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Abstract

In this paper we consider shortest path problems in a directed graph where the transitions between

nodes are subject to uncertainty. We use a minimax formulation, where the objective is to guarantee that

a special destination state is reached with a minimum cost path even under the worst possible instance of

the uncertainty. Problems of this type arise, among others, in planning and pursuit-evasion contexts, and in

model predictive control. Our analysis makes use of the recently developed theory of abstract semicontractive

dynamic programming models. We investigate questions of existence and uniqueness of solution of the

optimality equation, existence of optimal paths, and the validity of various algorithms patterned after the

classical methods of value and policy iteration, as well as a new Dijkstra-like algorithm for problems with

nonnegative arc lengths.

1. INTRODUCTION

In this paper, we discuss shortest path problems that embody a worst-case view of uncertainty. These

problems relate to several other types of problems arising in stochastic and minimax control, model predictive

control, Markovian decision processes, planning, sequential games, robust and combinatorial optimization,

and solution of discretized large-scale differential equations. Consequently, our analysis and algorithms relate

to a large body of existing theory. However, in this paper we rely on a recently developed abstract dynamic

programming theory of semicontractive problems, and capitalize on general results developed in the context

of this theory [Ber13]. We first discuss informally these connections and we survey the related literature.

Relations with Other Problems and Literature Review

The closest connection to our work is the classical shortest path problem where the objective is to reach

a destination node with a minimum length path from every other node in a directed graph. This is a

fundamental problem that has an enormous range of applications and has been studied extensively (see

e.g., the surveys [Dre69], [GaP88], and many textbooks, including [Roc84], [AMO89], [Ber98], [Ber05]).

The assumption is that at any node x, we may determine a successor node y from a given set of possible

successors, defined by the arcs (x, y) of the graph that are outgoing from x.

In some problems, however, following the decision at a given node, there is inherent uncertainty about

the successor node. In a stochastic formulation, the uncertainty is modeled by a probability distribution

over the set of successors, and our decision is then to choose at each node one distribution out of a given set
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of distributions. The resulting problem, known as stochastic shortest path problem (also known as transient

programming problem), is a total cost infinite horizon Markovian decision problem, with a substantial

analytical and algorithmic methodology, which finds extensive applications in problems of motion planning,

robotics, and other problems where the aim is to reach a goal state with probability 1 under stochastic

uncertainty (see [Pal67], [Der70], [Pli78], [Whi82], [BeT89], [BeT91], [Put94], [HCP99], [HiW05], [JaC06],

[LaV06], [Bon07], [Ber12], [BeY13], [CCV13], [YuB13a]). Another important area of application is large-

scale computation for discretized versions of differential equations (such as the Hamilton-Jacobi-Bellman

equation, and the eikonal equation); see [GoR85], [Fal87], [KuD92], [BGM95], [Tsi95], [PBT98], [Set99a],

[Set99b], [Vla08], [AlM12], [ChV12], [AnV13], [Mir14].

In this paper, we introduce a sequential minimax formulation of the shortest path problem, whereby

the uncertainty is modeled by set membership: at a given node, we may choose one subset out of a given

collection of subsets of nodes, and the successor node on the path is chosen from this subset by an antagonistic

opponent. Our principal method of analysis is dynamic programming (DP for short). Related problems have

been studied for a long time, in the context of control of uncertain discrete-time dynamic systems with a

set membership description of the uncertainty (starting with the theses [Wit66] and [Ber71], and followed

up by many other works; see e.g., the monographs [BaB91], [KuV97], [BlM08], the survey [Bla99], and the

references given there). These problems are relevant for example in the context of model predictive control

under uncertainty, a subject of great importance in the current practice of control theory (see e.g., the

surveys [MoL99], [MRR00], and the books [Mac02], [CaB04], [RaM09]; model predictive control with set

membership disturbances is discussed in the thesis [Ker00] and the text [Ber05], Section 6.5.2).

Sequential minimax problems have also been studied in the context of sequential games (starting with

the paper [Sha53], and followed up by many other works, including the books [BaB91], [FiV96], and the

references given there). Sequential games that involve shortest paths are particularly relevant; see the

works [PaB99], [GrJ08], [Yu11], [BaL13]. An important difference with some of the works on sequential

games is that in our minimax formulation, we assume that the antagonistic opponent knows the decision

and corresponding subset of successor nodes chosen at each node. Thus in our problem, it would make a

difference if the decisions at each node were made with advance knowledge of the opponent’s choice (“min-

max” is typically not equal to “max-min” in our context). Generally shortest path games admit a simpler

analysis when the arc lengths are assumed nonnegative or positive (as is done for example in the recent works

[GrJ08], [BaL13]), when the problem inherits the structure of negative DP (see [Str66], or the texts [Put94],

[Ber12]) or abstract monotone increasing abstract DP models (see [Ber77], [BeS78], [Ber13]). However, our

formulation and line of analysis is based on the recently introduced abstract semicontractive DP model of

[Ber13], and allows negative as well as nonnegative arc lengths. A further specialized analysis of our problem

is possible when the arc lengths are restricted to be nonnegative, similar to the related paper [Ber14], but

this lies beyond the scope of this paper.

An important application of our shortest path problems is in pursuit-evasion (or search and rescue)

contexts, whereby a team of “pursuers” are aiming to reach one or more “evaders” that move unpredictably.

Problems of this kind have been studied extensively from different points of view (see e.g., [Par76], [MHG88],

[BaS91], [HKR93], [BFS94], [BBF95], [GLL99], [VKS02], [LaV06], [AHK07], [BBH08], [BaL13]). For our

shortest path formulation to be applicable to such a problem, the pursuers and the evaders must have

perfect information about each others’ positions, and the Cartesian product of their positions (the state of

the system) must be restricted to the finite set of nodes of a given graph, with known transition costs (i.e.,

a “terrain map” that is known a priori).

We may deal with pursuit-evasion problems with imperfect state information and set-membership
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uncertainty by means of a reduction to perfect state information, which is based on set membership estimators

and the notion of a sufficiently informative function, introduced in the thesis [Ber71] and in the subsequent

paper [BeR73]. In this context, the original imperfect state information problem is reformulated as a problem

of perfect state information, where the states correspond to subsets of nodes of the original graph (the set of

states that are consistent with the observation history of the system, in the terminology of set membership

estimation). Thus, since X has a finite number of nodes, the reformulated problem still involves a finite (but

much larger) number of states, and may be dealt with using the methodology of this paper. Note that the

problem reformulation just described is also applicable to general minimax control problems with imperfect

state information, not just to pursuit-evasion problems.

Our work is also related to the subject of robust optimization (see e.g., the book [BGN09] and the

recent survey [BBC11]), which includes minimax formulations of general optimization problems with set

membership uncertainty. However, our emphasis here will revolve around the destination node and the

requirement for termination, which is the salient feature and the essential structure of shortest path prob-

lems. Moreover, a difference with other works on robust shortest path selection (see e.g., [YuY98], [BeS03],

[MoG04], [EGB12]) is that in our work the uncertainty about transitions or arc cost data at a given node is

decoupled from the corresponding uncertainty at other nodes. This allows a DP formulation of our problem.

Because the problem of this paper has not been considered earlier, at least as formulated here, our

results are new. The line of analysis is also new, and is based on the connection with the recent theory of

abstract semicontractive DP mentioned earlier. In addition to simpler proofs, a major benefit of this abstract

line of treatment is deeper insight into the structure of our problem, and the nature of our analytical and

computational results. Several related problems, involving for example an additional stochastic type of

uncertainty, admit a similar treatment. Some of these problems are described in the last section, and their

analysis and associated algorithms are subjects for further research.

Robust Shortest Path Problem Formulation

To formally describe our problem, we consider a graph with a finite set of nodes X ∪ {t} and a finite set of

directed arcs A ⊂
{

(x, y) | x, y ∈ X ∪ {t}
}

, where t is a special node called the destination. At each node

x ∈ X we may choose a control or action u from a nonempty set U(x), which is a subset of a finite set U .

Then a successor node y is selected by an antagonistic opponent from a nonempty set Y (x, u) ⊂ X ∪ {t}
and a cost g(x, u, y) is incurred. The destination node t is absorbing and cost-free, in the sense that the only

outgoing arc from t is (t, t) and we have g(t, u, t) = 0 for all u ∈ U(t).

A policy is defined to be a function µ that assigns to each node x ∈ X a control µ(x) ∈ U(x). We

denote the finite set of all policies byM. A possible path under a policy µ starting at node x0 ∈ X is an arc

sequence of the form

p =
{

(x0, x1), (x1, x2), . . .
}
, (1.1)

such that xk+1 ∈ Y
(
xk, µ(xk)

)
for all k ≥ 0. The set of all possible paths under µ starting at x is denoted

by P (x, µ). The length of a path p ∈ P (x, µ) is defined by

Lp,µ =

∞∑

k=0

g
(
xk, µ(xk), xk+1

)
,

if the series above is convergent, and more generally by

Lp,µ = lim sup
m→∞

m∑

k=0

g
(
xk, µ(xk), xk+1

)
, (1.2)
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if it is not. Note that the length of p depends on the corresponding policy, and not just on the arcs of p.

For completeness, we also define the length of a portion

{
(xi, xi+1), (xi+1, xi+2), . . . , (xm, xm+1)

}

of a path p ∈ P (x0, µ), consisting of a finite number of consecutive arcs, by

m∑

k=i

g
(
xk, µ(xk), xk+1

)
.

When confusion cannot arise we will also refer to such a finite-arc portion as a path. However, in the absence

of a clear implication to the contrary, a path in what follows will mean an infinite arc sequence of the form

(1.1). Of special interest are cycles, that is, paths of the form
{

(xi, xi+1), (xi+1, xi+2), . . . , (xi+m, xi)
}

. Paths

that do not contain any cycle other than the self-cycle (t, t) are called simple.

A path p is said to be terminating if it has the form

p =
{

(x0, x1), (x1, x2), . . . , (xm, t), (t, t), . . .
}
, (1.3)

where m is a positive integer, and x0, . . . , xm are nondestination nodes. Since g(t, u, t) = 0 for all u ∈ U(t),

for a policy µ, the length of a terminating path p ∈ P (x0, µ) of the form (1.3), is given by

Lp,µ = g
(
xm, µ(xm), t

)
+

m−1∑

k=0

g
(
xk, µ(xk), xk+1

)
,

and is equal to the length of its initial portion that consists of the first m+ 1 arcs.

