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CHAPTER 2: EXERCISES AND SOLUTIONS†

SECTION 2.1: Extreme Points

2.1

Show by example that the set of extreme points of a nonempty compact set need
not be closed. Hint : Consider a line segment C1 =

{

(x1, x2, x3) | x1 = 0, x2 =

0,−1 ≤ x3 ≤ 1
}

and a circular disk C2 =
{

(x1, x2, x3) | (x1 − 1)2 +x2
2 ≤ 1, x3 =

0
}

, and verify that the set conv(C1 ∪ C2) is compact, while its set of extreme
points is not closed.

Solution: For the sets C1 and C2 as given in the hint, the set C1∪C2 is compact,
and its convex hull is also compact by Prop. 1.2.2. The set of extreme points of
conv(C1 ∪ C2) is not closed, since it consists of the two end points of the line
segment C1, namely (0, 0,−1) and (0, 0, 1), and all the points x = (x1, x2, x3)
such that

x 6= 0, (x1 − 1)2 + x2
2 = 1, x3 = 0.

2.2 (Krein-Milman Theorem)

Show that a convex and compact subset of ℜn is equal to the convex hull of its
extreme points.

Solution: By convexity, C contains the convex hull of its extreme points. To
show the reverse inclusion, we use induction on the dimension of the space. On
the real line, a compact convex set C is a line segment whose endpoints are the
extreme points of C, so every point in C is a convex combination of the two
endpoints. Suppose now that every vector in a compact and convex subset of
ℜn−1 can be represented as a convex combination of extreme points of the set.
We will show that the same is true for compact and convex subsets of ℜn.

† This set of exercises will be periodically updated as new exercises are added.

Many of the exercises and solutions given here were developed as part of my

earlier convex optimization book [BNO03] (coauthored with Angelia Nedić and

Asuman Ozdaglar), and are posted on the internet of that book’s web site. The

contribution of my coauthors in the development of these exercises and their

solutions is gratefully acknowledged. Since some of the exercises and/or their

solutions have been modified and also new exercises have been added, all errors

are my sole responsibility.
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Figure 2.1. Construction used in the in-
duction proof of the Krein-Milman Theo-
rem (Exercise 2.2): any vector x of a con-

vex and compact set C can be represented
as a convex combination of extreme points
of C. If x is another point in C, the points
x1 and x2 shown can be represented as
convex combinations of extreme points of
the lower dimensional convex and compact
sets C∩H1 and C∩H2, which are also ex-
treme points of C by Prop. 2.1.1.

Let C be a compact and convex subset of ℜn, and choose any x ∈ C. If x
is the only point in C, it is an extreme point and we are done, so assume that x
is another point in C, and consider the line that passes through x and x. Since
C is compact, the intersection of this line and C is a compact line segment whose
endpoints, say x1 and x2, belong to the relative boundary of C. Let H1 be a
hyperplane that passes through x1 and contains C in one of its closed halfspaces.
Similarly, let H2 be a hyperplane that passes through x2 and contains C in one
of its closed halfspaces (see Fig. 2.1). The intersections C ∩ H1 and C ∩ H2 are
compact convex sets that lie in the hyperplanes H1 and H2, respectively. By
viewing H1 and H2 as (n − 1)-dimensional spaces, and by using the induction
hypothesis, we see that each of the sets C ∩H1 and C ∩ H2 is the convex hull of
its extreme points. Hence, x1 is a convex combination of some extreme points of
C ∩ H1, and x2 is a convex combination of some extreme points of C ∩ H2. By
Prop. 2.1.1, all the extreme points of C∩H1 and all the extreme points of C∩H2

are also extreme points of C, so both x1 and x2 are convex combinations of some
extreme points of C. Since x lies in the line segment connecting x1 and x2, it
follows that x is a convex combination of some extreme points of C, showing that
C is contained in the convex hull of the extreme points of C.

2.3

Let C be a nonempty convex subset of ℜn, and let A be an m × n matrix with
linearly independent columns. Show that a vector x ∈ C is an extreme point of
C if and only if Ax is an extreme point of the image AC. Show by example that
if the columns of A are linearly dependent, then Ax can be an extreme point of
AC, for some non-extreme point x of C.

Solution: Suppose that x is not an extreme point of C. Then x = αx1+(1−α)x2

for some x1, x2 ∈ C with x1 6= x and x2 6= x, and a scalar α ∈ (0, 1), so that
Ax = αAx1 + (1 − α)Ax2. Since the columns of A are linearly independent, we
have Ay1 = Ay2 if and only if y1 = y2. Therefore, Ax1 6= Ax and Ax2 6= Ax,
implying that Ax is a convex combination of two distinct points in AC, i.e., Ax
is not an extreme point of AC.

Suppose now that Ax is not an extreme point of AC, so that Ax = αAx1 +
(1 − α)Ax2 for some x1, x2 ∈ C with Ax1 6= Ax and Ax2 6= Ax, and a scalar
α ∈ (0, 1). Then, A

(

x − αx1 − (1 − α)x2

)

= 0 and since the columns of A are
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linearly independent, it follows that x = αx1 − (1− α)x2. Furthermore, because
Ax1 6= Ax and Ax2 6= Ax, we must have x1 6= x and x2 6= x, implying that x is
not an extreme point of C.

As an example showing that if the columns of A are linearly dependent,
then Ax can be an extreme point of AC, for some non-extreme point x of C,
consider the 1 × 2 matrix A = [1 0], whose columns are linearly dependent. The
polyhedral set C given by

C =
{

(x1, x2) | x1 ≥ 0, 0 ≤ x2 ≤ 1
}

has two extreme points, (0,0) and (0,1). Its image AC ⊂ ℜ is given by

AC = {x1 | x1 ≥ 0},

whose unique extreme point is x1 = 0. The point x = (0, 1/2) ∈ C is not an
extreme point of C, while its image Ax = 0 is an extreme point of AC. Actually,
all the points in C on the line segment connecting (0,0) and (0,1), except for
(0,0) and (0,1), are non-extreme points of C that are mapped under A into the
extreme point 0 of AC.

2.4

Let C be a nonempty closed convex subset of ℜn. Show that the following are
equivalent.

(i) All boundary points of C are extreme points of C.

(ii) Every hyperplane that supports C at some point intersects C only at that
point.

(iii) Every line intersects the boundary of C at no more than two points.

Solution: The result is clearly true if C consists of a single point, so assume that
C consists of more than one point.

We first show that (i) implies (ii). Assume that all boundary points of C
are extreme points. If there is a hyperplane that supports C and intersects C at
two distinct points, the entire line segment connecting the two points would lie
on the boundary of C, but the midpoint of this line segment would not be an
extreme point - a contradiction.

Next we show that (ii) implies (iii). Assume that every hyperplane that
supports C at some point intersects C only at that point. Suppose that there
is a line that intersects the boundary of C at three distinct boundary points
x1, x2, x3, with x2 being the midpoint. Consider a hyperplane H that supports
C at x2, i.e., a vector a 6= 0 such that

a′x ≥ a′x2, ∀ x ∈ C.

Then since by the hypothesis, H intersects C only at x2, we must have a′x1 > a′x2

and a′x3 > a′x2, which is a contradiction since x2 lies strictly between x1 and
x3.
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Finally, we show that (iii) implies (i). Assume that every line intersects
the boundary of C at no more than two points. If there is a boundary point
x2 that is not extreme and therefore lies strictly between two points x1, x3 ∈ C,
then either x1 or x3 must be an interior point, for otherwise the line that passes
through x1, x2, x3 would contain more than two boundary points. Thus, by the
Line Segment Principle (Prop. 1.3.1), every point that lies strictly between x1

and x3, including x2, is an interior point of C. This contradicts the hypothesis
that x2 is a boundary point of C.

2.5 (Matrix Inequalities)

Let A be a symmetric n × n matrix with components denoted aij and eigenval-
ues denoted λ1, . . . , λn, and let ΛA be the set of all vectors of ℜn obtained by
permutations of these eigenvalues.

(a) Let C be a convex set that contains ΛA, and let f : C 7→ ℜn be a convex
function. Show that for any orthonormal set of vectors v1, . . . , vn in ℜn,
we have

f(v′
1Av1, . . . , v

′
nAvn) ≤ max

(ξ1,...,ξn)∈ΛA

f(ξ1, . . . , ξn).

Hint : Let S be the doubly stochastic matrix with components sij = (v′
iuj)

2,
where u1, . . . , un are orthonormal eigenvectors corresponding to the eigen-
values λ1, . . . , λn. Show that v = Sλ, where

v = (v′
1Av1, . . . , v

′
nAvn), λ = (λ1, . . . , λn),

and use the Birkhoff-von Neumann Theorem.

(b) Let A be positive semidefinite. Show that for any orthonormal set of vectors
v1, . . . , vn in ℜn, we have

det A = λ1 · · ·λn ≤ v′
1Av1 · · · v

′
nAvn.

Furthermore, the inequality is sharp in the sense that it is satisfied as an
equality for some orthonormal set of vectors. Hint : Use part (a) with
f(x1, . . . , xn) = −(x1 · · · xn)1/2, and C equal to the nonnegative orthant.

(c) (Hadamard’s Determinant Inequality) We have

(det A)2 ≤ (a2
11 + · · · + a2

n1) · · · (a
2
1n + · · · + a2

nn).

Furthermore, if in addition A is positive semidefinite, we have

det A ≤ a11 · · · ann.

Solution: (a) Let u1, . . . , un be orthonormal eigenvectors corresponding to the
eigenvalues λ1, . . . , λn. The orthogonality of u1, . . . , un implies that

vi = (v′
iu1)u1 + · · · + (v′

iun)un, i = 1, . . . , n.
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Using this relation, it is straightforward to verify that

v = Sλ,

where
v = (v′

1Av1, . . . , v
′
nAvn), λ = (λ1, . . . , λn),

and S is the n×n matrix with components sij = (v′
iuj)

2 for all i and j. We now
note that S is a doubly stochastic matrix. The reason is that we have for each i,

‖vi‖
2 =

∥

∥(v′
iu1)u1 + · · · + (v′

iun)un

∥

∥

2
,

so that by using the orthonormality of u1, . . . , un, we have

‖vi‖
2 = (v′

iu1)
2 + · · · + (v′

iun)2.

This implies that S is doubly stochastic, since ‖vi‖ = 1 by assumption, and the
ith row of the matrix S is

(

(v′
iu1)

2, . . . , (v′
iun)2

)

.
The Birkhoff-von Neumann Theorem asserts that S can be expressed as

a convex combination of permutation matrices, i.e., there exist µj ≥ 0, j =
1, . . . , m, with

∑m

j=1
µj = 1, and such that

S = µ1P1 + · · · + µmPm,

where P1, . . . , Pm are permutation matrices. Hence,

v = Sλ = µ1(P1λ) + · · · + µm(Pmλ).

Since the vectors Pjλ, j = 1, . . . , m, belong to ΛA, they also belong to C. Since v
is a convex combination of Pjλ, j = 1, . . . , m, it follows that v ∈ C. Thus, using
the convexity of f , we have

f(v) ≤ µ1f(P1λ) + · · · + µmf(Pmλ) ≤ max
(ξ1,...,ξn)∈ΛA

f(ξ1, . . . , ξn).

(b) The inequality follows from part (a) and the hint. The inequality is satisfied
as an equality if the vectors v1, . . . , vn are normalized eigenvectors corresponding
to λ1, . . . , λn.

(c) Let B = A′A. We apply part (b) to B with the orthonormal vectors being
the unit vectors e1, . . . , en of ℜn. We obtain

detB ≤ e′1Be1 · · · e
′
nBen = (a2

11 + · · · + a2
n1) · · · (a

2
1n + · · · + a2

nn),

where the last equality can be verified by straightforward calculation. Since
det B = (detA)2, the desired inequality follows.

If A positive semidefinite, we apply part (b) to A with the orthonormal
vectors being the unit vectors e1, . . . , en of ℜn, to obtain

det A ≤ a11 · · · ann.
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2.6 (Faces)

Let P be a polyhedral set. For any hyperplane H that passes through a boundary
point of P and contains P in one of its halfspaces, we say that the set F = P ∩H
is a face of P . Show the following:

(a) Each face is a polyhedral set.

(b) Each extreme point of P , viewed as a singleton set, is a face.

(c) If P is not an affine set, there is a face of P whose dimension is dim(P )−1.

(d) The number of distinct faces of P is finite.

Solution: (a) Let P be a polyhedral set in ℜn, and let F = P ∩ H be a face of
P , where H is a hyperplane passing through some boundary point x of P and
containing P in one of its halfspaces. Then H is given by H = {x | a′x = a′x}
for some nonzero vector a ∈ ℜn. By replacing a′x = a′x with two inequalities
a′x ≤ a′x and −a′x ≤ −a′x, we see that H is a polyhedral set in ℜn. Since
the intersection of two nondisjoint polyhedral sets is a polyhedral set, the set
F = P ∩ H is polyhedral.

(b) Let P be given by

P =
{

x | a′
jx ≤ bj , j = 1, . . . , r

}

,

for some vectors aj ∈ ℜn and scalars bj . Let v be an extreme point of P , and
without loss of generality assume that the first n inequalities define v, i.e., the
first n of the vectors aj are linearly independent and such that

a′
jv = bj , ∀ j = 1, . . . , n

[cf. Prop. 2.1.4(a)]. Define the vector a ∈ ℜn, the scalar b, and the hyperplane
H as follows

a =
1

n

n
∑

j=1

aj , b =
1

n

n
∑

j=1

bj , H =
{

x | a′x = b
}

.

Then, we have
a′v = b,

so that H passes through v. Moreover, for every x ∈ P , we have a′
jx ≤ bj for

all j, implying that a′x ≤ b for all x ∈ P . Thus, H contains P in one of its
halfspaces.

We will next prove that P ∩ H = {v}. We start by showing that for every
v ∈ P ∩ H , we must have

a′
jv = bj , ∀ j = 1, . . . , n. (2.1)

To arrive at a contradiction, assume that a′
jv < bj for some v ∈ P ∩ H and j ∈

{1, . . . , n}. Without loss of generality, we can assume that the strict inequality
holds for j = 1, so that

a′
1v < b1, a′

jv ≤ bj , ∀ j = 2, . . . , n.
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By multiplying each of the above inequalities with 1/n and by summing the
obtained inequalities, we obtain

1

n

n
∑

j=1

a′
jv <

1

n

n
∑

j=1

bj ,

implying that a′v < b, which contradicts the fact that v ∈ H . Hence, Eq. (2.1)
holds, and since the vectors a1, . . . , an are linearly independent, it follows that
v = v, showing that P ∩ H = {v}.

