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Proper Policies in Infinite-State Stochastic Shortest Path

Problems
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Abstract

We consider stochastic shortest path problems with infinite state and control spaces, and a nonnegative

cost per stage. We extend the notion of a proper policy from the context of finite state space to the context

of infinite state space. We consider the optimal cost function J*, and the optimal cost function Ĵ over

just the proper policies. Assuming that there exists at least one proper policy, we show that J* and Ĵ

are the smallest and largest solutions of Bellman’s equation, respectively, within a class of functions with a

boundedness property. The standard value iteration algorithm may be attracted to either J* or Ĵ , depending

on the initial condition.

1. INTRODUCTION

In this paper we consider a stochastic discrete-time infinite horizon optimal control problem involving the

system

xk+1 = f(xk, uk, wk), k = 0, 1, . . . , (1.1)

where xk and uk are the state and control at stage k, which belong to sets X and U , wk is a random

disturbance that takes values in a countable set W with given probability distribution P (wk | xk, uk), and

f : X×U ×W 7→ X is a given function. The state and control spaces X and U are arbitrary, but we assume

that W is countable to bypass measurability issues in the choice of control. The control uk must be chosen

from a constraint set U(xk) ⊂ U that may depend on the current state xk. The expected cost for the kth

stage, g(xk, uk), is assumed real-valued and nonnnegative:

0 ≤ g(xk, uk) ≤ ∞, ∀ xk ∈ X, uk ∈ U(xk), k = 0, 1, . . . . (1.2)

Note that values g(x, u) = ∞ may be used to model state constraints in addition to state and control

penalties. We assume that X contains a special cost-free and absorbing state t, referred to as the destination:

f(t, u, w) = t, g(t, u) = 0, ∀ u ∈ U(t), w ∈ W. (1.3)
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We are interested in policies of the form π = {µ0, µ1, . . .}, where each µk is a function mapping x ∈ X

into the control µk(x) ∈ U(x). The set of all policies is denoted by Π. Policies of the form π = {µ, µ, . . .}

are called stationary, and will be denoted by µ, when confusion cannot arise.

Given an initial state x0, a policy π = {µ0, µ1, . . .} when applied to the system (1.1), generates a

random sequence of state-control pairs
(
xk, µk(xk)

)
, k = 0, 1, . . . , with cost

Jπ(x0) =
∞∑

k=0

Eπ
x0

{
g
(
xk, µk(xk)

)}
, x0 ∈ X,

where Eπ
x0{·} denotes expectation with respect to the probability measure corresponding to initial state x0

and policy π. We view Jπ as a function over X , and we refer to it as the cost function of π. For a stationary

policy µ, the corresponding cost function is denoted by Jµ. The optimal cost function is defined as

J*(x) = inf
π∈Π

Jπ(x), x ∈ X,

and a policy π∗ is said to be optimal if Jπ∗(x) = J*(x) for all x ∈ X. We refer to the problem of finding J*

and an optimal policy as the stochastic shortest path problem (SSP problem for short). We denote by E+(X)

the set of functions J : X 7→ [0,∞]. All equations, inequalities, limit and minimization operations involving

functions from this set are meant to be pointwise. In our analysis, we will use the set of functions

J =
{
J ∈ E+(X) | J(t) = 0

}
.

Since t is cost-free and absorbing, this set contains the cost functions Jπ of all π ∈ Π, as well as J*.

It is well known that when g ≥ 0, J* satisfies the Bellman equation given by

J(x) = inf
u∈U(x)

{
g(x, u) + E

{
J
(
f(x, u, w)

)}}
, x ∈ X, (1.4)

where the expected value is with respect to the distribution distribution P (w | x, u). Moreover, an optimal

stationary policy (if it exists) may be obtained through the minimization in the right side of this equation

(cf. Prop. 2.1 in the next section). One hopes to obtain J* in the limit by means of value iteration (VI for

short), which starting from some function J0 ∈ J , generates a sequence {Jk} ⊂ J according to

Jk+1 = inf
u∈U(x)

{
g(x, u) + E

{
Jk

(
f(x, u, w)

)}}
, x ∈ X, k = 0, 1, . . . . (1.5)

However, {Jk} may not always converge to J* because, among other reasons, Bellman’s equation may have

multiple solutions within J .

