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CHAPTER 5: EXERCISES AND SOLUTIONS†

5.1 (Extended Representation)

Consider the convex programming problem

minimize f(x)

subject to x ∈ X, g(x) ≤ 0,
(5.1)

of Section 5.3, and assume that the set X is described by equality and inequality
constraints as

X =
{
x | li(x) = 0, i = m+ 1, . . . ,m, gj(x) ≤ 0, j = r + 1, . . . , r

}
.

Then the problem can alternatively be described without an abstract set con-
straint, in terms of all of the constraint functions

li(x) = 0, i = 1, . . . ,m, gj(x) ≤ 0, j = 1, . . . , r.

We call this the extended representation of (P). Show if there is no duality gap
and there exists a dual optimal solution for the extended representation, the same
is true for the original problem (5.1).

Solution: Assume that there exists a dual optimal solution in the extended
representation. Thus there exist nonnegative scalars λ∗1, . . . , λ

∗
m, λ

∗
m+1, . . . , λ

∗
m

and µ∗1, . . . , µ
∗
r , µ
∗
r+1, . . . , µ

∗
r such that

f∗ = inf
x∈<n

{
f(x) +

m∑
i=1

λ∗i hi(x) +

r∑
j=1

µ∗jgj(x)

}
,

from which we have

f∗ ≤ f(x) +

m∑
i=1

λ∗i hi(x) +

r∑
j=1

µ∗jgj(x), ∀ x ∈ <n.

† This set of exercises will be periodically updated as new exercises are added.

Many of the exercises and solutions given here were developed as part of my

earlier convex optimization book [BNO03] (coauthored with Angelia Nedić and

Asuman Ozdaglar), and are posted on the internet of that book’s web site. The

contribution of my coauthors in the development of these exercises and their

solutions is gratefully acknowledged. Since some of the exercises and/or their

solutions have been modified and also new exercises have been added, all errors

are my sole responsibility.
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For any x ∈ X, we have hi(x) = 0 for all i = m+ 1, . . . ,m, and gj(x) ≤ 0 for all
j = r+ 1, . . . , r, so that µ∗jgj(x) ≤ 0 for all j = r+ 1, . . . , r. Therefore, it follows
from the preceding relation that

f∗ ≤ f(x) +

m∑
i=1

λ∗i hi(x) +

r∑
j=1

µ∗jgj(x), ∀ x ∈ X.

Taking the infimum over all x ∈ X, it follows that

f∗ ≤ inf
x∈X

{
f(x) +

m∑
i=1

λ∗i hi(x) +

r∑
j=1

µ∗jgj(x)

}

≤ inf
x∈X, hi(x)=0, i=1,...,m

gj(x)≤0, j=1,...,r

{
f(x) +

m∑
i=1

λ∗i hi(x) +

r∑
j=1

µ∗jgj(x)

}
≤ inf

x∈X, hi(x)=0, i=1,...,m

gj(x)≤0, j=1,...,r

f(x)

=f∗.

Hence, equality holds throughout above, showing that the scalars λ∗1, . . . , λ
∗
m,

µ∗1, . . . , µ
∗
r constitute a dual optimal solution for the original representation.

5.2 (Dual Function for Linear Constraints)

Consider the problem

minimize f(x)

subject to Ax ≤ b, Ex = d,

and the dual function

q(λ, µ) = inf
x∈<n

{
f(x) + λ′(Ex− d) + µ′(Ax− b)

}
.

Show that

q(λ, µ) = −d′λ− b′µ− f?(−E′λ−A′µ),

where f? is the conjugate function of f .

Solution: Evident from the definition of a conjugate convex function

f?(y) = sup
x∈<n

{
y′x− f(x)

}
.
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5.3

Consider the two-dimensional problem

minimize f(x) = e−x1

subject to g(x) ≤ 0, x ∈ X,

where

g(x) =
x2

1

x2
, X =

{
(x1, x2) | x2 > 0

}
.

Show that g is convex over X, calculate the optimal primal and dual values,
and show that there is a duality gap. Verify your finding by considering the
corresponding MC/MC framework.

Solution: The Hessian of g for x ∈ X is given by

∇2g(x) =

 2x2
−2x1
x2
2

−2x1
x2
2

2x21
x3
2

 .

Its determinant is nonnegative over X, so ∇2g(x) is positive semidefinite over X.
Therefore, according to Prop. 1.1.10, g is convex over X.

