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CHAPTER 4: EXERCISES AND SOLUTIONS†

4.1 (Augmented Lagrangian Duality for Equality Constraints)

Construct an augmented Lagrangian framework and derive the dual function
similar to the one of Section 4.2.4 for the case of the equality constraints, i.e.
when we have the constraint Ex = d in place of g(x) ≤ 0, where E is an m × n

matrix and d ∈ ℜm.

Solution: The dual function has the form

qc(µ) = inf
x∈X

{

f(x) + µ′(Ex − d) +
c

2
‖Ex− d‖2

}

.

4.2

In the context of Section 4.2.2, let F (x, u) = f1(x) + f2(Ax + u), where A is
an m × n matrix, and f1 : ℜn 7→ (−∞,∞] and f2 : ℜm 7→ (−∞,∞] are closed
convex functions. Show that the dual function is

q(µ) = −f
⋆

1 (A
′
µ)− f

⋆

2 (−µ),

where f⋆

1 and f⋆

2 are the conjugate functions of f1 and f2, respectively. Note:

This is the Fenchel duality framework discussed in Section 5.3.5.

Solution: From Section 4.2.1, the dual function is

q(µ) = −p⋆(−µ),

where p⋆ is the conjugate of the function

p(u) = inf
x∈ℜn

F (x, u).

† This set of exercises will be periodically updated as new exercises are added.

Many of the exercises and solutions given here were developed as part of my

earlier convex optimization book [BNO03] (coauthored with Angelia Nedić and

Asuman Ozdaglar), and are posted on the internet of that book’s web site. The

contribution of my coauthors in the development of these exercises and their

solutions is gratefully acknowledged. Since some of the exercises and/or their

solutions have been modified and also new exercises have been added, all errors

are my sole responsibility.
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By using the change of variables z = Ax + u in the following calculation,
we have

p⋆(−µ) = − sup
u

{

−µ′u− inf
x

{

f1(x) + f2(Ax+ u)
}}

= sup
z,x

{

−µ′(z −Ax) − f1(x)− f2(z)
}

= f⋆
1 (A

′µ) + f⋆
2 (−µ),

where f⋆
1 and f⋆

2 are the conjugate functions of f1 and f2, respectively.
Thus,

q(µ) = −f⋆
1 (A

′µ)− f⋆
2 (−µ).

4.3 (An Example of Lagrangian Duality)

Consider the problem

minimize f(x)

subject to x ∈ X, e
′

ix = di, i = 1, . . . ,m,
(4.1)

where f : ℜn 7→ ℜ is a convex function, X is a nonempty convex set, and ei and
di are given vectors and scalars, respectively. Consider the min common/max
crossing framework where M is the subset of ℜm+1 given by

M =
{

(

e
′

1x− d1, . . . , e
′

mx− dm, f(x)
)

| x ∈ X

}

,

and assume that w∗ < ∞.

(a) Show that w∗ is equal to the optimal value of problem (4.1), and that the
max crossing problem is to maximize q(µ) given by

q(µ) = inf
x∈X

{

f(x) +

m
∑

i=1

µi(e
′

ix− di)

}

.

(b) Show that the corresponding set M is convex.

(c) Show that if X is compact, then q∗ = w∗.

(d) Show that if there exists a vector x ∈ ri(X) such that e′ix = di for all
i = 1, . . . ,m, then q∗ = w∗ and the max crossing problem has an optimal
solution.

Solution: (a) It is easily seen that w∗ is the minimal value of f(x) subject to
x ∈ conv(X) and e′ix = di, i = 1, . . . ,m. The corresponding max crossing
problem is given by

q∗ = sup
µ∈ℜm

q(µ),
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where q(µ) is given by

q(µ) = inf
(u,w)∈M

{w + µ′u} = inf
x∈X

{

f(x) +

m
∑

i=1

µi(e′ix− di)

}

.

(b) Consider the set

M =
{

(

u1, . . . , um, w
)

| there exists x ∈ X such that e′ix−di = ui, ∀ i, f(x) ≤ w
}

.