In a recent paper [Ber17] we have addressed the connections between stability and optimal control in

the context of undiscounted discrete-time deterministic optimal control with a termination state. In this

paper we address similar issues in the context of SSP problems but we focus attention on proper policies,
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which are guaranteed to reach the termination state with probability one from the states where the optimal

cost is finite (a precise definition is given in the next section). The significance of proper policies is well

known in finite-state SSP problems (see e.g., the books [Pal67], [Der70], [Whi82], [BeT89], [Put94], [Alt99],

[HeL99], and [Ber12], and the references quoted there). In the inifinite-state context of this paper and under

suitable assumptions, we show that Ĵ , the optimal cost function over just the proper policies, is the largest

solution of Bellman’s equation, and that the VI algorithm converges to Ĵ starting from within a set of

functions Ŵ ⊂ J that majorize Ĵ . We also consider the favorable special case where J* = Ĵ .

To compare our analysis with the existing literature, we note that proper policies for infinite-state

SSP problems have been considered earlier, notably in the works of Pliska [Pli78], and James and Collins

[JaC06], where they are called transient . There are a few differences between the frameworks of [Pli78],

[JaC06] and this paper, which impact on the results obtained. In particular, the paper [Pli78] uses the same

definition of properness as we do, but assumes that all policies are proper, g is assumed bounded, and J*

is real-valued. The paper [JaC06] uses the properness definition of [Pli78], and extends the analysis of

Bertsekas and Tsitsiklis [BeT91] from finite state space to infinite state space (addressing also measurability

issues). Moreover, [JaC06] allows the cost per stage g to take both positive and negative values. However,

[JaC06] uses assumptions that guarantee that improper policies cannot be optimal and that J* = Ĵ , while

J* is real-valued. Our analysis is most closely related to the one of Bertsekas and Yu [BeY16], where the case

J* 6= Ĵ was analyzed using perturbation ideas that are similar to the ones of Section 3. The paper [BeY16]

assumes that the state space is finite, but allows g to take both positive and negative value. Also [BeY16]

gives an example showing that J* may not be a solution of Bellman’s equation if improper policies can be

optimal. The extension of our results to SSP problems where g takes both positive and negative values may

be possible, but our line of analysis relies strongly on the nonnegativity of g.

2. PROPER POLICIES AND THE PERTURBED PROBLEM

In this section, we will lay the groundwork for our analysis and introduce the notion of a proper policy. To this

end, we will use some classical results for stochastic optimal control with nonnegative cost per stage, which

stem from the original work of Strauch [Str66]. For textbook accounts we refer to [BeS78], [Put94], [Ber12],

and for a more abstract development, we refer to the monograph [Ber13]. The following two propositions

give the results that we will need.

Proposition 2.1: The following hold:

(a) J* is a solution of Bellman’s equation and if J ∈ E+(X) is another solution, i.e., J satisfies
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J(x) = inf
u∈U(x)

{
g(x, u) + E

{
J
(
f
(
x, u, w

))}}
, ∀ x ∈ X, (2.1)

then J* ≤ J .

(b) For all stationary policies µ, Jµ is a solution of the equation

J(x) = g
(
x, µ(x)

)
+ E

{
J
(
f
(
x, µ(x), w

))}
, ∀ x ∈ X,

and if J ∈ E+(X) is another solution, then Jµ ≤ J .

(c) For every ǫ > 0 there exists an ǫ-optimal policy, i.e., a policy πǫ such that

Jπǫ(x) ≤ J*(x) + ǫ, ∀ x ∈ X.

(d) A stationary policy µ∗ is optimal if and only if

µ∗(x) ∈ argmin
u∈U(x)

{
g(x, u) + E

{
J*

(
f
(
x, u, w

))}}
, ∀ x ∈ X.

(e) If U(x) is finite for all x ∈ X , then Jk → J*, where {Jk} is the sequence generated by the VI

algorithm (1.5) starting from any J0 with 0 ≤ J0 ≤ J*.

Proof: See [BeS78], Props. 5.2, 5.4, and 5.10, or [Ber12], Props. 4.1.1, 4.1.3, 4.1.5, 4.1.9. Q.E.D.

Proposition 2.2: Let π = {µ0, µ1, . . .} be a policy, and for a given initial state x0 ∈ X , let {xk} be

the sequence of states generated by starting from x0 and using π.

