are the conditions (1)-(3) of the proposition. Then Lemma 6.3 is used to assert that J*
Ŝ
is a fixed

point of T . Moreover, Assumption 6.1(f) is shown using the line of proof of Prop. 6.2. In particular, for any

J ∈ S, we let r > 0 be a scalar such that J*
S − re ≤ J [such a scalar exists since J*

S ∈ Ŝ by condition (1)].

Defining J ′ = J* − re where r > 0 is sufficiently large so that J ′ ≤ J , we have

J ′ = J*
S − re = TJ*

S − re ≤ T (J*
S − re) = TJ ′,

so Assumption 6.1(f) holds. Finally the additional assumption needed to apply Prop. 6.1(e) is clearly satisfied

in this deterministic problem. Q.E.D.

6.3. The Case of Irregular Policies with Finite Cost

In this section, we consider problems where some S-irregular policies may have finite cost for all states, so

Prop. 6.1 cannot be used. We address this issue by introducing a perturbation that allows us to use Prop.

6.1 for the perturbed cost problem, and take the limit as the perturbation vanishes. The idea is that with a

perturbation, the cost functions of S-irregular policies may increase disproportionately relative to the cost

functions of the S-regular policies, thereby making the problem more amenable to analysis.

In particular, given p : X 7→ [0,∞), a nonnegative “perturbation function” of x, for each δ ≥ 0 and

policy µ, we consider the mappings Tµ,δ and Tδ given by

(Tµ,δJ)(x) = H
(
x, µ(x), J

)
+ δp(x), x ∈ X, TδJ = inf

µ∈M
Tµ,δJ. (6.12)

The cost functions of policies π = {µ0, µ1, . . .} ∈ Π and µ ∈ M, and optimal cost function J*
δ are

Jπ,δ(x) = lim sup
k→∞

Tµ0,δ · · ·Tµk,δ
J̄ , Jµ,δ(x) = lim sup

k→∞
T k
µ,δJ̄ , J*

δ = inf
π∈Π

Jπ,δ.

We refer to the problem associated with the mappings Tµ,δ as the δ-perturbed problem.

The following proposition shows that if the δ-perturbed problem is “well-behaved” with respect to a

subset of S-regular policies, then its cost function J*
δ can be used to approximate the optimal cost function

over this subset of policies only, and moreover J*
S is a fixed point of T .

Proposition 6.5: Given a set S ⊂ E(X) and a subset M̂ of S-regular policies, assume that for

every δ > 0:

(1) The Bellman equation J*
δ = TδJ*

δ holds for the δ-perturbed problem.
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(2) For every ǫ > 0, there exists a policy µǫ ∈ M̂ that is ǫ-optimal for the δ-perturbed problem, i.e.,

Jµǫ,δ ≤ J*
δ + ǫ e, where e is the unit function e(x) ≡ 1.

(3) For every µ ∈ M̂, we have

Jµ,δ ≤ Jµ + wµ,δ,

where wµ,δ is a function such that limδ↓0 wµ,δ = 0.

Consider Ĵ , the optimal cost function over the policies in M̂ only: Ĵ = inf
µ∈M̂

Jµ.

(a) We have limδ↓0 J*
δ = Ĵ .

(b) Assume in addition that H has the property that for every sequence {Jm} ⊂ S with Jm ↓ J , we

have

lim
m→∞

H(x, u, Jm) = H(x, u, J), ∀ x ∈ X, u ∈ U(x). (6.13)

Then J*
S is a fixed point of T , we have J*

S = Ĵ , and the conclusions of Prop. 5.1 hold.

Proof: (a) By using conditions (2) and (3), we have

Ĵ − ǫ e ≤ Jµǫ − ǫ e ≤ Jµǫ,δ − ǫ e ≤ J*
δ ≤ Jµ,δ ≤ Jµ + wµ,δ, ∀ δ > 0, µ ∈ M̂.

By taking the limit as ǫ ↓ 0, we obtain

Ĵ ≤ J*
δ ≤ Jµ + wµ,δ, ∀ δ > 0, µ ∈ M̂.

By taking the limit as δ ↓ 0 and then the infimum over all µ ∈ M̂, it follows that

Ĵ ≤ lim
δ↓0

J*
δ ≤ inf

µ∈M̂

Jµ = Ĵ .

(b) From condition (1) and the fact J*
δ ≥ Ĵ shown in part (a), we have for all δ > 0,

J*
δ = TδJ*

δ ≥ TJ*
δ ≥ T Ĵ,

and by taking the limit as δ ↓ 0 and using part (a), we obtain Ĵ ≥ T Ĵ. For the reverse inequality, let {δm}

be a sequence with δm ↓ 0. Using condition (1) we have for all m,

H(x, u, J*
δm

) + δmp(x) ≥ (TδmJ*
δm

)(x) = J*
δm

(x), ∀ x ∈ X, u ∈ U(x).