For the MC/MC framework, we construct the set

M =
{

(g(x), f(x)) | x ∈ X
}
.

For g(x) = 0, we have x1 = 0, f(x) = 1. For g(x) =
x21
x2

= u > 0, we have

x1 = ±
√
ux2.

Therefore, x1 changes from (0,∞), f(x) can take any value in (0, 1), and the set
M in the MC/MC framework consists of the positive orthant and the halfline
{(0, w) |w ≥ 1}.

From the description of M , we can see that f∗ = 1, while from the descrip-
tion of M , we can see that the dual function is

q(µ) =
{

0 if µ ≥ 0,
−∞ if µ < 0.

Therefore, q∗ = 0 and there is a duality gap of f∗ − q∗ = 1. Clearly, Slater’s
condition doesn’t hold for this problem.
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5.4 (Quadratic Programming Duality)

Consider the quadratic program

minimize c′x+ 1
2x
′Qx

subject to x ∈ X, a′jx ≤ bj , j = 1, . . . , r,

where X is a polyhedral set, Q is a symmetric positive semidefinite n×n matrix,
c, a1, . . . , ar are vectors in <n, and b1, . . . , br are scalars, and assume that its
optimal value is finite. Then there exist at least one optimal solution and at least
one dual optimal solution. Hint : Use the extended representation of Exercise
5.1.

Solution: Consider the extended representation of the problem in which the lin-
ear inequalities that represent the polyhedral part are lumped with the remaining
linear inequality constraints (cf. Exercise 5.1). From Prop. 1.4.12, finiteness of
the optimal value implies that there exists a primal optimal solution and from the
analysis of Section 5.3.1, there exists a dual optimal solution. From Exercise 5.1,
it follows that there exists a dual optimal solution for the original representation
of the problem.

5.5 (Sensitivity)

Consider the class of problems

minimize f(x)

subject to x ∈ X, gj(x) ≤ uj , j = 1, . . . , r,

where u = (u1, . . . , ur) is a vector parameterizing the right-hand side of the con-
straints. Given two distinct values ū and ũ of u, let f and f̃ be the corresponding
optimal values, and assume that f and f̃ are finite. Assume further that µ and µ̃
are corresponding dual optimal solutions and that there is no duality gap. Show
that

µ̃′(ũ− ū) ≤ f − f̃ ≤ µ′(ũ− u).

Solution: We have

f = inf
x∈X

{
f(x) + µ′

(
g(x)− u

)}
,

f̃ = inf
x∈X

{
f(x) + µ̃′

(
g(x)− ũ

)}
.

Let q(µ) denote the dual function of the problem corresponding to u:

q(µ) = inf
x∈X

{
f(x) + µ′

(
g(x)− u

)}
.
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We have

f − f̃ = inf
x∈X

{
f(x) + µ′

(
g(x)− u

)}
− inf
x∈X

{
f(x) + µ̃′

(
g(x)− ũ

)}
= inf
x∈X

{
f(x) + µ′

(
g(x)− u

)}
− inf
x∈X

{
f(x) + µ̃′

(
g(x)− u

)}
+ µ̃′(ũ− u)

= q(µ)− q(µ̃) + µ̃′(ũ− u)

≥ µ̃′(ũ− u),

where the last inequality holds because µ maximizes q.
This proves the left-hand side of the desired inequality. Interchanging the

roles of f , u, µ, and f̃ , ũ, µ̃, shows the desired right-hand side.

5.6 (Duality and Zero Sum Games)

Let A be an n×m matrix, and let X and Z be the unit simplices in <n and <m,
respectively:

X =

{
x

∣∣∣ n∑
i=1

xi = 1, xi ≥ 0, i = 1, . . . , n

}
,

Z =

{
z

∣∣∣ m∑
j=1

zj = 1, zj ≥ 0, j = 1, . . . ,m

}
.

Show that the minimax equality

max
z∈Z

min
x∈X

x′Az = min
x∈X

max
z∈Z

x′Az

is a special case of linear programming duality. Hint : For a fixed z, minx∈X x
′Az

is equal to the minimum component of the vector Az, so

max
z∈Z

min
x∈X

x′Az = max
z∈Z

min
{

(Az)1, . . . , (Az)n
}

= max
ξe≤Az, z∈Z

ξ, (5.2)

where e is the unit vector in <n (all components are equal to 1). Similarly,

min
x∈X

max
z∈Z

x′Az = min
ζe≥A′x, x∈X

ζ. (5.3)

Show that the linear programs in the right-hand sides of Eqs. (5.2) and (5.3) are
dual to each other.