(a) If Jπ(x0) < ∞, then Eπ
x0

{
Jπk

(xk)
}
↓ 0, where πk is the policy {µk, µk+1, . . .}.

(b) If π is stationary of the form {µ, µ, . . .} and Jµ(x0) < ∞, then Eµ
x0

{
Jµ(xk)

}
↓ 0.

Proof: (a) We have by definition

Eπ
x0

{
Jπm(xm)

}
= Eπ

x0

{
g
(
xm, µm(xm)

)
+ Jπm+1

(xm+1)
}
, m = 0, 1, . . . .

By repeatedly applying this relation, we obtain

Jπ(x0) =

k−1∑

m=0

Eπ
x0

{
g
(
xm, µm(xm)

)}
+ Eπ

x0

{
Jπk

(xk)
}
, k = 0, 1, . . . .
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Since g is nonnegative,
∑k−1

m=0 E
π
x0

{
g
(
xm, µm(xm)

)}
is monotonically nondecreasing, and it follows that

Eπ
x0

{
Jπk

(xk)
}
is monotonically nonincreasing and real valued since Jπ(x0) < ∞. Moreover, by taking the

limit as k → ∞, we obtain limk→∞ Eπ
x0

{
Jπk

(xk)
}
= 0.

(b) This is a special case of part (a), with π = {µ, µ, . . .}. Q.E.D.

Our analysis will focus primarily on the values of Jπ within the set

Xf =
{
x ∈ X | J*(x) < ∞

}
,

since Jπ(x) is infinite for x outside this set. We denote by B the set of functions in J , which are bounded

on Xf ,

B =

{
J ∈ J

∣∣∣ sup
x∈Xf

J(x) < ∞

}
.

A policy π is said to be proper if

Jπ ∈ B, sup
x0∈Xf

∞∑

k=0

rk(π, x0) < ∞, (2.2)

where rk(π, x0) is the probability that xk 6= t when using π and starting from x0. Note that the second

condition in Eq. (2.2) is equivalent to
∞∑

k=0

rk(π, ·) ∈ B,

and states that the expected number of steps to termination using π is uniformly bounded over Xf . The set

of all proper policies is denoted by Π̂ and the corresponding restricted optimal cost function is denoted by

Ĵ :

Ĵ(x) = inf
π∈Π̂

Jπ(x), x ∈ X.

The condition Jπ ∈ B in the definition of a proper policy is unnecessary if the cost per stage g is bounded

over X × U , since

Jπ(x0) ≤ sup
(x,u)∈X×U

g(x, u) ·

∞∑

k=0

rk(π, x0).

For any δ > 0, let us consider the δ-perturbed optimal control problem. This is the same problem as

the original, except that the cost per stage is changed to

g(x, u) + δ, ∀ x 6= t,

while g(x, u) is left unchanged at 0 when x = t. Thus t is still cost-free as well as absorbing in the δ-perturbed

problem. The δ-perturbed cost function of a policy π is denoted by Jπ,δ and is given by

Jπ,δ(x) = Jπ(x) + δ

∞∑

k=0

rk(π, x). (2.3)
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We denote by J*
δ , the optimal cost function of the δ-perturbed problem, i.e., J*

δ (x) = infπ∈Π Jπ,δ(x).

Since the cost function of the δ-perturbed problem is nonnegative, Prop. 2.1 applies and shows that J*
δ

is the smallest solution of the corresponding Bellman equation. Our first objective will be to show that as

δ ↓ 0, the δ-perturbed optimal cost function J*
δ converges to Ĵ , the restricted optimal cost function of the

original unperturbed problem over just the set of proper policies Π̂. We will then use a limiting as δ ↓ 0 to

show that Ĵ is a solution of the Bellman equation for the original problem. This is the subject of the next

section.

3. MAIN RESULTS

The following proposition shows, among others, that within the set of states Xf , Jπ,δ(x) differs from Jπ(x)

by O(δ) if π is proper.

Proposition 3.1:

(a) A policy π is proper if and only if Jπ,δ ∈ B.

(b) If there exists at least one proper policy, then J*
δ ∈ B for all δ > 0. Moreover, for every ǫ > 0,

there exists a proper policy πǫ that is ǫ-optimal, i.e.,

Jπǫ,δ(x) ≤ J*
δ (x) + ǫ, ∀ x ∈ X.