An important characterization of a policy µ is provided by the subset of arcs [other than (t, t)] that

may be included in paths corresponding to µ:

Aµ = ∪x∈X
{

(x, y) | y ∈ Y
(
x, µ(x)

)}
. (1.4)

We say that Aµ is destination-connected if for each x ∈ X there exists a terminating path in P (x, µ). We

say that µ is proper if the subgraph of arcs Aµ is acyclic (i.e., contains no cycles). Thus µ is proper if and

only if all the paths in ∪x∈XP (x, µ) are simple and hence terminating (equivalently µ is proper if and only

if Aµ is destination-connected and has no cycles). The term “proper” is consistent with a similar term in

stochastic shortest path problems, where it indicates a policy under which the destination is reached with

probability 1, see e.g., [Pal67], [BeT89], [BeT91]. If µ is not proper, it is called improper , in which case the

subgraph of arcs Aµ must contain a cycle; see the examples of Fig. 1.1.

For a proper µ, we associate with every x ∈ X the worst-case path length over the finite set of possible

paths starting from x, which is denoted by

Jµ(x) = max
p∈P (x,µ)

Lp,µ, x ∈ X. (1.5)

Thus Jµ(x) is the length of the longest path from x to t in the subgraph of arcs Aµ. Since this subgraph

is acyclic, −Jµ(x) can be obtained by solving the shortest path problem obtained when the signs of the arc

lengths g
(
x, µ(x), y

)
, (x, y) ∈ Aµ, are reversed. In particular, Jµ is real-valued, and it is the unique solution
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Figure 1.1. Graph representation of a robust shortest path problem with X = {1, 2}, two

controls at node 1, and one control at node 2. There are two policies, µ and µ, corresponding to

the two controls at node 1. The figure shows the subgraphs of arcs Aµ and Aµ.t

of the optimality equation (or Bellman equation) for the longest path problem associated with the proper

policy µ and the acyclic subgraph of arcs Aµ:

Jµ(x) =

{
maxy∈Y (x,µ(x))

[
g
(
x, µ(x), y

)
+ Jµ(y)

]
if x ∈ X,

0 if x = t.
(1.6)

We extend the definition of Jµ to any policy µ, proper or improper, as follows:

Jµ(x) = lim sup
k→∞

sup
p∈P (x,µ)

Lkp,µ, x ∈ X, (1.7)

where Lkp,µ is the sum of the lengths of the first k arcs in the path p.

Our problem is to find an optimal proper policy, i.e., one that minimizes Jµ(x) over all proper µ,

simultaneously for all x ∈ X, under assumptions that parallel those for the classical shortest path problem.

We refer to this as the problem of robust shortest path selection (RSP for short). Note that in our problem,

reaching the destination starting from any node is a requirement , regardless of the choices of the hypothetical

antagonistic opponent. This is significant since there may exist improper policies µ and nodes x such that

Jµ(x) < infµ′:proper Jµ′(x), because some paths inAµ contain cycles with negative length. While our analysis

with address this possibility, our assumptions for the most part will exclude it (see Assumption 2.1 in the

next section).

Of course for the RSP problem to have a feasible solution and thus be meaningful, there must exist

at least one proper policy, and this may be restrictive for a given problem. We note that the existence of a

proper policy may be verified by applying a reachability algorithm, which constructs the sequence {Nk} of

sets

Nk+1 = Nk ∪
{
x ∈ X ∪ {t} | there exists u ∈ U(x) with Y (x, u) ⊂ Nk

}
,

starting with N0 = {t} (see [Ber71], [BeR71]). A proper policy exists if and only if this algorithm stops with

a final set ∪kNk equal to X ∪ {t}. If there is no proper policy, this algorithm will stop with ∪kNk equal to

the strict subset of X ∪ {t} of nodes starting from which there exists a terminating path under some policy.

The problem may then be reformulated over the reduced graph consisting of the node set ∪kNk.
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One may deal with cases where the existence of a proper policy is unknown by introducing for every x

an artificial “termination action” u into U(x) [i.e., a u with Y (x, u) =
{

(x, t)
}

], associated with very large

length [i.e., g(x, u, t) = g >> 1]. Then the policy µ that selects the termination action at each x is proper

and has cost function Jµ(x) ≡ g. In the problem thus reformulated the optimal cost over proper policies will

be unaffected for all nodes x for which there exists a proper policy µ with Jµ(x) < g. Since for a proper µ,

the cost Jµ(x) is bounded above by the number of nodes in X times the largest arc length, a suitable value

of g is readily available.

In Section 2 we will formulate RSP in a way that the semicontractive DP framework can be applied.

In Section 3, we will describe briefly this framework and we will quote the results that will be useful to us.

In Section 4, we will develop our main analytical results for RSP. In Section 5, we will discuss algorithms of

the value and policy iteration type, by specializing corresponding algorithms of semicontractive DP, and by

adapting available algorithms for stochastic shortest path problems. Among others, we will give a Dijkstra-

like algorithm for problems with nonnegative arc lengths, which terminates in a number of iterations equal

to the number of nodes in the graph, and has low order polynomial complexity.

2. MINIMAX FORMULATION

In this section we will reformulate RSP as a minimax problem, whereby given a policy µ, an antagonistic

opponent selects a successor node y ∈ Y
(
x, µ(x)

)
for each x ∈ X, with the aim of maximizing the lengths of

the resulting paths. We will initially assume the following.

Assumption 2.1:

(a) There exists at least one proper policy.

(b) For every improper policy µ, all cycles in the subgraph of arcs Aµ have positive length.

The preceding assumption parallels and generalizes the typical assumptions in the classical deterministic

shortest path problem, i.e., the case where Y (x, µ) consists of a single arc. Then condition (a) is equivalent

to assuming that each node is connected to the destination with a path, while condition (b) is equivalent to

assuming that all directed cycles in the graph have positive length. Later in Section 4 we will replace “positive

length” with “nonnegative length” in condition (b) above, in which case the condition is automatically

satisfied when all arc lengths g(x, u, y) are nonnegative.

We consider the problem of finding

J*(x) = min
µ∈M

Jµ(x), (2.1)

and a policy attaining the minimum above, simultaneously for all x ∈ X. Note that the minimization is

over all policies, not just the proper policies. However, under Assumption 2.1 it will turn out that improper

policies cannot attain the minimum above, so minimizing Jµ(x) over all policies is equivalent to minimizing

it over just the proper policies.
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Embedding Within an Abstract DP Model

We will now reformulate the minimax problem of Eq. (2.1) more abstractly, by expressing it in terms of the

mapping that appears in Bellman’s equation (1.6), thereby bringing to bear the theory of abstract DP. We

denote by E(X) the set of functions J : X 7→ [−∞,∞], and by R(X) the set of functions J : X 7→ (−∞,∞).

Note that since X is finite, R(X) can be viewed as a finite-dimensional Euclidean space. We introduce the

mapping H : X × U × E(X) 7→ [−∞,∞] given by

H(x, u, J) = max
y∈Y (x,u)

[
g(x, u, y) + J̃(y)

]
, (2.2)

where for any J ∈ E(X) we denote by J̃ the function of E(X ∪ {t}) given by

J̃(y) =

{
J(y) if y ∈ X,

0 if y = t.
(2.3)

We consider for each policy µ, the mapping Tµ : E(X) 7→ E(X), defined by

(TµJ)(x) = H
(
x, µ(x), J

)
, x ∈ X, (2.4)

and we note that for a proper policy µ, the fixed point equation Jµ = TµJµ is identical to the optimality

equation (1.6). We also consider the mapping T : E(X) 7→ E(X) defined by

(TJ)(x) = min
u∈U(x)

H(x, u, J), x ∈ X, (2.5)

also equivalently written as

(TJ)(x) = min
µ∈M

(TµJ)(x), x ∈ X. (2.6)

We denote by T k and T kµ the k-fold compositions of the mappings T and Tµ with themselves, respectively.

Let us introduce the zero function, which we denote by J̄ :

J̄(x) ≡ 0, x ∈ X.

Using Eqs. (2.2)-(2.4), we see that for any µ ∈ M and x ∈ X, (T kµ J̄)(x) is the result of the k-stage DP

algorithm that computes the length of the longest path under µ that starts at x and consists of k arcs, i.e.,

(T kµ J̄)(x) = sup
p∈P (x,µ)

Lkp,µ, x ∈ X.

Thus the definition (1.7) of Jµ can be written in the alternative and equivalent form

Jµ(x) = lim sup
k→∞

(T kµ J̄)(x), x ∈ X. (2.7)

The results that we will show under Assumption 2.1 generalize the main analytical results for the

classical deterministic shortest path problem. These, stated in abstract form, are the following:

(a) J* is the unique fixed point of T within R(X), and we have T kJ → J* for all J ∈ R(X).

(b) Only proper policies can be optimal, and there exists an optimal proper policy, i.e., a proper µ∗ with

Jµ∗ = J∗.

(c) A policy µ is optimal if and only if it attains the minimum in the equation J* = TJ*, i.e., TµJ* = TJ*.

Proofs of these results from first principles are quite complex. However, fairly easy proofs can be obtained

by embedding RSP, and its more abstract version of minimizing the function Jµ of Eq. (2.7) over µ ∈ M,

within the abstract semicontractive DP framework introduced in [Ber13]. In particular, we will use general

results for this framework, which we will summarize in the next section.
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3. SEMICONTRACTIVE DP MODELS

We will now view the problem of minimizing over µ ∈M the cost function Jµ, as given in the abstract form

(2.7), as a special case of a semicontractive DP model. We first provide a brief review of this model, with a

notation that corresponds to the one used in the preceding section.

The starting point is a set of states X, a set of controls U , and a control constraint set U(x) ⊂ U for

each x ∈ X. For the general framework of this section, X and U are arbitrary sets. A policy is a mapping

µ : X 7→ U with µ(x) ∈ U(x) for all x ∈ X, and the set of all policies is denoted by M. For each policy µ,

we are given a mapping Tµ : E(X) 7→ E(X) that is monotone in the sense that for any two J, J ′ ∈ E(X),

J ≤ J ′ ⇒ TµJ ≤ TµJ ′.

The cost function of µ is defined as

Jµ(x) = lim sup
m→∞

(T kµ J̄)(x), x ∈ X,

where J̄ is some given function in E(X). The objective is to find

J*(x) = inf
µ∈M

Jµ(x)

for each x ∈ X, and a policy µ such that Jµ = J*, if one exists. Based on the correspondences with Eqs.

(2.2)-(2.7), it can be seen that the shortest path problem of the preceding section is the special case of the

problem of this section, where X and U are finite sets, Tµ is defined by Eq. (2.4), and J̄ is the zero function.

In contractive models, the mappings Tµ are assumed to be contractions, with respect to a common

weighted sup-norm and with a common contraction modulus, in the subspace of functions in E(X) that are

bounded with respect to the weighted sup-norm. These models have a strong analytical and algorithmic

theory, which dates to [Den67]; see also [BeS78], Ch. 3, and recent extensive treatments given in Chapters

1-3 of [Ber12], and Ch. 2 of [Ber13]. In semicontractive models, only some policies have a contraction-like

property. This property is captured by the notion of S-regularity of a policy introduced in [Ber13]. More

specifically, given a set of functions S ⊂ E(X), we say that a policy µ is S-regular if:

(a) Jµ ∈ S and Jµ = TµJµ.