As discussed in Section 2.1, every extreme point of P is a relative boundary
point of P . Since every relative boundary point of P is also a boundary point of
P , it follows that every extreme point of P is a boundary point of P . Thus, v is
a boundary point of P , and as shown earlier, H passes through v and contains P
in one of its halfspaces. By definition, it follows that P ∩H = {v} is a face of P .

(c) Since P is not an affine set, it cannot consist of a single point, so we must
have dim(P ) > 0. Let P be given by

P =
{

x | a′
jx ≤ bj , j = 1, . . . , r

}

,

for some vectors aj ∈ ℜn and scalars bj . Also, let A be the matrix with rows a′
j

and b be the vector with components bj , so that

P = {x | Ax ≤ b}.

An inequality a′
jx ≤ bj of the system Ax ≤ b is redundant if it is implied by the

remaining inequalities in the system. If the system Ax ≤ b has no redundant
inequalities, we say that the system is nonredundant. An inequality a′

jx ≤ bj of
the system Ax ≤ b is an implicit equality if a′

jx = bj for all x satisfying Ax ≤ b.
By removing the redundant inequalities if necessary, we may assume that

the system Ax ≤ b defining P is nonredundant. Since P is not an affine set,
there exists an inequality a′

j0
x ≤ bj0 that is not an implicit equality of the

system Ax ≤ b. Consider the set

F =
{

x ∈ P | a′
j0

x = bj0

}

.

Note that F 6= Ø, since otherwise a′
j0

x ≤ bj0 would be a redundant inequality
of the system Ax ≤ b, contradicting our earlier assumption that the system is
nonredundant. Note also that every point of F is a boundary point of P . Thus, F
is the intersection of P and the hyperplane

{

x | a′
j0

x = bj0

}

that passes through
a boundary point of P and contains P in one of its halfspaces, i.e., F is a face
of P . Since a′

j0
x ≤ bj0 is not an implicit equality of the system Ax ≤ b, the

dimension of F is dim(P ) − 1.

(d) Let P be a polyhedral set given by

P =
{

x | a′
jx ≤ bj , j = 1, . . . , r

}

,

with aj ∈ ℜn and bj ∈ ℜ, or equivalently

P = {x | Ax ≤ b},
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where A is an r×n matrix and b ∈ ℜr. We will show that F is a face of P if and
only if F is nonempty and

F =
{

x ∈ P | a′
jx = bj , j ∈ J

}

,

where J ⊂ {1, . . . , r}. From this it will follow that the number of distinct faces
of P is finite.

By removing the redundant inequalities if necessary, we may assume that
the system Ax ≤ b defining P is nonredundant. Let F be a face of P , so that
F = P ∩H , where H is a hyperplane that passes through a boundary point of P
and contains P in one of its halfspaces. Let H =

{

x | c′x = cx
}

for a nonzero
vector c ∈ ℜn and a boundary point x of P , so that

F =
{

x ∈ P | c′x = cx
}

and
c′x ≤ cx, ∀ x ∈ P.

These relations imply that the set of points x such that Ax ≤ b and c′x ≤ cx
coincides with P , and since the system Ax ≤ b is nonredundant, it follows that
c′x ≤ cx is a redundant inequality of the system Ax ≤ b and c′x ≤ cx. Therefore,
the inequality c′x ≤ cx is implied by the inequalities of Ax ≤ b, so that there
exists some µ ∈ ℜr with µ ≥ 0 such that

r
∑

j=1

µjaj = c,

r
∑

j=1

µjbj = c′x.

Let J = {j | µj > 0}. Then, for every x ∈ P , we have

c′x = cx ⇐⇒
∑

j∈J

µja
′
jx =

∑

j∈J

µjbj ⇐⇒ a′
jx = bj , j ∈ J, (2.2)

implying that
F =

{

x ∈ P | a′
jx = bj , j ∈ J

}

.

Conversely, let F be a nonempty set given by

F =
{

x ∈ P | a′
jx = bj , j ∈ J

}

,

for some J ⊂ {1, . . . , r}. Define

c =
∑

j∈J

aj , β =
∑

j∈J

bj .

Then, we have
{

x ∈ P | a′
jx = bj , j ∈ J

}

=
{

x ∈ P | c′x = β
}

,

[cf. Eq. (2.2) where µj = 1 for all j ∈ J ]. Let H =
{

x | c′x = β
}

, so that in
view of the preceding relation, we have that F = P ∩ H . Since every point of F
is a boundary point of P , it follows that H passes through a boundary point of
P . Furthermore, for every x ∈ P , we have a′

jx ≤ bj for all j ∈ J , implying that
c′x ≤ β for every x ∈ P . Thus, H contains P in one of its halfspaces. Hence, F
is a face.
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2.7 (Isomorphic Polyhedral Sets)

Let P and Q be polyhedral sets in ℜn and ℜm, respectively. We say that P and
Q are isomorphic if there exist affine functions f : P 7→ Q and g : Q 7→ P such
that

x = g
(

f(x)
)

, ∀ x ∈ P, y = f
(

g(y)
)

, ∀ y ∈ Q.

(a) Show that if P and Q are isomorphic, then their extreme points are in
one-to-one correspondence.

(b) Let A be an r × n matrix and b be a vector in ℜr, and let

P = {x ∈ ℜn | Ax ≤ b, x ≥ 0},

Q =
{

(x, z) ∈ ℜn+r | Ax + z = b, x ≥ 0, z ≥ 0
}

.

Show that P and Q are isomorphic.

Solution: (a) Let P and Q be isomorhic polyhedral sets, and let f : P 7→ Q and
g : Q 7→ P be affine functions such that

x = g
(

f(x)
)

, ∀ x ∈ P, y = f
(

g(y)
)

, ∀ y ∈ Q.

Assume that x∗ is an extreme point of P and let y∗ = f(x∗). We will show that
y∗ is an extreme point of Q. Since x∗ is an extreme point of P , by Exercise
2.6(b), it is also a face of P , and therefore, there exists a vector c ∈ ℜn such that

c′x < c′x∗, ∀ x ∈ P, x 6= x∗.

For any y ∈ Q with y 6= y∗, we have

f
(

g(y)
)

= y 6= y∗ = f(x∗),

implying that
g(y) 6= g(y∗) = x∗, with g(y) ∈ P.

Hence,
c′g(y) < c′g(y∗), ∀ y ∈ Q, y 6= y∗.

Let the affine function g be given by g(y) = By + d for some n × m matrix B
and vector d ∈ ℜn. Then, we have

c′(By + d) < c′(By∗ + d), ∀ y ∈ Q, y 6= y∗,

implying that
(B′c)′y < (B′c)′y∗, ∀ y ∈ Q, y 6= y∗.

If y∗ were not an extreme point of Q, then we would have y∗ = αy1 + (1 − α)y2

for some distinct points y1, y2 ∈ Q, y1 6= y∗, y2 6= y∗, and α ∈ (0, 1), so that

(B′c)′y∗ = α(B′c)′y1 + (1 − α)(B′c)′y2 < (B′c)′y∗,
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which is a contradiction. Hence, y∗ is an extreme point of Q.
Conversely, if y∗ is an extreme point of Q, then by using a symmetrical

argument, we can show that x∗ is an extreme point of P .

(b) For the sets

P = {x ∈ ℜn | Ax ≤ b, x ≥ 0},

Q =
{

(x, z) ∈ ℜn+r | Ax + z = b, x ≥ 0, z ≥ 0
}

,

let f and g be given by

f(x) = (x, b − Ax), ∀ x ∈ P,

g(x, z) = x, ∀ (x, z) ∈ Q.

Evidently, f and g are affine functions. Furthermore, clearly

f(x) ∈ Q, g
(

f(x)
)

= x, ∀ x ∈ P,

g(x, z) ∈ P, f
(

g(x, z)
)

= x, ∀ (x, z) ∈ Q.

Hence, P and Q are isomorphic.

SECTION 2.2: Polar Cones

2.8 (Cone Decomposition Theorem)

Let C be a nonempty closed convex cone in ℜn and let x be a vector in ℜn. Show
that:

(a) x̂ is the projection of x on C if and only if

x̂ ∈ C, (x − x̂)′x̂ = 0, x − x̂ ∈ C∗.

(b) The following two statements are equivalent:

(i) x1 and x2 are the projections of x on C and C∗, respectively.

(ii) x = x1 + x2 with x1 ∈ C, x2 ∈ C∗, and x′
1x2 = 0.

Solution: (a) Let x̂ be the projection of x on C, which exists and is unique since
C is closed and convex. By the Projection Theorem (Prop. 1.1.9), we have

(x − x̂)′(y − x̂) ≤ 0, ∀ y ∈ C.

Since C is a cone, we have (1/2)x̂ ∈ C and 2x̂ ∈ C, and by taking y = (1/2)x̂
and y = 2x̂ in the preceding relation, it follows that

(x − x̂)′x̂ = 0.
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By combining the preceding two relations, we obtain

(x − x̂)′y ≤ 0, ∀ y ∈ C,

implying that x − x̂ ∈ C∗.
Conversely, if x̂ ∈ C, (x − x̂)′x̂ = 0, and x − x̂ ∈ C∗, then it follows that

(x − x̂)′(y − x̂) ≤ 0, ∀ y ∈ C,

and by the Projection Theorem, x̂ is the projection of x on C.

(b) Suppose that property (i) holds, i.e., x1 and x2 are the projections of x on C
and C∗, respectively. Then, by part (a), we have

x1 ∈ C, (x − x1)
′x1 = 0, x − x1 ∈ C∗.

Let y = x − x1, so that the preceding relation can equivalently be written as

x − y ∈ C = (C∗)∗, y′(x − y) = 0, y ∈ C∗.

By using part (a), we conclude that y is the projection of x on C∗. Since by the
Projection Theorem, the projection of a vector on a closed convex set is unique,
it follows that y = x2. Thus, we have x = x1 + x2 and in view of the preceding
two relations, we also have x1 ∈ C, x2 ∈ C∗, and x′

1x2 = 0. Hence, property (ii)
holds.

Conversely, suppose that property (ii) holds, i.e., x = x1 +x2 with x1 ∈ C,
x2 ∈ C∗, and x′

1x2 = 0. Then, evidently the relations

x1 ∈ C, (x − x1)
′x1 = 0, x − x1 ∈ C∗,

x2 ∈ C∗, (x − x2)
′x2 = 0, x − x2 ∈ C

are satisfied, so that by part (a), x1 and x2 are the projections of x on C and
C∗, respectively. Hence, property (i) holds.

2.9

Let C be a nonempty closed convex cone in ℜn and let a be a vector in ℜn. Show
that for any scalars β > 0 and γ ≥ 0, we have

max
‖x‖≤β, x∈C

a′x ≤ γ if and only if a ∈ C∗ +
{

x | ‖x‖ ≤ γ/β
}

.

(This may be viewed as an “approximate” version of the Polar Cone Theorem,
which is obtained for γ = 0.)

Solution: If a ∈ C∗ +
{

x | ‖x‖ ≤ γ/β
}

, then

a = â + a with â ∈ C∗ and ‖a‖ ≤ γ/β.
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Since C is a closed convex cone, by the Polar Cone Theorem (Prop. 2.2.1), we
have (C∗)∗ = C, implying that for all x in C with ‖x‖ ≤ β,

â′x ≤ 0 and a′x ≤ ‖a‖ · ‖x‖ ≤ γ.

Hence,
a′x = (â + a)′x ≤ γ, ∀ x ∈ C with ‖x‖ ≤ β,

thus implying that
max

‖x‖≤β, x∈C
a′x ≤ γ.

Conversely, assume that a′x ≤ γ for all x ∈ C with ‖x‖ ≤ β. Let â and a
be the projections of a on C∗ and C, respectively. By the Cone Decomposition
Theorem (cf. Exercise 2.8), we have a = â + a with â ∈ C∗, a ∈ C, and â′a = 0.
Since a′x ≤ γ for all x ∈ C with ‖x‖ ≤ β and a ∈ C, we obtain

a′ a

‖a‖
β = (â + a)′

a

‖a‖
β = ‖a‖β ≤ γ,

implying that ‖a‖ ≤ γ/β, and showing that a ∈ C∗ +
{

x | ‖x‖ ≤ γ/β
}

.

2.10 (Dimension and Lineality Space of Polar Cones)

Show that for any nonempty cone C in ℜn, we have

LC∗ =
(

aff(C)
)⊥

,

dim(C) + dim(LC∗ ) = n,

dim(C∗) + dim
(

Lconv(C)

)

≤ dim(C∗) + dim
(

Lcl(conv(C))

)

= n,

where LX denotes the lineality space of a convex set X.

Solution: Note that aff(C) is a subspace of ℜn because C is a cone in ℜn. We
first show that

LC∗ =
(

aff(C)
)⊥

.

Let y ∈ LC∗ . Then, by the definition of the lineality space (see Chapter 1), both
vectors y and −y belong to the recession cone RC∗ . Since 0 ∈ C∗, it follows that
0 + y and 0 − y belong to C∗. Therefore,

y′x ≤ 0, (−y)′x ≤ 0, ∀ x ∈ C,

implying that
y′x = 0, ∀ x ∈ C. (2.3)

Let the dimension of the subspace aff(C) be m. By Prop. 1.3.2, there exist vectors
x0, x1, . . . , xm in ri(C) such that x1 −x0, . . . , xm −x0 span aff(C). Thus, for any
z ∈ aff(C), there exist scalars β1, . . . , βm such that

z =

m
∑

i=1

βi(xi − x0).

13



By using this relation and Eq. (2.3), for any z ∈ aff(C), we obtain

y′z =

m
∑

i=1

βiy
′(xi − x0) = 0,

implying that y ∈
(

aff(C)
)⊥

. Hence, LC∗ ⊂
(

aff(C)
)⊥

.

Conversely, let y ∈
(

aff(C)
)⊥

, so that in particular, we have

y′x = 0, (−y)′x = 0, ∀ x ∈ C.

