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Abstract

We consider an extension of the rollout algorithm that applies to constrained deterministic dynamic

programming, including challenging combinatorial optimization problems. The algorithm relies on a subop-

timal policy, called base heuristic. Under suitable assumptions, we show that if the base heuristic produces

a feasible solution, the rollout algorithm has a cost improvement property: it produces a feasible solution,

whose cost is no worse than the base heuristic’s cost.

We then focus on multiagent problems, where the control at each stage consists of multiple components

(one per agent), which are coupled either through the cost function or the constraints or both. We show

that the cost improvement property is maintained with an alternative implementation that has greatly

reduced computational requirements, and makes possible the use of rollout in problems with many agents.

We demonstrate this alternative algorithm by applying it to layered graph problems that involve both

a spatial and a temporal structure. We consider in some detail a prominent example of such problems:

multidimensional assignment, where we use the auction algorithm for 2-dimensional assignment as a base

heuristic. This auction algorithm is particularly well-suited for our context, because through the use of

prices, it can advantageously use the solution of an assignment problem as a starting point for solving other

related assignment problems, and this can greatly speed up the execution of the rollout algorithm.

† McAfee Professor of Engineering, MIT, Cambridge, MA, and Fulton Professor of Computational Decision

Making, ASU, Tempe, AZ.
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Introduction

1. INTRODUCTION

We consider a deterministic optimal control problem involving the system

xk+1 = fk(xk, uk), k = 0, . . . , N − 1,

where xk is the state, taking values in some (possibly infinite) set, uk is the control at time k, taking values

in some finite set, and fk is some function. The initial state is given and is denoted by x0. A sequence of

the form

T = (x0, u0, x1, u1, . . . , uN−1, xN ), (1.1)

where

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1, (1.2)

is referred to as a complete trajectory. We distinguish a complete trajectory from a partial trajectory, which

is defined to be a subset of a complete trajectory, consisting of a subsequence of time-contiguous states and

controls. Our problem is stated succinctly as

min
T∈C

G(T ), (1.3)

where G is a given real-valued cost function and C is a given constraint set of trajectories.†

As an example, we note the common special case of the additive cost

G(x0, u0, x1, u1, . . . , uN−1, xN ) = gN(xN ) +

N−1
∑

k=0

gk(xk, uk), (1.4)

where gk, k = 0, 1, . . . , N , are given real-valued functions, and the controls satisfy the time-uncoupled (but

state-dependent) constraints

uk ∈ Uk(xk), k = 0, 1, . . . , N − 1, (1.5)

(so here C is the set of trajectories that are generated by the system equation with controls satisfying the

above constraints). This is a standard problem formulation, which is usually taken as the starting point for

deterministic dynamic programming (DP for short). Our aim, however, is to address problems involving far

more complicated constraints, for which the exact solution of the problem is typically intractable, including

† Actually it is not essential that we know the form of the function G. Instead it is sufficient to have access to

a human or software expert that enables us to compare any two trajectories T1 and T2, without assigning numerical

values to them. It is essential, however, that the expert’s rankings should have a transitivity property: if T is ranked

better than T ′ and T ′ is ranked better than T ′′, then T is ranked better than T ′′. Of course, the expert should also

be able to determine whether a given trajectory T satisfies the constraint T ∈ C.
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multiagent problems for which uk consists of multiple components (one per agent). To this end, we will

consider approximate solution methods based on the rollout approach.

The general idea of a rollout algorithm is to start with a suboptimal solution method called base heuris-

tic, and to aim at cost improvement : a guarantee (under suitable assumptions) that the rollout algorithm

produces a feasible solution, whose cost is no worse than the cost corresponding to the base heuristic. Rollout

is simple and reliable, and has been used with considerable success for general unconstrained deterministic DP

problems of the form (1.3)-(1.5). It has also been used in minimax/game settings, and in stochastic settings,

in conjunction with simulation-based evaluation of the expected cost produced by the base heuristic starting

from a given state. For applications and related work we refer to Tesauro and Galperin [TeG96], Bertsekas

and Tsitsiklis [Ber96], Bertsekas, Tsitsiklis, and Wu [BTW97], Bertsekas [Ber97], Christodouleas [Chr97],

Bertsekas and Castañon [BeC99], Duin and Voss [DuV99], Secomandi [Sec00], [Sec01], [Sec03], Ferris and

Voelker [FeV02], [FeV04], McGovern, Moss, and Barto [MMB02], Savagaonkar, Givan, and Chong [SGC02],

Guerriero and Mancini [GuM03], Tu and Pattipati [TuP03], Wu, Chong, and Givan [WCG03], Chang, Givan,

and Chong [CGC04], Meloni, Pacciarelli, and Pranzo [MPP04], Yan, Diaconis, Rusmevichientong, and Van

Roy [YDR04], Bertsekas [Ber05a], [Ber05b], Besse and Chaib-draa [BeC08], Sun et al. [SZL08], Bertazzi et

al. [BBG13], Sun et al. [SLJ13], Tesauro et al. [TGL13], Antunes and Heemels [AnH14], Beyme and Leung

[BeL14], Goodson, Thomas, and Ohlmann [GTO15], Khashooei, Antunes, and Heemels [KAH15], Li and

Womer [LiW15], Mastin and Jaillet [MaJ15], Huang, Jia, and Guan [HJG16], Simroth, Holfeld, and Brunsch

[SHB15], Lan, Guan, and Wu [LGW16], Ulmer [Ulm17], Bertazzi and Secomandi [BeS18], Guerriero, Di

Puglia, and Macrina [GDM19], Sarkale et al. [SNC18], Ulmer at al. [UGM18], Bertsekas [Ber19c], and Chu,

Xu, and Li [CXL19]. These works discuss variants and problem-specific adaptations of rollout algorithms

for a broad variety of practical problems, and consistently report positive computational experience.

In this paper we will adapt the rollout approach to construct methods that can address suboptimally

the constrained DP problem (1.3). Our line of analysis and development are based on the ideas of the

paper by Bertsekas, Tsitsiklis, and Wu [BTW97], where rollout was applied to general discrete deterministic

optimization problems. Related constrained rollout ideas are also discussed in the author’s papers [Ber05a],

[Ber05b]. The extension to constrained multiagent rollout (see Section 4) is based on the author’s recent

paper [Ber19b], which proposed a modification of the standard rollout algorithm to deal efficiently with the

special computational demands of the many-agent case.

Generally constrained DP problems can be transformed to unconstrained DP problems. The idea is to

redefine the state at stage k to be the partial trajectory

yk = (x0, u0, x1, . . . , uk−1, xk),

which evolves according to a redefined system equation:

yk+1 =
(

yk, uk, fk(xk, uk)
)

. (1.6)
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The problem then becomes to find a control sequence that minimizes the terminal cost G(yN ) subject to the

constraint yN ∈ C. This is a problem to which the standard form of DP applies.

Unfortunately, with the DP reformulation just described, the exact solution of the problem is typically

impractical because the associated computation can be overwhelming. It is much greater than the computa-

tion for the corresponding additive cost/time-uncoupled control constraints problem (1.4)-(1.5), where the

constraint T ∈ C is absent. This is true even when C is specified in terms of a finite number of constraint

functions that are time-additive, i.e., T ∈ C if

gmN (xN ) +

N−1
∑

k=0

gmk (xk, uk) ≤ bm, m = 1, . . . ,M, (1.7)

where gmk , k = 0, 1, . . . , N , and bm, m = 1, . . . ,M , are given functions and scalars, respectively. For further

appreciation of the issues involved, the reader may consult the author’s textbook [Ber17], and the journal

literature, which contains several proposals for suboptimal solution of the problem in the case where the

constraints are of the form (1.7), using among others, multiobjective optimization ideas; see e.g., Jaffe [Jaf84],

Martins [Mar84], Guerriero and Musmanno [GuM01], and Stewart and White [StW91], who also survey

earlier work. Generally, experience with constrained DP problems suggests that the use of an approximate

solution approach is essentially unavoidable. This is the motivation for the methodology of this paper.

Using a Base Heuristic for Constrained Rollout

We will now describe our rollout algorithm. We assume the availability of a base heuristic, which for any

given partial trajectory

yk = (x0, u0, x1, . . . , uk−1, xk),

can produce a (complementary) partial trajectory†

R(yk) = (xk, uk, xk+1, uk+1, . . . , uN−1, xN ),

that starts at xk and satisfies for every t = k, . . . , N − 1 the system equation

xt+1 = ft(xt, ut).

† The nature of the base heuristic is essentially arbitrary, and may strongly depend on yk as well as k. For

an extreme but practically interesting possibility, we may have a partition of the set of partial trajectories yk, and

a collection of multiple heuristics that are specially tailored to the sets of the partition. We may then select the

appropriate heuristic to use on each set of the partition. Of course the properties of the rollout algorithm and its

potential for cost improvement will depend on the design of the base heuristic, and in Section 2, we will discuss

properties that are favorable in this regard.
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Thus, given yk and any control uk, we can use the base heuristic to obtain a complete trajectory as follows:

(a) Generate the next state xk+1 = fk(xk, uk).