(b) limk→∞ T kµJ = Jµ for all J ∈ S.

A policy that is not S-regular is called S-irregular . Roughly, µ is S-regular if Jµ is an asymptotically stable

equilibrium point of Tµ within S. An important case of an S-regular µ is when S is a complete subset of a

metric space and Tµ is a contraction with respect to the metric of that space.

There are several different choices of S, which may be useful depending on the context, such as for

example R(X), E(X),
{
J ∈ R(X) | J ≥ J̄

}
,
{
J ∈ E(X) | J ≥ J̄

}
, and others. There are also several sets of

assumptions and corresponding results, which are given in [Ber13] and will be used to prove our analytical

results for the RSP problem. In this paper, we will use S = R(X), but for ease of reference, we will quote

results from [Ber13] for a general set S.

We give below an assumption relating to semicontractive models, which is Assumption 3.2.1 of [Ber13].
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Assumption 3.1: In the semicontractive model of this section with a set S ⊂ R(X) the following

hold:

(a) S contains J̄ , and has the property that if J1, J2 are two functions in S, then S contains all

functions J with J1 ≤ J ≤ J2.

(b) The function Ĵ given by

Ĵ(x) = inf
µ:S-regular

Jµ(x), x ∈ X,

belongs to S.

(c) For each S-irregular policy µ and each J ∈ S, there is at least one state x ∈ X such that

lim sup
k→∞

(T kµJ)(x) =∞.

(d) The control set U is a metric space, and the set

{
µ(x) | (TµJ)(x) ≤ λ

}

is compact for every J ∈ S, x ∈ X, and λ ∈ <.

(e) For each sequence {Jm} ⊂ S with Jm ↑ J for some J ∈ S we have

lim
m→∞

(TµJm)(x) = (TµJ)(x), ∀ x ∈ X, µ ∈M.

(f) For each function J ∈ S, there exists a function J ′ ∈ S such that J ′ ≤ J and J ′ ≤ TJ ′.

The following two propositions are given in [Ber13] as Prop. 3.2.1 and Lemma 3.2.4, respectively. Our

analysis will be based on these two propositions.

Proposition 3.1: Let Assumption 3.1 hold. Then:

(a) The optimal cost function J* is the unique fixed point of T within the set S.

(b) We have T kJ → J* for all J ∈ S. Moreover, there exists an optimal S-regular policy.

(c) A policy µ∗ is optimal if and only if Tµ∗J* = TJ*.

(d) For any J ∈ S, if J ≤ TJ we have J ≤ J*, and if J ≥ TJ we have J ≥ J*.
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Proposition 3.2: Let Assumption 3.1(b),(c),(d) hold. Then:

(a) The function Ĵ of Assumption 3.1(b) is the unique fixed point of T within S.

(b) Every policy µ satisfying TµĴ = T Ĵ is optimal within the set of S-regular policies, i.e., µ is

S-regular and Jµ = Ĵ . Moreover, there exists at least one such policy.

The second proposition is useful for situations where only some of the conditions of Assumption 3.1

are satisfied. This happens when Ĵ , the infimum of Jµ over just the S-regular policies µ, is different from

J*, which is the infimum over all policies.

4. SEMICONTRACTIVE MODELS AND SHORTEST PATH PROBLEMS

We will now apply the preceding two propositions to the minimax formulation of the RSP problem: min-

imizing over all µ ∈ M the cost Jµ(x) as given by Eq. (1.7) for both proper and improper policies. We

will first derive some preliminary results. The following proposition clarifies the properties of Jµ when µ is

improper.

Proposition 4.1: Let µ be an improper policy and let Jµ be its cost function as given by Eq. (1.7).

(a) If all cycles in the subgraph of arcs Aµ have nonpositive length, Jµ(x) <∞ for all x ∈ X.

(b) If all cycles in the subgraph of arcs Aµ have nonnegative length, Jµ(x) > −∞ for all x ∈ X.

(c) If all cycles in the subgraph of arcs Aµ have zero length, Jµ is real-valued.

(d) If there is a positive length cycle in the subgraph of arcs Aµ, we have Jµ(x) =∞ for at least one

node x ∈ X. More generally, for each J ∈ R(X), we have lim supk→∞(T kµJ)(x) =∞ for at least

one x ∈ X.

Proof: Any path with a finite number of arcs, can be decomposed into a simple path, and a finite number

of cycles (see e.g., the path decomposition theorem of [Ber98], Prop. 1.1, and Exercise 1.4). Since there are

only a finite number of simple paths under µ, their length is bounded above and below. Thus in part (a)

the length of all paths with a finite number of arcs is bounded above, and in part (b) it is bounded below,

implying that Jµ(x) < ∞ for all x ∈ X or Jµ(x) > −∞ for all x ∈ X, respectively. Part (c) follows by

combining parts (a) and (b).

To show part (d), consider a path p, which consists of an infinite repetition of the positive length

cycle that is assumed to exist. Let Ckµ(p) be the length of the path that consists of the first k cycles in p.

Then Ckµ(p) → ∞ and Ckµ(p) ≤ Jµ(x) for all k, where x is the first node in the cycle, thus implying that

Jµ(x) =∞. Moreover for every J ∈ R(X) and all k, (T kµJ)(x) is the maximum over the lengths of the k-arc
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paths that start at x, plus a terminal cost that is equal to either J(y) (if the terminal node of the k-arc path

is y ∈ X), or 0 (if the terminal node of the k-arc path is the destination). Thus we have,

(T kµ J̄)(x) + min

{
0, min

x∈X
J(x)

}
≤ (T kµJ)(x).

Since lim supk→∞(T kµ J̄)(x) = Jµ(x) = ∞ as shown earlier, it follows that lim supk→∞(T kµJ)(x) = ∞ for all

J ∈ R(X). Q.E.D.

Note that if there is a negative length cycle in the subgraph of arcs Aµ, it is not necessarily true that for

some x ∈ X we have Jµ(x) = −∞. Even for x on the negative length cycle, the value of Jµ(x) is determined

by the longest path in P (x, µ), which may be simple in which case Jµ(x) is a real number, or contain an

infinite repetition of a positive length cycle in which case Jµ(x) =∞.

A key fact in our analysis is the following characterization of the notion of R(X)-regularity and its

connection to the notion of properness. It shows that proper policies are R(X)-regular, but the set of R(X)-

regular policies may contain some improper policies, which are characterized in terms of the sign of the

lengths of their associated cycles.

Proposition 4.2: (Relation of Regularity and Properness of a Policy) Consider the minimax

formulation of the RSP problem, viewed as a special case of the abstract semicontractive DP model

of Section 3.1 with Tµ given by Eqs. (2.2)-(2.4), and J̄ being the zero function. The following are

equivalent for a policy µ:

(i) µ is R(X)-regular.

(ii) The subgraph of arcs Aµ is destination-connected and all its cycles have negative length.

(iii) µ is either proper or else it is improper, all the cycles of the subgraph of arcs Aµ have negative

length, and Jµ ∈ R(X).

Proof: To show that (i) implies (ii), let µ be R(X)-regular and to arrive at a contradiction, assume that

Aµ contains a nonnegative length cycle. Let x be a node on the cycle, consider the path p that starts at x

and consists of an infinite repetition of this cycle, and let Lkp,µ be the length of the first k arcs of that path.

Let also J be a nonzero constant function, J(x) ≡ r, where r is a scalar. Then we have

Lkp,µ + r ≤ (T kµJ)(x),

since from the definition of Tµ, we have that (T kµJ)(x) is the maximum over the lengths of all k-arc paths

under µ starting at x, plus r, if the last node in the path is not the destination. Since µ is R(X)-regular, we

have lim supk→∞(T kµJ)(x) = Jµ(x) <∞, so it follows that for all scalars r, we have

lim sup
k→∞

(
Lkp,µ + r

)
≤ Jµ(x) <∞.

This relation must hold for all scalars r, so it follows that lim supk→∞ Lkp,µ = −∞, which contradicts the

nonnegativity of the cycle of p. Thus all cycles of Aµ have negative length. To show that Aµ is destination-

connected, assume the contrary. Then there exists some node x ∈ X such that all paths in P (x, µ) contain an
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infinite number of cycles. Since the length of all cycles is negative, as just shown, it follows that Jµ(x) = −∞,

which contradicts the R(X)-regularity of µ.

To show that (ii) implies (iii), we note that if µ is improper, the cycles of Aµ have negative length by

(ii), so there remains to show that Jµ ∈ R(X). Since by (ii) Aµ is destination-connected, the set P (x, µ)

contains a simple path for all x ∈ X. Moreover, each path in P (x, µ) that is not simple has smaller length

than some simple path in P (x, µ), by the negativity of the cycle lengths. This implies that Jµ(x) is equal to

the largest path length among simple paths in P (x, µ), so Jµ(x) is a real number for all x ∈ X.

To show that (iii) implies (i), we note that (iii) implies that Jµ ∈ R(X) if µ is improper, whereas we

also have Jµ ∈ R(X) for all proper µ. Thus to complete the proof of R(X)-regularity of µ, there remains to

show that (T kµJ)(x)→ Jµ(x) for all x ∈ X and J ∈ R(X). Indeed, from the definition of Tµ, we have

(T kµJ)(x) = sup
p∈P (x,µ)

[
Lkp,µ + J(xkp)

]
, (4.1)

where xkp is the node reached after k arcs along the path p, and J(t) is defined to be equal to 0. Thus as

k →∞, for every path p that contains an infinite number of cycles (each necessarily having negative length),

the sequence Lkp,µ+J(xkp) approaches −∞. It follows that for sufficiently large k, the supremum in Eq. (4.1)

is attained by one of the simple paths in P (x, µ), so xkp = t and J(xkp) = 0. Thus the limit of (T kµJ)(x) does

not depend on J , and is equal to the limit of (T kµ J̄)(x), i.e., Jµ(x). Q.E.D.

We illustrate the preceding proposition with a two-node example involving an improper policy.

Example 4.1:

Let X = {1}, and consider the policy µ with Y
(
1, µ(1)

)
= {1, t}, which is improper since its subgraph of arcs

Aµ contains the self-cycle (1, 1); cf. Fig. 4.1. Let

g
(
1, µ(1), 1

)
= a, g

(
1, µ(1), t

)
= 0.

Then,

Jµ(1) =

{
∞ if a > 0,

0 if a ≤ 0.