Therefore, 0+αy ∈ C∗ and 0+α(−y) ∈ C∗ for all α ≥ 0, and since C∗ is a closed
convex set, by the Recession Cone Theorem [Prop. 1.4.1(b)], it follows that y and
−y belong to the recession cone RC∗ . Hence, y belongs to the lineality space of

C∗, showing that
(

aff(C)
)⊥

⊂ LC∗ and completing the proof of the equality

LC∗ =
(

aff(C)
)⊥

.

By definition, we have dim(C) = dim
(

aff(C)
)

and since LC∗ =
(

aff(C)
)⊥

,

we have dim(LC∗ ) = dim
(

(

aff(C)
)⊥
)

. This implies that

dim(C) + dim(LC∗ ) = n.

By replacing C with C∗ in the preceding relation, and by using the Polar
Cone Theorem (Prop. 2.2.1), we obtain

dim(C∗) + dim
(

L(C∗)∗

)

= dim(C∗) + dim
(

Lcl(conv(C))

)

= n.

Furthermore, since

Lconv(C) ⊂ Lcl(conv(C)),

it follows that

dim(C∗) + dim
(

Lconv(C)

)

≤ dim(C∗) + dim
(

Lcl(conv(C))

)

= n.

2.11 (Polar Cone Operations)

Show the following:

(a) For any nonempty cones Ci ⊂ ℜni , i = 1, . . . , m, we have

(C1 × · · · × Cm)∗ = C∗
1 × · · · × C∗

m.

(b) For any collection of nonempty cones {Ci | i ∈ I}, we have

(

∪i∈ICi

)∗
= ∩i∈IC

∗
i .
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(c) For any two nonempty cones C1 and C2, we have

(C1 + C2)
∗ = C∗

1 ∩ C∗
2 .

(d) For any two nonempty closed convex cones C1 and C2, we have

(C1 ∩ C2)
∗ = cl(C∗

1 + C∗
2 ).

Furthermore, if ri(C1) ∩ ri(C2) 6= Ø, then the cone C∗
1 + C∗

2 is closed and
the closure operation in the preceding relation can be omitted.

(e) Consider the following cones in ℜ3

C1 =
{

(x1, x2, x3) | x2
1 + x2

2 ≤ x2
3, x3 ≤ 0

}

,

C2 =
{

(x1, x2, x3) | x2 = −x3

}

.

Verify that ri(C1)∩ri(C2) = Ø, (1, 1, 1) ∈ (C1∩C2)
∗, and (1, 1, 1) 6∈ C∗

1+C∗
2 ,

thus showing that the closure operation in the relation of part (c) may not
be omitted when ri(C1) ∩ ri(C2) = Ø.

Solution: (a) It suffices to consider the case where m = 2. Let (y1, y2) ∈
(C1 × C2)

∗. Then, we have (y1, y2)
′(x1, x2) ≤ 0 for all (x1, x2) ∈ C1 × C2, or

equivalently
y′
1x1 + y′

2x2 ≤ 0, ∀ x1 ∈ C1, ∀ x2 ∈ C2.

Since C2 is a cone, 0 belongs to its closure, so by letting x2 → 0 in the preceding
relation, we obtain y′

1x1 ≤ 0 for all x1 ∈ C1, showing that y1 ∈ C∗
1 . Similarly, we

obtain y2 ∈ C∗
2 , and therefore (y1, y2) ∈ C∗

1 × C∗
2 , implying that (C1 × C2)

∗ ⊂
C∗

1 × C∗
2 .

Conversely, let y1 ∈ C∗
1 and y2 ∈ C∗

2 . Then, we have

(y1, y2)
′(x1, x2) = y′

1x1 + y′
2x2 ≤ 0, ∀ x1 ∈ C1, ∀ x2 ∈ C2,

implying that (y1, y2) ∈ (C1 × C2)
∗, and showing that C∗

1 × C∗
2 ⊂ (C1 × C2)

∗.

(b) A vector y belongs to the polar cone of ∪i∈ICi if and only if y′x ≤ 0 for all
x ∈ Ci and all i ∈ I , which is equivalent to having y ∈ C∗

i for every i ∈ I . Hence,
y belongs to

(

∪i∈ICi

)∗
if and only if y belongs to ∩i∈IC

∗
i .

(c) Let y ∈ (C1 + C2)
∗, so that

y′(x1 + x2) ≤ 0, ∀ x1 ∈ C1, ∀ x2 ∈ C2. (2.4)

Since the zero vector is in the closures of C1 and C2, by letting x2 → 0 with
x2 ∈ C2 in Eq. (2.4), we obtain

y′x1 ≤ 0, ∀ x1 ∈ C1,

and similarly, by letting x1 → 0 with x1 ∈ C1 in Eq. (2.4), we obtain

y′x2 ≤ 0, ∀ x2 ∈ C2.
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Thus, y ∈ C∗
1 ∩ C∗

2 , showing that (C1 + C2)
∗ ⊂ C∗

1 ∩ C∗
2 .

Conversely, let y ∈ C∗
1 ∩ C∗

2 . Then, we have

y′x1 ≤ 0, ∀ x1 ∈ C1,

y′x2 ≤ 0, ∀ x2 ∈ C2,

implying that

y′(x1 + x2) ≤ 0, ∀ x1 ∈ C1, ∀ x2 ∈ C2.

Hence y ∈ (C1 + C2)
∗, showing that C∗

1 ∩ C∗
2 ⊂ (C1 + C2)

∗.

(d) Since C1 and C2 are closed convex cones, by the Polar Cone Theorem (Prop.
2.2.1) and by part (b), it follows that

C1 ∩ C2 = (C∗
1 )∗ ∩ (C∗

2 )∗ = (C∗
1 + C∗

2 )∗.

By taking the polars and by using the Polar Cone Theorem, we obtain

(C1 ∩ C2)
∗ =

(

(C∗
1 + C∗

2 )∗
)∗

= cl
(

conv(C∗
1 + C∗

2 )
)

.

The cone C∗
1 + C∗

2 is convex, so that

(C1 ∩ C2)
∗ = cl(C∗

1 + C∗
2 ).

Suppose now that ri(C1) ∩ ri(C2) 6= Ø. We will show that C∗
1 + C∗

2 is
closed by using Prop. 1.4.14. According to this proposition, if for any nonempty
closed convex sets C1 and C2 in ℜn, the equality y1 + y2 = 0 with y1 ∈ R

C1
and

y2 ∈ R
C2

implies that y1 and y2 belong to the lineality spaces of C1 and C2,

respectively, then the vector sum C1 + C2 is closed.
Let y1 + y2 = 0 with y1 ∈ RC∗

1
and y2 ∈ RC∗

2
. Because C∗

1 and C∗
2 are

closed convex cones, we have RC∗
1

= C∗
1 and RC∗

2
= C∗

2 , so that y1 ∈ C∗
1 and

y2 ∈ C∗
2 . The lineality space of a cone is the set of vectors y such that y and

−y belong to the cone, so that in view of the preceding discussion, to show that
C∗

1 + C∗
2 is closed, it suffices to prove that −y1 ∈ C∗

1 and −y2 ∈ C∗
2 .

Since y1 = −y2 and y1 ∈ C∗
1 , it follows that

y′
2x ≥ 0, ∀ x ∈ C1, (2.5)

and because y2 ∈ C∗
2 , we have

y′
2x ≤ 0, ∀ x ∈ C2,

which combined with the preceding relation yields

y′
2x = 0, ∀ x ∈ C1 ∩ C2. (2.6)

In view of the fact ri(C1) ∩ ri(C2) 6= Ø, and Eqs. (2.5) and (2.6), it follows that
the linear function y′

2x attains its minimum over the convex set C1 at a point in
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the relative interior of C1, implying that y′
2x = 0 for all x ∈ C1 (cf. Prop. 1.3.4).

Therefore, y2 ∈ C∗
1 and since y2 = −y1, we have −y1 ∈ C∗

1 . By exchanging the
roles of y1 and y2 in the preceding analysis, we similarly show that −y2 ∈ C∗

2 ,
completing the proof.

(e) By drawing the cones C1 and C2, it can be seen that ri(C1)∩ ri(C2) = Ø and

C1 ∩ C2 =
{

(x1, x2, x3) | x1 = 0, x2 = −x3, x3 ≤ 0
}

,

C∗
1 =

{

(y1, y2, y3) | y2
1 + y2

2 ≤ y2
3 , y3 ≥ 0

}

,

C∗
2 =

{

(z1, z2, z3) | z1 = 0, z2 = z3

}

.

Clearly, x1 +x2 +x3 = 0 for all x ∈ C1 ∩C2, implying that (1, 1, 1) ∈ (C1 ∩C2)
∗.

Suppose that (1, 1, 1) ∈ C∗
1 + C∗

2 , so that (1, 1, 1) = (y1, y2, y3) + (z1, z2, z3) for
some (y1, y2, y3) ∈ C∗

1 and (z1, z2, z3) ∈ C∗
2 , implying that y1 = 1, y2 = 1 − z2,

y3 = 1 − z2 for some z2 ∈ ℜ. However, this point does not belong to C∗
1 ,

which is a contradiction. Therefore, (1, 1, 1) is not in C∗
1 + C∗

2 . Hence, when
ri(C1) ∩ ri(C2) = Ø, the relation

(C1 ∩ C2)
∗ = C∗

1 + C∗
2

may fail.

2.12 (Linear Transformations and Polar Cones)

Let C be a nonempty cone in ℜn, K be a nonempty closed convex cone in ℜm,
and A be a linear transformation from ℜn to ℜm. Show that

(AC)∗ = (A′)−1 · C∗,
(

A−1 · K
)∗

= cl(A′K∗).

Show also that if ri(K) ∩ R(A) 6= Ø, then the cone A′K∗ is closed and (A′)−1

and the closure operation in the above relation can be omitted.

Solution: We have y ∈ (AC)∗ if and only if y′Ax ≤ 0 for all x ∈ C, which is
equivalent to (A′y)′x ≤ 0 for all x ∈ C. This is in turn equivalent to A′y ∈ C∗.
Hence, y ∈ (AC)∗ if and only if y ∈ (A′)−1 · C∗, showing that

(AC)∗ = (A′)−1 · C∗. (2.7)

We next show that for a closed convex cone K ⊂ ℜm, we have

(

A−1 · K
)∗

= cl(A′K∗).

Let y ∈
(

A−1 · K
)∗

and to arrive at a contradiction, assume that y 6∈ cl(A′K∗).
By the Strict Separation Theorem (Prop. 1.5.3), the closed convex cone cl(A′K∗)
and the vector y can be strictly separated, i.e., there exist a vector a ∈ ℜn and
a scalar b such that

a′x < b < a′y, ∀ x ∈ cl(A′K∗).
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If a′x > 0 for some x ∈ cl(A′K∗), then since cl(A′K∗) is a cone, we would
have λx ∈ cl(A′K∗) for all λ > 0, implying that a′(λx) → ∞ when λ → ∞,
which contradicts the preceding relation. Thus, we must have a′x ≤ 0 for all
x ∈ cl(A′K∗), and since 0 ∈ cl(A′K∗), it follows that

sup
x∈cl(A′K∗)

a′x = 0 ≤ b < a′y. (2.8)

Therefore, a ∈
(

cl(A′K∗)
)∗

, and since
(

cl(A′K∗)
)∗

⊂ (A′K∗)∗, it follows that
a ∈ (A′K∗)∗. In view of Eq. (2.7) and the Polar Cone Theorem (Prop. 2.2.1), we
have

(A′K∗)∗ = A−1(K∗)∗ = A−1 · K,

implying that a ∈ A−1 · K. Because y ∈
(

A−1 · K
)∗

, it follows that y′a ≤ 0,
contradicting Eq. (2.8). Hence, we must have y ∈ cl(A′K∗), showing that

(

A−1 · K
)∗

⊂ cl(A′K∗).

To show the reverse inclusion, let y ∈ A′K∗ and assume, to arrive at a con-
tradiction, that y 6∈ (A−1 ·K)∗. By the Strict Separation Theorem (Prop. 1.5.3),
the closed convex cone (A−1 ·K)∗ and the vector y can be strictly separated, i.e.,
there exist a vector a ∈ ℜn and a scalar b such that

a′x < b < a′y, ∀ x ∈ (A−1 · K)∗.

Similar to the preceding analysis, since (A−1 · K)∗ is a cone, it can be seen that

sup
x∈(A−1·K)∗

a′x = 0 ≤ b < a′y, (2.9)

implying that a ∈
(

(A−1 ·K)∗
)∗

. Since K is a closed convex cone and A is a linear

(and therefore continuous) transformation, the set A−1 ·K is a closed convex cone.

Furthermore, by the Polar Cone Theorem, we have that
(

(A−1 ·K)∗
)∗

= A−1 ·K.

Therefore, a ∈ A−1 ·K, implying that Aa ∈ K. Since y ∈ A′K∗, we have y = A′v
for some v ∈ K∗, and it follows that

y′a = (A′v)′a = v′Aa ≤ 0,

contradicting Eq. (2.9). Hence, we must have y ∈ (A−1 · K)∗, implying that

A′K∗ ⊂ (A−1 · K)∗.

Taking the closure of both sides of this relation, we obtain

cl(A′K∗) ⊂ (A−1 · K)∗,

completing the proof.
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Suppose that ri(K∗) ∩ R(A) 6= Ø. We will show that the cone A′K∗ is
closed by using Prop. 1.4.13. According to this proposition, if RK∗ ∩ N(A′) is a
subspace of the lineality space LK∗ of K∗, then

cl(A′K∗) = A′K∗.

Thus, it suffices to verify that RK∗ ∩ N(A′) is a subspace of LK∗ . Indeed, we
will show that RK∗ ∩ N(A′) = LK∗ ∩ N(A′).

Let y ∈ K∗ ∩ N(A′). Because y ∈ K∗, we obtain

(−y)′x ≥ 0, ∀ x ∈ K. (2.10)

For y ∈ N(A′), we have −y ∈ N(A′) and since N(A′) = R(A)⊥, it follows that

(−y)′z = 0, ∀ z ∈ R(A). (2.11)

In view of the relation ri(K) ∩ R(A) 6= Ø, and Eqs. (2.10) and (2.11), the linear
function (−y)′x attains its minimum over the convex set K at a point in the
relative interior of K, implying that (−y)′x = 0 for all x ∈ K (cf. Prop. 1.3.4).
Hence (−y) ∈ K∗, so that y ∈ LK∗ and because y ∈ N(A′), we see that y ∈
LK∗∩N(A′). The reverse inclusion follows directly from the relation LK∗ ⊂ RK∗ ,
thus completing the proof.