Taking the limit as m → ∞, and using Eq. (6.13) and the fact J*
δm

↓ Ĵ [cf. part (a)], we have

H(x, u, Ĵ) ≥ Ĵ(x), ∀ x ∈ X, u ∈ U(x),

so that T Ĵ ≥ Ĵ . Thus Ĵ is a fixed point of T , and also satisfies Ĵ ≤ J*
δ0

≤ Jµδ0
∈ S. By Prop. 3.2, we have

that J*
S = Ĵ . It follows that the assumptions of Prop. 5.1 are satisfied. Q.E.D.
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The preceding proposition applies even if limδ↓0 J*
δ (x) > J*(x) for some x ∈ X . This is illustrated

by the deterministic shortest path Example 5.1, for the zero-cycle case where a = 0 and b > 0. Then for

S = ℜ, we have J*
S = b > 0 = J*, while the proposition applies because its assumptions are satisfied with

p(x) ≡ 1. Consistently with the conclusions of the proposition, we have J*
δ = b + δ, so J*

S = limδ↓0 J*
δ and

J*
S is a fixed point of T . We refer to [Ber13] and [BeY16] for a more detailed discussion of the approach of

this section, applications, examples and counterexamples, and also for a PI algorithm to find J*
S , which is

based on perturbations. The paper [Ber17b] explores the connections of the perturbation approach of this

section with classical notions of feedback control stability. The following example shows how the perturbation

approach provides an analysis of linear-quadratic problems, which is consistent with the behavior illustrated

in Example 3.1.

Example 6.1 (Linear-Quadratic Optimal Control Problem)

Consider the classical linear-quadratic problem, which involves the deterministic linear system

xk+1 = Axk +Buk, k = 0, 1, . . . ,

where xk ∈ ℜn, uk ∈ ℜm for all k, and A andB are given matrices. The cost function of a policy π = {µ0, µ1, . . .}

has the form

Jπ(x0) = lim
N→∞

N−1∑

k=0

(
x
′
kQxk + µk(xk)

′
Rµk(xk)

)
,

where x′ denotes the transpose of a column vector x, Q is a positive semidefinite symmetric n× n matrix, and

R is a positive definite symmetric m×m matrix.

The theory of this problem is well-known and is discussed in various forms in many sources, including

the textbooks [AnM79] and [Ber17a] (Section 3.1). The solution revolves around stationary policies µ that are

linear , in the sense that µ(x) = Lx, where L is some n ×m matrix, and stable, in the sense that the matrix

A+BL has eigenvalues that are strictly within the unit circle. Thus for a linear stable policy, the closed loop

system xk+1 = (A+BL)xk is stable. We assume that there exists at least one linear stable policy.

The solution also revolves around the algebraic matrix Riccati equation

P = A
′
(
P − PB(B′

PB +R)−1
B

′
P
)
A+Q,

where the unknown is P , a symmetric n × n matrix. It is well-known that if Q is positive definite, then the

Riccati equation has a unique solution P ∗ within the class of positive semidefinite symmetric matrices, and

that the optimal cost function has the form J∗(x) = x′P ∗x. Moreover, there is a unique optimal policy, and

this policy is linear stable (the existence of an optimal linear stable policy can be extended to the case where Q

is instead positive semidefinite, but satisfies a certain “detectability” condition; see the textbooks cited earlier).

However, in the general case where Q is positive semidefinite without further assumptions (e.g., Q = 0),

Example 3.1 shows that the optimal policy need not be stable, and that the optimal cost function over just the

linear stable policies may be different than J∗. We address this situation with the aid of the perturbation-based

analysis of this section.

The problem can be converted to our abstract format with the identifications X = ℜn, U(x) ≡ ℜm,

J̄(x) ≡ 0, and

H(x, u, J) = x
′
Qx+ u

′
Ru+ J(Ax+Bu).

Let S be the set of functions of the form J(x) = x′Px, where P is a positive semidefinite symmetric matrix,

let M̂ be the set of linear stable policies, and note that similar to Example 3.1, every linear stable policy is
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S-regular. This is due to the fact that for every function J(x) = x′Px and linear stable policy µ(x) = Lx,

(T k
µJ)(x0) and (T k

µ J̄)(x0) differ by the term x′
0(A+BL)k

′
P (A+BL)kx0, which vanishes in the limit.

Consider the perturbation function p(x) = ‖x‖2. Then for δ > 0, the mapping Tµ,δ of Eq. (6.12) has the

form

(Tµ,δJ)(x) = x
′(Q+ δI)x+ µ(x)′Rµ(x) + J

(
Ax+Bµ(x)

)
,

where I is the identity, and corresponds to the linear-quadratic problem where Q is replaced by the positive

definite matrix Q+ δI . This problem admits a quadratic positive definite optimal cost J∗
δ (x) = x′P ∗

δ x, and an

optimal linear stable policy. Moreover, the conditions of Prop. 6.5 are satisfied. It follows that J∗
S is equal to

the optimal cost over just the linear stable policies J∗

M̂
, and is obtained as limδ→0 J

∗
δ , which also implies that

J∗

M̂
= x′P̂ x where P̂ = limδ→∞ P ∗

δ .

7. CONCLUDING REMARKS

We have provided an analysis of challenging abstract DP models based on the notion of regularity. In

particular, we have extended this notion to nonstationary policies, and we have highlighted its connection to

an earlier development for stationary policies. We have also streamlined and strengthened the corresponding

analysis based on PI-related ideas. The main approach is to start from an interesting set of policy-state pairs

satisfying a regularity property, and then characterize the region of convergence of VI. We have shown that

this approach can lead to new results in the context of a variety of optimal control problems. In addition

to the applications described in this paper, our approach has been applied to minimax and exponential cost

shortest path problems [Ber15a], [Ber16]. Our approach may also be applied to other types of problems that

involve a termination state and fit the abstract DP framework of this paper, including SSP game problems

[PaB99], [Yu11]. These and other related applications are interesting subjects for further research.

Our analysis in this paper focuses on exact forms of DP. However, there are approximation frameworks

(such as aggregation and others) that preserve the essential monotonicity property of the DP mapping. For

such an approximation setting our analysis applies, but this direction has not been investigated so far, except

for the data-perturbed context of Section 6.3, which has been analyzed in detail in the paper [BeY16] for

the case of an SSP problem.
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