Consistently with Prop. 4.2, the following hold:

(a) For a > 0, the cycle (1, 1) has positive length, and µ is R(X)-irregular because Jµ(1) =∞.

(b) For a = 0, the cycle (1, 1) has zero length, and µ is R(X)-irregular because for a function J ∈ R(X) with

J(1) > 0,

lim sup
k→∞

(T kµJ)(x) = J(1) > 0 = Jµ(1).

(c) For α < 0, the cycle (1, 1) has negative length, and µ is R(X)-regular because Jµ ∈ R(X) and for all

J ∈ R(X),

lim sup
k→∞

(T kµJ)(1) = 0 = Jµ(1).

We now show one of our main results.
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Figure 4.1. The subgraph of arcs Aµ corresponding to an improper policy µ, for the case of a

single node 1 and a destination node t. The arcs lengths are shown in the figure.

Proposition 4.3: Let Assumption 2.1 hold. Then:

(a) The minimax-optimal cost function J* of Eq. (2.1) is the unique fixed point of T within R(X).

(b) A policy µ∗ is optimal (i.e., Jµ∗ = J∗) if and only if Tµ∗J* = TJ*. Moreover, there exists an

optimal policy and every optimal policy is proper.

(c) We have T kJ → J* for all J ∈ R(X).

(d) For any J ∈ R(X), if J ≤ TJ we have J ≤ J*, and if J ≥ TJ we have J ≥ J*.

Proof: We verify the parts (a)-(f) of Assumption 3.1 with S = R(X). The result then will follow from

Prop. 3.1. To this end we note that:

(1) Part (a) is satisfied since S = R(X).

(2) Part (b) is satisfied since by Assumption 2.1(a), there exists at least one proper policy, which by Prop.

4.2 is R(X)-regular. Moreover, for each R(X)-regular policy µ, we have Jµ ∈ R(X). Since the number

of all policies is finite, it follows that Ĵ ∈ R(X).

(3) To show that part (c) is satisfied, note that since by Prop. 4.2 every R(X)-irregular policy µ must be

improper, so by Assumption 2.1(b), the subgraph of arcs Aµ contains a cycle of positive length; by

Prop. 4.1(d), this implies that for each J ∈ R(X), we have lim supk→∞(T kµJ)(x) =∞ for at least one

x ∈ X.

(4) Part (d) is satisfied since U(x) is a finite set.

(5) Part (e) is satisfied since X is finite and Tµ is a continuous function mapping the finite-dimensional

space R(X) into itself.

(6) To show that part (f) is satisfied, we note that by applying Prop. 3.2 with S = R(X), we have that Ĵ is

the unique fixed point of T within R(X). It follows that for each J ∈ R(X), there exists a sufficiently

large scalar r > 0 such that the function J ′ given by

J ′ = Ĵ − re, ∀ x ∈ X, (4.2)
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where e is the unit function, e(x) ≡ 1, satisfies J ′ ≤ J as well as

J ′ = Ĵ − re = T Ĵ − re ≤ T (Ĵ − re) = TJ ′, (4.3)

where the inequality holds in view of Eqs. (2.2) and (2.5), and the fact r > 0.

Thus all parts of Assumption 3.1 with S = R(X) are satisfied, and Prop. 3.1 applies, with S = R(X). Since

under Assumption 2.1, improper policies are R(X)-irregular [cf. Prop. 4.1(d)] and so cannot be optimal, the

minimax formulation of Section 2 is equivalent to RSP, and the conclusions of Prop. 3.1 are precisely the

results we want to prove. Q.E.D.

The following variant of the two-node Example 4.1 illustrates what may happen in the absence of

Assumption 2.1(b), when there may exist improper policies that involve a nonpositive length cycle.

Example 4.2:

Let X = {1}, and consider the improper policy µ with Y
(
1, µ(1)

)
= {1, t} and the proper policy µ with

Y
(
1, µ(1)

)
= {t} (cf. Fig. 4.2). Let

g
(
1, µ(1), 1

)
= a ≤ 0, g

(
1, µ(1), t

)
= 0, g

(
1, µ(1), t

)
= 1.

Then it can be seen that under both policies, the longest path from 1 to t consists of the arc (1, t). Thus,

Jµ(1) = 0, Jµ(1) = 1,

so the improper policy µ is optimal for the minimax problem (2.1). To explain what is happening here, we

consider two different cases:

(1) a = 0: In this case, the optimal policy µ is both improper and R(X)-irregular, but with Jµ(1) < ∞.

Thus the conditions of both Props. 3.1 and 4.3 do not hold because Assumptions 3.1(c) and Assumption

2.1(b) are violated.

(2) a < 0: In this case, µ is improper but R(X)-regular, so there are no R(X)-irregular policies. Then all

the conditions of Assumption 3.1 are satisfied, and Prop. 3.1 applies. Consistent with this proposition,

there exists an optimal R(X)-regular policy (i.e., optimal over both proper and improper policies), which

however is improper and hence not an optimal solution for RSP.

We next discuss modifications of Prop. 4.3, which cover the two cases of the preceding example.

The Case of Improper Policies with Negative Length Cycles

We note that by Prop. 4.2, the set of R(X)-regular policies includes not just proper policies, but also some

improper ones (those µ for which Aµ is destination-connected and all its cycles have negative length). As

a result we can weaken Assumption 2.1 as long as it still implies Assumption 3.1 so we can use Prop. 3.1

to obtain corresponding versions of our main result of Prop. 4.3. Here are two such weaker versions of

Assumption 2.1.

Assumption 4.1: Every policy µ is either proper or else it is improper and its subgraph of arcs

Aµ is destination-connected with all cycles having negative length.
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Figure 4.2. A counterexample involving a single node 1 in addition to the destination t. There

are two policies, µ and µ, with corresponding subgraphs of arcs Aµ and Aµ, and arc lengths shown

in the figure. The improper policy µ is optimal when a ≤ 0. It is R(X)-irregular if a = 0, and it

is R(X)-regular if a < 0.

From Prop. 4.2, it follows that the preceding assumption is equivalent to all policies being R(X)-regular.

The next assumption is weaker in that it allows policies µ that are R(X)-irregular, as long as some cycle of

Aµ has positive length.

Assumption 4.2:

(a) There exists at least one R(X)-regular policy.

(b) For every R(X)-irregular policy µ, some cycle in the subgraph of arcs Aµ has positive length.

By essentially repeating the proof of Prop. 4.3, we see that Assumption 4.2 implies Assumption 3.1, so

that Prop. 3.1 applies. Then we obtain the following variant of Prop. 4.3.

Proposition 4.4: Let either Assumption 4.1 or (more generally) Assumption 4.2 hold. Then:

(a) The minimax-optimal cost function J* of Eq. (2.1) is the unique fixed point of T within R(X).

(b) A policy µ∗ is optimal (i.e., Jµ∗ = J∗) if and only if Tµ∗J* = TJ*. Moreover, there exists an

optimal policy and every optimal policy is R(X)-regular.

(c) We have T kJ → J* for all J ∈ R(X).

(d) For any J ∈ R(X), if J ≤ TJ we have J ≤ J*, and if J ≥ TJ we have J ≥ J*.

Note that the optimal R(X)-regular policy µ∗ of part (b) above, while minimax-optimal, it may not

be proper, in which case it will not solve the RSP problem (cf. Example 4.2 with a < 0). Thus, in a given
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problem, one would have to additionally prove that optimal R(X)-regular policies are proper in order for

the proposition to fully apply to RSP.

The Case of Improper Policies with Zero Length Cycles

In some problems, it may be easier to guarantee nonnegativity rather than positivity of the lengths of cycles

corresponding to improper policies, which is required by Assumption 2.1(b). This is true for example in

the important case where all arc lengths are nonnegative, i.e., g(x, u, y) ≥ 0 for all x ∈ X, u ∈ U(x), and

y ∈ Y (x, u), as in case (1) of Example 4.2. Let us consider the following relaxation of Assumption 2.1.

Assumption 4.3:

(a) There exists at least one proper policy.

(b) For every improper policy µ, all cycles in the subgraph of arcs Aµ have nonnegative length.

For an analysis under the preceding assumption, we will use a perturbation approach that was intro-

duced in Section 3.2.2 of [Ber13]. The idea is to consider a scalar δ > 0 and a δ-perturbed problem, whereby

each arc length g(x, u, y) with x ∈ X is replaced by g(x, u, y) + δ. As a result, a nonnegative cycle length

corresponding to an improper policy as per Assumption 4.3(b) becomes strictly positive, so Assumption

2.1 is satisfied for the δ-perturbed problem, and Prop. 4.3 applies. We thus see that J*
δ , the optimal cost

function of the δ-perturbed problem, is the unique fixed point of the mapping Tδ given by

(TδJ)(x) = min
u∈U(x)

Hδ(x, u, J), x ∈ X,

where Hδ(x, u, J) is given by the equation for H [cf. Eq. (2.2)], with δ added to g(x, u, t) and g(x, u, y).

Moreover there exists an optimal proper policy µδ for the δ-perturbed problem, which by Prop. 4.3(b),

satisfies the optimality equation

Tµδ,δJ
*
δ = TδJ*

δ ,

where Tµ,δ is the mapping that corresponds to a policy µ in the δ-perturbed problem:

(Tµ,δJ)(x) = Hδ

(
x, µ(x), J

)
, x ∈ X.

We have the following proposition.

Proposition 4.5: Let Assumption 4.3 hold. Then

lim
δ↓0

J*
δ = min

µ:proper
Jµ,

where J*
δ is the optimal cost function of the δ-perturbed problem. Moreover, there exists δ > 0 such

that for all δ ∈ (0, δ], an optimal policy for the δ-perturbed problem is an optimal proper policy for

RSP.
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Proof: For all δ > 0, consider an optimal proper policy µδ of the δ-perturbed problem. We have

min
µ:proper

Jµ ≤ Jµδ ≤ Jµδ,δ = J*
δ ≤ Jµ′,δ ≤ Jµ′ +Nδ, ∀ µ′ : proper,

where N is the number of nodes of X (since an extra δ cost is incurred in the δ-perturbed problem every

time a path goes through a node x 6= t, and any path under a proper µ′ contains at most N nodes x 6= t).

By taking the limit as δ ↓ 0 and then the minimum over all µ′ that are proper, it follows that

min
µ:proper

Jµ ≤ lim
δ↓0

J*
δ ≤ min

µ:proper
Jµ,

so limδ↓0 J*
δ = minµ:proper Jµ.

To prove the last part of the proposition, we note that for every proper policy µ we have limδ↓0 Jµ,δ = Jµ.

Hence if a proper µ is not optimal for RSP, it is also nonoptimal for the δ-perturbed problem for all δ ∈ [0, δµ],

where δµ is some positive scalar. Let δ be the minimum δµ over the nonoptimal proper policies µ. Then for

δ ∈ (0, δ], an optimal policy for the δ-perturbed problem cannot be nonoptimal for RSP. Q.E.D.