(b) Extend yk to obtain the partial trajectory

yk+1 =
(

yk, uk, fk(xk, uk)
)

.

(c) Run the base heuristic from yk+1 to obtain the partial trajectory R(yk+1).

(d) Join the two partial trajectories yk+1 and R(yk+1) to obtain the complete trajectory
(

yk, uk, R(yk+1)
)

,

which is denoted by Tk(yk, uk):

Tk(yk, uk) =
(

yk, uk, R(yk+1)
)

. (1.8)

A complete trajectory Tk(yk, uk) of the form (1.8) is generally feasible for only a subset of controls uk,

which we denote by Uk(yk):

Uk(yk) =
{

uk | Tk(yk, uk) ∈ C
}

. (1.9)

Our rollout algorithm starts from a given initial state ỹ0 = x̃0, and generates successive partial trajectories

ỹ1, . . . , ỹN , of the form

ỹk+1 =
(

ỹk, ũk, fk(x̃k, ũk)
)

, k = 0, . . . , N − 1, (1.10)

where x̃k is the last state component of ỹk, and ũk is a control that minimizes the heuristic costH
(

Tk(ỹk, uk)
)

over all uk for which Tk(ỹk, uk) is feasible. Thus at stage k, the algorithm forms the set Uk(ỹk) and selects

from Uk(ỹk) a control ũk that minimizes the cost of the complete trajectory Tk(ỹk, uk):

ũk ∈ arg min
uk∈Uk(ỹk)

G
(

Tk(ỹk, uk)
)

; (1.11)

see Fig. 1.1. The objective is to produce a feasible final complete trajectory ỹN , which has a cost G(ỹN )

that is no larger than the cost of R(ỹ0) produced by the base heuristic starting from ỹ0, i.e.,

G(ỹN ) ≤ G
(

R(ỹ0)
)

. (1.12)

Note that Tk(ỹk, uk) is not guaranteed to be feasible for any given uk (i.e., it may not belong to C), but

for the analysis of Section 2, our assumptions will guarantee that the constraint set Uk(ỹk) of the problem

(1.11) is nonempty, so that our rollout algorithm is well-defined. Later, in Section 3, we will modify our

algorithm so that it is well-defined under the weaker assumption that just the complete trajectory generated

by the base heuristic starting from the given initial state ỹ0 is feasible, i.e., R(ỹ0) ∈ C.

It can be seen that our constrained rollout algorithm is not much more complicated or computationally

demanding than its unconstrained version where the constraint T ∈ C is not present (as long as checking
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k yk+1

+1 uN−1

10 11 12 R(yk+1)
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Figure 1.1. Illustration of the rollout algorithm. At stage k, and given the current partial

trajectory

ỹk = (x̃0, ũ0, x̃1, . . . , ũk−1, x̃k),

which starts at x̃0 and ends at x̃k, it considers all possible next states xk+1 = fk(x̃k, uk), and

runs the base heuristic starting at yk+1 = (ỹk, uk, xk+1). It then:

(a) Finds ũk, the control that minimizes over all uk the cost G
(

Tk(ỹk , uk)
)

over all uk that

yield a feasible complete trajectory Tk(ỹk , uk) ∈ C.

(b) Extends ỹk by
(

ũk, fk(x̃k, ũk)
)

to form ỹk+1.

feasibility of a complete trajectory T is not computationally demanding). Note, however, that our algorithm

makes essential use of the deterministic character of the problem, and does not admit a straightforward

extension to stochastic or minimax problems, since checking feasibility of a complete trajectory is typically

difficult in stochastic and minimax contexts.

In the next section, we establish the cost improvement properties of our algorithm under the assump-

tions of sequential consistency and sequential improvement introduced in [BTW97]. In Section 3, we discuss

some variants and extensions of the algorithm. In Section 4, we discuss how the algorithm can be applied

to multiagent problems with computational complexity that is linear in the number of agents, rather than

exponential. In Section 5, we discuss the application of our algorithm to combinatorial problems, including

a broad class of layered graph problems, which contains as special cases problems of scheduling, routing, and

multidimensional assignment. We will illustrate rollout primarily through the multidimensional assignment

problem by using base heuristics that solve repeatedly 2-dimensional assignment problems with the auction

algorithm. This algorithm is particularly well-suited to our context because it allows the efficient use of the

solution of a given problem as a starting point for the solution of a related assignment problem. Detailed

presentations of the auction algorithm are given in several sources, including the author’s textbooks [Ber91],

[Ber98], and the survey paper [Ber92]. For purposes of easy reference and completeness, we provide an

appendix with a description, which is based on the author’s brief tutorial paper [Ber01].
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2. COST IMPROVEMENT WITH THE ROLLOUT ALGORITHM

Let us summarize the rollout algorithm (1.10)-(1.11). It starts at stage 0 and sequentially proceeds to the

last stage. At stage k, it maintains a partial trajectory

ỹk = (x̃0, ũ0, x̃1, . . . , ũk−1, x̃k) (2.1)

that starts at the given initial state ỹ0 = x̃0, and is such that

x̃t+1 = ft(x̃t, ũt), t = 0, 1, . . . , k − 1.

The algorithm then forms the set of controls

Uk(ỹk) =
{

uk | Tk(ỹk, uk) ∈ C
}

that is consistent with feasibility [cf. Eq. (1.9)], and chooses a control ũk ∈ Uk(ỹk) according to the mini-

mization

ũk ∈ arg min
uk∈Uk(ỹk)

G
(

Tk(ỹk, uk)
)

, (2.2)

[cf. Eq. (1.11)], where

Tk(ỹk, uk) =
(

ỹk, uk, R
(

ỹk, uk, fk(x̃k, uk)
)

)

;

[cf. Eq. (1.8)]. Finally, the algorithm sets

x̃k+1 = fk(x̃k, ũk), ỹk+1 = (ỹk, ũk, x̃k+1), (2.3)

[cf. Eq. (1.10)].

We will introduce conditions guaranteeing that the control set Uk(ỹk) in the minimization (2.2) is

nonempty, and that the costs of the complete trajectories Tk(ỹk, ũk) are improving with each k in the sense

that

G
(

Tk+1(ỹk+1, ũk+1)
)

≤ G
(

Tk(ỹk, ũk)
)

, k = 0, 1, . . . , N − 1,

while at the first step of the algorithm we have

G
(

T0(ỹ0, ũ0)
)

≤ G
(

R(ỹ0)
)

.

It will then follow that the cost improvement condition G(ỹN ) ≤ G
(

R(ỹ0)
)

[cf. Eq. (1.12)] holds.
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Definition 2.1: We say that the base heuristic is sequentially consistent if whenever it generates a

partial trajectory

(xk, uk, xk+1, uk+1, . . . , uN−1, xN ),

starting from a partial trajectory yk, it also generates the partial trajectory

(xk+1, uk+1, xk+2, uk+2, . . . , uN−1, xN ),

starting from the partial trajectory yk+1 =
(

yk, uk, xk+1

)

.

Sequentially consistent heuristics are often used in practice. For example greedy heuristics tend to be

sequentially consistent. Also any policy [a sequence of feedback control functions µk(yk), k = 0, 1, . . . , N −

1] for the DP problem of minimizing the terminal cost G(yN ) subject to the system equation yk+1 =
(

yk, uk, fk(xk, uk)
)

and the feasibility constraint yN ∈ C [cf. Eq. (1.6)] can be seen to be sequentially

consistent.

For a given partial trajectory yk, let us denote by yk ∪ R(yk) the complete trajectory obtained by

joining yk with the partial trajectory generated by the base heuristic starting from yk. Thus if yk =

(x0, u0, . . . , uk−1, xk) and R(yk) = (xk, uk+1, . . . , uN−1, xN ), we have

yk ∪R(yk) = (x0, u0, . . . , uk−1, xk, uk+1, . . . , uN−1, xN ).

Definition 2.2: We say that the base heuristic is sequentially improving if for every k and partial

trajectory yk for which yk ∪R(yk) ∈ C, the set Uk(yk) is nonempty, and we have

G
(

yk ∪R(yk)
)

≥ min
uk∈Uk(yk)

G
(

Tk(yk, uk)
)

. (2.4)

Note that if the base heuristic is sequentially consistent, it is also sequentially improving. The reason

is that for a sequentially consistent heuristic, yk ∪R(yk) is equal to one of the trajectories contained in the

set
{

Tk(yk, uk) | uk ∈ Uk(yk)
}

.

Our main result is contained in the following proposition.
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Proposition 2.1: Assume that the base heuristic is sequentially improving and generates a feasible

complete trajectory starting from the initial state ỹ0 = x̃0, i.e., R(ỹ0) ∈ C. Then for each k, the set

Uk(ỹk) is nonempty, and we have

G
(

R(ỹ0)
)

≥ G
(

T0(ỹ0, ũ0)
)

≥ G
(

T1(ỹ1, ũ1)
)

≥ · · · ≥ G
(

TN−1(ỹN−1, ũN−1)
)

= G(ỹN ),

where

Tk(ỹk, ũk) =
(

ỹk, ũk, R(ỹk+1)
)

;

cf. Eq. (1.8). In particular, the final trajectory ỹN generated by the constrained rollout algorithm is

feasible and has no larger cost than the trajectory R(ỹ0) generated by the base heuristic starting from

the initial state.