Proof: (a) Follows from Eq. (2.3) and the definition of a proper policy.

(b) If π is a proper policy, we have J*
δ ≤ Jπ,δ and by part (a), J*

δ ∈ B. By Prop. 2.1(c), there exists an

ǫ-optimal policy πǫ for the δ-perturbed problem, so we have Jπǫ,δ(x) ≤ J*
δ (x) + ǫ for all x ∈ X . Hence

Jπǫ,δ ∈ B, implying by part (a) that πǫ is proper. Q.E.D.

The next proposition shows that the cost function J*
δ of the δ-perturbed problem can be used to

approximate Ĵ .

Proposition 3.2: If there exists at least one proper policy, we have limδ↓0 J*
δ (x) = Ĵ(x) for all

x ∈ X.
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Proof: Let πǫ be a proper ǫ-optimal policy for the δ-perturbed problem [cf. Prop. 3.1(b)]. By using Eq.

(2.3), we have for all δ > 0, ǫ > 0, and π ∈ Π̂,

Ĵ(x) − ǫ ≤ Jπǫ(x) − ǫ ≤ Jπǫ,δ(x) − ǫ ≤ J*
δ (x) ≤ Jπ,δ(x) = Jπ(x) + wπ,δ(x), ∀ x ∈ Xf ,

where

wπ,δ(x) = δ

∞∑

k=0

rk(π, x), x ∈ X.

By taking the limit as ǫ ↓ 0, we obtain for all δ > 0 and π ∈ Π̂,

Ĵ(x) ≤ J*
δ (x) ≤ Jπ(x) + wπ,δ(x), ∀ x ∈ Xf .

We have limδ↓0 wπ,δ(x) = 0 for all x ∈ Xf and π ∈ Π̂, so by taking the limit as δ ↓ 0 and then the infimum

over all π ∈ Π̂,

Ĵ(x) ≤ lim
δ↓0

J*
δ (x) ≤ inf

π∈Π̂

Jπ(x) = Ĵ(x), ∀ x ∈ Xf ,

from which Ĵ(x) = limδ↓0 J*
δ (x) for all x ∈ Xf . Since we also have J*

δ (x) = Ĵ(x) = ∞ for all x /∈ Xf , the

result follows. Q.E.D.

The next proposition sets the stage for our main result.

Proposition 3.3: Assume that there exists at least one proper policy π ∈ Π̂. For all δ > 0, J*
δ is

the unique solution within B of Bellman’s equation for the δ-perturbed problem,

J(t) = 0, J(x) = inf
u∈U(x)

{
g(x, u) + δ + E

{
J
(
f(x, u, w)

)}}
, x 6= t. (3.1)

Proof: We have that J*
δ is a solution of Bellman’s equation (3.1) by Prop. 2.1(a). Moreover, by Prop.

3.1(b) J*
δ ∈ B. To show that J*

δ is the unique solution within B, let J̃ ∈ B be another solution, so that using

also Prop. 2.1(a), we have

J*
δ (x) ≤ J̃(x) ≤ g(x, u) + δ + E

{
J̃
(
f(x, u, w)

)}
, ∀ x ∈ X, u ∈ U(x). (3.2)

For a given ǫ > 0, let πǫ = {µ0, µ1, . . .} be a proper ǫ-optimal policy [which exists by Prop. 3.1(b)]. By

repeatedly applying the preceding relation, we have for any x0 ∈ Xf

J*
δ (x0) ≤ J̃(x0) ≤ Eπǫ

x0

{
J̃(xk) + δ

k−1∑

m=0

rm(πǫ, x0) +

k−1∑

m=0

g
(
xm, µm(xm)

)
}
, ∀ k ≥ 1,
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where {xk} is the sequence generated starting from x0 and using πǫ. Since πǫ is proper, Jπǫ(x0) < ∞, so by

Prop. 2.2(a), xk ∈ Xf with probability one for all k, and therefore Eπǫ
x0

{
J̃(xk)

}
→ 0 (in view of J̃ ∈ B). It

follows that

lim
k→∞

Eπ
x0

{
J̃(xk) + δ

k−1∑

m=0

rm(πǫ, x0) +

k−1∑

m=0

g
(
xm, µm(xm)

)
}

= Jπǫ,δ(x0) ≤ J*
δ (x0) + ǫ.