Note that we may have J*(x) < minµ:proper Jµ(x) for some x, but in RSP, only proper policies are

admissible, so by letting δ ↓ 0 we approach the optimal solution of interest. This happens for instance in

Example 4.2 when a = 0. The following example describes an interesting problem, where Prop. 4.5 applies.

Example 4.3: (Minimax Search Problems)

Consider searching a graph with node set X ∪ {t}, looking for an optimal node x ∈ X at which to stop. At

each x ∈ X we have two options: (1) stopping at a cost s(x) ≥ 0, which will stop the search by moving to t,

or (2) continuing the search by choosing a control u ∈ U(x), in which case we will move to a node y, chosen

from within a given set of nodes Y (x, u) by an antagonistic opponent, at a cost g(x, u, y) ≥ 0. An interesting

special case is when searching is cost-free [i.e., g(x, u, y) ≡ 0], but may lead in the future to nodes where a

higher stopping cost will become inevitable. Then a policy that never stops is optimal but improper. If we

then introduce a small perturbation δ > 0 to the costs g(x, u, y), we will make the lengths of all cycles positive,

so we may use Prop. 4.5 to find an optimal proper policy.

5. COMPUTATIONAL METHODS

We will now discuss computational methods that are patterned after the classical DP algorithms of value

iteration and policy iteration (VI and PI for short, respectively). In particular, the methods of this section

are motivated by specialized stochastic shortest path algorithms.

5.1. Value Iteration Algorithms

We have already shown as part of Prop. 4.3 that under Assumption 2.1, the VI algorithm, which sequentially

generates T kJ for k ≥ 0, converges to the optimal cost function J* for any starting function J ∈ R(X). We

can extend this convergence property to asynchronous versions of VI based on the monotonicity and fixed

point properties of the mapping T . This has been known since [Ber82] (see also [Ber83], [BeT89]), and we

refer to the discussions in Sections 2.6.1, and 3.3.1 of [Ber13], which apply in their entirety when specialized

to the RSP problem of this paper.
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It turns out that for our problem, under Assumption 2.1, the VI algorithm terminates finitely when

initialized with J(x) =∞ for all x ∈ X [it can be seen that in view of the form (2.5) of the mapping T , the

VI algorithm is well-defined with this initialization]. In fact the number of iterations for termination is no

more than N , where N is the number of nodes in X. This is consistent with a similar result for stochastic

shortest path problems ([Ber12], Section 3.4.1), which relies on the assumption of acyclicity of the graph

of possible transitions under an optimal policy. Because this assumption is restrictive, finite termination of

the VI algorithm is an exceptional property in stochastic shortest path problems. However, in the minimax

case of this paper, under Assumption 2.1 an optimal policy µ∗ exists and is proper [cf. Prop. 4.3(b)], so the

graph of possible transitions under µ∗ is acyclic, and it turns out that finite termination of VI is guaranteed

to occur.

To show the finite termination property just described, let µ∗ be an optimal proper policy, consider

the sets of nodes X0, X1, . . ., defined by

X0 = {t},

Xk+1 =
{
x /∈ ∪km=0Xm | y ∈ ∪km=0Xm for all y ∈ Y

(
x, µ∗(x)

)}
, k = 0, 1, . . . , (5.1)

and let Xk be the last of these sets that is nonempty. Then in view of the acyclicity of the subgraph of arcs

Aµ∗ , we have

∪km=0Xm = X ∪ {t}.

We will now show by induction that starting from J(x) ≡ ∞ for all x ∈ X, the iterates T kJ of VI satisfy

(T kJ)(x) = J*(x), ∀ x ∈ ∪km=1Xm, k = 1, . . . , k. (5.2)

Indeed, it can be seen that this is so for k = 1. Assume that (T kJ)(x) = J*(x) if x ∈ ∪km=1Xm. Then, since

TJ ≤ J and T is monotone, (T kJ)(x) is monotonically nonincreasing, so that

J*(x) ≤ (T k+1J)(x), ∀ x ∈ X. (5.3)

Moreover, by the induction hypothesis, the definition of the sets Xk, and the optimality of µ∗, we have

(T k+1J)(x) ≤ H
(
x, µ∗(x), T kJ

)
= H

(
x, µ∗(x), J*

)
= J*(x), ∀ x ∈ ∪k+1

m=1Xm, (5.4)

where the first equality follows from the form (2.2) of H and the fact that for all x ∈ ∪k+1
m=1Xm, we have

y ∈ ∪km=1Xm for all y ∈ Y
(
x, µ∗(x)

)
by the definition (5.1) of Xk+1. The two relations (5.3) and (5.4)

complete the induction proof.

Thus under Assumption 2.1, the VI method when started with J(x) = ∞ for all x ∈ X, will find

the optimal costs of all the nodes in the set ∪km=1Xm after k iterations; cf. Eq. (5.2). In particular, all

optimal costs will be found after k ≤ N iterations, where N is the number of nodes in X. This indicates

that the behavior of the VI algorithm, when initialized with J(x) = ∞ for all x ∈ X, is similar to the

one of the Bellman-Ford algorithm for deterministic shortest path problems. Still each iteration of the VI

algorithm requires as many as N applications of the mapping T at every node. Thus it is likely that the

performance of the VI algorithm can be improved with a suitable choice of the initial function J , and with

an asynchronous implementation that uses a favorable order of selecting nodes for iteration, “one-node-at-

a-time” similar to the Gauss-Seidel method. This is consistent with the deterministic shortest path case,

where there are VI-type algorithms, within the class of label-correcting methods, which are faster than the

Bellman-Ford algorithm and even faster than efficient implementations of the Dijkstra algorithm for some
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types of problems; see e.g., [Ber98]. For the RSP problem, it can be seen that the best node selection order

is based on the sets Xk defined by Eq. (5.1), i.e., iterate on the nodes in the set X1, then on the nodes in

X2, and so on. In this case, only one iteration per node will be needed. While the sets Xk are not known,

an algorithm that tries to approximate the optimal order could be much more efficient that the standard

“all-nodes-at-once” VI method that computes the sequence T kJ , for k ≥ 0 (for an example of an algorithm

of this type for stochastic shortest path problems, see [PBT98]). The development of such more efficient VI

algorithms is an interesting subject for further research, which, however, is beyond the scope of the present

paper.

Example 5.1:

Let us illustrate the VI method for the problem of Fig. 5.1. The optimal policy is shown in this figure, and it

is proper, since Assumption 2.1 is satisfied. The table gives the iteration sequence of two VI methods, starting

with J0 = (∞,∞,∞,∞). The first method is the all-nodes-at-once method Jk = T kJ0, which finds J∗ in four

iterations. In this example, we have X0 = {t}, X1 = {1}, X2 = {4}, X3 = {3}, X4 = {2}, and the assertion of

Eq. (5.2) may be verified. The second method is the asynchronous VI method, which iterates one-node-at-a-

time in the (most favorable) order 1, 4, 3, 2. The second method also finds J∗ in four iterations and with four

times less computation.

We finally note that in the absence of Assumption 2.1 or Assumption 4.1, it is possible that the VI

sequence {T kJ} will not converge to J∗ starting from any J with J 6= J∗. This can be seen with a simple

deterministic shortest path problem involving a zero length cycle, a simpler version of Example 4.2. Here

there is a single node 1, aside from the destination t, and two choices at 1: stay at 1 at cost 0, and move to

t at cost 1. Then we have J∗ = 0, while T is given by

TJ = min{J, 1}.

It can be seen that the set of fixed points of T is (−∞, 1], and contains J∗ in its interior. Starting with

J ≥ 1, the VI sequence converges to 1 in a single step, while starting at J ≤ 1 it stays at J . In the case

of Example 4.2 with a = 0, the situation is somewhat different but qualitatively similar. There it can be

verified that J∗ = 1, the set of fixed points is [0, 1], {T kJ} will converge to 1 starting from J ≥ 1, will

converge to 0 starting from J ≤ 0, and will stay at J starting from J ∈ [0, 1].

5.2. Policy Iteration Algorithms

The development of PI algorithms for the RSP problem is straightforward given the connection with semi-

contractive models. Briefly, under Assumption 2.1, based on the analysis of Section 3.3.2 of [Ber13], there

are two types of PI algorithms. The first is a natural form of PI that generates proper policies exclusively.

Let µ0 be an initial proper policy (there exists one by assumption). At the typical iteration k, we have a

proper policy µk, and first compute Jµk by solving a longest path problem over the corresponding acyclic

subgraph of arcs Aµk . We then compute a policy µk+1 such that Tµk+1Jµk = TJµk , by minimizing over

u ∈ U(x) the expression H(x, u, Jµk) of Eq. (2.2), for all x ∈ X. We have

Jµk = TµkJµk ≥ TJµk = Tµk+1Jµk ≥ lim
m→∞

T kµk+1Jµk = Jµk+1 , (5.5)

where the second inequality follows from the monotonicity of Tµk+1 . Given that µk is proper, it follows in

view of Prop. 4.1(d), that the next policy µk+1 is proper, and has improved cost over µk. Therefore the
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Iteration # All-Nodes-at-Once VI Method One-Node-at-a-Time VI Method

0 J0 = (∞,∞,∞,∞) J0 = (∞,∞,∞,∞)

1 J1 = TJ0 = (3,∞,∞, 5) J1 = (3,∞,∞,∞)

2 J2 = T 2J0 = (3, 5, 6, 3) J2 = (3,∞,∞, 3)

3 J3 = T 3J0 = (3, 5, 4, 3) J3 = (3,∞, 4, 3)

4 J4 = T 4J0 = (3, 4, 4, 3) = J∗ J4 = (3, 4, 4, 3) = J∗

Figure 5.1: An example RSP problem and its optimal policy. At each X = {1, 2, 3, 4} there are

two controls: one (shown by a solid line) where Y (x, u) consists of a single element, and another

(shown by a broken line) where Y (x, u) has two elements. Arc lengths are shown next to the arcs.

Both the all-nodes-at-once and the one-node-at-a-time versions of VI terminate in four iterations,

but the latter version requires four times less computation per iteration.

sequence of policies {µk} is well-defined and proper, and the corresponding sequence {Jµk} is nonincreasing.

Under Assumption 2.1, it is then possible to show that Jµk converges to J* in a finite number of iterations.

The reason is that from Eq. (5.5), we have that at the kth iteration, either strict improvement Jµk(x) >

(TJµk)(x) ≥ Jµk+1(x) is obtained for at least one node x ∈ X, or else Jµk = TJµk , which implies that

Jµk = J* [since J* is the unique fixed point of T within R(X), by Prop. 4.3(a)] and µk is an optimal proper

policy.