Proof: Consider R(ỹ0), the complete trajectory generated by the base heuristic starting from ỹ0. Since

ỹ0 ∪ R(ỹ0) = R(ỹ0) ∈ C by assumption, it follows from the sequential improvement definition, that the set

U0(ỹ0) is nonempty and we have

G
(

R(ỹ0)
)

≥ G
(

T0(ỹ0, ũ0)
)

,

[cf. Eq. (2.4)], while T0(ỹ0, ũ0) ∈ C.

The preceding argument can be repeated for the next stage, by replacing ỹ0 with ỹ1, and R(ỹ0) with

T0(ỹ0, ũ0). Since ỹ1 ∪R(ỹ1) = T0(ỹ0, ũ0) ∈ C, from the sequential improvement definition, the set U1(ỹ1) is

nonempty and we have

G
(

T0(ỹ0, ũ0)
)

= G
(

ỹ1 ∪R(ỹ1)
)

≥ G
(

T1(ỹ1, ũ1)
)

,

[cf. Eq. (2.4)], while T1(ỹ1, ũ1) ∈ C. Similarly, the argument can be successively repeated for every k, to

verify that Uk(ỹk) is nonempty and that G
(

Tk(ỹk, ũk)
)

≥ G
(

Tk+1(ỹk+1, ũk+1)
)

for all k. Q.E.D.

Proposition 2.1 implies that for a base heuristic that is sequentially improving and produces a feasible

initial complete trajectory, starting from the initial state ỹ0, the rollout algorithm generates at each stage

k a feasible complete trajectory that is no worse than its predecessor in terms of cost. It follows that the

algorithm produces a final complete trajectory ỹN = (x̃0, ũ0, x̃1, . . . , ũN−1, x̃N ) that is feasible and has cost

that is no larger than the cost of the initial complete trajectory produced by the base heuristic. On the other

hand it is easy to construct examples where the sequential improvement condition (2.4) is violated and the

cost of the solution produced by rollout is larger than the cost of the solution produced by the base heuristic

starting from the initial state (see [Ber19a], Example 2.4.2).
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3. VARIANTS AND EXTENSIONS OF THE ROLLOUT ALGORITHM

We will now discuss some variations and extensions of the rollout algorithm of Section 2.

Rollout Without the Sequential Improvement Assumption - Fortified Rollout

Let us consider the case where the sequential improvement assumption is not satisfied. Then it may happen

that given the current partial trajectory ỹk, the set of controls Uk(ỹk) that corresponds to feasible trajectories

Tk(ỹk, uk) [cf. Eq. (1.9)] is empty, in which case the rollout algorithm cannot extend the partial trajectory

ỹk further. To bypass this difficulty, we propose a modification, called fortified rollout algorithm, which

is patterned after an algorithm given in [BTW97] for the case of an unconstrained DP problem (see also

[Ber17], Section 6.4, and [Ber19a], Section 2.4.1). For validity of this algorithm, we require that the base

heuristic generates a feasible complete trajectory R(ỹ0) starting from the initial state ỹ0.

The fortified rollout algorithm, in addition to the current partial trajectory

ỹk = (x̃0, ũ0, x̃1, . . . , ũk−1, x̃k),

maintains a complete trajectory T̂k, called tentative best trajectory, which is feasible (i.e., T̂k ∈ C) and agrees

with ỹk up to state x̃k, i.e., T̂k has the form

T̂k = (x̃0, ũ0, x̃1, . . . , ũk−1, x̃k, uk, xk+1, . . . , uN−1, xN ), (3.1)

for some uk, xk+1, . . . , uN−1, xN such that

xk+1 = fk(x̃k, uk), xt+1 = ft(xt, ut), t = k + 1, . . . , N − 1.

Initially, T̂0 is the complete trajectory R(ỹ0), generated by the base heuristic starting from ỹ0, which is

assumed to be feasible. At stage k, the algorithm forms the subset Ûk(ỹk) of controls uk ∈ Uk(ỹk) such

that the corresponding Tk(ỹk, uk) is not only feasible, but also has cost that is no larger than the one of the

current tentative best trajectory:

Ûk(ỹk) =
{

uk ∈ Uk(ỹk) | G
(

Tk(ỹk, uk)
)

≤ G(T̂k)
}

.

There are two cases to consider at state k:

(1) The set Ûk(ỹk) is nonempty. Then the algorithm forms the partial trajectory ỹk+1 = (ỹk, ũk, x̃k+1),

where

ũk ∈ arg min
uk∈Ûk(ỹk)

G
(

Tk(ỹk, uk)
)

, x̃k+1 = fk(x̃k, ũk),
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and sets Tk(ỹk, ũk) as the new tentative best trajectory, i.e.,

T̂k+1 = Tk(ỹk, ũk).

(2) The set Ûk(ỹk) is empty. Then, the algorithm forms the partial trajectory ỹk+1 =
(

ỹk, ũk, x̃k+1), where

ũk = uk, x̃k+1 = xk+1,

and uk, xk+1 are the control and state subsequent to x̃k in the current tentative best trajectory T̂k [cf.

Eq. (3.1)], and leaves T̂k unchanged, i.e.,

T̂k+1 = T̂k.

It can be seen that the fortified rollout algorithm will follow the initial complete trajectory T̃0, the one

generated by the base heuristic starting from ỹ0, up to a stage k where it will discover a new feasible complete

trajectory with smaller cost to replace T̃0 as the tentative best trajectory. Similarly, the new tentative best

trajectory T̃
k
may be subsequently replaced by another feasible trajectory with smaller cost, etc. Note that

if the base heuristic is sequentially improving, and the fortified rollout algorithm will generate the same

complete trajectory as the (nonfortified) rollout algorithm given earlier, with the tentative best trajectory

T̂k+1 being equal to the complete trajectory Tk(ỹk, ũk) for all k. The reason is that if the base heuristic is

sequentially improving the controls ũk generated by the nonfortified algorithm belong to the set Ûk(ỹk) [by

Prop. 2.1, case (1) above will hold].

However, it can be verified that even when the base heuristic is not sequentially improving, the fortified

rollout algorithm will generate a complete trajectory that is feasible and has cost that is no worse than the

cost of the complete trajectory generated by the base heuristic starting from ỹ0. This is because each

tentative best trajectory has a cost that is no worse than the one of its predecessor, and the initial tentative

best trajectory is just the trajectory generated by the base heuristic starting from the initial condition ỹ0.

Tree-Based Rollout Algorithm

It is possible to improve the performance of the rollout algorithm at the expense of maintaining more than

one partial trajectory. In particular, instead of the partial trajectory ỹk of Eq. (2.1), we can maintain a tree

of partial trajectories that is rooted at ỹ0. These trajectories need not be of equal length, i.e., they need not

have the same number of stages. At each step of the algorithm, we select a single partial trajectory from

this tree, and execute the rollout algorithm’s step as if this partial trajectory were the only one. Let this

partial trajectory have k stages and denote it by ỹk. Then we extend ỹk similar to the rollout algorithm

of Section 2, with possibly multiple feasible trajectories. There is also a fortified version of this algorithm
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where a tentative best trajectory is maintained, which is the minimum cost complete trajectory generated

thus far.

The aim of the tree-based algorithm is to obtain improved performance, essentially because it can

return to extend partial trajectories that were generated and temporarily abandoned at previous stages.

The net result is a more flexible algorithm that is capable of examining more alternative trajectories. Note

also that there is considerable freedom to select the number of partial trajectories maintained in the tree.

We finally mention a drawback of the tree-based algorithm: it is suitable for off-line computation, but

it cannot be applied in an on-line context, where the rollout control selection is made after the current state

becomes known as the system evolves in real-time. By contrast, the rollout algorithm of Section 2 and its

fortified version are well-suited for on-line application.

Rollout Without States

It is important to note that the constrained deterministic optimal control problem of this paper is very

general. In particular, it contains as a special case the fully unstructured discrete optimization problem:

minimize G(u)

subject to u ∈ C,
(3.2)

where each solution u has N components; i.e., it has the form u = (u0, . . . , uN−1), where N is a positive

integer, C is a finite set of feasible solutions, and G(u) is some cost function.† This is simply the special

case of the deterministic optimal control problem where each state xk can only take a single value. Then

the state space for each k has a single element, and the system equation xk+1 = fk(xk, uk) is trivial and

superfluous. Then in effect the partial trajectory yk is the k-tuple (u0, . . . , uk−1) consisting of the first k

components of a solution.

We associate such a k-tuple with the kth stage of the finite horizon DP problem shown in Fig. 3.1. In

particular, for k = 0, . . . , N−1, we view as the states of the kth stage all the possible k-tuples (u0, . . . , uk−1).

The initial state is some artificial state. From this state we may move to any state (u0), with u0 belonging

to the set

U0 =
{

u0 | there exists a solution of the form (u0, u1, . . . , uN−1) ∈ U
}

.

