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Chess and Backgammon - Off-Line Training and On-Line Play

Current Position and Dice Roll
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Both AlphaZero (2017) and TD-Gammon (1996) involve two algorithms:
@ Off-line training of value and/or policy neural network approximations
@ On-line play by multistep lookahead, rollout, and cost function approximation

Strong connections to DP, policy iteration, and RL-type methodology
@ We are aiming to understand this methodology, so it applies far more generally

@ We focus on connections with control system design (MPC and adaptive control),
but there are extensions to discrete optimization
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On-Line Play in AlphaZero/AlphaGo/TD-Gammon: Approximation in

Value Space (Also Called “On-Line Tree Search")
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@ On-line play uses the results of off-line training, which are: A position evaluator
and a base player
@ |t aims to improve the base player by:

Searching forward for several moves through the lookahead tree

Simulating the base player for some more moves at the tree leaves

Approximating the effect of future moves by using the terminal position evaluation
Calculating the “values" of the available moves at the root and playing the best move

@ Similarities with Model Predictive Control (MPC) architecture

v
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Off-Line Training in AlphaZero: Approximate Policy lteration (Pl) Using

Self-Generated Data
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Self-Learning /Policy Iteration

@ The current player is used to train an improved player, and the process is repeated
@ The current player is “evaluated" by playing many games
@ lts evaluation function is represented by a value neural net through training

@ The current player is “improved" by using a form of approximate multistep
lookahead minimization, called Monte-Carlo Tree Search (MCTS)

@ The “improved player" is represented by a policy neural net through training

@ TD-Gammon uses similar Pl algorithm for off-line training of a value network (does
not use MCTS and does not use a policy network)

v
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Some Major Empirical Observations
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than the off-line-trained player

TD-Gammon plays much better with truncated rollout
than without rollout (Tesauro, 1996)

We will aim for explanations, insights, and generalizations through
abstract Bellman operators, visualization, and a focus on the

central role of Newton’s method

v
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Principal Viewpoints of this Talk

@ On-line play is a single step of Newton’s method for solving the Bellman equation
(or Newton-SOR in case of multistep lookahead and/or truncated rollout)

@ Off-line training provides the start point for the Newton step

@ On-line play is the real workhorse ... off-line training plays a secondary role.
A major reason: On-line play is an exact Newton step. It is not degraded by NN
approximations

@ Imperfections/differences in off-line training affect the start point, but are washed
out by the (superlinear) Newton step

@ A cultural difference that we will aim to bridge:
Reinforcement Learning/Al research is focused largely on off-line training issues
(except in the special case of armed bandit problems)
Model Predictive and Adaptive Control research is focused largely on on-line play and
stability issues
@ Adaptive control with multistep lookahead and rollout is an exact Newton step
applied to an on-line estimated Bellman equation ... It’s still a Newton step!

@ All of this applies in great generality through the power of abstract DP (arbitrary
state and control spaces, stochastic, deterministic, hybrid systems, multiagent
systems, minimax, finite and infinite horizon, discrete optimization)
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On Viewpoints and Objective Truth

et

)

Just because you are right,
does not mean, I am wrong.
You just haven't seen life

i from my side.
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@ Discounted and undiscounted infinite horizon problems

e Abstract DP concepts: Bellman operators and Bellman equations
e Visualization of on-line play as a Newton step

0 Region of stability and its visualization

e Rollout and policy iteration visualizations

e Linear quadratic problem visualizations

o Model predictive control

@ Adaptive control with model estimation (indirect adaptive control)
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Infinite Horizon Problems

Random Transition
_ . Infinite Horizon
Tpr1 = f(og, ur, w) te Horizc

Random Cost

akg(zy, up, wy)

Infinite number of stages, and stationary system and cost
@ System xx.1 = f(Xk, Uk, wx) with state, control, and random disturbance
@ Stationary policies x — u(x) satisfying a control constraint p(x) € U(x) for all x
@ Cost of stage k: a"g(xk,u(xk), wk); 0 < a < 1is the discount factor
@ Cost of a policy u: The limit as N — oo of the N-stage costs

JM(XO) = I\I||—>moo EWk {2:1 akg(Xk7 M(Xk)7 Wk)}

k=0
@ Optimal cost function J*(xo) = min, J.(xo)
@ Discounted problems: a < 1 and g is bounded (the “nice" case)
@ Stochastic shortest path problems: a = 1 and special cost-free termination state ¢
@ Control/MPC-type problems: Deterministic, g > 0, termination state is t = 0

v
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Infinite Horizon Problems - Main (Exact DP) Theory

J* satisfies Bellman’s equation:

J(x) = mJ?) Ew{g(x, u,w) + aJ* (f(x,u,w)) }, for all states x (uniquely ??)
ueU(x

Optimality condition: If 4*(x) attain the min in the Bellman equation for every
X, the policy p* is optimal (??)