By combining the preceding two relations, we obtain,

J*
δ (x0) ≤ J̃(x0) ≤ Jπǫ,δ(x0) ≤ J*

δ (x0) + ǫ, ∀ x0 ∈ Xf .

By letting ǫ → 0, it follows that J*
δ (x0) = J̃(x0) for all x0 ∈ Xf . Also for x0 /∈ Xf , we have J*(x0) =

J*
δ (x0) = J̃(x0) = ∞ [since J* ≤ J*

δ ≤ J̃ , cf. Eq. (3.2)]. Thus J*
δ = J̃ , proving that J*

δ is the unique solution

of the Bellman Eq. (3.1) within B. Q.E.D.

Using the preceding propositions, we will now show our main result: Ĵ is the unique solution of

Bellman’s equation within the set of functions

Ŵ = {J ∈ B | Ĵ ≤ J}, (3.3)

and the VI algorithm yields Ĵ in the limit for any initial J0 ∈ Ŵ.

Proposition 3.4: Assume that there exists at least one proper policy. Then:

(a) Ĵ is the unique solution of the Bellman Eq. (2.1) within the set Ŵ of Eq. (3.3).

(b) (VI Convergence) If {Jk} is the sequence generated by the VI algorithm (1.5) starting with some

J0 ∈ Ŵ , then Jk → Ĵ .

(c) (Optimality Condition) If µ̂ is a proper stationary policy and

µ̂(x) ∈ argmin
u∈U(x)

{
g(x, u) + E

{
Ĵ
(
f(x, u, w)

)}}
, ∀ x ∈ X, (3.4)

then µ̂ is optimal over the set of proper policies. Conversely, if µ̂ is optimal within the set of

proper policies, then it satisfies the preceding condition (3.4).

Proof: (a), (b) We note that Ĵ ∈ Ŵ, since by Props. 3.1(a) and 3.2, we have J*
δ ∈ B and Ĵ ≤ J*

δ . We first

show that Ĵ is a solution of Bellman’s equation and then show that it is the unique solution within B by

showing the convergence of VI [cf. part (b)].
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From Prop. 3.3 and the fact J*
δ ≥ Ĵ shown in Prop. 3.2, we have for all δ > 0 and x 6= t,

J*
δ (x) = inf

u∈U(x)

{
g(x, u) + δ + E

{
J*
δ

(
f(x, u, w)

)}}

≥ inf
u∈U(x)

{
g(x, u) + E

{
J*
δ

(
f(x, u, w)

)}}

≥ inf
u∈U(x)

{
g(x, u) + E

{
Ĵ
(
f(x, u, w)

)}}
.

By taking the limit as δ ↓ 0 and using Prop. 3.2, we obtain

Ĵ(x) ≥ inf
u∈U(x)

{
g(x, u) + E

{
Ĵ
(
f(x, u, w)

)}}
, ∀ x ∈ X. (3.5)

For the reverse inequality, let {δm} be a sequence with δm ↓ 0. From Prop. 3.3, we have for all m,

x 6= t, and u ∈ U(x),

g(x, u) + δm + E
{
J*
δm

(
f(x, u, w)

)}
≥ inf

v∈U(x)

{
g(x, v) + δm + E

{
J*
δm

(
f(x, v, w)

)}}
= J*

δm
(x).

Taking the limit as m → ∞, and using the fact limδm↓0 J*
δm

= Ĵ (cf. Prop. 3.2), we have

g(x, u) + E
{
Ĵ
(
f(x, u, w)

)}
≥ Ĵ(x), ∀ x ∈ X, u ∈ U(x),

so that

inf
u∈U(x)

{
g(x, u) + E

{
Ĵ
(
f(x, u, w)

)}}
≥ Ĵ(x), ∀ x ∈ X. (3.6)

By combining Eqs. (3.5) and (3.6), we see that Ĵ is a solution of Bellman’s equation.