2.13 (Pointed Cones and Bases)

Let C be a closed convex cone in ℜn. We say that C is a pointed cone if C∩(−C) =
{0}. A convex set D ⊂ ℜn is said to be a base for C if C = cone(D) and 0 6∈ cl(D).
Show that the following properties are equivalent:

(a) C is a pointed cone.

(b) cl(C∗ − C∗) = ℜn.

(c) C∗ − C∗ = ℜn.

(d) C∗ has nonempty interior.

(e) There exist a nonzero vector x̂ ∈ ℜn and a positive scalar δ such that
x̂′x ≥ δ‖x‖ for all x ∈ C.

(f) C has a bounded base.

Hint : Use Exercise 2.11 to show the implications (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e)
⇒ (f) ⇒ (a).

Solution: (a) ⇒ (b) Since C is a pointed cone, C ∩ (−C) = {0}, so that

(

C ∩ (−C)
)∗

= ℜn.

On the other hand, by Exercise 2.11, it follows that

(

C ∩ (−C)
)∗

= cl(C∗ − C∗),
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which when combined with the preceding relation yields cl(C∗ − C∗) = ℜn.

(b) ⇒ (c) Since C is a closed convex cone, by the polar cone operations of Exercise
2.11, it follows that

(

C ∩ (−C)
)∗

= cl(C∗ − C∗) = ℜn.

By taking the polars and using the Polar Cone Theorem (Prop. 2.2.1), we obtain

(

(

C ∩ (−C)
)∗
)∗

= C ∩ (−C) = {0}. (2.12)

Now, to arrive at a contradiction assume that there is a vector x̂ ∈ ℜn such that
x̂ 6∈ C∗ −C∗. Then, by the Separating Hyperplane Theorem (Prop. 1.5.2), there
exists a nonzero vector a ∈ ℜn such that

a′x̂ ≥ a′x, ∀ x ∈ C∗ − C∗.

If a′x > 0 for some x ∈ C∗−C∗, then since C∗−C∗ is a cone, the right hand-side
of the preceding relation can be arbitrarily large, a contradiction. Thus, we have
a′x ≤ 0 for all x ∈ C∗ − C∗, implying that a ∈ (C∗ − C∗)∗. By the polar cone
operations of Exercise 2.11(b) and the Polar Cone Theorem, it follows that

(C∗ − C∗)∗ = (C∗)∗ ∩ (−C∗)∗ = C ∩ (−C).

Thus, a ∈ C ∩ (−C) with a 6= 0, contradicting Eq. (2.12). Hence, we must have
C∗ − C∗ = ℜn.

(c) ⇒ (d) Because C∗ ⊂ aff(C∗) and −C∗ ⊂ aff(C∗), we have C∗−C∗ ⊂ aff(C∗)
and since C∗ − C∗ = ℜn, it follows that aff(C∗) = ℜn, showing that C∗ has
nonempty interior.

(d) ⇒ (e) Let v be a vector in the interior of C∗. Then, there exists a positive
scalar δ such that the vector v + δ y

‖y‖
is in C∗ for all y ∈ ℜn with y 6= 0, i.e.,

(

v + δ
y

‖y‖

)′

x ≤ 0, ∀ x ∈ C, ∀ y ∈ ℜn, y 6= 0.

By taking y = x, it follows that

(

v + δ
x

‖x‖

)′

x ≤ 0, ∀ x ∈ C, x 6= 0,

implying that

v′x + δ‖x‖ ≤ 0, ∀ x ∈ C, x 6= 0.

Clearly, this relation holds for x = 0, so that

v′x ≤ −δ‖x‖, ∀ x ∈ C.
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Multiplying the preceding relation with −1 and letting x̂ = −v, we obtain

x̂′x ≥ δ‖x‖, ∀ x ∈ C.

(e) ⇒ (f) Let

D =
{

y ∈ C | x̂′y = 1
}

.

Then, D is a closed convex set since it is the intersection of the closed convex
cone C and the closed convex set {y | x̂′y = 1}. Obviously, 0 6∈ D. Thus, to show
that D is a base for C, it remains to prove that C = cone(D). Take any x ∈ C.
If x = 0, then x ∈ cone(D) and we are done, so assume that x 6= 0. We have by
hypothesis

x̂′x ≥ δ‖x‖ > 0, ∀ x ∈ C, x 6= 0,

so we may define ŷ = x
x̂′x

. Clearly, ŷ ∈ D and x = (x̂′x)ŷ with x̂′x > 0,
showing that x ∈ cone(D) and that C ⊂ cone(D). Since D ⊂ C, the inclusion
cone(D) ⊂ C is obvious. Thus, C = cone(D) and D is a base for C. Furthermore,
for every y in D, since y is also in C, we have

1 = x̂′y ≥ δ‖y‖,

showing that D is bounded and completing the proof.

(f) ⇒ (a) Since C has a bounded base, C = cone(D) for some bounded convex
set D with 0 6∈ cl(D). To arrive at a contradiction, we assume that the cone C is
not pointed, so that there exists a nonzero vector d ∈ C ∩ (−C), implying that d
and −d are in C. Let {λk} be a sequence of positive scalars. Since λkd ∈ C for
all k and D is a base for C, there exist a sequence {µk} of positive scalars and a
sequence {yk} of vectors in D such that

λkd = µkyk, ∀ k.

Therefore, yk =
λk
µk

d ∈ D for all k and because D is bounded, the sequence
{

yk}

has a subsequence converging to some y ∈ cl(D). Without loss of generality, we

may assume that yk → y, which in view of yk =
λk
µk

d for all k, implies that y = αd

and αd ∈ cl(D) for some α ≥ 0. Furthermore, by the definition of base, we have
0 6∈ cl(D), so that α > 0. Similar to the preceding, by replacing d with −d, we
can show that α̃(−d) ∈ cl(D) for some positive scalar α̃. Therefore, αd ∈ cl(D)
and α̃(−d) ∈ cl(D) with α > 0 and α̃ > 0. Since D is convex, its closure cl(D)
is also convex, implying that 0 ∈ cl(D), contradicting the definition of a base.
Hence, the cone C must be pointed.

SECTION 2.3: Polyhedral Sets and Functions
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2.14

Show that a closed convex cone is polyhedral if and only if its polar cone is
polyhedral.

Solution: Let the closed convex cone C be polyhedral, and of the form

C =
{

x | a′
jx ≤ 0, j = 1, . . . , r

}

,

for some vectors aj in ℜn. By Farkas’ Lemma, we have

C∗ = cone
(

{a1, . . . , ar}
)

,

so the polar cone of a polyhedral cone is finitely generated. Conversely, using the
Polar Cone Theorem, we have

cone
(

{a1, . . . , ar}
)∗

=
{

x | a′
jx ≤ 0, j = 1, . . . , r

}

,

so the polar of a finitely generated cone is polyhedral. Thus, a closed convex
cone is polyhedral if and only if its polar cone is finitely generated. By the
Minkowski-Weyl Theorem (Prop. 2.3.2), a cone is finitely generated if and only
if it is polyhedral. Therefore, a closed convex cone is polyhedral if and only if its
polar cone is polyhedral.

2.15 (Closedness of Finitely Generated Cones)

This exercise proves that a finitely generated cone is closed without invoking
Prop. 1.4.13. Let a1, . . . , ar be vectors in ℜn and let A be the n × r matrix that
has as columns these vectors. Consider the cone generated by a1, . . . , ar:

cone
(

{a1, . . . , ar}
)

= {Aµ | µ ≥ 0}.

(a) Show that if a1, . . . , ar are linearly independent, then cone
(

{a1, . . . , ar}
)

is
closed. Hint : Show that if yk = {Aµk} and yk → y, then y = Aµ with

µ = lim
k→∞

µk = lim
k→∞

(A′A)−1A′yk = (A′A)−1A′y.

(b) Show that cone
(

{a1, . . . , ar}
)

is closed without the linear independence as-
sumption of part (a). Hint : Use Caratheodory’s Theorem to show that
cone

(

{a1, . . . , ar}
)

is equal to the union of a finite number of cones gener-
ated by linearly independent vectors.

Solution: (a) Consider a sequence {yk} ⊂ cone
(

{a1, . . . , ar}
)

with yk → y. We

will show that y ∈ cone
(

{a1, . . . , ar}
)

. For each k, we have yk = Aµk for some
µk ≥ 0, from which we obtain,

A′yk = A′Aµk.

22



Since a1, . . . , ar are assumed linearly independent, the matrix A′A is invertible,
and we have

µk = (A′A)−1A′yk.

It follows that

µk → µ,

where

µ = (A′A)−1A′y.

Furthermore, since µk ≥ 0, we have µ ≥ 0. Taking the limit in the relation
yk = Aµk, we obtain y = Aµ with µ ≥ 0, so y ∈ cone

({

a1, . . . , ar}
)

.

(b) By Caratheodory’s Theorem, every vector in cone
(

{a1, . . . , ar}
)

is a positive

combination of linearly independent vectors. Thus, cone
(

{a1, . . . , ar}
)

is the

union of cone
(

{aj | j ∈ J}
)

as J ranges over all subsets of {1, . . . , r} such that
the set {aj | j ∈ J} is linearly independent. Each of these cones is closed by part
(a), so their union is also closed.

2.16

Let P be a polyhedral set in ℜn, with a Minkowski-Weyl Representation

P =

{

x
∣

∣

∣
x =

m
∑

j=1

µjvj + y,

m
∑

j=1

µj = 1, µj ≥ 0, j = 1, . . . , m, y ∈ C

}

,

where v1, . . . , vm are some vectors in ℜn and C is a finitely generated cone in ℜn

(cf. Prop. 2.3.3). Show that:

(a) The recession cone of P is equal to C.

(b) Each extreme point of P is equal to some vector vi that cannot be repre-
sented as a convex combination of the vectors vj with vj 6= vi.

Solution: (a) We first show that C is a subset of RP , the recession cone of P .
Let y ∈ C, and choose any α ≥ 0 and x ∈ P of the form x =

∑m

j=1
µjvj . Since C

is a cone, αy ∈ C, so that x+αy ∈ P for all α ≥ 0. It follows that y ∈ RP . Hence
C ⊂ RP . Conversely, to show that RP ⊂ C, let y ∈ RP and take any x ∈ P .
Then x+ky ∈ P for all k ≥ 1. Since P = V +C, where V = conv

(

{v1, . . . , vm}
)

,
it follows that

x + ky = vk + yk, ∀ k ≥ 1,

with vk ∈ V and yk ∈ C for all k ≥ 1. Because V is compact, the sequence
{vk} has a limit point v ∈ V , and without loss of generality, we may assume that
vk → v. Then

lim
k→∞

‖ky − yk‖ = lim
k→∞

‖vk − x‖ = ‖v − x‖,

implying that

lim
k→∞

∥

∥y − (1/k)yk
∥

∥ = 0.
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Therefore, the sequence
{

(1/k)yk
}

converges to y. Since yk ∈ C for all k ≥ 1,

the sequence
{

(1/k)yk
}

is in C, and by the closedness of C, it follows that y ∈ C.
Hence, RP ⊂ C.

(b) Any point in P has the form v + y with v ∈ conv
(

{v1, . . . , vm}
)

and y ∈ C,
or equivalently

v + y =
1

2
v +

1

2
(v + 2y),

with v and v + 2y being two distinct points in P if y 6= 0. Therefore, none of the
points v + y, with v ∈ conv

(

{v1, . . . , vm}
)

and y ∈ C, is an extreme point of P
if y 6= 0. Hence, an extreme point of P must be in the set {v1, . . . , vm}. Since
by definition, an extreme point of P is not a convex combination of points in P ,
an extreme point of P must be equal to some vi that cannot be expressed as a
convex combination of the remaining vectors vj , j 6= i.

2.17 (Compact Polyhedral Sets)

Show that a nonempty compact convex set is polyhedral if and only if it has a
finite number of extreme points. Show by example that the compactness assump-
tion is essential.

Solution: By the Minkowski-Weyl Representation Theorem (Prop. 2.3.3), a poly-
hedral set has a finite number of extreme points. Conversely, let P be a compact
convex set having a finite number of extreme points {v1, . . . , vm}. By the Krein-
Milman Theorem (Exercise 2.2), a compact convex set is equal to the convex hull
of its extreme points, so that P = conv

(

{v1, . . . , vm}
)

, which is a polyhedral set
by Minkowski-Weyl Representation Theorem.

As an example showing that the assertion fails if compactness of the set
is replaced by a weaker assumption that the set is closed and contains no lines,
consider the set D ⊂ ℜ3 given by

D =
{

(x1, x2, x3) | x2
1 + x2

2 ≤ 1, x3 = 1
}

.

Let C = cone(D). It can seen that C is not a polyhedral set. On the other hand,
C is closed, convex, does not contain a line, and has a unique extreme point at
the origin.

[For a more formal argument, note that if C were polyhedral, then the set

D = C ∩
{

(x1, x2, x3) | x3 = 1
}

would also be polyhedral by Prop. 2.3.4, since both C and
{

(x1, x2, x3) | x3 = 1
}

are polyhedral sets. Thus, by Prop. 2.3.3, it would follow that D has a finite
number of extreme points. But this is a contradiction because the set of extreme
points of D coincides with

{

(x1, x2, x3) | x2
1 + x2

2 = 1, x3 = 1
}

, which contains
an infinite number of points. Thus, C is not a polyhedral cone, and therefore
not a polyhedral set, while C is closed, convex, does not contain a line, and has
a unique extreme point at the origin.]
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2.18 (Polyhedral Set Decomposition)

Show that a polyhedral set can be written as the vector sum of a subspace
and a polyhedral set that contains at least one extreme point. Hint : Use the
decomposition result of Prop. 1.4.4.