Value iteration (VI): Generates cost function sequence {Jj}

Jk(x) = urEnJB() Ew{g(x, u, w) + adk—1(f(x, u, w)) }, Jo is “arbitrary" (??)

Policy Iteration (P1): Generates sequences of policies {14} and their cost
functions {J,«}; u° is “arbitrary” (??)
The typical iteration starts with a policy ;. and generates a new policy /i in two steps:
@ Policy evaluation step, which computes the cost function J,
@ Policy improvement step, which computes the improved policy /i using

fi(x) € arg min Ew{g(x, u, w) + ady (f(x, u, W))}
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On-Line Approximation in Value Space

@ Replace J* with an approximation J in Bellman’s equation
First Step  “Future”

At minueU(z)E{g(x,u,w) +aj(f(x,u,w))}

One-Step Lookahead

First ¢ Steps “Future”

kt0—1
min E < g, ug,wy) + Z ai=kg (@, pi(@s), ws) + ol J(zpre)
Uk s k4150025 Hkte—1 imht1
Multistep Lookahead

@ Defines a lookahead policy fi with fi(xx) the minimizing ux above

v

KEY NEW FACT: J; is the result of a Newton step to solve Bellman Eq. starting from J
(Newton-SOR step for multistep lookahead ¢ > 1). The error decreases

SUPERLINEARLY E .
A & -0 asd—J*
J—J*

v
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An Abstract DP Viewpoint: Bellman Operators and Bellman Equations

(Abstract DP Book, 2018, DPB)
(Tud)(x) = Eu{g(x, u(x), w) + ad (f(x, u(x), w)) }

(TJ)(x) = mJP) Ew{g(x, u,w) + ad(f(x, u, W))} = min (T,J)(x)
ueU(x 7
They define the Bellman equations J, = T,J,, J" = TJ"

T, and T transform real-valued functions J into functions 7,J and TJ
(assumed real-valued for this talk)

@ How many dimensions? Answer: The number of states x

@ For each fixed x, (T.J)(x) and (TJ)(x) are functions of J

@ Example: For a 2-state system, (TJ)(1) and (TJ)(2) are real-valued functions of
the vector J = (J(1),J(2)) € ®?

In this case T, and T map ®? to ®?

Both T, and T are monotone

T, is linear

T is “concave", i.e., (TJ)(x) is a concave function of J for each fixed x

For infinite-dimensional state space, T, and T are infinite-dimensional operators
(map infinite dimensional function space to itself)
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Visualization Using 1-D Slices Through J*

Two-State and Two-Control Example: A 4-D Graph = Two 3-D Graphs

(Tud)(x) = Ew{g(x, w(x), w) + ad (f(x, p(x), w))}, x =1,2 (linear monotone)

(TI)(x) = mUi(n)EW{g(x, u,w) + ad(f(x, u, w))}, x =1,2 (concave monotone)
ueU(x

They define the Bellman equations J, = T,J,, J" = TJ"

2-State/2-Control Example
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p-Bellman Operator in One Dimension Through J,,

(TJ)(x) = Ew{g(x, w(x), w) + ad(f(x, u(x), W))} (linear monotone)
u-Bellman equation: J, = T, J, J
A
T

Generic Policy p
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Min-Bellman Operator in One Dimension Through J*

(T)(x) = min Ew{g(x, u, w)+ad (f(x, u, w))} = min(T,J)(x) ~(concave monotone)

Min-Bellman equation:

Jt =T

T,J

A N
Generic|policy p
palicy ¢ T
| | Policy /i with
— | | Ta =17
| (attains the min)
| \ \ !
TJ = min,, Tuj b — | TJ=min, T,,J
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| |
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| J=1rN/ L -
0 J
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Visualization of Value Iteration: Jyx 1 = Tk

Value Iterations

ptimal cost
Jr=TJ*

Convergence Jx — J* depends on J, and the “slope" of T (e.g., whether T is a
contraction) J
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Newton’s Method for Solving Fixed Point Equation J = TJ

Linearization T}k J

Result of
'Newton step from Jy
: for solving J =T'J
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It is an iterative method that generates a sequence {Jx}. The typical iteration:
@ Given Jk
@ ‘Linearize" T at Ji: Replace TJ by the linearization T} J
@ Solve the linearized fixed point problem J = T; J
@ The solution of the linearized fixed point problem is the next iterate Ji.1
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Linearization/Newton Step by One-Step Lookahead

Corresponds to Tnt
One-Step Lookahead \

Policy f1 \
TJ

Result of -
Newton step from .J
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Cost. Approximation One-Step Lookahead

Policy Cost

(TI)(x) = min (T J)(x) = (TaJ)(x) (linearization of T at J yields i)
o
@ This is a key new insight. Do we need differentiability of T?