† The reverse is also true, namely that any constrained deterministic optimal control problem of the form (1.1)-

(1.3), can be converted to the general discrete optimization form (3.2), simply by expressing the states xk as functions

of the preceding controls u0, . . . , uk−1 through the system equation (1.2), and eliminating them from the cost function

expression and the constraints. This abstraction of the problem may be of value in some contexts because of its

inherent simplicity.
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Figure 3.1. Formulation of a discrete optimization problem as a DP problem with N stages.

Starting with an artificial initial state, a new control component is chosen at each stage. There is

a cost G(u) only at the terminal stage.

Thus U0 is the set of choices of u0 that are consistent with feasibility.

More generally, from a state (u0, . . . , uk−1), we may move to any state of the form (u0, . . . , uk−1, uk),

such that uk belongs to the set

Uk(u0, . . . , uk−1) =
{

uk | there exists a solution of the form (u0, . . . , uk, uk+1, . . . , uN−1) ∈ U
}

.

These are the set of choices of uk that are consistent with the preceding choices u0, . . . , uk−1, and are also

consistent with feasibility. The last stage corresponds to the complete solutions u = (u0, . . . , uN−1), with

cost G(u); see Fig. 3.1. All other transitions in this DP problem formulation have cost 0. Of course here

the number of states typically grows exponentially with N , but we can still apply the constrained rollout

algorithm to the preceding DP formulation, using a suitable base heuristic, which will be applied only N

times. As an example, in Section 5 the multidimensional assignment problem will be transformed to the

format of problem (3.2), prior to the application of constrained rollout.

The following example describes a treatment by rollout of a classical 0-1 integer programming problem.

Example 3.1 (Facility Location)

We are given a candidate set of N locations, and we want to place in some of these locations a “facility” that

will serve the needs of M “clients.” Each client i = 1, . . . ,M has a demand di for services that may be satisfied

at a location k = 0, . . . , N − 1 at a cost aik per unit. If a facility is placed at location k, it has capacity to serve

demand up to a known level ck.

We introduce a 0-1 integer variable uk to indicate with uk = 1 that a facility is placed at location k at a

cost bk and with uk = 0 that a facility is not placed at location k. Thus if yik denotes the amount of demand
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Clients

ClientsClients

ij i j z

Controlled Markov Chain Locations

ik uk = 0 or 1

= 0 or 1 kY yik

Figure 3.2. Schematic illustration of the facility location problem; cf. Example 3.1.

Clients are matched to facilities, and the location of the facilities is subject to optimization.

of client i to be served at facility k, the constraints are

N−1
∑

k=0

yik = di, i = 1, . . . ,M, (3.3)

M
∑

i=1

yik ≤ cjuk, k = 0, . . . , N − 1, (3.4)

together with

yik ≥ 0, uk ∈ {0, 1}, i = 1, . . . ,M, k = 0, . . . , N − 1. (3.5)

We wish to minimize the cost
M
∑

i=1

N−1
∑

k=0

aikyik +

N−1
∑

k=0

bkuk (3.6)

subject to the preceding constraints. The essence of the problem is to place enough facilities at favorable

locations to satisfy the clients’ demand at minimum cost. This can be a very difficult mixed integer programming

problem.

On the other hand, when all the variables uk are fixed at some 0 or 1 values, the problem belongs to

the class of linear transportation problems (see e.g., [Ber98]), and can be solved by fast polynomial algorithms.

Thus the essential difficulty of the problem is how to select the sequence of variables uk, j = 0, . . . , N − 1. This

can be viewed as a discrete optimization problem of the type shown in Fig. 3.2. In terms of the notation of

this figure, the control components are u0, . . . , uN−1, where uk can take the two values 0 or 1.

To address the problem by rollout, we must define a base heuristic at a “state” (u0, . . . , uk−1), where

uj = 1 or uj = 0 specifies that a facility is or is not placed at location j, respectively. A suitable base heuristic
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at that state is to place a facility at all of the remaining locations (i.e., uj = 1 for j = k+1, . . . , N − 1), and its

cost is obtained by solving the corresponding linear transportation problem of minimizing the cost (3.6) subject

to the constraints (3.3)-(3.5), with the variables uj , j = 0, . . . , k− 1, fixed at the previously chosen values, and

the variables uj , j = k, . . . , N , fixed at 1.

To illustrate, at the initial state where no placement decision has been made, we set u0 = 1 (a facility

is placed at location 0) or u0 = 0 (a facility is not placed at location 0), we solve the two corresponding

transportation problems, and we fix u0, depending on which of the two resulting costs is smallest. Having fixed

the status of location 0, we repeat with location 1, set the variable u1 to 1 and to 0, solve the corresponding

two transportation problems, and fix u1, depending on which of the two resulting costs is smallest, etc.

It is easily seen that if the initial base heuristic choice (placing a facility at every candidate location)

yields a feasible solution, i.e.,
M
∑

i=1

di ≤

N−1
∑

k=0

ck,

the rollout algorithm will yield a feasible solution with cost that is no larger than the cost corresponding to

the initial application of the base heuristic. In fact it can be verified that the base heuristic here is sequentially

improving, so it is not necessary to use the fortified version of the algorithm. Regarding computational costs,

the number of transportation problems to be solved is at first count 2N , but it can be reduced to N + 1 by

exploiting the fact that one of the two transportation problems at each stage after the first has been solved at

an earlier stage. It is finally worth noting, for readers that are familiar with the integer programming method

of branch-and-bound, that the graph of Fig. 3.1 corresponds to the branch-and-bound tree for the problem,

so the rollout algorithm amounts to a quick (and imperfect) method to traverse the branch-and-bound tree.

This observation may be useful if we wish to use integer programming techniques to add improvements to the

rollout algorithm.

We finally note that the rollout algorithm requires the solution of many linear transportation problems,

with fairly similar data. It is thus important to use an algorithm that is capable of using effectively the final

solution of one transportation problem as a starting point for the solution of the next. The auction algorithm

for transportation problems (Bertsekas and Castañon [Ber89]) is particularly well-suited for this purpose.

4. CONSTRAINED MULTIAGENT ROLLOUT

Let us assume a special structure of the control space, where the control uk consists of m components,

uk = (u1
k, . . . , u

m
k ), each belonging to a corresponding set U ℓ

k, ℓ = 1, . . . ,m. Thus the control space at stage

k is the Cartesian product

Uk = U1
k × · · · × Um

k . (4.1)

We refer to this as the multiagent case, motivated by the special case where each component uℓ
k, ℓ = 1, . . . ,m,

is chosen by a separate agent ℓ at stage k. Then the rollout minimization (2.2) involves the computation and
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comparison of as many as nm terms G
(

Tk(ỹk, uk)
)

, where n is the maximum number of elements of the sets

U ℓ
k [so that nm is an upper bound to the number of controls in the control space Uk, in view of its Cartesian

product structure (4.1)]. Thus the rollout algorithm requires order O(nm) applications of the base heuristic

per stage.

In this section we construct an alternative rollout algorithm that achieves the cost improvement prop-

erty (1.12) with much smaller computational cost, namely order O(nm) applications of the base heuristic

per stage. A key idea here is that the computational requirements of the rollout one-step minimization (2.2)

are proportional to the number of controls and are independent of the size of the state space. This motivates

a reformulation of the problem, first suggested in the neuro-dynamic programming book [BeT96], Section

6.1.4, whereby control space complexity is traded off with state space complexity, by “unfolding” the control

uk into its m components, which are applied one agent-at-a-time rather than all-agents-at-once. We describe

this idea next within the context of this paper; see [Ber19b] for a related discussion, which also considers

stochastic multiagent problems and associated rollout algorithms with a cost improvement guarantee over

the base heuristic.

Trading off Control Space Complexity with State Space Complexity

We noted that a major issue in rollout is the minimization over uk

ũk ∈ arg min
uk∈Uk(ỹk)

G
(

Tk(ỹk, uk)
)

,

[cf. Eq. (2.2)], which can be very time-consuming when the size of the control space is large. In particular, in

the multiagent case when uk = (u1
k, . . . , u

m
k ), the time to perform this minimization is typically exponential

in m. To deal with this, we reformulate the problem by breaking down the collective decision uk into m

individual component decisions, thereby reducing the complexity of the control space while increasing the

complexity of the state space. The potential advantage is that the extra state space complexity does not

affect the computational requirements of rollout.

To this end, we introduce a modified but equivalent problem, involving one-at-a-time agent control

selection. In particular, at the generic state xk, we break down the control uk into the sequence of the

m controls u1
k, u

2
k, . . . , u

m
k , and between xk and the next state xk+1 = fk(xk, uk), we introduce artificial

intermediate “states” (xk, u1
k), (xk, u1

k, u
2
k), . . . , (xk, u1

k, . . . , u
m−1
k ), and corresponding transitions. The choice

of the last control component um
k at “state” (xk, u1

k, . . . , u
m−1
k ) marks the transition at cost gk(xk, uk) to the

next state xk+1 = fk(xk, uk) according to the system equation; see Fig. 4.1.

It is evident that this reformulated problem is equivalent to the original, since any control choice that

is possible in one problem is also possible in the other problem, while the cost structures of the two problems

are essentially the same. The motivation for the reformulated problem is that the control space is simplified
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Figure 4.1. Equivalent formulation of the N-stage optimal control problem for the case where

the control uk consists of m components u1
k
, u2

k
, . . . , um

k
:

uk = (u1
k, . . . , u

m
k ) ∈ U1

k (xk)× · · · × Um
k (xk).