Solution: Consider the linear program

min
ζe≥A′x∑n

i=1
xi=1, xi≥0

ζ,
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whose optimal value is equal to minx∈X maxz∈Z x
′Az. Introduce dual variables

z ∈ <m and ξ ∈ <, corresponding to the constraints A′x− ζe ≤ 0 and
∑n

i=1
xi =

1, respectively. The dual function is

q(z, ξ) = inf
xi≥0, i=1,...,n

{
ζ + z′(A′x− ζe) + ξ

(
1−

n∑
i=1

xi

)}

= inf
xi≥0, i=1,...,n

{
ζ

(
1−

m∑
j=1

zj

)
+ x′(Az − ξe) + ξ

}
=
{
ξ if

∑m

j=1
zj = 1, ξe−Az ≤ 0,

−∞ otherwise.

Thus the dual problem, which is to maximize q(z, ξ) subject to z ≥ 0 and ξ ∈ <,
is equivalent to the linear program

max
ξe≤Az, z∈Z

ξ,

whose optimal value is equal to maxz∈Z minx∈X x
′Az.

5.7 (Inconsistent Convex Systems of Inequalities)

Let gj : <n 7→ <, j = 1, . . . , r, be convex functions over the nonempty convex
subset of <n. Show that the system

gj(x) < 0, j = 1, . . . , r,

has no solution within X if and only if there exists a vector µ ∈ <r such that

r∑
j=1

µj = 1, µ ≥ 0,

µ′g(x) ≥ 0, ∀ x ∈ X.

Hint: Consider the convex program

minimize y

subject to x ∈ X, y ∈ <, gj(x) ≤ y, j = 1, . . . , r.

Solution: The dual function for the problem in the hint is

q(µ) = inf
y∈<, x∈X

{
y +

r∑
j=1

µj
(
gj(x)− y

)}

=

{
infx∈X

∑r

j=1
µjgj(x) if

∑r

j=1
µj = 1,

−∞ if
∑r

j=1
µj 6= 1.
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The problem in the hint satisfies the Slater condition, so the dual problem has
an optimal solution µ∗ and there is no duality gap.

Clearly the problem in the hint has an optimal value that is greater or
equal to 0 if and only if the system of inequalities

gj(x) < 0, j = 1, . . . , r,

has no solution within X. Since there is no duality gap, we have

max
µ≥0,

∑r

j=1
µj=1

q(µ) ≥ 0

if and only if the system of inequalities gj(x) < 0, j = 1, . . . , r, has no solution
within X. This is equivalent to the statement we want to prove.

5.8 (Finiteness of the Optimal Dual Value)

Consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where X is a convex set, and f and gj are convex over X. Assume that the
problem has at least one feasible solution. Show that the following are equivalent.

(i) The dual optimal value q∗ = supµ∈<r q(µ) is finite.

(ii) The primal function p is proper.

(iii) The set

M =
{

(u,w) ∈ <r+1 | there is an x ∈ X such that g(x) ≤ u, f(x) ≤ w
}

does not contain a vertical line.

Solution: We note that −q is closed and convex, and that

q(µ) = inf
u∈<r

{
p(u) + µ′u

}
, ∀ µ ∈ <r.

Since q(µ) ≤ p(0) for all µ ∈ <r, given the feasibility of the problem [i.e., p(0) <
∞], we see that q∗ is finite if and only if q is proper. Since q is the conjugate of
p(−u) and p is convex, by the Conjugacy Theorem [Prop. 1.6.1(b)], q is proper
if and only if p is proper. Hence (i) is equivalent to (ii).

We note that the epigraph of p is the closure of M . Hence, given the
feasibility of the problem, (ii) is equivalent to the closure of M not containing a
vertical line. Since M is convex, its closure does not contain a line if and only if
M does not contain a line (since the closure and the relative interior of M have
the same recession cone). Hence (ii) is equivalent to (iii).
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5.9

Show that for the function f(x) = ‖x‖, we have

∂f(x) =

{{
x/‖x‖

}
if x 6= 0,{

g | ‖g‖ ≤ 1
}

if x = 0.