@ No! The Newton step can work without differentiability because T is concave and
monotone; (assumptions needed, everything is OK for “contractive" problems)

@ The Newton step smooths out starting point variations (lots of empirical evidence)
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Linearization/Newton-SOR Step by Multistep Lookahead

Corresponds to Tad
Multistep Lookahead
Policy f1

I Result of B
Effective | I''Newton step from T¢-1.J
Cost Approximation | I for solving J = TJ
T2j_ 1
o N b
0 \ / N J
j J* = TJ* Ji=Tadp
Cost Approximation Optimal cost Multistep Lookahead

Policy Cost
(TEd)(x) = min (T, T J)(x) = (Ta T 'J)(x) (linearization of T at T*~'J yields /i)
1

Solution of the linearized equation J = TjJ yields the cost function Jj of ji

Newton-SOR converges faster than pure Newton, but is more time-consuming J
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Stability in the MPC Context (Deterministic Problem, Positive Costs,

Cost-Free Terminal State)

ONE-STEP LOOKAHEAD MULTISTEP LOOKAHEAD
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A policy p is called stable if J,(x) < oo for all x (a very general definition)
True if T, has “slope" <1 (i.e., T, is a contraction)

Region of stability: The set of J for which the lookahead policy /i is stable
@ Depends on the length of lookahead - threshold shifts to the left as ¢ increases
@ It makes sense to try to push J towards some Ju. with e stable (rollout idea)
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Rollout: A Newton Step Starting from J = J,., where 1 is a Stable Policy

Policy Evaluation
for p
and for f1

T,J

Linearized Bellman Eq. at J,
Yields Rollout Policy [
Through T J, =TJ,

|

Policy Improvement with
Base Policy p

L\

Optimal cost

|

|
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|

| |
| |
| |
| |
| |
. . -

Jx=TJ*
N -
- N
Jﬁ:TﬁJﬁ JH:TH‘]H J

Cost of rollout policy fi  Cost of base policy p

Rollout with a stable policy u yields a stable policy /i J
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Policy lteration (Pl) is Repeated Rollout - Starting from a Stable Policy it

Produces a Sequence of Stable Policies {1}

Policy Evallmti()%
for pk [

and for pk+1

Linearized'Bellman Eq.

|
[
[ |
at J k
- ‘ at J
[ |
| |
(| |
[ |
[ |
I |
& * »
J/ \
Cost of pk+1 Cost of pk J

ket =Typs1d e J“k = T#kJ#k

@ Pure form of Pl is Newton’s method (known for special cases, Kleinman 1968 ++) )
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Truncated Rollout with Base Policy 1 (Related to Optimistic PI)

A

Truncated Rollout Policy i
Defined by

\
[
[
‘\
[
h \ 1 _
/// o T =)
| | !
I m =4
| \J Iy :
[ I ‘
[ I ‘
: Optimal cost! | |
Je=TJ ||
i Ne ‘.
J I\ TmJ J

Cost of Truncated
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Truncated rollout with ¢-step lookahead is similarly defined: Total lookahead is ¢ + m )

Truncated rollout is an economical substitute for multistep lookahead (e.g., TD-Gammon)J
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Linear Quadratic Problems: Riccati Instead of Bellman Operators

NORMAL CASE EXCEPTIONAL CASE
L P e — B R et e e
|
\ L\
|
! = o1k ! a?rkK
K 1F(K) PR T K ) = e
4 \ ! \ !
| |
| |
o/ 0 . - .
f(: K* K K*=0 f( K

Riccati operator is the restriction of the Bellman operator to the subspace of quadratiCSJ

Linear system Xk, = axx + buk. Cost g(x,u) = gx®> + rv?, q,r > 0, a = 1
@ J*(x) = K*x?; K* solves the Riccati Eq. K = F(K)
@ Normal case: g > 0, r > 0. Riccati Eg. has K* as its unique positive solution
@ Exceptional case example: g = 0, r > 0, and unstable system a > 1. Riccati Eq.

has two nonnegative solutions K* = 0 and K =

r(@—1)

b2
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A Common Question: Why Not Just Train a Policy Network and Use it

Without On-Line Play?