Solution: By the remarks following Prop. 1.4.4, a convex set C can be written
as

C = LC + (C ∩ L⊥
C),

where LC is the lineality space of C. Furthermore, the set C ∩ L⊥
C contains no

lines. If C is polyhedral, then C ∩ L⊥
C is also polyhedral and since it contains no

lines, by Prop. 2.1.2, it must contain an extreme point.

2.19 (Cones Generated by Polyhedral Sets)

Show that if P is a polyhedral set in ℜn containing the origin, then cone(P ) is a
polyhedral cone. Give an example showing that if P does not contain the origin,
then cone(P ) may not be a polyhedral cone.

Solution: We give two proofs. The first is based on the Minkowski-Weyl Rep-
resentation of a polyhedral set P (cf. Prop. 2.3.3), while the second is based on
a representation of P by a system of linear inequalities.

Let P be a polyhedral set with Minkowski-Weyl representation

P =

{

x

∣

∣

∣
x =

m
∑

j=1

µjvj + y,

m
∑

j=1

µj = 1, µj ≥ 0, j = 1, . . . , m, y ∈ C

}

,

where v1, . . . , vm are some vectors in ℜn and C is a finitely generated cone in ℜn.
Let C be given by

C =

{

y
∣

∣

∣
y =

r
∑

i=1

λiai, λi ≥ 0, i = 1, . . . , r

}

,

where a1, . . . , ar are some vectors in ℜn, so that

P =

{

x

∣

∣

∣
x =

m
∑

j=1

µjvj +

r
∑

i=1

λiai,

m
∑

j=1

µj = 1, µj ≥ 0, ∀ j, λi ≥ 0, ∀ i

}

.

We claim that

cone(P ) = cone
(

{v1, . . . , vm, a1, . . . , ar}
)

.

Since P ⊂ cone
(

{v1, . . . , vm, a1, . . . , ar}
)

, it follows that

cone(P ) ⊂ cone
(

{v1, . . . , vm, a1, . . . , ar}
)

.
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Conversely, let y ∈ cone
(

{v1, . . . , vm, a1, . . . , ar}
)

. Then, we have

y =

m
∑

j=1

µjvj +

r
∑

i=1

λiai,

with µj ≥ 0 and λi ≥ 0 for all i and j. If µj = 0 for all j, then y =
∑r

i=1
λiai ∈ C,

and since C = RP (cf. Exercise 2.16), it follows that y ∈ RP . Because the origin
belongs to P and y ∈ RP , we have 0 + y ∈ P , implying that y ∈ P , and
consequently y ∈ cone(P ). If µj > 0 for some j, then by setting µ =

∑m

j=1
µj ,

µj = µj/µ for all j, and λi = λi/µ for all i, we obtain

y = µ

(

m
∑

j=1

µjvj +

r
∑

i=1

λiai

)

,

where µ > 0, µj ≥ 0 with
∑m

j=1
µj = 1, and λi ≥ 0. Therefore y = µ x with

x ∈ P and µ > 0, implying that y ∈ cone(P ) and showing that

cone
(

{v1, . . . , vm, a1, . . . , ar}
)

⊂ cone(P ).

We now give an alternative proof using the representation of P by a system
of linear inequalities. Let P be given by

P =
{

x | a′
jx ≤ bj , j = 1, . . . , r

}

,

where a1, . . . , ar are vectors in ℜn and b1, . . . , br are scalars. Since P contains
the origin, it follows that bj ≥ 0 for all j. Define the index set J as follows

J = {j | bj = 0}.

We consider separately the two cases where J 6= Ø and J = Ø. If J 6= Ø,
then we will show that

cone(P ) =
{

x | a′
jx ≤ 0, j ∈ J

}

.

To see this, note that since P ⊂
{

x | a′
jx ≤ 0, j ∈ J

}

, we have

cone(P ) ⊂
{

x | a′
jx ≤ 0, j ∈ J

}

.

Conversely, let x ∈
{

x | a′
jx ≤ 0, j ∈ J

}

. We will show that x ∈ cone(P ).
If x ∈ P , then x ∈ cone(P ) and we are done, so assume that x 6∈ P , implying
that the set

J = {j 6∈ J | a′
jx > bj} (2.13)

is nonempty. By the definition of J , we have bj > 0 for all j 6∈ J , so let

µ = min
j∈J

bj

a′
jx

,
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and note that 0 < µ < 1. We have

a′
j(µx) ≤ 0, ∀ j ∈ J,

a′
j(µx) ≤ bj , ∀ j ∈ J.

For j 6∈ J ∪ J and a′
jx ≤ 0 < bj , since µ > 0, we still have a′

j(µx) ≤ 0 < bj . For

j 6∈ J ∪ J and 0 < a′
jx ≤ bj , since µ < 1, we have 0 < a′

j(µx) < bj . Therefore,
µx ∈ P , implying that x = 1

µ
(µx) ∈ cone(P ). It follows that

{

x | a′
jx ≤ 0, j ∈ J

}

⊂ cone(P ),

and hence, cone(P ) =
{

x | a′
jx ≤ 0, j ∈ J

}

.
If J = Ø, then we will show that cone(P ) = ℜn. To see this, take any

x ∈ ℜn. If x ∈ P , then clearly x ∈ cone(P ), so assume that x 6∈ P , implying that
the set J as defined in Eq. (2.13) is nonempty. Note that bj > 0 for all j, since
J is empty. The rest of the proof is similar to the preceding case.

As an example, where cone(P ) is not polyhedral when P does not contain
the origin, consider the polyhedral set P ⊂ ℜ2 given by

P =
{

(x1, x2) | x1 ≥ 0, x2 = 1
}

.

Then, we have

cone(P ) =
{

(x1, x2) | x1 > 0, x2 > 0
}

∪
{

(x1, x2) | x1 = 0, x2 ≥ 0
}

,

which is not closed and therefore not polyhedral.

2.20

Show that if P is a polyhedral set in ℜn containing the origin, then cone(P ) is a
polyhedral cone. Give an example showing that if P does not contain the origin,
then cone(P ) may not be a polyhedral cone.

Solution: We give two proofs. The first is based on the Minkowski-Weyl Rep-
resentation of a polyhedral set P (cf. Prop. 2.3.3), while the second is based on
a representation of P by a system of linear inequalities.

Let P be a polyhedral set with Minkowski-Weyl representation

P =

{

x
∣

∣

∣
x =

m
∑

j=1

µjvj + y,

m
∑

j=1

µj = 1, µj ≥ 0, j = 1, . . . , m, y ∈ C

}

,

where v1, . . . , vm are some vectors in ℜn and C is a finitely generated cone in ℜn.
Let C be given by

C =

{

y

∣

∣

∣
y =

r
∑

i=1

λiai, λi ≥ 0, i = 1, . . . , r

}

,
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where a1, . . . , ar are some vectors in ℜn, so that

P =

{

x

∣

∣

∣
x =

m
∑

j=1

µjvj +

r
∑

i=1

λiai,

m
∑

j=1

µj = 1, µj ≥ 0, ∀ j, λi ≥ 0, ∀ i

}

.

We claim that

cone(P ) = cone
(

{v1, . . . , vm, a1, . . . , ar}
)

.

Since P ⊂ cone
(

{v1, . . . , vm, a1, . . . , ar}
)

, it follows that

cone(P ) ⊂ cone
(

{v1, . . . , vm, a1, . . . , ar}
)

.

Conversely, let y ∈ cone
(

{v1, . . . , vm, a1, . . . , ar}
)

. Then, we have

y =

m
∑

j=1

µjvj +

r
∑

i=1

λiai,

with µj ≥ 0 and λi ≥ 0 for all i and j. If µj = 0 for all j, then y =
∑r

i=1
λiai ∈ C,

and since C = RP (cf. Exercise 2.16), it follows that y ∈ RP . Because the origin
belongs to P and y ∈ RP , we have 0 + y ∈ P , implying that y ∈ P , and
consequently y ∈ cone(P ). If µj > 0 for some j, then by setting µ =

∑m

j=1
µj ,

µj = µj/µ for all j, and λi = λi/µ for all i, we obtain

y = µ

(

m
∑

j=1

µjvj +

r
∑

i=1

λiai

)

,

where µ > 0, µj ≥ 0 with
∑m

j=1
µj = 1, and λi ≥ 0. Therefore y = µ x with

x ∈ P and µ > 0, implying that y ∈ cone(P ) and showing that

cone
(

{v1, . . . , vm, a1, . . . , ar}
)

⊂ cone(P ).

We now give an alternative proof using the representation of P by a system
of linear inequalities. Let P be given by

P =
{

x | a′
jx ≤ bj , j = 1, . . . , r

}

,

where a1, . . . , ar are vectors in ℜn and b1, . . . , br are scalars. Since P contains
the origin, it follows that bj ≥ 0 for all j. Define the index set J as follows

J = {j | bj = 0}.

We consider separately the two cases where J 6= Ø and J = Ø. If J 6= Ø,
then we will show that

cone(P ) =
{

x | a′
jx ≤ 0, j ∈ J

}

.

28



To see this, note that since P ⊂
{

x | a′
jx ≤ 0, j ∈ J

}

, we have

cone(P ) ⊂
{

x | a′
jx ≤ 0, j ∈ J

}

.

Conversely, let x ∈
{

x | a′
jx ≤ 0, j ∈ J

}

. We will show that x ∈ cone(P ).
If x ∈ P , then x ∈ cone(P ) and we are done, so assume that x 6∈ P , implying
that the set

J = {j 6∈ J | a′
jx > bj} (2.14)

is nonempty. By the definition of J , we have bj > 0 for all j 6∈ J , so let

µ = min
j∈J

bj

a′
jx

,

and note that 0 < µ < 1. We have

a′
j(µx) ≤ 0, ∀ j ∈ J,

a′
j(µx) ≤ bj , ∀ j ∈ J.

For j 6∈ J ∪ J and a′
jx ≤ 0 < bj , since µ > 0, we still have a′

j(µx) ≤ 0 < bj . For

j 6∈ J ∪ J and 0 < a′
jx ≤ bj , since µ < 1, we have 0 < a′

j(µx) < bj . Therefore,
µx ∈ P , implying that x = 1

µ
(µx) ∈ cone(P ). It follows that

{

x | a′
jx ≤ 0, j ∈ J

}

⊂ cone(P ),

and hence, cone(P ) =
{

x | a′
jx ≤ 0, j ∈ J

}

.
If J = Ø, then we will show that cone(P ) = ℜn. To see this, take any

x ∈ ℜn. If x ∈ P , then clearly x ∈ cone(P ), so assume that x 6∈ P , implying that
the set J as defined in Eq. (2.14) is nonempty. Note that bj > 0 for all j, since
J is empty. The rest of the proof is similar to the preceding case.

As an example, where cone(P ) is not polyhedral when P does not contain
the origin, consider the polyhedral set P ⊂ ℜ2 given by

P =
{

(x1, x2) | x1 ≥ 0, x2 = 1
}

.

Then, we have

cone(P ) =
{

(x1, x2) | x1 > 0, x2 > 0
}

∪
{

(x1, x2) | x1 = 0, x2 ≥ 0
}

,

which is not closed and therefore not polyhedral.
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2.21 (Support Function of a Polyhedral Set)

Show that the support function of a polyhedral set is a polyhedral function.

Solution: Let X be a polyhedral set with Minkowski-Weyl representation

X = conv
(

{v1, . . . , vm}
)

+ cone
(

{d1, . . . , dr}
)

for some vectors v1, . . . , vm, d1, . . . , dr (cf. Prop. 2.3.3). The support function of
X takes the form

σX(y) = sup
x∈X

y′x

= sup
α1,...,αm,β1,...,βr≥0
∑m

i=1
αi=1

{

m
∑

i=1

αiv
′
iy +

r
∑

j=1

βjd
′
jy

}

=

{

maxi=1,...,m v′
iy if d′

jy ≤ 0, j = 1, . . . , r,

∞ otherwise.

Thus the support function is polyhedral.

2.22 (Conjugate of a Polyhedral Function)

(a) Show that the conjugate of a function can be specified in terms of the
support function of its epigraph with the formula

f⋆(y) = σepi(f)(y,−1).

(b) Use part (a) to show that the conjugate of a polyhedral function is poly-
hedral.

Solution: (a) We have

f⋆(y) = sup
x∈ℜn

{

x′y − f(x)
}

,

which can equivalently be written as

f⋆(y) = sup
(x,w)∈epi(f)

{x′y − w}.

Since the expression in braces in the right-hand side is the inner product of
the vectors (x,w) and (y,−1), the supremum above is the value of the support
function of epi(f) at (y,−1):

f⋆(y) = σepi(f)(y,−1), ∀ y ∈ ℜn.

(See Fig. 2.2.)

(b) Let us apply the result of part (a) to the case where f is a polyhedral function,
so that epi(f) is a polyhedral set. From Exercise 2.21, the support function
σepi(f) is a polyhedral function, and it can be seen that σepi(f)(y,−1), viewed as
a function of y, is polyhedral.
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epi(f)

f(x)

x

w

0

y

v
0

σepi(f)(y, v)

h(y) = σepi(f)(y,−1)

plane v = −1

Figure 2.2. Construction of the conjugate of a function f from the support
function σepi(f)(y, v) of epi(f) (cf. Exercise 2.22). The conjugate is obtained by
setting v = −1:

h(y) = σepi(f)(y,−1), ∀ y ∈ ℜ
n.

If f is polyhedral as in the figure, then epi(f) and σepi(f)(y, v) are polyhedral, so
the conjugate is also polyhedral.

2.23 (Polar Sets)

This exercise introduces a notion of polar set that generalizes the notion of polar
cone. Polar sets originated in Euclidean geometry, where they can be used to
provide elegant proofs to many classical theorems. Given a nonempty set C ⊂ ℜn,
the polar set of C is defined as

C◦ = {y | y′x ≤ 1, ∀ x ∈ C}.

Thus the polar set C◦ is the level set
{

y | σC(y) ≤ 1
}

of the support function
σC of C. Since a single level set is sufficient to characterize all level sets of a
support function (in view of positive homogeneity), it follows from the Conjugacy
Theorem (Prop. 1.6.1), that any set is fully characterized by its polar up to convex
closure, i.e., two sets with the same polar set have the same convex closure.

(a) Show that C◦ is a closed convex set. Furthermore, C◦ is bounded if and
only if the origin in an interior point of conv(C).

(b) Show that the polar set of a cone is equal to its polar cone.