The figure depicts the kth stage transitions. Starting from state xk, we generate the intermediate

states (xk , u
1
k
), (xk, u

1
k
, u2

k
), . . . , (xk, u

1
k
, . . . , um−1

k
), using the respective controls u1

k
, . . . , um−1

k
.

The final control um leads from (xk, u
1
k
, . . . , um−1

k
) to xk+1 = fk(xk, uk), and a cost gk(xk , uk)

is incurred.

at the expense of introducing m− 1 additional layers of states. However, the key point is that the increase

in size of the state space does not adversely affect the operation of rollout .

Multiagent Rollout Algorithm

Consider now the constrained rollout algorithm of Section 2 applied to the reformulated problem shown in

Fig. 4.1, with a base heuristic suitably modified so that it completes a partial trajectory of the form

(

yk, (xk, u1
k), (xk, u1

k, u
2
k), . . . , (xk, u1

k, . . . , u
ℓ
k)
)

, ℓ = 1, . . . ,m.

The algorithm involves a minimization over only one control component at the state xk and at each of the

intermediate states

(xk, u1
k), (xk, u1

k, u
2
k), . . . , (xk, u1

k, . . . , u
m−1
k ).

In particular, for each stage k, the algorithm requires a sequence of m minimizations, one over each of the

control components u1
k, . . . , u

m
k , with the past controls already determined by the rollout algorithm, and the

future controls determined by running the base heuristic. Assuming a maximum of n elements in the control

component spaces U ℓ
k, ℓ = 1, . . . ,m, the computation required at each stage k is of order O(n) for each of

the “states”

xk, (xk, u1
k), . . . , (xk, u1

k, . . . , u
m−1
k ),

for a total of order O(nm) computation.

To elaborate, for all k and ℓ ≤ m at the current partial trajectory

(x̃0, ũ0, . . . , x̃k, ũ1
k, . . . , ũ

ℓ−1
k ),
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and for each of the controls uℓ
k, we use the base heuristic to generate a complementary partial trajectory

(uℓ+1
k , . . . , um

k , xk+1, uk+1, . . . , xN−1, uN−1, xN ), (4.2)

up to stage N . We then select the control ũℓ
k for which the resulting complete trajectory is feasible and has

minimum cost. There is also a fortified version of this algorithm, which is similar to the one described in

Section 3.

Note that the base heuristic used in the reformulated problem must be capable of generating a com-

plementary partial trajectory of the form (4.2), starting from any partial trajectory of states and controls.

Note also that instead of selecting the agent controls in a fixed order, it is possible to change the order at

each stage k. In fact it is possible to optimize over multiple orders at the same stage.

5. APPLICATION TO MULTIDIMENSIONAL ASSIGNMENT

In this section we demonstrate the application of constrained multiagent rollout within the context of the

classical multidimensional assignment problem. This problem is representative of a broad class of layered

graph problems, which involve both a temporal and a spacial allocation structure, so that both the dynamic

system character and the multiagent character of our algorithms come into play.

Multidimensional assignment problems involve graphs consisting of N + 1 subsets of nodes (N ≥ 2),

denoted N0,N1, . . . ,NN , and referred to as layers . The arcs of the graphs are directed and are of the form

(i, j), where i is a node in a layer Nk, k = 0, 1, . . . , N − 1, and j is a node in the corresponding next layer

Nk+1. Thus we have a directed graph whose nodes are arranged in N + 1 layers and the arcs connect the

nodes of each layer to the nodes in their adjacent layers; see Fig. 5.1. Here for simplicity, we assume that

each of the layers Nk contains m nodes, and that there is a unique arc connecting each node in a given layer

with each of the nodes of the adjacent layers.

We consider subsets of nodes, referred to as groupings , which contain a single node from every layer,

and we assume that every grouping is associated with a given cost. A partition of the set of nodes into m

disjoint groupings, so that each node belongs to one and only one grouping is called an (N +1)-dimensional

assignment . For each grouping, there is an associated cost, which depends on the N -tuple of arcs that

comprise the grouping. The cost of an (N + 1)-dimensional assignment is the sum of the costs of its m

groupings. The problem is to find an (N + 1)-dimensional assignment of minimum cost.

This is a difficult combinatorial problem with many applications. An important special case arises in

the context of multi-target tracking and data association; see Blackman [Bla86], Bar-Shalom and Fortman

[BaF88], Bar-Shalom [Bar90], Pattipati, Deb, Bar-Shalom, andWashburn [PDB92], Poore [Poo94], Poore and

Robertson [PoR97], Popp, Pattipati, and Bar-Shalom [PPB01], and Choi, Brunet, and How [CBH09]. Other
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5-Dimensional Assignment Problem 6 Node Layers

Three-Dimensional Assignment Problem 3 Node Layers Jobs

Figure 5.1. Illustration of the graph of an (N + 1)-dimensional assignment problem (here

N = 5). There are N + 1 node layers each consisting of m nodes (here m = 4). Each grouping

consists of N + 1 nodes, one from each layer, and N corresponding arcs. An (N + 1)-dimensional

assignment consists of m node-disjoint groupings, where each node belongs to one and only one

grouping (illustrated in the figure with thick red lines). For each grouping, there is an associated

cost, which depends on the (N + 1)-tuple of arcs that comprise the grouping. The cost of an

(N +1)-dimensional assignment is the sum of the costs of its m groupings. In the separable case,

the cost of a grouping separates into the sum of its N arc costs, and the problem can be solved

by solving N decoupled 2-dimensional assignment problems.

challenging combinatorial problems, such as multi-vehicle routing and multi-machine scheduling problems,

also share the spatio-temporal type of structure, and are thus well suited for the application of our constrained

multiagent rollout approach. For more discussion of related combinatorial applications, we refer to Chapter

10 of the author’s network optimization book [Ber98]. Generally, the fine details of such a problem will

determine the choice of a suitable base heuristic.

We note that there are several variants of the multidimensional assignment problem illustrated in Fig.

5.1, which are well-suited for the application of constrained rollout. For example, these variants may involve

unequal numbers of nodes in each layer, or a sparse structure where some of the possible arcs connecting

nodes of adjacent layers are missing. Moreover, there may be cost coupling between collections of groupings

that depends on the groupings’ compositions. In this paper we will focus on the case where the layers have

equal numbers of nodes and where the cost of each grouping depends exclusively on the N + 1 nodes that

comprise the grouping. This structure favors the use of base heuristics that rely on solution of 2-dimensional

assignment problems.

Three-Dimensional Assignment

To simplify the presentation, we will first focus on the 3-dimensional assignment special case (N = 2), and for

descriptive purposes, we will associate the nodes of the three layers with “jobs,” “machines,” and “workers,”
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3-Dimensional Assignment Problem 3 Node Layers Jobs

Jobs j j Machines ℓ ℓ Workers w

Three-Dimensional Assignment Problem 3 Node Layers Jobs

Figure 5.2. A 3-dimensional assignment problem consisting of assigning each job j to a machine

ℓ and to a worker w at cost ajℓw . Each machine assigned to exactly one job and exactly one worker.

Here N = 2 and m = 4.

respectively. Suppose that the performance of a job j requires a single machine ℓ and a single worker w

(which cannot be shared by any other job), and that there is a given cost ajℓw corresponding to the triplet

(j, ℓ, w). Given a set of m jobs, a set of m machines, and a set of m workers, we want to find a collection

of m job-machine-worker triplets that has minimum total cost. This problem is quite challenging, and is

well-suited for demonstration of our constrained rollout approach as it has both a temporal and a spacial

character.

To transcribe the problem to the optimal control format of this paper, we use the formulation of Fig.

3.1, and assume that there is only one state at each of three stages [the respective collections of jobs (for

the first stage), machines (for the second stage), and workers (for the third stage)], and two decisions to

make (the assignment of jobs to machines and the assignment of machines to workers); see Fig. 5.2. Each of

the decisions consists of m components, the m outgoing arcs from the m nodes corresponding to the stage.

Thus, the application of the multiagent rollout algorithm of Section 4 will involve two stages, a state space

consisting of a single element for each state, and a control at each stage that consists of m components (the

choice of machine to assign to each job in the first stage, and the choice of worker to assign to each machine

in the second stage). These components are computed in sequence according to some predetermined order,

which without loss of generality we will assume to be the natural order 1, 2, . . . ,m.

An important and particularly favorable special case of the problem arises when the costs ajℓw have

the separable form

ajℓw = βjℓ + γℓw,

where βjℓ and γℓw are given scalars. In this case, there is no coupling between jobs and workers, and
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the problem can be efficiently (polynomially) solved by solving two decoupled (2-dimensional) assignment

problems: one involving the pairing of jobs and machines, with the βjℓ as costs, and the other involving the

pairing of machines and workers, with the γℓw as costs. In general, however, the 3-dimensional assignment

problem is a difficult integer programming problem, for which there is no known polynomial algorithm.