Unfortunately, when there are improper policies, the preceding PI algorithm is somewhat limited,
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because an initial proper policy may not be known, and also because when asynchronous versions of the

algorithm are implemented, it is difficult to guarantee that all the generated policies are proper. There is

another algorithm, combining value and policy iterations, which has been developed in [BeY10], [BeY12],

[YuB13a], [YuB13b] for a variety of DP models, including discounted, stochastic shortest path, and abstract,

and is described in Sections 2.6.3 and 3.3.2 of [Ber13]. This algorithm updates a cost function J and a

policy µ, but it also maintains an additional function V , which acts as a threshold to keep J bounded and

the algorithm convergent. The algorithm not only can tolerate the presence of improper policies, but can

also be operated in asynchronous mode, whereby the value iterations, policy evaluation operations, and

policy improvement iterations are performed one-node-at-a-time without any regularity. The algorithm is

valid even in a distributed asynchronous environment, and in the presence of communication delays between

processors. The specialization of this algorithm to RSP under Assumption 2.1 is straightforward, and will

be presented briefly in its asynchronous form, but without communication delays between processors.

We consider a distributed computing system with m processors, denoted 1, . . . ,m, a partition of the

node set X into sets X1, . . . , Xm, and an assignment of each subset X` to a processor ` ∈ {1, . . . ,m}. The

processors collectively maintain two functions Jk(x) and Vk(x), x ∈ X, and a policy µk ∈ M, k = 0, 1, . . ..

We denote by min[Vk, Jk] the function in E(X) that takes values min
[
Vk(x), Jk(x)

]
for x ∈ X. The initial

conditions J0(x), V0(x), µ0(x), x ∈ X, are arbitrary. For each processor `, there are two infinite disjoint

subsets of times K`,K` ⊂ {0, 1, . . .}, corresponding to local (within the subset X`) policy improvement and

policy evaluation iterations by that processor, respectively. More specifically, at each time k and for each

processor `, we have one of the following three possibilities:

(a) Local policy improvement : If k ∈ K`, processor ` sets for all x ∈ X`,

Jk+1(x) = Vk+1(x) = min
u∈U(x)

H
(
x, u,min[Vk, Jk]

)
, (5.6)

and sets µk+1(x) to a u that attains the above minimum.

(b) Local policy evaluation - Value iteration: If k ∈ K`, processor ` sets for all x ∈ X`,

Jk+1(x) = H
(
x, µk(x),min[Vk, Jk]

)
, (5.7)

and leaves V and µ unchanged, i.e., for all x ∈ X`,

Vk+1(x) = Vk(x), µk+1(x) = µk(x).

(c) No local change: If k /∈ K` ∪ K`, processor ` leaves J , V , and µ unchanged, i.e., for all x ∈ X`,

Jk+1(x) = Jk(x), Vk+1(x) = Vk(x), µk+1(x) = µk(x).

In view of the form (2.2) of the mapping H, the local policy improvement iteration (5.6) involves the solution

of a static minimax problem, where the minimizing player chooses u ∈ U(x) and the maximizing player

chooses y ∈ Y (x, u). The local policy evaluation iteration (5.7) involves a maximization over y ∈ Y
(
x, µk(x)

)
.

The function Vk in Eqs. (5.6)-(5.7) is reminiscent of a stopping cost in optimal stopping problems. The

use of Vk is essential for the asymptotic convergence of the algorithm to optimality, i.e., Jk → J*, Vk → J*,

and for finite convergence of {µk} to an optimal proper policy. Without Vk the algorithm may potentially
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oscillate (there is an important counterexample that documents this type of phenomenon, given in [WiB93];

see also the discussion in [BeY10], [BeY12], [Ber12]).

Note that the preceding algorithm includes as a special case a one-node-at-a-time asynchronous PI

algorithm, whereby each node is viewed as a processor by itself, and at each iteration a single node is

selected and a local policy improvement or local policy evaluation of the form (5.6) or (5.7), respectively,

is performed just at that node (see the discussion of Section 2.6 of [Ber12] or Section 2.6 of [Ber13]). This

Gauss-Seidel type of algorithm is often considerably faster than all-nodes-at-once versions. The comparative

evaluation of PI algorithms that use different initial conditions J0(x), V0(x), µ0(x), x ∈ X, and different

orders of local policy improvement and policy evaluation iterations remains a subject for further research

and experimentation.

5.3. A Dijkstra-Like Algorithm for Nonnegative Arc Lengths

One of the most important computational approaches for the classical deterministic shortest path problem

with nonnegative arc lengths is based on Dijkstra’s algorithm, whereby the shortest distances of the nodes

to the destination are determined one-at-a-time in nondecreasing order. When properly implemented, this

approach yields shortest path methods with excellent computational complexity and practical performance

(see e.g., [AMO89], [Ber98]).

Dijkstra’s algorithm has been extended to continuous-space shortest path problems in [Tsi95], and

finds extensive application in a variety of large-scale computational problems involving the eikonal and other

equations; see [Set99a], [Set99b]. For recent work in this area, see [ChV12], [AnV13], [CCV13], which quote

a lot of other references. Dijkstra’s algorithm has also been extended to finite-state stochastic shortest path

problems, through the notion of a “consistently improving optimal policy” (introduced in the 2001 2nd

edition of the author’s DP book, and also described in its 4th edition, [Ber12], Section 3.4.1). Roughly, with

such a policy, from any node we may only go to a node of no greater optimal cost. While existence of a

consistently improving optimal policy is a restrictive condition, the associated Dijkstra-like algorithm has

found application in some special contexts, including large-scale continuous-space shortest path problems,

where it is naturally satisfied; see [Vla08].

We propose a Dijkstra-like algorithm that is patterned after the Dijkstra-like stochastic shortest path

algorithm, but requires less restrictive conditions because an optimal proper policy has the essential character

of a consistently improving policy when the arc lengths are nonnegative. Related Dijkstra-like algorithms

were proposed recently in [GrJ08], [BaL13], under the assumption that all arc lengths are strictly positive.

When the problem is deterministic, i.e., Y (x, u) consists of a single node for all (x, u), our algorithm coincides

with Dijkstra’s algorithm for the classical deterministic shortest path problem. We will assume the following:

Assumption 5.1:

(a) There exists at least one proper policy.

(b) For every improper policy µ, all cycles in the subgraph of arcs Aµ have positive length.

(c) All arc lengths are nonnegative.
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Parts (a) and (b) of the preceding assumption are just Assumption 2.1, under which the favorable results

of Prop. 4.3 apply to RSP with both nonnegative and negative arc lengths. The arc length nonnnegativity

assumption of part (c) is characteristic of Dijkstra-like algorithms, and provides additional structure, which

forms the basis for the following algorithm.

Our Dijkstra-like algorithm maintains and updates a subset of nodes denoted V , and a number J(x)

for each x ∈ X ∪ {t}, called the label of x. Initially,

V = {t}, J(x) =

{
0 if x = t,

∞ if x ∈ X.

At any given point in the algorithm, let W be the set

W =
{
x | J(x) <∞, x /∈ V

}
. (5.8)

The algorithm terminates when V is empty. The typical iteration, assuming V is nonempty, is as follows.

Typical Iteration of the Dijkstra-Like Algorithm:

We remove from V a node y∗ such that

J(y∗) = min
y∈V

J(y),

and add it in W , i.e., replace W with W ∪ {y∗}. For every x /∈W , we let

Û(x) =
{
u ∈ U(x) | Y (x, u) ⊂W and y∗ ∈ Y (x, u)

}
, (5.9)

and we update J(x) and V according to the following two cases:

(1) If Û(x) is nonempty and J(x) > minu∈Û(x) maxy∈Y (x,u)

[
g(x, u, y) + J(y)

]
, we set

J(x) = min
u∈Û(x)

max
y∈Y (x,u)

[
g(x, u, y) + J(y)

]
, (5.10)

and we place x in V if it is not already there.

(2) Otherwise, we leave J(x) and V unchanged.

Note that at each iteration of the preceding algorithm, the single node y∗ exits V , and enters the set W

of Eq. (5.8). Thus W is the set of nodes that have entered V at some previous iteration but are not currently

in V . Moreover, from the definition of the algorithm, once a node enters W it stays in W and never returns

to V . Also, upon entrance of a node into V , its label changes from ∞ to some nonnegative number. In the

terminology of Dijkstra-like algorithms, W is the set of nodes that are “permanently labeled,” and V is the

set of nodes that are “candidates” for permanent labeling. We will show that all the nodes x will enter W

in order of nondecreasing J(x), and at the time of entrance, J(x) = J*(x).
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Proposition 5.1: Let Assumption 5.1 hold. Then at the end of an iteration of the Dijkstra-like

algorithm, we have J(x′) ≥ J(x) for all x′ /∈W and x ∈W .

Proof: We use induction on the iteration count. Clearly the assertion holds at the end of the initial

iteration since then W = {t}, J(t) = 0, and according to the formula (5.10) for changing labels and the

nonnegativity of the arc lengths, we have J(x) ≥ 0 for all x ∈ X. Assume that the assertion holds for

iteration k−1. Let J(x) and J̃(x) denote the node labels at the start and the end of iteration k, respectively.

Then by the minimum label rule for selection of y∗, we have

J(x′) ≥ J(y∗) ≥ J(x) = J̃(x), ∀ x′ /∈W ∪ {y∗}, x ∈W ∪ {y∗}, (5.11)

where the equality holds because the labels of all x ∈ W ∪ {y∗} will not change in iteration k. During

iteration k the labels of nodes x′ /∈W ∪ {y∗} will change, if Û(x′) 6= ∅, according to Eq. (5.10), so that

J̃(x′) = min

[
J(x′), min

u∈Û(x′)
max

y∈Y (x′,u)

[
g(x′, u, y) + J(y)

]
]

≥ min
[
J(x′), J(y∗)

]

≥ J(x)

= J̃(x), ∀ x′ /∈W ∪ {y∗}, x ∈W ∪ {y∗},

where the first inequality holds because g(x′, u, y∗) ≥ 0, and y∗ ∈ Y (x′, u) for all u ∈ Û(x′), and the second

inequality and second equality hold because of Eq. (5.11). The induction proof is complete. Q.E.D.

Since no node will enter V twice, while exactly one node exits V at each iteration, the algorithm will

terminate after no more than N + 1 iterations, where N is the number of nodes in X. The next proposition

shows that V will become empty after exactly N + 1 iterations, at which time W must necessarily be equal

to X ∪ {t}.

Proposition 5.2: Let Assumption 5.1 hold. The Dijkstra-like algorithm will terminate after exactly

N + 1 iterations with V = ∅ and W = X ∪ {t}.