(c) Consider the subset Ĉ of ℜn+1 obtained from C via the lifting procedure,

Ĉ =
{

(x, 1) | x ∈ C
}

.

Show that C◦ is obtained from the polar of the cone generated by Ĉ, by
“slicing” at the level -1:

C◦ =
{

y | (y,−1) ∈
(

cone(Ĉ)
)∗}

.
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(d) Show that if C is a finite set, then C◦ is a polyhedral set.

(e) Show that
(C◦)◦ = cl

(

conv
(

{0} ∪ C
))

,

so if C is a closed convex set containing the origin, we have (C◦)◦ = C.

(f) Consider a bounded polyhedral set P . For each extreme point v of P ,
consider the halfspace Hv = {y | y′v ≤ 1}. Show that the polar set P ◦

is the intersection of the halfspaces Hv, where v ranges over the extreme
points of P .

(g) Consider a circle in the plane that is centered at the origin, and a convex
polygon that is inscribed in the circle and contains the origin in its interior.
Show that the polar set is a polygon that can be circumscribed around some
circle centered at the origin.

Solution: (a) Clearly, we have

0 ∈ int(conv(C)) ⇐⇒ σC(y) > 0, ∀ y 6= 0.

Since σC is positively homogeneous, it is equal to its recession function, so

0 ∈ int(conv(C)) ⇐⇒ RσC
= {0}.

Since RσC
= {0} if and only if the nonempty level sets of σC are compact, and

C◦ is a level set, we have

0 ∈ int(conv(C)) ⇐⇒
{

y | σC(y) ≤ 1
}

= C◦ is compact.

(b) If C is a cone, by Example 5.2.2, σC is the indicator function of the polar set
C∗. Since C◦ is a nonempty level set of σC , it follows that C◦ = C⋆.

(c) Using the definition of cone:

cone(Ĉ) =
{

(λx, λ) | x ∈ C, λ > 0
}

.

Using the definition of polar cone:

(cone(Ĉ))⋆ =
{

(y, w) | y′λx + w′λ ≤ 0, x ∈ C, λ > 0
}

Therefore

{y | (y,−1) ∈ (cone(Ĉ))⋆} = {y | y′λx − λ ≤ 0, x ∈ C, λ > 0}

= {y | y′x ≤ 1}

= C◦

(d) If C is a finite set, C◦ is the intersection of a finite number of halfspaces.
Furthermore, C◦ is nonempty since it contains the origin, so it is polyhedral.
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(e) We first show that

C◦ = (cl(C)◦) = (conv(C)◦) = ({0} ∩ C)◦.

The first two equations hold because C, cl(C), and conv(C) have the same sup-
port function. The third equation is true by the definition of polar set.

Assume that C is closed, convex, and contains the origin. To show that
(C◦)◦ = C, note that

(C◦)◦ = {x | x′y ≤ 1, ∀ y ∈ C◦}

=
{

x | (x, 1)′(y,−1) ≤ 0, ∀ (y,−1) ∈ D∗
}

,

where D = cone(Ĉ) and the second equation follows from part (c). Since D is a
cone, its polar set is a cone by part (b). We write the above equation as

(C◦)◦ =
{

x | (x, 1)′(λy,−λ) ≤ 0, ∀ (y,−1) ∈ D∗, ∀ λ > 0)
}

,

or equivalently,
(C◦)◦ =

{

x | (x, 1)′(ȳ) ≤ 0, ∀ ȳ ∈ D⋆
}

,

and note that
{

(λx, λ) | (x, 1)′ȳ ≤ 0, ∀ ȳ ∈ D⋆
}

= (D∗)∗

and (D∗)∗ = D because Ĉ is closed and convex. Now it follows that

(C◦)◦ =
{

x | (x, 1) ∈ (D⋆)⋆ = D
}

where D is the cone of “lifted” C. Therefore (C◦)◦ = C. For an arbitrary set C
without any assumption,

cl(conv({0} ∩ C)) =
(

cl(conv({0} ∩ C)◦)
)◦

= (C◦)◦.

(f) By the Minkowski-Weyl representation, a bounded polyhedral set P is the
convex hull of its extreme points. Thus

P◦ = {y | y′x ≤ 1, ∀ x ∈ conv({v1, v2, ..., vr})}.

We have

y′x ≤ 1, ∀ x ∈ conv({v1, ..., vr}) ⇐⇒ y′vi ≤ 1, ∀ i = 1, ..., r.

Therefore

P◦ = {y | y′x ≤ 1, ∀ x ∈ conv({v1, v2, ..., vr})} = Hv1 ∩ ... ∩ Hvr .

(g) Using part (f), the polar set of the convex polygon P is the intersection of
Hv = {y | y′v ≤ 1}, where v ranges over the extreme points of P . Furthermore,
P ◦ is bounded because 0 is an interior point of P , and it is polyhedral because
it is the intersection of a finite number of halfspaces.

If P is inscribed in the circle {x | ‖x‖ = r}, all extreme points v satisfy
‖v‖ = r, and Hv corresponds to a tangent hyperplane of the circle centered at
origin with radius 1/r. Thus, the intersection of Hv can be circumscribed around
the circle {x | ‖x‖ = 1/r}.

SECTION 2.4: Polyhedral Aspects of Optimization
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2.24 (Gordan’s Theorem of the Alternative [Gor1873])

Let a1, . . . , ar be vectors in ℜn.

(a) Show that exactly one of the following two conditions holds:

(i) There exists a vector x ∈ ℜn such that

a′
1x < 0, . . . , a′

rx < 0.

(ii) There exists a vector µ ∈ ℜr such that µ 6= 0, µ ≥ 0, and

µ1a1 + · · · + µrar = 0.

(b) Show that an equivalent statement of part (a) is the following: a polyhedral
cone has nonempty interior if and only if its polar cone does not contain a
line, i.e., a set of the form {x + αz | α ∈ ℜ}, where x lies in the polar cone
and z is a nonzero vector.

Note: This result is also given with an alternative proof in Section 5.6.

Solution: (a) Assume that there exist x̂ ∈ ℜn and µ ∈ ℜr such that both
conditions (i) and (ii) hold, i.e.,

a′
jx̂ < 0, ∀ j = 1, . . . , r, (2.15)

µ 6= 0, µ ≥ 0,

r
∑

j=1

µjaj = 0. (2.16)

By premultiplying Eq. (2.15) with µj ≥ 0 and summing the obtained inequalities
over j, we have

r
∑

j=1

µja
′
j x̂ < 0.

On the other hand, from Eq. (2.16), we obtain

r
∑

j=1

µja
′
j x̂ = 0,

which is a contradiction. Hence, both conditions (i) and (ii) cannot hold simul-
taneously.

The proof will be complete if we show that the conditions (i) and (ii) cannot
fail to hold simultaneously. Assume that condition (i) fails to hold, and consider
the sets given by

C1 =
{

w ∈ ℜr | a′
jx ≤ wj , j = 1, . . . , r, x ∈ ℜn

}

,

C2 = {ξ ∈ ℜr | ξj < 0, j = 1, . . . , r}.
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It can be seen that both C1 and C2 are convex. Furthermore, because the condi-
tion (i) does not hold, C1 and C2 are disjoint sets. Therefore, by the Separating
Hyperplane Theorem (Prop. 1.5.2), C1 and C2 can be separated, i.e., there exists
a nonzero vector µ ∈ ℜr such that

µ′w ≥ µ′ξ, ∀ w ∈ C1, ∀ ξ ∈ C2,

implying that
inf

w∈C1

µ′w ≥ µ′ξ, ∀ ξ ∈ C2.

Since each component ξj of ξ ∈ C2 can be any negative scalar, for the preceding
relation to hold, µj must be nonnegative for all j. Furthermore, by letting ξ → 0,
in the preceding relation, it follows that

inf
w∈C1

µ′w ≥ 0,

implying that
µ1w1 + · · · + µrwr ≥ 0, ∀ w ∈ C1.

By setting wj = a′
jx for all j, we obtain

(µ1a1 + · · · + µrar)
′x ≥ 0, ∀ x ∈ ℜn,

and because this relation holds for all x ∈ ℜn, we must have

µ1a1 + · · · + µrar = 0.

Hence, the condition (ii) holds, showing that the conditions (i) and (ii) cannot
fail to hold simultaneously.

Alternative proof : We will show the equivalent statement of part (b), i.e., that
a polyhedral cone contains an interior point if and only if the polar C∗ does not
contain a line.

Let
C =

{

x | a′
jx ≤ 0, j = 1, . . . , r

}

,

where aj 6= 0 for all j. Assume that C contains an interior point, and to arrive
at a contradiction, assume that C∗ contains a line. Then there exists a d 6= 0
such that d and −d belong to C∗, i.e., d′x ≤ 0 and −d′x ≤ 0 for all x ∈ C, so
that d′x = 0 for all x ∈ C. Thus for the interior point x ∈ C, we have d′x = 0,
and since d ∈ C∗ and d =

∑r

j=1
µjaj for some µj ≥ 0, we have

r
∑

j=1

µja
′
jx = 0.

This is a contradiction, since x is an interior point of C, and we have a′
jx < 0 for

all j.
Conversely, assume that C∗ does not contain a line. Then C∗ has an

extreme point, and since the origin is the only possible extreme point of a cone,
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it follows that the origin is an extreme point of C∗, which is the cone generated
by {a1, . . . , ar}. Therefore 0 /∈ conv

(

{a1, . . . , ar}
)

, and there exists a hyperplane

that strictly separates the origin from conv
(

{a1, . . . , ar}
)

. Thus, there exists a

vector x such that y′x < 0 for all y ∈ conv
(

{a1, . . . , ar}
)

, so in particular,

a′
jx < 0, ∀ j = 1, . . . , r,

and x is an interior point of C.

(b) Let C be a polyhedral cone given by

C =
{

x | a′
jx ≤ 0, j = 1, . . . , r

}

,

where aj 6= 0 for all j. The interior of C is given by

int(C) =
{

x | a′
jx < 0, j = 1, . . . , r

}

,

so that C has nonempty interior if and only if the condition (i) of part (a) holds.
By Farkas’ Lemma, the polar cone of C is given by

C∗ =

{

x
∣

∣

∣
x =

r
∑

j=1

µjaj , µj ≥ 0, j = 1, . . . , r

}

.

We now show that C∗ contains a line if and only if there is a µ ∈ ℜr such that
µ 6= 0, µ ≥ 0, and

∑r

j=1
µjaj = 0 [condition (ii) of part (a) holds]. Suppose that

C∗ contains a line, i.e., a set of the form {x + αz | α ∈ ℜ}, where x ∈ C∗ and
z is a nonzero vector. Since C∗ is a closed convex cone, by the Recession Cone
Theorem (Prop. 1.4.1), it follows that z and −z belong to RC∗ . This, implies
that 0 + z = z ∈ C∗ and 0 − z = −z ∈ C∗, and therefore z and −z can be
represented as

z =

r
∑

j=1

µjaj , ∀ j, µj ≥ 0, µj 6= 0 for some j,

−z =

r
∑

j=1

µjaj , ∀ j, µj ≥ 0, µj 6= 0 for some j.

Thus,
∑r

j=1
(µj + µj)aj = 0, where (µj + µj) ≥ 0 for all j and (µj + µj) 6= 0 for

at least one j, showing that the condition (ii) of part (a) holds.
Conversely, suppose that

∑r

j=1
µjaj = 0 with µj ≥ 0 for all j and µj 6= 0

for some j. Assume without loss of generality that µ1 > 0, so that

−a1 =
∑

j 6=1

µj

µ1
aj ,

with µj/µ1 ≥ 0 for all j, which implies that −a1 ∈ C∗. Since a1 ∈ C∗, −a1 ∈ C∗,
and a1 6= 0, it follows that C∗ contains a line, completing the proof.
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2.25 (Linear System Alternatives)

Let a1, . . . , ar be vectors in ℜn and let b1, . . . br be scalars. Show that exactly
one of the following two conditions holds:

(i) There exists a vector x ∈ ℜn such that

a′
1x ≤ b1, . . . , a

′
rx ≤ br.

(ii) There exists a vector µ ∈ ℜr such that µ ≥ 0 and

µ1a1 + · · · + µrar = 0, µ1b1 + · · · + µrbr < 0.

Note: This result is a special case of Motzkin’s Transposition Theorem, given
with an alternative proof in Section 5.6.

Solution: Assume that there exist x̂ ∈ ℜn and µ ∈ ℜr such that both conditions
(i) and (ii) hold, i.e.,

a′
j x̂ ≤ bj , ∀ j = 1, . . . , r, (2.17)

µ ≥ 0,

r
∑

j=1

µjaj = 0,

r
∑

j=1

µjbj < 0. (2.18)

By premultiplying Eq. (2.17) with µj ≥ 0 and summing the obtained inequalities
over j, we have

r
∑

j=1

µja
′
jx̂ ≤

r
∑

j=1

µjbj .

On the other hand, by using Eq. (2.18), we obtain

r
∑

j=1

µja
′
jx̂ = 0 >

r
∑

j=1

µjbj ,

which is a contradiction. Hence, both conditions (i) and (ii) cannot hold simul-
taneously.

The proof will be complete if we show that conditions (i) and (ii) cannot
fail to hold simultaneously. Assume that condition (i) fails to hold, and consider
the sets given by

P1 = {ξ ∈ ℜr | ξj ≤ 0, j = 1, . . . , r},

P2 =
{

w ∈ ℜr | a′
jx − bj = wj , j = 1, . . . , r, x ∈ ℜn

}

.

Clearly, P1 is a polyhedral set. For the set P2, we have

P2 = {w ∈ ℜr | Ax − b = w, x ∈ ℜn} = R(A) − b,

where A is the matrix with rows a′
j and b is the vector with components bj .

Thus, P2 is an affine set and is therefore polyhedral. Furthermore, because the
condition (i) does not hold, P1 and P2 are disjoint polyhedral sets, and they
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can be strictly separated [Prop. 1.5.3 under condition (3)]. Hence, there exists a
vector µ ∈ ℜr such that

sup
ξ∈P1

µ′ξ < inf
w∈P2

µ′w.