Solution: For x 6= 0, the function f(x) = ‖x‖ is differentiable with ∇f(x) =
x/‖x‖, so that ∂f(x) =

{
∇f(x)

}
=
{
x/‖x‖

}
. Consider now the case x = 0. If a

vector d is a subgradient of f at x = 0, then f(z) ≥ f(0) + d′z for all z, implying
that

‖z‖ ≥ d′z, ∀ z ∈ <n.

By letting z = d in this relation, we obtain ‖d‖ ≤ 1, showing that ∂f(0) ⊂
{
d |

‖d‖ ≤ 1
}

.
On the other hand, for any d ∈ <n with ‖d‖ ≤ 1, we have

d′z ≤ ‖d‖ · ‖z‖ ≤ ‖z‖, ∀ z ∈ <n,

which is equivalent to f(0)+d′z ≤ f(z) for all z, so that d ∈ ∂f(0), and therefore{
d | ‖d‖ ≤ 1

}
⊂ ∂f(0).

5.10

Let f : <n 7→ (−∞,∞] be a proper convex function, and let x and y be vectors
in <n. Show that if gx ∈ ∂f(x) and gy ∈ ∂f(y), then

(gx − gy)′(x− y) ≥ 0.

Note: This is a generalization of a well-known inequality for gradients of a dif-
ferentiable convex function. Hint : Write the subgradient inequalities for x, y, gx
and for x, y, gy, and add.

Solution: Following the hint, we write

f(y) ≥ f(x) + g′x(y − x),

f(x) ≥ f(y) + g′y(x− y).

By adding, we obtain

(gx − gy)′(x− y) ≥ 0.
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5.11

Let f : <n 7→ < be a convex function, and let x and y be given vectors in <n.
Consider the scalar function ϕ : < 7→ < defined by ϕ(t) = f

(
tx+ (1− t)y

)
for all

t ∈ <, and show that

∂ϕ(t) =
{

(x− y)′g
∣∣ g ∈ ∂f(tx+ (1− t)y

)}
, ∀ t ∈ <.

Hint : Apply the chain rule of Prop. 5.4.5.

Solution: We can view the function

ϕ(t) = f
(
tx+ (1− t)y

)
, t ∈ <

as the composition of the form

ϕ(t) = f
(
g(t)
)
, t ∈ <,

where g(t) : < 7→ <n is an affine function given by

g(t) = y + t(x− y), t ∈ <.

By using the Chain Rule (Prop. 5.4.5), where A = (x− y), we obtain

∂ϕ(t) = A′ ∂f
(
g(t)
)
, ∀ t ∈ <,

or equivalently

∂ϕ(t) =
{

(x− y)′d | d ∈ ∂f
(
tx+ (1− t)y

)}
, ∀ t ∈ <.

5.12 (Partial Differentiation)

Consider a proper convex function F of two vectors x ∈ <n and y ∈ <m. For a
fixed (x, y) ∈ dom(F ), let ∂xF (x, y) and ∂yF (x, y) be the subdifferentials of the
functions F (·, y) and F (x, ·) at x and y, respectively.

(a) Show that

∂F (x, y) ⊂ ∂xF (x, y)× ∂yF (x, y),

and give an example showing that the inclusion may be strict in general.

(b) Assume that F has the form

F (x, y) = h1(x) + h2(y) + h(x, y),

where h1 and h2 are proper convex functions, and h is convex, real-valued,
and differentiable. Show that the formula of part (a) holds with equality.
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Solution: (a) We have (gx, gy) ∈ ∂F (x, y) if and only if

F (x, y) ≥ F (x, y) + g′x(x− x) + g′y(y − y), ∀ x ∈ <n, y ∈ <m.

By setting y = y, we obtain that gx ∈ ∂xF (x, y), and by setting x = x, we obtain
that gy ∈ ∂yF (x, y), so that (gx, gy) ∈ ∂xF (x, y)× ∂yF (x, y).

For an example where the inclusion is strict, consider any function whose
subdifferential is not a Cartesian product at some point, such as F (x, y) = |x+y|
at points (x, y) with x+ y = 0.

(b) Since F is the sum of functions of the given form, Prop. 5.4.6 applies and
shows that

∂F (x, y) =
{

(gx, 0) | gx ∈ ∂h1(x)
}

+
{

(0, gy) | gy ∈ ∂h2(y)
}

+
{
∇h(x, y)

}
[the relative interior condition of the proposition is clearly satisfied]. Since

∇h(x, y) =
(
∇xh(x, y),∇yh(x, y)

)
,

∂xF (x, y) = ∂h1(x) +∇xh(x, y),

∂yF (x, y) = ∂h2(y) +∇yh(x, y),

the result follows.