Proof: Assume the contrary, i.e., that the algorithm will terminate after a number of iterations k < N +1.

Then upon termination, W will have k nodes, V will be empty, and the set

V = {x ∈ X | x /∈W}

will have N + 1 − k nodes and thus be nonempty. Let µ be the proper policy, which is assumed to exist

by Assumption 5.1(a). For each x ∈ V we cannot have Y
(
x, µ(x)

)
⊂ W , since then x would have entered
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V prior to termination, according to the rules of the algorithm. Thus for each x ∈ V , there exists an arc

(x, y) ∈ Y
(
x, µ(x)

)
with y ∈ V . This implies that the subgraph of arcs Aµ contains a cycle of nodes in V ,

thus contradicting the properness of µ. Q.E.D.

Proposition 5.3: Let Assumption 5.1 hold. Upon termination of the Dijkstra-like algorithm, we

have J(x) = J*(x) for all x ∈ X.

Proof: The proof is long, but follows the general pattern of corresponding induction-based proofs of Di-

jkstra’s algorithm for the classical deterministic shortest path problem. For k = 0, 1, . . ., let Vk, Wk, Jk(x)

denote the sets V , W , and the labels J(x) at the start of iteration k, respectively, and let y∗k denote the

minimum label node to enter W during iteration k. Thus, we have Wk+1 = Wk ∪ {y∗k},

Jk+1(x) = Jk(x), ∀ x ∈Wk+1,

and

Jk+1(x) =

{
min

[
Jk(x), minu∈Ûk(x) maxy∈Y (x,u)

[
g(x, u, y) + Jk(y)

]]
if x ∈ Vk+1,

∞ if x /∈Wk+1 ∪ Vk+1,
(5.12)

where

Ûk(x) =
{
u ∈ U(x) | Y (x, u) ⊂Wk and y∗ ∈ Y (x, u)

}
.

For each k and x ∈ X ∪ {t} consider the sets of policies

Mk(x) =
{
µ : proper | the nodes of all paths p ∈ P (x, µ) lie in Wk ∪ {x}

}
.

Note that Mk+1(x) ⊃Mk(x) since Wk+1 ⊃Wk, and that from the rule for a node to enter V , we have

Mk(x) = ∅ if and only if x /∈Wk ∪ Vk, (5.13)

[the reason why Mk(x) 6= ∅ for all x ∈ Wk ∪ Vk is that for entrance of x in V at some iteration there must

exist u ∈ U(x) such that Y (x, u) is a subset of W ∪ {y∗} at that iteration].

We will prove by induction that for all x ∈ X ∪ {t}, we have

Jk(x) =

{
minµ∈Mk(x)

maxp∈P (x,µ) Lp,µ if x ∈Wk ∪ Vk,

∞ if x /∈Wk ∪ Vk.
(5.14)

[In words, we will show that at the start of iteration k, Jk(x) is the shortest “minimax” distance from x

to t, using proper policies, which generate paths that start at x and go exclusively through Wk. The idea

is that since nodes in Wk have smaller labels than nodes not in Wk and the arc lengths are nonnegative, it

would not be optimal to use a path that moves in and out of Wk. This is similar to proofs for Dijkstra’s

algorithm for the deterministic shortest path problem.] Equation (5.14) will imply that upon termination,

when MN+1(x) is equal to the set of all proper policies, we have

JN+1(x) = min
µ:proper

max
p∈P (x,µ)

Lp,µ, ∀ x ∈ X,
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which will prove the proposition. We will often use the fact that for all x ∈ Wk+1 ∪ Vk+1 and µ ∈Mk+1(x)

we have

max
p∈P (x,µ)

Lp,µ = max
y∈Y (x,µ(x))

[
g
(
x, µ(x), y

)
+ max
p′∈P (y,µ)

Lp′,µ

]
. (5.15)

This is just the optimality equation for the longest path problem associated with µ and the subgraph of arcs

Aµ.

Initially, for k = 0, we have W0 = ∅, V0 = {t}, J0(t) = 0, J0(x) = ∞ for x 6= t, so Eq. (5.14) holds.

Assume that Eq. (5.14) holds for some k. We will show that it holds for k + 1.

For x /∈ Wk+1 ∪ Vk+1, we have Jk+1(x) = ∞, since such x have never entered V so far, and therefore

their label was never reduced from the initial value ∞. This proves Eq. (5.14) with k replaced by k + 1 and

x /∈Wk+1 ∪ Vk+1.

For x = y∗k, from the definition (5.13), the set of policies Mk+1(y∗k) is equal to Mk(y∗k), so by using also

the induction hypothesis and the fact Jk+1(y∗k) = Jk(y∗k), it follows that

Jk+1(y∗k) = Jk(y∗k) = min
µ∈Mk(y

∗
k
)

max
p∈P (y∗

k
,µ)
Lp,µ = min

µ∈Mk+1(y
∗
k
)

max
p∈P (y∗

k
,µ)
Lp,µ.

This proves Eq. (5.14) with k replaced by k + 1 and x = y∗k.

For x ∈Wk ∪ Vk+1, we write

min
µ∈Mk+1(x)

max
p∈P (x,µ)

Lp,µ = min[E1, E2],

where

E1 = min
µ∈Mk(x)

max
p∈P (x,µ)

Lp,µ,

which is equal to Jk(x) by the induction hypothesis, and

E2 = min
µ∈Mk+1(x)/Mk(x)

max
p∈P (x,µ)

Lp,µ.

[The set Mk+1(x)/Mk(x) may be empty, so here and later we use the convention that the minimum over the

empty set is equal to ∞.] Thus for x ∈Wk ∪ Vk+1, we have

min
µ∈Mk+1(x)

max
p∈P (x,µ)

Lp,µ = min

[
Jk(x), min

µ∈Mk+1(x)/Mk(x)
max

p∈P (x,µ)
Lp,µ

]
, (5.16)

and we need to show that the right-hand side above is equal to Jk+1(x). To estimate the second term of the

right-hand side, we consider the two separate cases where x ∈Wk and x ∈ Vk+1.

Assume first that x ∈ Wk. Then for each µ ∈Mk+1(x)/Mk(x), the subgraph of arcs Aµ must contain

y∗k, so

max
p∈P (x,µ)

Lp,µ ≥ max
p′∈P (y∗

k
,µ)
Lp′,µ ≥ Jk(y∗k) ≥ Jk(x),

where the first inequality follows in view of the nonnegativity of the arc lengths, the second inequality

follows because paths in P (y∗k, µ) go exclusively through Wk and thus can also be generated by some policy

in Mk(y∗k), and the last inequality follows since nodes enter W in order of nondecreasing label (cf. Prop.

5.1). Thus the expression (5.16) is equal to Jk(x), and hence is also equal to Jk+1(x) (since x ∈ Wk). This

proves Eq. (5.14) with k replaced by k + 1 and x ∈Wk.

26



Assume next that x ∈ Vk+1. Then to estimate the term minµ∈Mk+1(x)/Mk(x)
maxp∈P (x,µ) Lp,µ in Eq.

(5.16), we write

Mk+1(x)/Mk(x) = M̃k+1(x) ∪ M̂k+1(x),

where

M̃k+1(x) =
{
µ ∈Mk+1(x)/Mk(x) | y∗k /∈ Y (x, µ(x))

}
,

is the set of policies for which there exists a path p ∈ P (x, µ) that passes through y∗k after more than one

transition, and

M̂k+1(x) =
{
µ ∈Mk+1(x)/Mk(x) | y∗k ∈ Y (x, µ(x))

}
,

is the set of policies for which there exists a path p ∈ P (x, µ) that moves to y∗k at the first transition.

For all µ ∈ M̃k+1(x), we have using Eq. (5.15),

max
p∈P (x,µ)

Lp,µ = max
y∈Y (x,µ(x))

[
g
(
x, µ(x), y

)
+ max
p′∈P (y,µ)

Lp′,µ

]

≥ max
y∈Y (x,µ(x))

[
g
(
x, µ(x), y

)
+ min
µ′∈Mk+1(y)

max
p′∈P (y,µ′)

Lp′,µ′

]

= max
y∈Y (x,µ(x))

[
g
(
x, µ(x), y

)
+ Jk+1(y)

]

= max
y∈Y (x,µ(x))

[
g
(
x, µ(x), y

)
+ Jk(y)

]
,

where the last equality holds because we have shown that Jk+1(y) = Jk(y) for all y ∈ Wk. Therefore, since

for all µ ∈ M̃k+1(x) there exists a µ′ ∈Mk(x) such that µ(x) = µ′(x), we have by taking the minimum over

µ ∈ M̃k+1(x) in the preceding relation,

min
µ∈M̃k+1(x)

max
p∈P (x,µ)

Lp,µ ≥ min
µ′∈Mk(x)

max
y∈Y (x,µ′(x))

[
g(x, µ′(x), y) + Jk(y)

]
= min
µ′∈Mk(x)

max
p∈P (x,µ′)

Lp′,µ = Jk(x).

(5.17)

For all µ ∈ M̂k+1(x), we have

max
p∈P (x,µ)

Lp,µ = max
y∈Y (x,µ(x))

[
g
(
x, µ(x), y

)
+ max
p′∈P (y,µ)

Lp′,µ

]
;

cf. Eq. (5.15). Moreover, for all µ ∈ M̂k+1(x), we have µ(x) ∈ Ûk(x) by the definitions of M̂k+1(x) and

Ûk(x). It follows that

min
µ∈M̂k+1(x)

max
p∈P (x,µ)

Lp,µ = min
µ∈M̂k+1(x)

max
y∈Y (x,µ(x))

[
g(x, µ(x), y) + max

p′∈P (y,µ)
Lp′,µ

]

= min
u∈Ûk(x)

max
y∈Y (x,u)

[
g(x, u, y) + min

µ∈M̂k+1(x)
max

p′∈P (y,µ)
Lp′,µ

]

= min
u∈Ûk(x)

max
y∈Y (x,u)

[
g(x, u, y) + min

µ∈Mk+1(y)
max

p′∈P (y,µ)
Lp′,µ

]

= min
u∈Ûk(x)

max
y∈Y (x,u)

[
g(x, u, y) + Jk+1(y)

]

= min
u∈Ûk(x)

max
y∈Y (x,u)

[
g(x, u, y) + Jk(y)

]
,

(5.18)
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where the third equality holds because for y ∈ Y
(
x, µ(x)

)
, the collections of paths P (y, µ) under policies

µ in M̂k+1(x) and Mk+1(y), are identical, and the last equality holds because we have already shown that

Jk+1(y) = Jk(y) for all y ∈Wk ∪ {y∗k}. Thus from Eqs. (5.16)-(5.18) we obtain

min
µ∈Mk+1(x)

max
p∈P (x,µ)

Lp,µ = min

[
Jk(x), min

u∈Ûk(x)
max

y∈Y (x,u)

[
g(x, u, y) + Jk(y)

]
]
.