Since each component ξj of ξ ∈ P1 can be any negative scalar, for the preceding
relation to hold, µj must be nonnegative for all j. Furthermore, since 0 ∈ P1, it
follows that

0 < inf
w∈P2

µ′w,

implying that
0 < µ1w1 + · · · + µrwr, ∀ w ∈ P2.

By setting wj = a′
jx − bj for all j, we obtain

µ1b1 + · · · + µrbr < (µ1a1 + · · · + µrar)
′x, ∀ x ∈ ℜn.

Since this relation holds for all x ∈ ℜn, we must have

µ1a1 + · · · + µrar = 0,

implying that
µ1b1 + · · · + µrbr < 0.

Hence, the condition (ii) holds, showing that the conditions (i) and (ii) cannot
fail to hold simultaneously.

2.26 (Integer Programming and Unimodular Matrices)

Integer programming problems are optimization problems, which as part of their
constraints include the requirement that the optimization variables take integer
values, such as 0 or 1. An important method for solving such problems relies on
the solution of a continuous optimization problem, called the relaxed problem,
which is derived from the original by neglecting the integer constraints while
maintaining all the other constraints. If the relaxed problem happens to have
integer components, it will then solve optimally not just the relaxed problem,
but also the original integer programming problem. Thus, polyhedral sets whose
extreme points have integer components are of special significance. We will char-
acterize an important class of such sets.

Let us say that a square matrix with integer components is unimodular if
its determinant is 0, 1, or -1, and let us say that a rectangular matrix with integer
components is totally unimodular if each of its square submatrices is unimodular.
If A is an invertible matrix, by Cramer’s rule, its inverse A−1 has components of
the form

[

A−1
]

ij
=

polynomial in the components of A

determinant of A
.

It follows that if A is an invertible matrix with integer components that is uni-
modular, its inverse has integer components. Furthermore, for any vector b with
integer components, the unique solution A−1b of the system

Ax = b
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has integer components.
Let P be a polyhedral set of the form

P = {x | Ax = b, c ≤ x ≤ d},

where A is an m × n matrix, b is a vector in ℜm, and c and d are vectors in ℜn.
Assume that all the components of A, b, c, and d are integer, and that A is totally
unimodular. Show that all the extreme points of P have integer components.

Solution: Let v be an extreme point of P . Consider the subset of indices

I = {i | ci < vi < di},

and without loss of generality, assume that

I = {1, . . . , m}

for some integer m. Let A be the matrix consisting of the first m columns of
A and let v be the vector consisting of the first m components of v. Note that
each of the last n − m components of v is equal to either the corresponding
component of c or to the corresponding component of d, which are integer. Thus
the extreme point v has integer components if and only if the subvector v has
integer components.

By Prop. 2.1.4, A has linearly independent columns, so v is the unique
solution of the system of equations

Ay = b,

where b is equal to b minus the last n − m columns of A multiplied with the
corresponding components of v (each of which is equal to either the correspond-
ing component of c or the corresponding component of d, so that b has integer
components). Equivalently, there exists an invertible m × m submatrix Ã of A
and a subvector b̃ of b with m components such that

v = (Ã)−1b̃.

Since by hypothesis, A is totally unimodular, the invertible submatrix Ã is uni-
modular, and it follows that v (and hence also the extreme point v) has integer
components.

2.27 (Unimodularity I)

Let A be an n × n invertible matrix with integer entries. Show that A is uni-
modular if and only if the solution of the system Ax = b has integer components
for every vector b ∈ ℜn with integer components. Hint : To prove that A is
unimodular when the given property holds, use the system Ax = ui, where ui is
the ith unit vector, to show that A−1 has integer components, and then use the
equality det(A) · det(A−1) = 1. To prove the converse, use Cramer’s rule.
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Solution: Suppose that the system Ax = b has integer components for every
vector b ∈ ℜn with integer components. Since A is invertible, it follows that the
vector A−1b has integer components for every b ∈ ℜn with integer components.
For i = 1, . . . , n, let ei be the vector with ith component equal to 1 and all other
components equal to 0. Then, for b = ei, the vectors A−1ei, i = 1, . . . , n, have
integer components, implying that the columns of A−1 are vectors with integer
components, so that A−1 has integer entries. Therefore, det(A−1) is integer,
and since det(A) is also integer and det(A) · det(A−1) = 1, it follows that either
det(A) = 1 or det(A) = −1, showing that A is unimodular.

Suppose now that A is unimodular. Take any vector b ∈ ℜn with integer
components, and for each i ∈ {1, . . . , n}, let Ai be the matrix obtained from A
by replacing the ith column of A with b. Then, according to Cramer’s rule, the
components of the solution x̂ of the system Ax = b are given by

x̂i =
det(Ai)

det(A)
, i = 1, . . . , n.

Since each matrix Ai has integer entries, it follows that det(Ai) is integer for all
i = 1, . . . , n. Furthermore, because A is invertible and unimodular, we have either
det(A) = 1 or det(A) = −1, implying that the vector x̂ has integer components.

2.28 (Unimodularity II)

Let A be an m × n matrix.

(a) Show that A is totally unimodular if and only if its transpose A′ is totally
unimodular.

(b) Show that A is totally unimodular if and only if every subset J of {1, . . . , n}
can be partitioned into two subsets J1 and J2 such that

∣

∣

∣

∣

∣

∣

∑

j∈J1

aij −
∑

j∈J2

aij

∣

∣

∣

∣

∣

∣

≤ 1, ∀ i = 1, . . . , m.

Solution: (a) The proof is straightforward from the definition of the totally
unimodular matrix and the fact that B is a submatrix of A if and only if B′ is a
submatrix of A′.

(b) Suppose that A is totally unimodular. Let J be a subset of {1, . . . , n}. Define
z by zj = 1 if j ∈ J , and zj = 0 otherwise. Also let w = Az, ci = di = 1

2
wi if

wi is even, and ci = 1
2
(wi − 1) and di = 1

2
(wi + 1) if wi is odd. Consider the

polyhedral set

P = {x | c ≤ Ax ≤ d, 0 ≤ x ≤ z},

and note that P 6= Ø because 1
2
z ∈ P . Since A is totally unimodular, the

polyhedron P has integer extreme points. Let x̂ ∈ P be one of them. Because
0 ≤ x̂ ≤ z and x̂ has integer components, it follows that x̂j = 0 for j 6∈ J and
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x̂j ∈ {0, 1} for j ∈ J . Therefore, zj − 2x̂j = ±1 for j ∈ J . Define J1 = {j ∈ J |
zj − 2x̂j = 1} and J2 = {j ∈ J | zj − 2x̂j = −1}. We have

∑

j∈J1

aij −
∑

j∈J2

aij =
∑

j∈J

aij(zj − 2x̂j)

=

n
∑

j=1

aij(zj − 2x̂j)

= [Az]i − 2[Ax̂]i

= wi − 2[Ax̂]i,

where [Ax]i denotes the ith component of the vector Ax. If wi is even, then since
ci ≤ [Ax̂]i ≤ di and ci = di = 1

2
wi, it follows that [Ax̂]i = wi, so that

wi − 2[Ax̂]i = 0, when wi is even.

If wi is odd, then since ci ≤ [Ax̂]i ≤ di, ci = 1
2
(wi − 1), and di = 1

2
(wi + 1), it

follows that
1

2
(wi − 1) ≤ [Ax̂]i ≤

1

2
(wi + 1),

implying that
−1 ≤ wi − 2[Ax̂]i ≤ 1.

Because wi − 2[Ax̂]i is integer, we conclude that

wi − 2[Ax̂]i ∈ {−1, 0, 1}, when wi is odd.

Therefore,
∣

∣

∣

∣

∣

∣

∑

j∈J1

aij −
∑

j∈J2

aij

∣

∣

∣

∣

∣

∣

≤ 1, ∀ i = 1, . . . , m. (2.19)

Suppose now that the matrix A is such that any J ⊂ {1, . . . , n} can be
partitioned into two subsets so that Eq. (2.19) holds. We prove that A is totally
unimodular, by showing that each of its square submatrices is unimodular, i.e.,
the determinant of every square submatrix of A is -1, 0, or 1. We use induction
on the size of the square submatrices of A.

To start the induction, note that for J ⊂ {1, . . . , n} with J consisting of a
single element, from Eq. (2.19) we obtain aij ∈ {−1, 0, 1} for all i and j. Assume
now that the determinant of every (k − 1) × (k − 1) submatrix of A is -1, 0, or
1. Let B be a k × k submatrix of A. If det(B) = 0, then we are done, so assume
that B is invertible. Our objective is to prove that |detB| = 1. By Cramer’s

rule and the induction hypothesis, we have B−1 = B∗

det(B)
, where b∗ij ∈ {−1, 0, 1}.

By the definition of B∗, we have Bb∗1 = det(B)e1, where b∗1 is the first column of
B∗ and e1 = (1, 0, . . . 0)′.

Let J = {j | b∗j1 6= 0} and note that J 6= Ø since B is invertible. Let

J1 = {j ∈ J | b∗j1 = 1} and J2 = {j ∈ J | j 6∈ J1}. Then, since [Bb∗1]i = 0 for
i = 2, . . . , k, we have

[Bb∗1]i =

k
∑

j=1

bijb
∗
j1 =

∑

j∈J1

bij −
∑

j∈J2

bij = 0, ∀ i = 2, . . . , k.
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Thus, the cardinality of the set J is even, so that for any partition (J̃1, J̃2) of J ,
it follows that

∑

j∈J̃1
bij −

∑

j∈J̃2
bij is even for all i = 2, . . . , k. By assumption,

there is a partition (J1, J2) of J such that

∣

∣

∣

∣

∣

∣

∑

j∈J1

bij −
∑

j∈J2

bij

∣

∣

∣

∣

∣

∣

≤ 1 ∀ i = 1, . . . , k, (2.20)

implying that
∑

j∈J1

bij −
∑

j∈J2

bij = 0, ∀ i = 2, . . . , k. (2.21)

Consider now the value α =
∣

∣

∣

∑

j∈J1
b1j −

∑

j∈J2
b1j

∣

∣

∣
, for which in view

of Eq. (2.20), we have either α = 0 or α = 1. Define y ∈ ℜk by yi = 1 for
i ∈ J1, yi = −1 for i ∈ J2, and yi = 0 otherwise. Then, we have

∣

∣[By]1
∣

∣ = α
and by Eq. (2.21), [By]i = 0 for all i = 2, . . . , k. If α = 0, then By = 0 and
since B is invertible, it follows that y = 0, implying that J = Ø, which is a
contradiction. Hence, we must have α = 1 so that By = ±e1. Without loss of
generality assume that By = e1 (if By = −e1, we can replace y by −y). Then,
since Bb∗1 = det(B)e1, we see that B

(

b∗1 −det(B)y
)

= 0 and since B is invertible,
we must have b∗1 = det(B)y. Because y and b∗1 are vectors with components -1,
0, or 1, it follows that b∗1 = ±y and

∣

∣det(B)
∣

∣ = 1, completing the induction and
showing that A is totally unimodular.

2.29 (Unimodularity III)

Show that a matrix A is totally unimodular if one of the following holds:

(a) The entries of A are -1, 0, or 1, and there are exactly one 1 and exactly
one -1 in each of its columns.

(b) The entries of A are 0 or 1, and in each of its columns, the entries that are
equal to 1 appear consecutively.

Solution: (a) We show that the determinant of any square submatrix of A is -1,
0, or 1. We prove this by induction on the size of the square submatrices of A.
In particular, the 1× 1 submatrices of A are the entries of A, which are -1, 0, or
1. Suppose that the determinant of each (k − 1) × (k − 1) submatrix of A is -1,
0, or 1, and consider a k × k submatrix B of A. If B has a zero column, then
det(B) = 0 and we are done. If B has a column with a single nonzero component
(1 or -1), then by expanding its determinant along that column and by using the
induction hypothesis, we see that det(B) = 1 or det(B) = −1. Finally, if each
column of B has exactly two nonzero components (one 1 and one -1), the sum of
its rows is zero, so that B is singular and det(B) = 0, completing the proof and
showing that A is totally unimodular.

(b) The proof is based on induction as in part (a). The 1 × 1 submatrices of A
are the entries of A, which are 0 or 1. Suppose now that the determinant of each
(k−1)×(k−1) submatrix of A is -1, 0, or 1, and consider a k×k submatrix B of A.
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Since in each column of A, the entries that are equal to 1 appear consecutively, the
same is true for the matrix B. Take the first column b1 of B. If b1 = 0, then B is
singular and det(B) = 0. If b1 has a single nonzero component, then by expanding
the determinant of B along b1 and by using the induction hypothesis, we see
that det(B) = 1 or det(B) = −1. Finally, let b1 have more than one nonzero
component (its nonzero entries are 1 and appear consecutively). Let l and p be
rows of B such that bi1 = 0 for all i < l and i > p, and bi1 = 1 for all l ≤ i ≤ p.
By multiplying the lth row of B with (-1) and by adding it to the l+1st, l+2nd,
. . ., kth row of B, we obtain a matrix B such that det(B) = det(B) and the first
column b1 of B has a single nonzero component. Furthermore, the determinant
of every square submatrix of B is -1, 0, or 1 (this follows from the fact that the
determinant of a square matrix is unaffected by adding a scalar multiple of a
row of the matrix to some of its other rows, and from the induction hypothesis).
Since b1 has a single nonzero component, by expanding the determinant of B
along b1, it follows that det(B) = 1 or det(B) = −1, implying that det(B) = 1 or
det(B) = −1, completing the induction and showing that A is totally unimodular.

2.30 (Unimodularity IV)

Let A be a matrix with entries -1, 0, or 1, and exactly two nonzero entries in
each of its columns. Show that A is totally unimodular if and only if the rows of
A can be divided into two subsets such that for each column the following hold:
if the two nonzero entries in the column have the same sign, their rows are in
different subsets, and if they have the opposite sign, their rows are in the same
subset.

Solution: If A is totally unimodular, then by Exercise 2.28(a), its transpose A′

is also totally unimodular, and by Exercise 2.28(b), the set I = {1, . . . , m} can
be partitioned into two subsets I1 and I2 such that

∣

∣

∣

∣

∣

∣

∑

i∈I1

aij −
∑

i∈I2

aij

∣

∣

∣

∣

∣

∣

≤ 1, ∀ j = 1, . . . , n.