The Enforced Separation Heuristic and Three-Dimensional Assignment

The separable case motivates a simple heuristic approach for the nonseparable 3-dimensional assignment

problem, which is well-suited for the use of constrained rollout. The base heuristic is a two-stage procedure

that is based on relaxing each the grouping constraints, by first focusing on assigning machines to workers,

and then focusing on assigning jobs to machines, after suitably modifying the costs ajℓw to make them

separable. In particular, we first relax the constraints on the jobs by assuming that each machine-worker

pair can be assigned to the most favorable job. Mathematically, this relaxed problem takes the polynomially

solvable 2-dimensional assignment form

minimize

m
∑

w=1

m
∑

ℓ=1

cℓwvℓw

subject to

m
∑

ℓ=1

vℓw = 1, ∀ w = 1, . . . ,m,

m
∑

w=1

vℓw = 1, ∀ ℓ = 1, . . . ,m,

vℓw = 0 or 1, ∀ ℓ, w = 1, . . . ,m,

where

cℓw = min
j=1,...,m

ajℓw, (5.1)

vℓw are the variables of the problem, and vℓw = 1 indicates that machine ℓ is assigned to worker w, so the

constraints of the above problem enforce the condition that each machine is assigned to one and only one

worker.†

For each w, let wℓ be the worker assigned to machine ℓ, according to the solution of this problem. We

can now optimally assign jobs j to machine-worker pairs (ℓ, wℓ) by using as assignment costs

bjℓ = ajℓwℓ
,

† An alternative is to define each cost cℓw as a “representative” cost ajℓwℓw (for some specially selected

job jℓw). Such an alternative may become attractive when extensions of enforced separation are considered

for (N +1)-dimensional problems with large N . Then the analog of Eq. (5.1) will involve minimization over

the (exponential in N) number of all (N − 2)-tuples of graph arcs that can form a grouping with (ℓ, w), and

may become very costly.
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and obtain a (suboptimal) 3-dimensional assignment {(jℓ, ℓ, wℓ) | ℓ = 1, . . . ,m}. It can be seen that this

approach amounts to enforced separation, whereby we replace the costs ajℓw with the separable approxima-

tions bjℓ+cℓw. In fact, it can be shown that if the problem is ǫ-separable, in the sense that for some (possibly

unknown) βjℓ and γℓw, and some ǫ ≥ 0, we have

|βjℓ + γℓw − ajℓw| ≤ ǫ, ∀ j, ℓ, w = 1, . . . ,m,

then the assignment {(jℓ, ℓ, wℓ) | ℓ = 1, . . . ,m} obtained using the preceding enforced separation approach

achieves the optimal cost of the problem within 4mǫ (see the author’s network optimization book [Ber98],

Exercise 10.31).

The enforced separation approach is simple and can be generalized to problems with more than two

stages as we will discuss shortly. Moreover, enforced separation heuristics also apply to several variants

of the multidimensional assignment problem. For example, we may have transportation-type constraints,

where multiple jobs can be performed on the same machine, and/or multiple machines can be operated by

a single worker. In this case, our preceding discussion of the enforced separation heuristic applies similarly,

except that we need to solve 2-dimensional transportation problems rather than 2-dimensional assignment

problems.

Using Enforced Separation as a Base Heuristic

We will now describe the use of enforced separation as a base heuristic in the context of constrained rollout.

The 3-dimensional assignment problem is posed as an optimal control problem involving m + 1 sequential

choices: the machines assigned to the jobs are first selected one-by-one in some fixed order (m sequential

choices), and then the workers assigned to the machines are selected simultaneously. To connect with our

earlier optimal control formulation, trajectories here consist of an artificial initial state, the m successive

choices of job-machine pairs (these correspond to the controls u1
0, . . . , u

m
0 ), and then the m-tuple of machine-

worker pairs (these comprise the control u1). For each of the first m choices a job is selected and the machine

to be assigned to this job is fixed by the rollout algorithm, through the use of the base heuristic of enforced

separation. At the last stage the m machines are assigned simultaneously to workers using a 2-dimensional

assignment algorithm.

To illustrate the fortified rollout algorithm, at the artificial initial state where no job-machine or

machine-worker pair has been fixed, the enforced separation heuristic as described above is used to generate

a (suboptimal) initial 3-dimensional assignment, which serves as the initial tentative best trajectory, and has

cost denoted by Ŝ.

In the first m rollout stages we select in sequence each job j = 1, . . . ,m, and we select a machine ℓ to

assign to it, by using the enforced separation heuristic. The first rollout stage is as follows:
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Stage 1.1: We take job j = 1, and fix its assignment to machine 1. We then apply the enforced separation

heuristic by solving two 2-dimensional assignment problems. The first of these involves the assignment

of machines to workers using as costs

cℓw =

{

a11w if ℓ = 1,

minj=2,...,m ajℓw if ℓ 6= 1,

[cf. Eq. (5.1)]. We thus obtain an assignment of machines to workers of the form (ℓ, wℓ), ℓ = 1, . . . ,m.

Having fixed the workers to be assigned to machines, we solve the 2-dimensional assignment problem

of assigning the jobs 2, . . . ,m to the machines 2, . . . ,m, where the costs are

bjℓ = ajℓwℓ
, j, ℓ = 2, . . . ,m.

By “joining” the solutions of the two 2-dimensional problems just described, we obtain a 3-dimensional

assignment that consists of m job-machine-worker groupings whose cost we call S1.

Stage 1.2: We take job j = 1, and fix its assignment to machine 2. We then apply the enforced separation heuristic

by solving two 2-dimensional assignment problems. The first involves the assignment of machines to

workers using as costs

cℓw =

{

a12w if ℓ = 2,

minj=2,...,m ajℓw if ℓ 6= 2,

[cf. Eq. (5.1)]. We obtain an assignment of machines to workers of the form (ℓ, wℓ), ℓ = 1, . . . , w.

We then solve the 2-dimensional assignment problem of assigning the jobs 2, 3, . . . ,m to the machines

1, 3, . . . ,m, where the costs are

bjℓ = ajℓwℓ
, j = 2, 3, . . . ,m, ℓ = 1, 3, . . . ,m.

By “joining” the solutions of the two 2-dimensional problems, we obtain a 3-dimensional assignment,

whose cost we call S2.

Stage 1.t: For t = 3, . . . ,m, we continue the process described above, where we fix the assignment of job 1 to

machine t. We then apply the enforced separation heuristic by solving two 2-dimensional assignment

problems, similar to the ones above: first assigning machines to workers using costs

cℓw =

{

a1tw if ℓ = t,

minj=2,...,m ajℓw if ℓ 6= t,

and obtaining an assignment of machines to workers of the form (ℓ, wℓ), ℓ = 1, . . . , w. We then solve the

2-dimensional assignment problem of assigning the jobs 2, . . . ,m to the machines 1, . . . , t−1, t+1, . . . ,m,

where the costs are

bjℓ = ajℓwℓ
, j = 2, 3, . . . ,m, ℓ = 1, . . . , t− 1, t+ 1, . . . ,m.
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Application to Multidimensional Assignment

By “joining” the solutions of the two 2-dimensional problems, we obtain a 3-dimensional assignment,

whose cost we call St.

Stage 1: We now havem 3-dimensional assignments, with corresponding costs S1, . . . , Sm, where job 1 is fixed to

the machines 1, . . . ,m, respectively. We choose the machine ℓ̃ for which Sℓ̃ is minimized over ℓ = 1, . . .,

and we permanently assign job 1 to machine ℓ̃ if Sℓ̃ is less or equal to Ŝ, the cost of the enforced

separation heuristic applied to the artificial initial state (the current tentative best trajectory), and we

also adopt the corresponding 3-dimensional assignment as the new tentative best trajectory. Otherwise,

we set the assignment of job 1 to a machine according to the current tentative best trajectory, which

we leave unchanged.

The preceding procedure, the first step of constrained rollout, required the solution of 2m 2-dimensional

assignment problems, and yielded a permanent assignment of job 1 to a machine. The procedure is then

repeated for job 2, taking into account that the assignment of job 1 to a machine has been fixed. This requires

similarly the solution of 2(m − 1) 2-dimensional assignment problems, and yields a permanent assignment

of job 2 to a machine, and an update of the current tentative trajectory. Repeating the procedure with jobs

3, . . . ,m in sequence, we obtain a permanent assignment of all the jobs to machines, and the corresponding

3-dimensional assignment (which has minimum cost over all the 3-dimensional assignments generated, in

view of the use of fortified rollout). The total number of 2-dimensional assignment problems thus solved is

2m+ 2(m− 1) + 2(m− 2) + · · ·+ 2 = m2.

Finally, given the permanent assignment of all the jobs to machines, say (jℓ, ℓ), ℓ = 1, . . . ,m, we obtain the

(permanent) assignment of workers to job-machine pairs, by using as costs the scalars

cℓw = ajℓℓw, ℓ, w = 1, . . . ,m.

At this point we have obtained by rollout the final suboptimal 3-dimensional assignment, which by con-

struction has the cost improvement property: it has no larger cost than the one obtained by the enforced

separation base heuristic starting from the artificial initial condition.