Combining this equation with the update formula (5.10) for the node labels, we have

min
µ∈Mk+1(x)

max
p∈P (x,µ)

Lp,µ = Jk+1(x),

thus proving Eq. (5.14) with k replaced by k + 1 and x ∈ Vk+1. This completes the induction proof of Eq.

(5.14) and concludes the proof. Q.E.D.

Since the algorithm terminates inN+1 iterations, and each iteration requires at mostO(AL) operations,

where A is the number of arcs and L is the number of elements of U , the complexity of the algorithm is

bounded by O(NAL). This complexity estimate may potentially be improved with the use of efficient data

structures of the type used in efficient implementations of Dijkstra’s algorithm in deterministic shortest path

problems to expedite the selection of the minimum label node [i.e., y∗ ∈ arg miny∈V J(y)]. However, we

have not investigated this issue. It is also unclear how the Dijkstra-like algorithm compares with the finitely

terminating VI algorithm and other asynchronous VI and PI algorithms discussed in Sections 5.1, 5.2.

Example 5.2:

We illustrate our Dijkstra-like algorithm with the RSP problem of Example 5.1, shown again for convenience

in Fig. 5.2. The table gives the iterations of the algorithm, and the results are consistent with Props. 5.1-5.3,

as the reader may verify.

6. CONCLUDING REMARKS AND FURTHER RESEARCH

We have considered shortest path problems with set membership uncertainty, and we have shown that they

can be fruitfully analyzed in the context of abstract semicontractive models. We have thus proved the

existence and uniqueness of the solution of Bellman’s equation, and obtained conditions for optimality of a

proper policy. Moreover, we have discussed the properties of algorithms of the value and policy iteration

type, and we have proposed a finitely terminating Dijkstra-like algorithm for problems with nonnegative arc

lengths. The comparative evaluation and the efficient implementation of these algorithms for specific types

of applications, such as for example pursuit-evasion, is an interesting subject for further investigation.

In this paper we have covered the important case of nonnegative arc lengths via the perturbation

analysis of Section 4. However, there is an alternative line of analysis, which is based on the fact that when

the arc lengths are nonnegative we have T J̄ ≥ J̄ , bringing to bear the theory of semicontractive-monotone

increasing DP models given in Section 4.4 of [Ber13], which embody the essential structure of negative DP

(see [Str66], or the texts Put94], [Ber12]). This theory relies on the assumption of existence of an optimal

S-regular policy, and is somewhat different in character from the analysis of this paper.

28



a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.
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1

Iteration # V at Start of Iteration Labels at Start of Iteration Min. Label Node out of V

0 {t} (∞,∞,∞,∞, 0) t

1 {1, 4} (3,∞,∞, 5, 0) 1

2 {2, 4} (3, 5,∞, 3, 0) 4

3 {2, 3} (3, 5, 4, 3, 0) 3

4 {2} (3, 4, 4, 3, 0) 2

Figure 5.2: The iterations of the Dijkstra-like algorithm for the RSP problem of Example 5.1.

The nodes exit V and enter W in the order 1, 4 3, 2.

Let us mention some interesting stochastic extensions of our RSP problem that involve an additional

random variable at each stage.† In one extension of this type, when at node x, we choose control u ∈ U(x),

then a value of a random variable z is selected from the finite set {1, . . . , n} with probabilities pxz(u), and

then the successor node is chosen by an antagonistic opponent from a set Yz(x, u) ⊂ X ∪ {t}. To analyze

this problem using a semicontractive model, the mapping H of Eq. (2.2) should be replaced by

H(x, u, J) =

n∑

z=1

pxz(u) max
y∈Yz(x,u)

[
g(x, u, y) + J̃(y)

]
, (6.1)

† This type of stochastic problem arises among others in a context of discretization of the state space of a

continuous-space minimax control problem, where randomization in the discretized problem’s dynamics is introduced

in order to reduce the error between the optimal cost function of the original continuous-space problem and the

optimal cost function of its discretized version (see, [Tsi95], [PBT98], [Set99a], [Set99b]).
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where

J̃(y) =

{
J(y) if y ∈ X,

0 if y = t.

A formulation as an abstract DP problem is then possible with an appropriately modified mapping Tµ,

similar to Section 2, and the semicontractive theory may be applied similar to Section 4. This analysis and

the associated algorithms are, however, beyond our scope. Note that when n = 1, from Eq. (6.1) we obtain

the mapping (2.2) of the RSP problem of Sections 1 and 2, while when Yz(x, u) consists of a single node, we

obtain the mapping associated with a standard finite-state stochastic shortest path problem (see e.g., [Pal67],

[BeT91], [Ber12]). Thus the semicontractive model that is based on the mapping (6.1) generalizes both of

these shortest path problems. In the case where g(x, u, y) ≥ 0 for all x ∈ X, u ∈ U(x), z ∈ {1, . . . , n}, and

y ∈ Yz(x, u), we have T J̄ ≥ J̄ , and the theory of monotone increasing models of Sections 4.3, 4.4 of [Ber13]

can be used to provide a first layer of analysis without any further assumptions.

In another extension of RSP, which involves randomization, when at node x, we choose control u ∈ U(x),

then a variable w is chosen by an antagonistic opponent from a set W (x, u), and then a successor node

y ∈ X ∪{t} is chosen according to probabilities pwy. Here, to apply the line of analysis of the present paper,

the mapping H of Eq. (2.2) should be replaced by

H(x, u, J) = max
w∈W (x,u)


g(x, u, w) +

∑

y∈X∪{t}
pwyJ̃(y)


 ,

where

J̃(y) =

{
J(y) if y ∈ X,

0 if y = t.
(6.2)

A somewhat more complex variation is given by

H(x, u, J) =

n∑

z=1

pxz max
w∈W (z,u)


g(z, u, w) +

∑

y∈X∪{t}
pwyJ̃(y)


 , (6.3)

where, for each x ∈ X, z is a random variable taking values from the finite set {1, . . . , n} with probabilities

pxz [the two models based on Eqs. (6.2) and (6.3) coincide if pxx = 1 for all x ∈ X]. The resulting models

again combine elements of RSP and a standard finite-state stochastic shortest path problem. They may also

be viewed as instances of a generalized aggregation model of the type introduced in Section 7.3.7 of [Ber12].†
Again the semicontractive theory may be applied, but the corresponding analysis is a subject for further

research.

Finally let us consider algorithms with approximations. While we have assumed a finite number of

nodes, there are many problems of practical interest where the number of nodes is extremely large, and

the algorithms of Section 5 are very time-consuming. This is particularly so in minimax control problems

with imperfect state information, which are reformulated as problems of perfect state information using the

sufficiently informative function approach of [Ber71], [BeR73]. In such cases one may consider minimax

analogs of approximate DP or reinforcement learning approaches (see e.g., the books [BeT96], [SuB98],

† In the context of generalized aggregation, for the mapping of Eq. (6.2), we have a high-dimensional RSP

problem, whose states are represented by w, and a lower dimensional “aggregate” RSP problem, whose states are

represented by the nodes x. Then the pwy play the role of aggregation probabilities in the terminology of [Ber12]. A

similar interpretation may be given for the mapping of Eq. (6.3).
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[Pow11], [Ber12]). The development of such methods is an interesting subject for further research. In what

follows, we discuss the possibility for approximate solution using a rollout algorithm, which parallels related

algorithms for finite horizon and stochastic shortest path problems (see e.g., [Ber05], [Ber12]).

To define a rollout algorithm, we assume that we have a proper policy µ, called the base policy . We

then define the rollout policy , denoted µ, as follows: for each u ∈ U(x) and each y ∈ Y (x, u), we compute

Jµ(y), and we set

µ(x) ∈ arg min
u∈U(x)

max
y∈Y (x,u)

[
g(x, u, y) + Jµ(y)

]
, x ∈ X. (6.4)

The computation of µ(x) can be done on-line, only for the nodes x that are encountered in the process of

control. Moreover, assuming that Jµ(y) is precomputed for all y, and that the sets U(x) and Y (x, u) have a

reasonable number of elements, the computation in Eq. (6.4) can be performed very fast. The same is true

if for any u ∈ U(x), Jµ(y) can be efficiently computed on-line for all y ∈ Y (x, u). It can be seen that the

rollout policy µ is just the policy obtained from the base policy using a single policy iteration. In particular,

under Assumption 2.1, the rollout policy improves on the base policy in the sense that

Jµ(x) ≤ Jµ(x), ∀ x ∈ X.

This is a well-known property of rollout algorithms for finite horizon and stochastic shortest path problems,

and follows by writing for all x ∈ X

(TµJµ)(x) = (TJ)(x)

= min
u∈U(x)

max
y∈Y (x,u)

[
g(x, u, y) + Jµ(y)

]

≤ max
y∈Y (x,µ(x))

[
g(x, µ(x), y) + Jµ(y)

]

= (TµJµ)(x)

= Jµ(x).

Applying Tµ repeatedly to both sides of the inequality TµJµ ≤ Jµ, we obtain [cf. Eq. (5.5)] that Jµ ≤ Jµ

and that µ is proper.

As an example of such a rollout algorithm, consider a pursuit-evasion problem with state x = (z1, z2),

where z1 is the location of the minimizer/pursuer and z2 is the location of the maximizer/evader, in a two-

or three-dimensional space. Then a suitable base policy µ is for the pursuer is to follow a shortest path from

z1 to z2 under the assumption that the evader will stay at his current location z2 at all future times. To

do this for all (z1, z2) requires the solution of an all-pairs shortest path problem, which is possible in O(N3)

time using the Floyd-Warshall algorithm [AMO89], [Ber98], where N is the number of possible values of z1

and z2. Having precomputed µ(x) for all x = (z1, z2) with this shortest path computation, the maximization

max
y∈Y (x,u)

[
g(x, u, y) + Jµ(y)

]

that is needed for the on-line computation of the rollout control µ(x) in Eq. (6.4) is a tractable longest path

computation in a graph of N nodes. Note that the preceding algorithm can be adapted for the imperfect

information case where the pursuer knows z2 imperfectly. This is possible by using a form of assumed

certainty equivalence: the pursuer’s base policy and the evader’s maximization can be computed by using

an estimate of the current location z2 instead of the unknown true location.

In the preceding pursuit-evasion example, the choice of the base policy was facilitated by the special

structure of the problem. Generally, however, finding a suitable base policy whose cost function Jµ can be
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conveniently computed is an important problem-dependent issue. We leave this issue as a subject for further

research in the context of more specialized problems. Finally, let us note that a rollout algorithm may be

well-suited for on-line suboptimal solution in cases where data may be changing or be revealed during the

process of control.
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