Since aij ∈ {−1, 0, 1} and exactly two of a1j , . . . , amj are nonzero for each j, it
follows that

∑

i∈I1

aij −
∑

i∈I2

aij = 0, ∀ j = 1, . . . , n.

Take any j ∈ {1, . . . , n}, and let l and p be such that aij = 0 for all i 6= l and
i 6= p, so that in view of the preceding relation and the fact aij ∈ {−1, 0, 1}, we
see that: if alj = −apj , then both l and p are in the same subset (I1 or I2); if
alj = apj , then l and p are not in the same subset.

Suppose now that the rows of A can be divided into two subsets such
that for each column the following property holds: if the two nonzero entries in
the column have the same sign, they are in different subsets, and if they have
the opposite sign, they are in the same subset. By multiplying all the rows in
one of the subsets by −1, we obtain the matrix A with entries aij ∈ {−1, 0, 1},
and exactly one 1 and exactly one -1 in each of its columns. Therefore, by
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Exercise 2.29(a), A is totally unimodular, so that every square submatrix of A
has determinant -1, 0, or 1. Since the determinant of a square submatrix of A
and the determinant of the corresponding submatrix of A differ only in sign, it
follows that every square submatrix of A has determinant -1, 0, or 1, showing
that A is totally unimodular.

2.31 (Elementary Vectors [Roc69])

Given a vector z = (z1, . . . , zn) in ℜn, the support of z is the set of indices
{j | zj 6= 0}. We say that a nonzero vector z of a subspace S of ℜn is elementary
if there is no vector z 6= 0 in S that has smaller support than z, i.e., for all
nonzero z ∈ S, {j | zj 6= 0} is not a strict subset of {j | zj 6= 0}. Show that:

(a) Two elementary vectors with the same support are scalar multiples of each
other.

(b) For every nonzero vector y, there exists an elementary vector with support
contained in the support of y.

(c) (Conformal Realization Theorem) We say that a vector x is in harmony
with a vector z if

xjzj ≥ 0, ∀ j = 1, . . . , n.

Show that every nonzero vector x of a subspace S can be written in the
form

x = z1 + . . . + zm,

where z1, . . . , zm are elementary vectors of S, and each of them is in har-
mony with x and has support contained in the support of x. Note: Among
other subjects, this result finds significant application in network optimiza-
tion algorithms (see Rockafellar [Roc69] and Bertsekas [Ber98]).

Solution: (a) If two elementary vectors z and z had the same support, the vector
z − γz would be nonzero and have smaller support than z and z for a suitable
scalar γ. If z and z are not scalar multiples of each other, then z−γz 6= 0, which
contradicts the definition of an elementary vector.

(b) We note that either y is elementary or else there exists a nonzero vector z
with support strictly contained in the support of y. Repeating this argument for
at most n − 1 times, we must obtain an elementary vector.

(c) We first show that every nonzero vector y ∈ S has the property that there
exists an elementary vector of S that is in harmony with y and has support that
is contained in the support of y.

We show this by induction on the number of nonzero components of y. Let
Vk be the subset of nonzero vectors in S that have k or less nonzero components,
and let k be the smallest k for which Vk is nonempty. Then, by part (b), every
vector y ∈ V

k
must be elementary, so it has the desired property. Assume that all

vectors in Vk have the desired property for some k ≥ k. We let y be a vector in
Vk+1 and we show that it also has the desired property. Let z be an elementary
vector whose support is contained in the support of y. By using the negative of
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z if necessary, we can assume that yjzj > 0 for at least one index j. Then there
exists a largest value of γ, call it γ, such that

yj − γzj ≥ 0, ∀ j with yj > 0,

yj − γzj ≤ 0, ∀ j with yj < 0.

The vector y−γz is in harmony with y and has support that is strictly contained
in the support of y. Thus either y − γz = 0, in which case the elementary
vector z is in harmony with y and has support equal to the support of y, or else
y − γz is nonzero. In the latter case, we have y − γz ∈ Vk, and by the induction
hypothesis, there exists an elementary vector z that is in harmony with y − γz
and has support that is contained in the support of y − γz. The vector z is also
in harmony with y and has support that is contained in the support of y. The
induction is complete.

Consider now the given nonzero vector x ∈ S, and choose any elementary
vector z1 of S that is in harmony with x and has support that is contained in
the support of x (such a vector exists by the property just shown). By using the
negative of z1 if necessary, we can assume that xjz

1
j > 0 for at least one index j.

Let γ be the largest value of γ such that

xj − γz1
j ≥ 0, ∀ j with xj > 0,

xj − γz1
j ≤ 0, ∀ j with xj < 0.

The vector x − z1, where
z1 = γ z1,

is in harmony with x and has support that is strictly contained in the support of
x. There are two cases: (1) x = z1, in which case we are done, or (2) x 6= z1, in
which case we replace x by x−z1 and we repeat the process. Eventually, after m
steps where m ≤ n (since each step reduces the number of nonzero components
by at least one), we will end up with the desired decomposition x = z1 + · · ·+zm.

2.32 (Combinatorial Separation Theorem [Cam68], [Roc69])

Let S be a subspace of ℜn. Consider a set B that is a Cartesian product of n
nonempty intervals, and is such that B ∩ S⊥ = Ø (by an interval, we mean a
convex set of scalars, which may be open, closed, or neither open nor closed.)
Show that there exists an elementary vector z of S (cf. Exercise 2.31) such that

t′z < 0, ∀ t ∈ B,

i.e., a hyperplane that separates B and S⊥, and does not contain any point of B.
Note: There are two points here: (1) The set B need not be closed, as required
for application of the Strict Separation Theorem (cf. Prop. 1.5.3), and (2) the
hyperplane normal can be one of the elementary vectors of S (not just any vector
of S). For application of this result in duality theory for network optimization
and monotropic programming, see Rockafellar [Roc84] and Bertsekas [Ber98].
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Solution: For simplicity, assume that B is the Cartesian product of bounded
open intervals, so that B has the form

B = {t | bj < tj < bj , j = 1, . . . , n},

where bj and bj are some scalars. The proof is easily modified for the case where
B has a different form.

Since B∩S⊥ = Ø, there exists a hyperplane that separates B and S⊥. The
normal of this hyperplane is a nonero vector d ∈ S such that

t′d ≤ 0, ∀ t ∈ B.

Since B is open, this inequality implies that actually

t′d < 0, ∀ t ∈ B.

Equivalently, we have

∑

{j|dj>0}

(bj − ǫ)dj +
∑

{j|dj<0}

(bj + ǫ)dj < 0, (2.22)

for all ǫ > 0 such that bj + ǫ < bj − ǫ. Let

d = z1 + · · · + zm,

be a decomposition of d, where z1, . . . , zm are elementary vectors of S that are
in harmony with x, and have supports that are contained in the support of d [cf.
part (c) of the Exercise 2.31]. Then the condition (2.22) is equivalently written
as

0 >
∑

{j|dj>0}

(bj − ǫ)dj +
∑

{j|dj<0}

(bj + ǫ)dj

=
∑

{j|dj>0}

(bj − ǫ)

(

m
∑

i=1

zi
j

)

+
∑

{j|dj<0}

(bj + ǫ)

(

m
∑

i=1

zi
j

)

=

m
∑

i=1







∑

{j|zi
j
>0}

(bj − ǫ)zi
j +

∑

{j|zi
j
<0}

(bj + ǫ)zi
j






,

where the last equality holds because the vectors zi are in harmony with d and
their supports are contained in the support of d. From the preceding relation,
we see that for at least one elementary vector zi, we must have

0 >
∑

{j|zi
j
>0}

(bj − ǫ)zi
j +

∑

{j|zi
j
<0}

(bj + ǫ)zi
j ,

for all ǫ > 0 that are sufficiently small and are such that bj + ǫ < bj − ǫ, or
equivalently

0 > t′zi, ∀ t ∈ B.
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2.33 (Tucker’s Complementarity Theorem)

(a) Let S be a subspace of ℜn. Show that there exist disjoint index sets I and
I with I ∪ I = {1, . . . , n}, and vectors x ∈ S and y ∈ S⊥ such that

xi > 0, ∀ i ∈ I, xi = 0, ∀ i ∈ I,

yi = 0, ∀ i ∈ I, yi > 0, ∀ i ∈ I.

Furthermore, the index sets I and I with this property are unique. In
addition, we have

xi = 0, ∀ i ∈ I, ∀ x ∈ S with x ≥ 0,

yi = 0, ∀ i ∈ I, ∀ y ∈ S⊥ with y ≥ 0.

Hint : Use a hyperplane separation argument based on Exercise 2.32.

(b) Let A be an m × n matrix and let b be a vector in ℜn. Assume that the
set F = {x | Ax = b, x ≥ 0} is nonempty. Apply part (a) to the subspace

S =
{

(x, w) | Ax − bw = 0, x ∈ ℜn, w ∈ ℜ
}

,

and show that there exist disjoint index sets I and I with I∪I = {1, . . . , n},
and vectors x ∈ F and z ∈ ℜm such that b′z = 0 and

xi > 0, ∀ i ∈ I, xi = 0, ∀ i ∈ I,

yi = 0, ∀ i ∈ I, yi > 0, ∀ i ∈ I,

where y = A′z. Note: A special choice of A and b yields an important
result, which relates optimal primal and dual solutions in linear program-
ming: the Goldman-Tucker Complementarity Theorem [GoT56] (see the
exercises of Chapter 5).

Solution: (a) Fix an index k and consider the following two assertions:

(1) There exists a vector x ∈ S with xi ≥ 0 for all i, and xk > 0.

(2) There exists a vector y ∈ S⊥ with yi ≥ 0 for all i, and yk > 0.

We claim that one and only one of the two assertions holds. Clearly, assertions
(1) and (2) cannot hold simultaneously, since then we would have x′y > 0, while
x ∈ S and y ∈ S⊥. We will show that they cannot fail simultaneously. Indeed, if
(1) does not hold, the Cartesian product B = Πn

i=1Bi of the intervals

Bi =

{

(0,∞) if i = k,
[0,∞) if i 6= k,

does not intersect the subspace S, so by the result of Exercise 2.32, there exists
a vector z of S⊥ such that x′z < 0 for all x ∈ B. For this to hold, we must have
z ∈ B∗ or equivalently z ≤ 0, while by choosing x = (0, . . . , 0, 1, 0, . . . , 0) ∈ B,
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with the 1 in the kth position, the inequality x′z < 0 yields zk < 0. Thus
assertion (2) holds with y = −z. Similarly, we show that if (2) does not hold,
then (1) must hold.

Let now I be the set of indices k such that (1) holds, and for each k ∈ I ,
let x(k) be a vector in S such that x(k) ≥ 0 and xk(k) > 0 (note that we do not
exclude the possibility that one of the sets I and I is empty). Let I be the set of
indices such that (2) holds, and for each k ∈ I , let y(k) be a vector in S⊥ such
that y(k) ≥ 0 and yk(k) > 0. From what has already been shown, I and I are
disjoint, I ∪ I = {1, . . . , n}, and the vectors

x =
∑

k∈I

x(k), y =
∑

k∈I

y(k),

satisfy
xi > 0, ∀ i ∈ I, xi = 0, ∀ i ∈ I,

yi = 0, ∀ i ∈ I, yi > 0, ∀ i ∈ I.

The uniqueness of I and I follows from their construction and the preceding
arguments. In particular, if for some k ∈ I, there existed a vector x ∈ S with
x ≥ 0 and xk > 0, then since for the vector y(k) of S⊥ we have y(k) ≥ 0
and yk(k) > 0, assertions (a) and (b) must hold simultaneously, which is a
contradiction.

The last assertion follows from the fact that for each k, exactly one of the
assertions (1) and (2) holds.

(b) Consider the subspace

S =
{

(x, w) | Ax − bw = 0, x ∈ ℜn, w ∈ ℜ
}

.

Its orthogonal complement is the range of the transpose of the matrix [A − b],
so it has the form

S⊥ =
{

(A′z,−b′z) | z ∈ ℜm
}

.

By applying the result of part (a) to the subspace S, we obtain a partition of the
index set {1, . . . , n + 1} into two subsets. There are two possible cases:

(1) The index n + 1 belongs to the first subset.

(2) The index n + 1 belongs to the second subset.

In case (2), the two subsets are of the form I and I∪{n+1} with I∪I = {1, . . . , n},
and by the last assertion of part (a), we have w = 0 for all (x, w) such that
x ≥ 0, w ≥ 0 and Ax − bw = 0. This, however, contradicts the fact that the
set F = {x | Ax = b, x ≥ 0} is nonempty. Therefore, case (1) holds, i.e., the
index n + 1 belongs to the first index subset. In particular, we have that there
exist disjoint index sets I and I with I ∪ I = {1, . . . , n}, and vectors (x,w) with
Ax − bw = 0, and z ∈ ℜm such that

w > 0, b′z = 0,

xi > 0, ∀ i ∈ I, xi = 0, ∀ i ∈ I,
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yi = 0, ∀ i ∈ I, yi > 0, ∀ i ∈ I,

where y = A′z. By dividing (x, w) with w if needed, we may assume that w = 1
so that Ax − b = 0, and the result follows.

REFERENCES

[Ber98] Bertsekas, D. P., 1998. Network Optimization: Continuous and
Discrete Models, Athena Scientific, Belmont, MA.

[Cam68] Camion, P., 1968. “Modules Unimodulaires,” J. Comb. Theory,
Vol. 4, pp. 301-362.

[GoT56] Goldman, A. J., and Tucker, A. W., 1956. “Theory of Linear
Programming,” in Linear Inequalities and Related Systems, H. W. Kuhn
and A. W. Tucker, eds., Princeton University Press, Princeton, N.J., pp.
53-97.

[Gor1873] Gordan, P., 1873. “Uber die Auflosung Linearer Gleichungen mit
Reelen Coefficienten,” Mathematische Annalen, Vol. 6, pp. 23-28.

[Roc69] Rockafellar, R. T., 1969. “The Elementary Vectors of a Subspace
of RN ,” in Combinatorial Mathematics and its Applications, by Bose, R.
C., and Dowling, T. A., (Eds.), University of North Carolina Press, pp.
104-127.

[Roc84] Rockafellar, R. T., 1984. Network Flows and Monotropic Opti-
mization, Wiley, N. Y.; republished by Athena Scientific, Belmont, MA,
1998.

49