Thus the total number of 2-dimensional assignment problems to be solved by the rollout algorithm is

m2 + 1. Each of these problems can be solved very fast using any one of a number of methods. However,

because these problems and their solutions are similar, it is important to use a method that can exploit

this similarity. A particularly favorable method in this regard is the author’s auction algorithm [Ber79] (see

the book [Ber98] for a detailed development; we provide an introductory review of auction algorithms in

the appendix to this paper). The auction algorithm uses a price variable for each node, such as a worker

or a machine, and then adjusts the prices through an auction-like process to achieve a form of economic

equilibrium. One can then use the final prices obtained for one 2-dimensional assignment problem as an
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efficient starting point for the solution of a related 2-dimensional assignment problem. For this reason, the

auction algorithm and its variations have been widely adopted for use in solving 2-dimensional assignment

problems in the context of multidimensional assignment algorithms used for multitarget tracking applications,

among others (see [PDB92], [Poo94], [PoR97], [PPB01], [CBH09]).

Enforced Separation and Constrained Rollout for Multidimensional Assignment

Let us now consider briefly the extension of the constrained rollout algorithm just described to (N + 1)-

dimensional assignment problems with N > 2. Here we will use an extension of the 3-dimensional enforced

separation heuristic. We start again from the last stage, solve the last 2-dimensional assignment problem of

the last stage by modifying the arc costs according to the analog of the minimization formula

cℓw = min
j=1,...,m

ajℓw,

[cf. Eq. (5.1)]. The only difference is that instead of minimizing ajℓw over jobs j as above, we minimize over

all (N − 1)-tuples of nodes of the groupings whose final two nodes are (ℓ, w). Once the assignments of the

last stage are fixed, a similar procedure can be used to fix the assignments of the next-to-last stage, and so

on. The total number of 2-dimensional assignment problems to be solved is (m+ 1)(N − 2). Thus the base

heuristic’s computation time is polynomial in both m and N .

The enforced separation heuristic just described for the artificial initial condition, can be used in

suitably modified form for rollout, with the assignments of some stages fixed permanently by rollout, and

additional assignments fixed one by one, by applying the enforced separation heuristic, with suitably modified

costs that take into account the already fixed assignments.

6. CONCLUDING REMARKS

We have proposed a rollout algorithm for constrained deterministic DP, which is well suited for the suboptimal

solution of challenging discrete optimization problems. Under suitable assumptions, we have shown a cost

improvement property: the rollout algorithm produces a feasible solution, whose cost is no worse than the

cost of the solution produced by the base heuristic.

We have also proposed an efficient variant of the algorithm for multiagent problems, where the control at

each stage consists of multiple components. We have shown that the cost improvement property is preserved,

and we have applied the algorithm to layered graph problems that involve both a spatial and a temporal

structure. In particular, we have focused on multidimensional assignment, using the auction algorithm for

2-dimensional assignment as a base heuristic.
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APPENDIX: An Overview of the Auction Algorithm for 2-Dimensional Assignment

In this appendix, we describe briefly the auction algorithm, an intuitive method for solving the classical 2-

dimensional assignment problem, which outperforms substantially its main competitors, both in theory and

in practice, and it can naturally exploit the availability of parallel computation. It is particularly well-suited

for contexts of frequent reoptimization, where many problems are solved with slightly different data, as in

the rollout algorithm of the present paper when applied to multidimensional assignment. The reason is that

the final solution obtained for a given assignment problem by the auction algorithm (a set of prices, as we

will describe shortly) is a good starting point for applying the algorithm to a similar problem.

In this appendix, we will sketch the basic principles of the auction algorithm, we will explain its com-

putational properties, and we will discuss some of its extensions to more general network flow problems.

These extensions are well-suited for use in rollout algorithms for complex combinatorial optimization prob-

lems beyond the multidimensional assignment context. For detailed presentations, we refer to the author’s

textbooks [Ber91], [Ber98], and the survey paper [Ber92]. For an extensive computational study, we refer

to Castañon [Cas93]. Several coded implementations of the auction algorithm are freely available from the

internet, including some from the author’s web site. The algorithm was first proposed in a 1979 report by

the author [Ber79]. The present appendix is based on the author’s brief tutorial article [Ber01].

In the classical assignment problem there are n persons and n objects that we have to match on a

one-to-one basis. There is a benefit aij for matching person i with object j and we want to assign persons

to objects so as to maximize the total benefit.† Mathematically, we want to find a one-to-one assignment [a

set of person-object pairs (1, j1), . . . , (n, jn), such that the objects j1, . . . , jn are all distinct] that maximizes

the total benefit
∑n

i=1 aiji .

The assignment problem is important in many practical contexts. The most obvious ones are resource

allocation problems, such as assigning personnel to jobs, machines to tasks, and the like. There are also

many situations where the assignment problem appears as a subproblem in various methods for solving more

complex problems, as in the context of the present paper.

The assignment problem is also of great theoretical importance because, despite its simplicity, it em-

bodies a fundamental network optimization structure. All linear single commodity network flow problems,

can be reduced to the assignment problem by means of a simple reformulation. Thus, any method for solving

the assignment problem can be generalized to solve the linear network flow problem, and in fact this approach

is particularly helpful in understanding the extension of auction algorithms to network flow problems that

are more general than assignment.

† The auction algorithm is more intuitively explained in a context where we want to maximize benefit rather

than minimizing cost. We will thus adopt the maximization context, but we can simply convert to minimization by

changing the sign of aij .
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The principles on which the auction algorithm is based differ markedly from all other linear network

flow methods. In particular, classical methods for assignment are based on iterative improvement of some

cost function; for example a primal cost (as in primal simplex methods), or a dual cost (as in Hungarian-like

methods, dual simplex methods, and relaxation methods). The auction algorithm departs significantly from

the cost improvement idea; at any one iteration, it may deteriorate both the primal and the dual cost,

although in the end it finds an optimal assignment. It is based on a notion of approximate optimality, called

ǫ-complementary slackness , and while it implicitly tries to solve a dual problem, it actually attains a dual

solution that is not quite optimal.

The Auction Process

To develop an intuitive understanding of the auction algorithm, it is helpful to introduce an economic

equilibrium problem that turns out to be equivalent to the assignment problem. Let us consider the possibility

of matching the n objects with the n persons through a market mechanism, viewing each person as an

economic agent acting in his own best interest. Suppose that object j has a price pj and that the person

who receives the object must pay the price pj . Then, the (net) value of object j for person i is aij − pj and

each person i would logically want to be assigned to an object ji with maximal value, that is, with

aiji − pji = max
j=1,...,n

{aij − pj}. (1)

We will say that a person i is happy if this condition holds and we will say that an assignment and a set of

prices are at equilibrium when all persons are happy.

Equilibrium assignments and prices are naturally of great interest to economists, but there is also

a fundamental relation with the assignment problem; it turns out that an equilibrium assignment offers

maximum total benefit (and thus solves the assignment problem), while the corresponding set of prices

solves an associated dual optimization problem. This is a consequence of the celebrated duality theorem of

linear programming.

Let us consider now a natural process for finding an equilibrium assignment. We will call this process

the naive auction algorithm, because it has a serious flaw, as will be seen shortly. Nonetheless, this flaw will

help motivate a more sophisticated and correct algorithm.

The naive auction algorithm proceeds in “rounds” (or “iterations”) starting with any assignment and

any set of prices. There is an assignment and a set of prices at the beginning of each round, and if all persons

are happy with these, the process terminates. Otherwise some person who is not happy is selected. This

person, call him i, finds an object ji which offers maximal value, that is,

ji ∈ arg max
j=1,...,n

{aij − pj}, (2)
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and then:

(1) Exchanges objects with the person assigned to ji at the beginning of the round.

(2) Sets the price of the best object ji to the level at which he is indifferent between ji and the second

best object, that is, he sets pji to

pji + γi, (3)

where

γi = vi − wi, (4)

vi is the best object value,

vi = max
j

{aij − pj}, (5)

and wi is the second best object value

wi = max
j 6=ji

{aij − pj}, (6)

that is, the best value over objects other than ji. (Note that γi is the largest increment by which the

best object price pji can be increased, with ji still being the best object for person i.)

This process is repeated in a sequence of rounds until all persons are happy.

We may view this process as an auction, where at each round the bidder i raises the price of his or her

preferred object by the bidding increment γi. Note that γi cannot be negative since vi ≥ wi [compare Eqs.

(5) and (6)], so the object prices tend to increase. Just as in a real auction, bidding increments and price

increases spur competition by making the bidder’s own preferred object less attractive to other potential

bidders.

Unfortunately, this auction does not always work. The difficulty is that the bidding increment γi is zero

when more than one object offers maximum value for the bidder i [cf. Eqs. (4), (6)]. As a result, a situation

may be created where several persons contest a smaller number of equally desirable objects without raising

their prices, thereby creating a never ending cycle.

To break such cycles, we introduce a perturbation mechanism, motivated by real auctions where each

bid for an object must raise its price by a minimum positive increment, and bidders must on occasion take

risks to win their preferred objects. In particular, let us fix a positive scalar ǫ and say that a person i is

almost happy with an assignment and a set of prices if the value of its assigned object ji is within ǫ of being

maximal, that is,

aiji − pji ≥ max
j=1,...,n

{aij − pj} − ǫ. (7)

We will say that an assignment and a set of prices are almost at equilibrium when all persons are almost

happy. The condition (7), introduced first in 1979 in conjunction with the auction algorithm, is known as
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ǫ-complementary slackness and plays a central role in several optimization contexts. For ǫ = 0 it reduces to

ordinary complementary slackness [compare Eq. (1)].