Pure approx. in policy space (policy gradient, random search, etc) is flawed

It lacks the exact Newton step, which corrects (superlinearly) the errors
of off-line training

Without the Newton Step

|

\\ |
\ /
/| With the Newton Step
/ Optimal
0>| -0.8 -0.6 -0.4 -0.2

0

~

L
Linear policy parameter

A one-dimensional linear quadratic example (with known and fixed model)

Consider a parametrized suboptimal linear policy u(x) = Lx without one-step
lookahead, and its version with one-step lookahead/Newton step
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Model Predictive Control (MPC)

Classical form of MPC (1980s+, extensive literature)
@ Applies to continuous state and control deterministic problem with positive cost

X1 = F(X, Uk), g(x,u) >0 forall x #£0, g(0,u) =0

@ MPC is central in control theory, but is culturally different from RL/AI

@ MPC'’s architecture is very similar to AlphaZero ... includes lookahead
minimization (“control interval"), rollout (“prediction interval"), and terminal cost

@ MPC focuses on continuous spaces, control/stability issues, and places most
emphasis on on-line play

@ There is some off-line training, like computing off-line terminal cost
approximations, base policies, and safe regions/reachable target tubes (to deal
with state constraints xx € X)

Extended forms of MPC (Rawlings+Mayne+Diehl, Borrelli+Bemporad+Morari)

@ More complex versions that deal with stochastic uncertainties, hybrid
continuous/discrete control space versions, minimax versions, target tubes (to
deal with state constraints), etc

@ Involve simulation-based rollout with an off-line trained policy. One of these has

been called Learning MPC (Rosolia+Borrelli, Li+Johansson+Martensson+DPB)
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Adaptive Control - Changing System, On-line System Identification

Data
> System ;
State
- Adaptive
Con{rol Controller
Model
Estimation

Classical indirect adaptive control (1960s+, extensive book literature)

Simply reoptimizes the controller, when the estimated model changes ... but this may
be a difficult/time-consuming reoptimization

Faster alternative: Indirect adaptive control by rollout with a (robust) policy

@ Use rollout in place of reoptimization - this is simpler (use the current model
estimate for lookahead minimization and a nominal/robust base policy for rollout)

@ Capitalizes on the fast convergence of the Newton step

v
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Adaptive Control by Rollout: A Linear Quadratic Example

245 8
22f 7L
ol O Fixed ol
_ Base Policy
18¢ / 5| Fixed oF
< N ] Base Policy 50" .
NG Adaptive Rollout 4l \ 60° Adaptive Rollout
S 00
N ro. -
141 S 3r o —
12r  Adaptive . 2r il Adaptive
Reoptimization St g: Reoptimization
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@ System: Xx11 = Xk + buk
@ Cost g(x,u) = x* + r/?

@ We use one-step lookahead and rollout with base policy that is optimal for the

nominal values b=2, r =0.5

@ In the left figure we change the system parameter b

@ In the right figure we change the cost parameter r

@ Using a “robust" controller as base policy without the Newton step is often flawed

@ Using a “robust" controller as base policy with the Newton step corrects the flaw

v
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Concluding Remarks

@ There is much to be gained by using on-line play on top of off-line training
@ Using just off-line training without on-line play may not work well

On-line play uses an exact Newton step (not subject to training errors), and can deal
with changing system parameters

@ Using just on-line play without off-line training misses out on performance
Off-line training can produce good starting points for the Newton step

@ The role of Newton’s method is central - this is a new insight that can guide both
analysis and algorithmic design

@ The Newton step is exact ... all the approximation goes into the starting point for
the Newton step (which washes out training method differences and errors)

@ The cultural divide between RL/Al and control can be bridged by combining
off-line training and on-line play
@ MPC uses a very similar architecture to AlphaZero; can benefit from RL/Al ideas

@ We can approach indirect adaptive control through rollout: Use a Newton step in
place of reoptimization

@ Generality: Arbitrary state and control spaces, discrete optimization applications,
multiagent versions (see the 2020 rollout/distributed RL book)

@ There are exceptional behaviors waiting for clarification by analysis

v
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Some Words of Optimism

@ The successes of RL and of MPC are solid reasons for optimism

@ More success can be expected by combining ideas from both RL/Al and
MPC/adaptive control cultures

@ On-line long lookahead/rollout can be a computational bottleneck ...

@ But massive computational power and distributed computation can mitigate the
bottleneck, and allow more sophisticated on-line play strategies

@ There is an exciting journey ahead!

Thank you!
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