5.13 (Normal Cones of Level Sets)

Let f : <n 7→ (−∞,∞] be a proper convex function, and let x be a vector that
does not achieve a minimum of f , and is such that ∂f(x) 6= Ø.

(a) Show that the normal cone NV (x), where

V =
{
z | f(z) ≤ f(x)

}
,

is the closure of the convex cone generated by ∂f(x).

(b) Show that if x ∈ int
(
dom(f)

)
, then NV (x) is the convex cone generated by

∂f(x).

Solution: It is easy to show that cl(cone(∂f(x))) ⊂ Nv(x), so to prove that
Nv(x) = cl(cone(∂f(x))), we show Nv(x) ⊂ cl(cone(∂f(x))). We will prove this
by contradiction. Suppose the set Nv(x) is strictly larger than cl(cone(∂f(x))).
Since both sets are closed, the polar cone (cl(cone(∂f(x))))∗ is strictly larger
than the polar cone (Nv(x))∗. Thus there exists a pair of directions (y, d1) such
that

y′d1 > 0, y ∈ Nv(x) \ clcone(∂f(x))), d1 ∈ (cl(cone(∂f(x)))∗.

Furthermore, since x is not the minimum of f , we have 0 6∈ ∂f(x), therefore the
set

(cl(cone(∂f(x))))∗ ∩ aff(cone(∂f(x)))
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contains points other than the origin. Hence we can choose a direction d2 such
that

d2 ∈ (cl(cone(∂f(x))))∗ ∩ aff(cone(∂f(x))),

and
y′d > 0, d ∈ (cl(cone(∂f(x))))∗, d 6∈ (aff(cone(∂f(x))))⊥.

where d = d1 + d2. Next, we show that supz∈∂f(x) d
′z < −δ for some positive

δ. Since d ∈ (cl(cone(∂f(x))))∗, it can be seen that supz∈∂f(x) d
′z ≤ 0. To

claim that strict inequality holds, since 0 6∈ ∂f(x) and ∂f(x) is a closed set, and
furthermore, d 6∈ (aff(cone(∂f(x))))⊥, it follows that there exists some δ > 0 such
that

sup
z∈∂f(x)

d′z < −δ.

Finally, since the closure of the directional derivative function f ′(x; ·) is the sup-
port function of ∂f(x), we have

(clf ′)(x; d) = sup
z∈∂f(x)

d′z < −δ.

Therefore, by the definition of the closure of a function, we can choose a direction
d̄ sufficiently close to d such that

f ′(x; d̄) < 0, y′d̄ > 0,

where the second inequality is possible because y′d > 0. The fact f ′(x; d̄) < 0
implies that along the direction d̄ we can find a point z such that f(z) < f(x).
Since y ∈ Nv, we have y′(z − x) ≤ 0, and this contradicts y′d̄ > 0.

5.14 (Functions of Legendre Type)

A convex function f on <n is said to be of Legendre type if it is real-valued,
everywhere differentiable, and is such that for all g ∈ <n, the minimum of f(x)−
g′x over x ∈ <n is attained at a unique point.

(a) Show that if f is real-valued, everywhere differentiable, and strictly convex,
and f(x) − g′x is coercive as a function of x for each g, it is of Legendre
type. Furthermore, this is true if f is strongly convex [for example it is
twice differentiable, and is such that for some α > 0, ∇2f(x)−αI is positive
definite for all x; see the exercises of Chapter 1, Exercise 1.11].

(b) Show that for 1 < p <∞, the p-th power of the p-norm

f(x) =

n∑
i=1

|xi|p,

and all positive definite quadratic functions are functions of Legendre type.

(c) Give an example of a twice differentiable function, with everywhere positive
definite Hessian, which is not of Legendre type.
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(d) A convex function is of Legendre type if and only if its conjugate is of
Legendre type.

Solution: (a) Consider the function fg(x) = f(x)−g′x, which is real-valued and
convex for any value of g. Since fg(x) is convex and coercive, it has an nonempty
and compact set of minima. Also fg(x) is strictly convex by strict convexity of
f , which implies that it has an unique global minimal point.