We now reformulate the previous auction process so that the bidding increment is always at least equal

to ǫ. The resulting method, the auction algorithm, is the same as the naive auction algorithm, except that

the bidding increment γi is

γi = vi − wi + ǫ, (8)

[rather than γi = vi − wi as in Eq. (4)]. With this choice, the bidder of a round is almost happy at the end

of the round (rather than happy). The particular increment γi = vi − wi + ǫ used in the auction algorithm

is the maximum amount with this property. Smaller increments γi would also work as long as γi ≥ ǫ, but

using the largest possible increment accelerates the algorithm. This is consistent with experience from real

auctions, which tend to terminate faster when the bidding is aggressive.

We can now show that this reformulated auction process terminates in a finite number of rounds,

necessarily with an assignment and a set of prices that are almost at equilibrium. To see this, note that once

an object receives a bid for the first time, then the person assigned to the object at every subsequent round

is almost happy; the reason is that a person is almost happy just after acquiring an object through a bid, and

continues to be almost happy as long as he holds the object (since the other object prices cannot decrease in

the course of the algorithm). Therefore, the persons that are not almost happy must be assigned to objects

that have never received a bid. In particular, once each object receives at least one bid, the algorithm must

terminate. Next note that if an object receives a bid in m rounds, its price must exceed its initial price by at

least mǫ. Thus, for sufficiently large m, the object will become “expensive” enough to be judged “inferior”

to some object that has not received a bid so far. It follows that only for a limited number of rounds can

an object receive a bid while some other object still has not yet received any bid. Therefore, there are two

possibilities: either (a) the auction terminates in a finite number of rounds, with all persons almost happy,

before every object receives a bid or (b) the auction continues until, after a finite number of rounds, all

objects receive at least one bid, at which time the auction terminates. (This argument assumes that any

person can bid for any object, but it can be generalized for the case where the set of feasible person-object

pairs is limited, as long as at least one feasible assignment exists.)

Optimality Properties at Termination

When the auction algorithm terminates, we have an assignment that is almost at equilibrium, but does

this assignment maximize the total benefit? The answer here depends strongly on the size of ǫ. In a real

auction, a prudent bidder would not place an excessively high bid for fear that he might win the object at

an unnecessarily high price. Consistent with this intuition, we can show that if ǫ is small, then the final

assignment will be “almost optimal.” In particular, we can show that the total benefit of the final assignment
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is within nǫ of being optimal . To see this, note that an assignment and a set of prices that are almost at

equilibrium may be viewed as being at equilibrium for a slightly different problem where all benefits aij are

the same as before, except for the n benefits of the assigned pairs which are modified by an amount no more

than ǫ.

Suppose now that the benefits aij are all integer, which is the typical practical case (if aij are rational

numbers, they can be scaled up to integer by multiplication with a suitable common number). Then, the

total benefit of any assignment is integer, so if nǫ < 1, a complete assignment that is within nǫ of being

optimal must be optimal. It follows, that if

ǫ <
1

n
,

and the benefits aij are all integer, then the assignment obtained upon termination of the auction algorithm

is optimal . Let us also note that the final set of prices is within nǫ of being an optimal solution of the dual

problem

min
pj

j=1,...,n







n
∑

j=1

pj +

n
∑

i=1

max
j

{

aij − pj
}







. (9)

This leads to the interpretation of the auction algorithm as a dual algorithm (in fact an approximate coor-

dinate ascent algorithm; see the cited literature).

ǫ-Scaling and Reoptimization

The auction algorithm exhibits interesting computational behavior, and it is essential to understand this

behavior in order to use and implement the algorithm efficiently. First note that the amount of work to solve

the problem can depend strongly on the value of ǫ and on the maximum absolute object value

C = max
i,j

|aij |.

Basically, for many types of problems, the number of bidding rounds up to termination tends to be propor-

tional to C/ǫ. Note also that there is a dependence on the initial prices; if these prices are “near optimal,”

we expect that the number of rounds to solve the problem will be relatively small.

The preceding observations suggest the idea of ǫ-scaling, proposed in the original paper [Ber79]], which

consists of applying the algorithm several times, starting with a large value of ǫ and successively reducing

ǫ up to an ultimate value that is less than some critical value (for example, 1/n, when the benefits aij are

integer). Each application of the algorithm provides good initial prices for the next application. This is a

common idea in nonlinear programming, encountered for example, in barrier and penalty function methods.

An alternative form of scaling, called cost scaling, is based on successively representing the benefits aij with

an increasing number of bits, while keeping ǫ at a constant value.
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In practice, it is a good idea to at least consider scaling. For sparse assignment problems, that is,

problems where the set of feasible assignment pairs is severely restricted, scaling seems almost universally

helpful. In theory, scaling leads to auction algorithms with a particularly favorable polynomial complexity

(without scaling, the algorithm is pseudopolynomial; see the cited literature).

Finally, let us note that the auction algorithm can be initialized with arbitrary prices, as well arbitrary

ǫ. Within this context, it is important to choose initial prices that are close to the final prices obtained

upon termination. This can be very important in a reoptimization setting, and in fact this is born out

from computational complexity analysis (see [Ber88] or [Ber98]). Indeed, reoptimization with a favorable

set of starting prices underlies the idea of ǫ-scaling or cost scaling. The rollout framework of this paper

involves extensive reoptimization, with solutions of slightly differing assignment problems. This suggests an

overwhelming advantage of the auction algorithm as a base heuristic within the context of this paper.

Parallel and Asynchronous Implementation

Both the bidding and the assignment phases of the auction algorithm are highly parallelizable. In particular,

the bidding and the assignment can be carried out for all persons and objects simultaneously. Such an

implementation can be termed synchronous. There are also totally asynchronous implementations of the

auction algorithm, which are interesting because they are quite flexible and also tend to result in faster

solution in some types of parallel machines. To understand these implementations, it is useful to think of a

person as an autonomous decision maker who at unpredictable times obtains information about the prices of

the objects. Each person who is not almost happy makes a bid at arbitrary times on the basis of its current

object price information (that may be outdated because of communication delays).

Bertsekas and Castañon [BeC91] give a careful formulation of the totally asynchronous model, and

a proof of its validity. They include also extensive computational results on a shared memory machine,

confirming the advantage of asynchronous over synchronous implementations. In the context of rollout,

there is potential for much more parallelization in the context of rollout, since as many as m independent

2-dimensional assignment problems can be solved in parallel at each stage of the rollout computations.

Variations and Extensions

The auction algorithm can be extended to solve a number of variations of the assignment problem, such as

the asymmetric assignment problem where the number of objects is larger than the number of persons and

there is a requirement that all persons be assigned to some object. Naturally, the notion of an assignment

must now be modified appropriately. To solve this problem, the auction algorithm need only be modified in
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the choice of initial conditions. It is sufficient to require that all initial prices be zero. A similar algorithm

can be used for the case where there is no requirement that all persons be assigned.

There have been extensions of the auction algorithm for other types of linear network optimization

problems. These extensions find potential application in the context of rollout algorithms for challenging

combinatorial problems, which involve graphs and network flows. The general approach for constructing

auction algorithms for such problems is to convert them to assignment problems, and then to suitably apply

the auction algorithm and streamline the computations. In particular, the classical shortest path problem

can be solved correctly by the naive auction algorithm described earlier, once the method is streamlined.

Similarly, auction algorithms can be constructed for the max-flow problems, and are very efficient. These

algorithms bear a close relation to preflow-push algorithms for the max-flow problem.

Linear transportation problems may also be addressed with the auction algorithm (Bertsekas and

Castañon [Ber89]). The basic idea is to convert the transportation problem into an assignment problem by

creating multiple copies of persons (or objects) for each source (or sink respectively), and then to modify the

auction algorithm to take advantage of the presence of the multiple copies, while appropriately streamlining

the computations. This auction algorithm may be used in the context of the facility location problem of

Example 3.2.

There are also extensions of the auction algorithm for linear minimum cost flow (transshipment) prob-

lems, such as the so called ǫ-relaxation method, and the auction/sequential shortest path algorithm algorithm

(see the network optimization textbook [Ber98] for a detailed description and further references). The ǫ-

relaxation method was first published by the author in [Ber86], although it was known much earlier (since the

development of the mathematically equivalent auction algorithm). It is equivalent to the so called pre-flow

push algorithms, as discussed in the author’s paper [Ber93]. These methods have interesting theoretical prop-

erties and like the auction algorithm, are well suited for parallelization (see the papers [Ber86], [BeG97], the

survey by Bertsekas, Castañon, Eckstein, and Zenios [BCE95], and the textbook by Bertsekas and Tsitsiklis

[BeT89]).

Let us finally note that there have been proposals of auction algorithms for convex separable network

optimization problems with and without gains (but with a single commodity and without side constraints);

see Tseng and Bertsekas [TsB00].
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