We will next show that Jk → Ĵ starting from every initial J0 ∈ Ŵ [cf. part (b)]. Indeed, for x0 ∈ Xf

and any π ∈ Π̂, let {xk} be the generated sequence starting from x0. Since from the definition of the VI

sequence {Jk}, we have

Jk(x) ≤ g(x, u) + E
{
Jk−1

(
f(x, u, w)

)}
, ∀ x ∈ X, u ∈ U(x), k = 1, 2, . . . ,

it follows that

Jk(x0) ≤ Eπ
x0

{
J0(xk) +

k−1∑

m=0

g
(
xm, µm(xm)

)
}
.

We have Eπ
x0

{
J0(xk)

}
→ 0 since π is proper, xk ∈ Xf with probability one, and J0 ∈ B, so by taking the

limit as k → ∞, it follows that lim supk→∞ Jk(x0) ≤ Jπ(x0). By taking the infimum over all π ∈ Π̂, we

obtain lim supk→∞ Jk(x0) ≤ Ĵ(x0). Conversely, since Ĵ ≤ J0 and Ĵ is a solution of Bellman’s equation (as

shown earlier), it follows by induction that Ĵ ≤ Jk for all k. Thus Ĵ(x0) ≤ lim infk→∞ Jk(x0), implying that

Jk(x0) → Ĵ(x0) for all x0 ∈ Xf . We also have J* ≤ Ĵ ≤ Jk for all k, so that Ĵ(x0) = Jk(x0) = ∞ for

all x0 /∈ Xf . This completes the proof of part (b). Finally, since Ĵ ∈ Ŵ and Ĵ is a solution of Bellman’s

equation., part (b) implies the uniqueness assertion of part (a).
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(0) = 0 J JJ J∗ ∗ Ĵ J

Region of solutions of Bellman’s Eq.
Region of solutions of Bellman’s Eq.

VI converges from Ŵ

Figure 3.1 Illustration of the solutions of Bellman’s equation. The smallest and the largest

solutions within B are J
∗ and Ĵ , respectively. The VI algorithm converges to Ĵ starting from any

J0 ∈ B with J0 ≥ Ĵ .

(c) If µ is proper and Eq. (3.4) holds, then

Ĵ(x) = g
(
x, µ(x)

)
+ E

{
Ĵ
(
f(x, µ(x), w)

)}
, x ∈ X.

By Prop. 2.1(b), this implies that Jµ ≤ Ĵ , so µ is optimal over the set of proper policies. Conversely, assume

that µ is proper and Jµ = Ĵ . Then by Prop. 2.1(b), we have

Ĵ(x) = g
(
x, µ(x)

)
+ E

{
Ĵ
(
f(x, µ(x), w)

)}
, x ∈ X,

and since [by part (a)] Ĵ is a solution of Bellman’s equation.,

Ĵ(x) = inf
u∈U(x)

{
g(x, u) + E

{
Ĵ
(
f(x, u, w)

)}}
, x ∈ X.

Combining the last two relations, we obtain Eq. (3.4). Q.E.D.

We illustrate Prop. 3.4 in Fig. 3.1. Examples given in [Ber17] show that between J* and Ĵ there can

be any number of solutions of Bellman’s equation: a finite number, an infinite number, or none at all.

Suppose now that the set of proper policies is sufficient in the sense that it can achieve the same optimal

cost as the set of all policies, i.e., Ĵ = J*. Then, from Prop. 3.4, it follows that J* is the unique solution of

Bellman’s equation within B, and the VI algorithm converges to J* starting from any J0 ∈ B with J0 ≥ J*.

Under additional conditions, such as finiteness of U(x) for all x ∈ X [cf. Prop. 2.1(e)], VI converges to J*

starting from any J0 ∈ B.

4. CONCLUDING REMARKS

We have considered SSP problems, which involve arbitrary state and control spaces, and a Bellman’s equation

with possibly multiple solutions. Within this context, we have considered the restricted optimization problem

over the proper policies only. The weakness of our main result is that it assumes existence of a proper policy,

which by definition has a bounded cost function. Thus the proposition may apply naturally to problems with

bounded cost per stage (e.g., problems with state space that is bounded with respect to some metric), but
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may not apply naturally to problems with unbounded cost per stage, such as the classical linear-quadratic

optimal control models. If Xf = X , it is possible to check the existence of a proper policy by introducing an

additional stopping action with high cost c at every x 6= t. The policy that uses the stopping action at all

states is proper for the resulting modified problem. It follows that there exists a proper policy, if and only

if for c high enough, the stopping action is nowhere optimal for the modified problem.
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