To sum up, f(x) is real-valued, everywhere differentiable, and is such that
for all g ∈ <n, the minimum of f(x) − g′x = fg(x) over x ∈ <n is attained at a
unique point. It follows that f is of Legendre type.

If f is strongly convex, the same is true for fg, so by the result of Exercise
1.11, the minimum of fg is attained at a unique point. In the special case where
f is twice differentiable, and is such that for some a > 0, ∇2f(x)− aI is positive
definite for all x ∈ <n. A more direct proof is possible. Then the Hessian matrix
of fg(x) also satisfies ∇2fg(x)−aI > 0 for all x. It follows that lim‖x‖→∞ fg(x) ≥
lim‖x‖→∞(fg(0) +x′(aI)x) =∞, where fg(0) 6= −∞ since f is real-valued. Thus
fg is coercive and it follows that f is of Legendre type.

(b) Consider the p-th power of the p-norm, f(x) = Σni=1‖xi‖p, x = (x1, x2, ..., xn)′,
1 < p <∞. Note that f is real-valued, everywhere differentiable, and we have

∂f/∂xi =

{
0, if xi = 0
pxp−1

i , if xi > 0
−p(−xi)p−1, if xi < 0

.

The function f(x)− g′x is coercive, because

lim
x←∞

Σni=1‖xi‖n − g′x ≥ Σni=1‖xi‖p − ‖g′x‖ =∞.

Using part (a) it follows that f is of Legendre type.
Consider an arbitrary positive definite quadratic function

f(x) = x′Hx+Ax+ b.

The Hessian of f is the positive definite matrix H, so f is strongly convex. Using
part (a) it follows that f is of Legendre type.

(c) Consider the exponential function f(x) = e−x. Then f is twice differentiable,
with everywhere positive definite Hessian. However, f is not of Legendre type,
because the function f(x)− g′x with g > 0 does not have a minimum.

(d) Let f : <n 7→ < be of Legendre type, and let h be its conjugate. Then, for
every g ∈ <n, the minimum of f(x) − g′x over x ∈ <n is attained at a unique
point, denoted x(g). It follows that h(g) is the real number g′x(g) − f

(
x(g)

)
,

and by the equivalence of (i) and (iii) in Prop. 5.4.3, the unique subgradient of h
at g is x(g), so h is everywhere differentiable. By the equivalence of (i) and (ii)
in Prop. 5.4.3, for every x, ∇f(x) is the unique point at which h(g)−x′g attains
its minimum over g ∈ <n. Hence h is of Legendre type.

By interchanging the roles of f and h in the preceding argument, and by
using the Conjugacy Theorem [Prop. 1.6.1(c)], it follows that if h is of Legendre
type, then f is also of Legendre type.
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5.15 (Duality Gap and Nondifferentiabilities)

This exercise shows how a duality gap results in nondifferentiability of the dual
function. Consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

and assume that for all µ ≥ 0, the infimum of the Lagrangian L(x, µ) over X is
attained by at least one xµ ∈ X. Show that if there is a duality gap, then the
dual function q(µ) = infx∈X L(x, µ) is nondifferentiable at every dual optimal
solution. Hint : If q is differentiable at a dual optimal solution µ∗, by the theory
of Section 5.3, we must have ∂q(µ∗)/∂µj ≤ 0 and µ∗j∂q(µ

∗)/∂µj = 0 for all j.
Use optimality conditions for µ∗, together with any vector xµ∗ that minimizes
L(x, µ∗) over X, to show that there is no duality gap.

Solution: To obtain a contradiction, assume that q is differentiable at some dual
optimal solution µ∗ ∈M , where M = {µ ∈ <r | µ ≥ 0}. Then

∇q(µ∗)(µ∗ − µ) ≥ 0, ∀ µ ≥ 0.

If µ∗j = 0, then by letting µ = µ∗+γej for a scalar γ ≥ 0, and the vector ej whose
jth component is 1 and the other components are 0, from the preceding relation
we obtain ∂q(µ∗)/∂µj ≤ 0. Similarly, if µ∗j > 0, then by letting µ = µ∗ + γej
for a sufficiently small scalar γ (small enough so that µ∗ + γej ∈ M), from the
preceding relation we obtain ∂q(µ∗)/∂µj = 0. Hence

∂q(µ∗)/∂µj ≤ 0, ∀ j = 1, . . . , r,

µ∗j∂q(µ
∗)/∂µj = 0, ∀ j = 1, . . . , r.