We show that M is convex. To this end, we consider vectors (u,w) ∈ M

and (ũ, w̃) ∈ M , and we show that their convex combinations lie in M .
The definition of M implies that for some x ∈ X and x̃ ∈ X , we have

f(x) ≤ w, e′ix− di = ui, i = 1, . . . ,m,

f(x̃) ≤ w̃, e′ix̃− di = ũi, i = 1, . . . ,m.

For any α ∈ [0, 1], we multiply these relations with α and 1-α, respectively,
and add. By using the convexity of f , we obtain

f
(

αx+ (1 − α)x̃
)

≤ αf(x) + (1− α)f(x̃) ≤ αw + (1− α)w̃,

e′i
(

αx+ (1− α)x̃
)

− di = αui + (1− α)ũi, i = 1, . . . ,m.

In view of the convexity of X , we have αx+(1−α)x̃ ∈ X , so these equations
imply that the convex combination of (u,w) and (ũ, w̃) belongs to M , thus
proving that M is convex.

(c) We prove this result by showing that all the assumptions of Min Com-
mon/Max Crossing Theorem I are satisfied. By assumption, w∗ is finite.
It follows from part (b) that the the set M is convex. Therefore, we only
need to show that for every sequence

{

(uk, wk)
}

⊂ M with uk → 0, there

holds w∗ ≤ lim infk→∞ wk. Consider a sequence
{

(uk, wk)
}

⊂ M with
uk → 0. Since X is compact and f is convex by assumption (which im-
plies that f is continuous by Prop. 1.4.6), it follows from Prop. 1.1.9(c)
that set M is compact. Hence, the sequence

{

(uk, wk)
}

has a subsequence
that converges to some (0, w) ∈ M . Assume without loss of generality that
{

(uk, wk)
}

converges to (0, w). Since (0, w) ∈ M , we get

w∗ = inf
(0,w)∈M

w ≤ w = lim inf
k→∞

wk,

proving the desired result, and thus showing that q∗ = w∗.

(d) We prove this result by showing that all the assumptions of Min Com-
mon/Max Crossing Theorem II are satisfied. By assumption, w∗ is finite.
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It follows from part (b) that the set M is convex. Therefore, we only need
to show that the set

D =
{

(e′1x− d1, . . . , e
′
mx− dm) | x ∈ X

}

contains the origin in its relative interior. The set D can equivalently be
written as

D = E ·X − d,

where E is a matrix, whose rows are the vectors e′i, i = 1, . . . ,m, and d is
a vector with entries equal to di, i = 1, . . . ,m. By Prop. 1.3.6, it follows
that

ri(D) = E · ri(X)− d.

Hence the assumption that there exists a vector x ∈ ri(X) such that Ex−
d = 0 implies that 0 ∈ ri(D), thus showing that q∗ = w∗ and that the max
crossing problem has an optimal solution.

4.4 (Lagrangian Duality and Compactness of the Constraint Set)

Consider the problem of Exercise 4.3, but assume that f is linear and X is
compact (instead of f and X being convex). Show that q∗ is equal to the minimal
value of f(x) subject to x ∈ conv(X) and e′ix = di, i = 1, . . . ,m. Hint : Show
that

conv(M) =
{

(

e
′

1x− d1, . . . , e
′

mx− dm, f(x)
) ∣

∣ x ∈ conv(X)
}

,

and use Exercise 4.3(c).

Solution: Clearly, the max crossing values corresponding toM and conv(M)
are equal [this is true generically, since closed halfspaces containing M

also contain conv(M)]. The expression for conv(M) in the hint follows
from the linearity of f . Thus, the min common/max crossing framework
for conv(M) corresponds to the problem of minimizing f(x) subject to
x ∈ conv(X) and e′ix = di, i = 1, . . . ,m. Since M is compact, conv(M) is
also compact, and the result follows from Exercise 4.3(c).
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