Since q is differentiable at µ∗, we have that

∇q(µ∗) = g(x∗),

for some vector x∗ ∈ X such that q(µ∗) = L(x∗, µ∗). This and the preceding
two relations imply that x∗ and µ∗ satisfy the necessary and sufficient optimality
conditions for an optimal primal and dual optimal solution pair. It follows that
there is no duality gap, a contradiction.

5.16 (Saddle Points for Quadratic Functions)

Consider a quadratic function φ : X × Z 7→ < of the form

φ(x, z) = x′Qx+ c′x+ z′Mx− z′Rz − d′z,

where Q and R are symmetric positive semidefinite n × n and m ×m matrices,
respectively, M is an n ×m matrix, c ∈ <n, d ∈ <m, and X and Z are subsets
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of <n and <m, respectively. Derive conditions based on Prop. 5.5.6 for φ to have
at least one saddle point.

Solution: We assume that X and Z are closed and convex sets. We will calculate
the recession cone and the lineality space of the functions

t(x) =
{

supz∈Z φ(x, z) if x ∈ X,
∞ if x /∈ X,

and

r(z) =
{− infx∈X φ(x, z) if z ∈ Z,
∞ if z /∈ Z,

and we will then use Prop. 5.5.6.
For each z ∈ Z, the function tz : <n 7→ (−∞,∞] defined by

tz(x) =
{
φ(x, z) if x ∈ X,
∞ if x /∈ X,

is closed and convex in view of the assumption that Q is positive semidefinite
symmetric. Similarly, for each x ∈ X, the function rx : <m 7→ (−∞,∞] defined
by

rx(z) =
{−φ(x, z) if z ∈ Z,
∞ if z /∈ Z,

is closed and convex in view of the assumption that R is a positive semidefinite
symmetric. Hence, Assumption 3.3.1 is satisfied. By the positive semidefiniteness
of Q and the calculations of Example 2.1.1, it can be seen that for each z ∈ Z,
the recession cone of the function tz is given by

Rtz = RX ∩N(Q) ∩ {y | y′(Mz + c) ≤ 0},

where RX is the recession cone of the convex set X and N(Q) is the null space
of the matrix Q. Similarly, for each z ∈ Z, the constancy space of the function
tz is given by

Ltz = LX ∩N(Q) ∩ {y | y′(Mz + c) = 0},

where LX is the lineality space of the set X. By the positive semidefiniteness of
R, for each x ∈ X, it can be seen that the recession cone of the function rx is
given by

Rrx = RZ ∩N(R) ∩ {y | y′(Mx− d) ≥ 0},

where RZ is the recession cone of the convex set Z and N(R) is the null space of
the matrix R. Similarly, for each x ∈ X, the constancy space of the function rx
is given by

Lrx = LZ ∩N(R) ∩ {y | y′(Mx− d) = 0},

where LZ is the lineality space of the set Z.
Since t(x) = supz∈Z tz(x), the recession cone of t is

Rt = ∩z∈ZRtz = RX ∩N(Q) ∩
(
∩z∈Z{y | y′(Mz + c) ≤ 0}

)
,
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or

Rt = RX ∩N(Q) ∩ (MZ + c)∗,

where

(MZ + c)∗ = {y | y′w ≤ 0, ∀ w ∈MZ + c}.

[Note that (MZ + c)∗ is the polar cone of the set MZ + c, as defined in Chapter
4.] Similarly, the lineality space of t is

Lt = LX ∩N(Q) ∩ (MZ)⊥,

where

(MZ + c)⊥ = {y | y′w = 0, ∀ w ∈MZ + c}.

By the same calculations, we also have

Rr = RZ ∩N(R) ∩ (−MX + d)∗, Lr = LZ ∩N(R) ∩ (−MX + d)⊥,

where

(−MX + d)∗ = {y | y′w ≤ 0, ∀ w ∈ −MX + d},

(−MX + d)⊥ = {y | y′w = 0, ∀ w ∈ −MX + d}.

If

Rt = Rr = {0},

then it follows from Prop. 5.5.6(a) that the set of saddle points of φ is nonempty
and compact. (In particular, this condition holds if Q and R are positive definite
matrices, or if X and Z are compact.)

Similarly, if

Rt = Lt, Rr = Lr,

then it follows from Prop. 5.5.6(b) that the set of saddle points of φ is nonempty.

5.17 (Goldman-Tucker Complementarity Theorem [GoT56])

Consider the linear programming problem

minimize c′x

subject to Ax = b, x ≥ 0,
(LP)

where A is an m×n matrix, c is a vector in <n, and b is a vector in <m. Consider
also the dual problem

maximize b′λ

subject to A′λ ≤ c.
(DLP)

Assume that the sets of optimal solutions of LP and DLP, denoted X∗ and Λ∗,
respectively, are nonempty. Show that the index set {1, . . . , n} can be partitioned
into two disjoint subsets I and I with the following two properties:
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(1) For all x∗ ∈ X∗ and λ∗ ∈ Λ∗, we have

x∗i = 0, ∀ i ∈ I, (A′λ∗)i = ci, ∀ i ∈ I,

where x∗i and (A′λ∗)i are the ith components of x∗ and A′λ∗, respectively.

(2) There exist vectors x∗ ∈ X∗ and λ∗ ∈ Λ∗ such that

x∗i > 0, ∀ i ∈ I, x∗i = 0, ∀ i ∈ I,

(A′λ∗)i = ci, ∀ i ∈ I, (A′λ∗)i < ci, ∀ i ∈ I.

Hint : Apply the Tucker Complementarity Theorem (Exercises of Chapter 2).

Solution: Consider the subspace

S =
{

(x,w) | bw −Ax = 0, c′x = wv, x ∈ <n, w ∈ <
}
,

where v is the optimal value of (LP). Its orthogonal complement is the range of
the matrix (

−A′ c
b −v

)
,

so it has the form

S⊥ =
{

(cζ −A′λ, b′λ− vζ) | λ ∈ <m, ζ ∈ <
}
.

Applying the Tucker Complementarity Theorem (Exercises of Chapter 2) for this
choice of S, we obtain a partition of the index set {1, . . . , n+ 1} in two subsets.
There are two possible cases: (1) the index n + 1 belongs to the first subset, or
(2) the index n + 1 belongs to the second subset. Since the vectors (x, 1) such
that x ∈ X∗ satisfy Ax − bw = 0 and c′x = wv, we see that case (1) holds, i.e.,
the index n+1 belongs to the first index subset. In particular, we have that there
exist disjoint index sets I and I such that I ∪ I = {1, . . . , n} and the following
properties hold:

(a) There exist vectors (x,w) ∈ S and (λ, ζ) ∈ <m+1 with the property

xi > 0, ∀ i ∈ I, xi = 0, ∀ i ∈ I, w > 0, (5.4)

ciζ − (A′λ)i = 0, ∀ i ∈ I, ciζ − (A′λ)i > 0, ∀ i ∈ I, b′λ = vζ.
(5.5)

(b) For all (x,w) ∈ S with x ≥ 0, and (λ, ζ) ∈ <m+1 with cζ − A′λ ≥ 0,
vζ − b′λ ≥ 0, we have

xi = 0, ∀ i ∈ I,

ciζ − (A′λ)i = 0, ∀ i ∈ I, b′λ = vζ.

By dividing (x,w) by w, we obtain [cf. Eq. (5.4)] an optimal primal solution
x∗ = x/w such that

x∗i > 0, ∀ i ∈ I, x∗i = 0, ∀ i ∈ I.
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Similarly, if the scalar ζ in Eq. (5.5) is positive, by dividing with ζ in Eq. (5.5),
we obtain an optimal dual solution λ∗ = λ/ζ, which satisfies the desired property

ci − (A′λ∗)i = 0, ∀ i ∈ I, ci − (A′λ∗)i > 0, ∀ i ∈ I.

If the scalar ζ in Eq. (5.5) is nonpositive, we choose any optimal dual solution
λ∗, and we note, using also property (b), that we have

ci−(A′λ∗)i = 0, ∀ i ∈ I, ci−(A′λ∗)i ≥ 0, ∀ i ∈ I, b′λ∗ = v. (5.6)

Consider the vector
λ̃ = (1− ζ)λ∗ + λ.

By multiplying Eq. (5.6) with the positive number 1 − ζ, and by combining it
with Eq. (5.5), we see that

ci − (A′λ̃)i = 0, ∀ i ∈ I, ci − (A′λ̃)i > 0, ∀ i ∈ I, b′λ̃ = v.

Thus, λ̃ is an optimal dual solution that satisfies the desired property.
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