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CHAPTER 2: SOLUTION MANUAL

2.1

Let f : <n 7→ < be a given function.

(a) Consider a vector x∗ such that f is convex over a sphere centered at x∗.
Show that x∗ is a local minimum of f if and only if it is a local minimum
of f along every line passing through x∗ [i.e., for all d ∈ <n, the function
g : < 7→ <, defined by g(α) = f(x∗+αd), has α∗ = 0 as its local minimum].

(b) Assume that f is not convex. Show that a vector x∗ need not be a local
minimum of f if it is a local minimum of f along every line passing through
x∗. Hint : Use the function f : <2 7→ < given by

f(x1, x2) = (x2 − px2
1)(x2 − qx2

1),

where p and q are scalars with 0 < p < q, and x∗ = (0, 0). Show that
f(y,my2) < 0 for y 6= 0 and m satisfying p < m < q, while f(0, 0) = 0.

Solution: (a) If x∗ is a local minimum of f , evidently it is also a local minimum
of f along any line passing through x∗.

Conversely, let x∗ be a local minimum of f along any line passing through
x∗. Assume, to arrive at a contradiction, that x∗ is not a local minimum of f
and that we have f(x) < f(x∗) for some x in the sphere centered at x∗ within
which f is assumed convex. Then, by convexity, for all α ∈ (0, 1),

f
(
αx∗ + (1− α)x

)
≤ αf(x∗) + (1− α)f(x) < f(x∗),

so f decreases monotonically along the line segment connecting x∗ and x. This
contradicts the hypothesis that x∗ is a local minimum of f along any line passing
through x∗.

(b) Consider the function f(x1, x2) = (x2 − px2
1)(x2 − qx2

1), where 0 < p < q and
let x∗ = (0, 0).

We first show that g(α) = f(x∗+αd) is minimized at α = 0 for all d ∈ <2.
We have

g(α) = f(x∗ + αd) = (αd2 − pα2d2
1)(αd2 − qα2d2

1) = α2(d2 − pαd2
1)(d2 − qαd2

1).

Also,

g′(α) = 2α(d2−pαd2
1)(d2− qαd2

1) +α2(−pd2
1)(d2− qαd2

1) +α2(d2−pαd2
1)(−qd2

1).
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Thus g′(0) = 0. Furthermore,

g′′(α) = 2(d2 − pαd2
1)(d2 − qαd2

1) + 2α(−pd2
1)(d2 − qαd2

1)

+ 2α(d2 − pαd2
1)(−qd2

1) + 2α(−pd2
1)(d2 − qαd2

1) + α2(−pd2
1)(−qd2

1)

+ 2α(d2 − pαd2
1)(−qd2

1) + α2(−pd2
1)(−qd2

1).

Thus g′′(0) = 2d2
2, which is greater than 0 if d2 6= 0. If d2 = 0, g(α) = pqα4d4

1,
which is clearly minimized at α = 0. Therefore, (0, 0) is a local minimum of f
along every line that passes through (0, 0).

Let’s now show that if p < m < q, f(y,my2) < 0 if y 6= 0 and that
f(y,my2) = 0 otherwise. Consider a point of the form (y,my2). We have
f(y,my2) = y4(m − p)(m − q). Clearly, f(y,my2) < 0 if and only if p < m < q
and y 6= 0. In any ε−neighborhood of (0, 0), there exists a y 6= 0 such that for
some m ∈ (p, q), (y,my2) also belongs to the neighborhood. Since f(0, 0) = 0,
we see that (0, 0) is not a local minimum.

2.2 (Lipschitz Continuity of Convex Functions)

Let f : <n 7→ < be a convex function and X be a bounded set in <n. Show that
f is Lipschitz continuous over X, i.e., there exists a positive scalar L such that∣∣f(x)− f(y)

∣∣ ≤ L‖x− y‖, ∀ x, y ∈ X.

Solution: Let ε be a positive scalar and let Cε be the set given by

Cε =
{
z | ‖z − x‖ ≤ ε, for some x ∈ cl(X)

}
.

We claim that the set Cε is compact. Indeed, since X is bounded, so is its closure,
which implies that ‖z‖ ≤ maxx∈cl(X) ‖x‖ + ε for all z ∈ Cε, showing that Cε is
bounded. To show the closedness of Cε, let {zk} be a sequence in Cε converging
to some z. By the definition of Cε, there is a corresponding sequence {xk} in
cl(X) such that

‖zk − xk‖ ≤ ε, ∀ k. (2.1)

Because cl(X) is compact, {xk} has a subsequence converging to some x ∈ cl(X).
Without loss of generality, we may assume that {xk} converges to x ∈ cl(X). By
taking the limit in Eq. (2.1) as k → ∞, we obtain ‖z − x‖ ≤ ε with x ∈ cl(X),
showing that z ∈ Cε. Hence, Cε is closed.

We now show that f has the Lipschitz property over X. Let x and y be
two distinct points in X. Then, by the definition of Cε, the point

z = y +
ε

‖y − x‖ (y − x)

is in Cε. Thus

y =
‖y − x‖
‖y − x‖+ ε

z +
ε

‖y − x‖+ ε
x,
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showing that y is a convex combination of z ∈ Cε and x ∈ Cε. By convexity of
f , we have

f(y) ≤ ‖y − x‖
‖y − x‖+ ε

f(z) +
ε

‖y − x‖+ ε
f(x),

implying that

f(y)− f(x) ≤ ‖y − x‖
‖y − x‖+ ε

(
f(z)− f(x)

)
≤ ‖y − x‖

ε

(
max
u∈Cε

f(u)− min
v∈Cε

f(v)

)
,

where in the last inequality we use Weierstrass’ theorem (f is continuous over
<n by Prop. 1.4.6 and Cε is compact). By switching the roles of x and y, we
similarly obtain

f(x)− f(y) ≤ ‖x− y‖
ε

(
max
u∈Cε

f(u)− min
v∈Cε

f(v)

)
,

which combined with the preceding relation yields
∣∣f(x) − f(y)

∣∣ ≤ L‖x − y‖,
where L =

(
maxu∈Cε f(u)−minv∈Cε f(v)

)
/ε.

2.3 (Exact Penalty Functions)

Let f : Y 7→ < be a function defined on a subset Y of <n. Assume that f is
Lipschitz continuous with constant L, i.e.,∣∣f(x)− f(y)

∣∣ ≤ L‖x− y‖, ∀ x, y ∈ Y.

Let also X be a nonempty closed subset of Y , and c be a scalar with c > L.

(a) Show that if x∗ minimizes f over X, then x∗ minimizes

Fc(x) = f(x) + c inf
y∈X
‖y − x‖

over Y .

(b) Show that if x∗ minimizes Fc(x) over Y , then x∗ ∈ X, so that x∗ minimizes
f over X.

Solution: We note that by Weierstrass’ Theorem, the minimum of ‖y− x‖ over
y ∈ X is attained, so we can write miny∈X ‖y − x‖ in place of infy∈X ‖y − x‖.

(a) By assumption, x∗ minimizes f over X, so that x∗ ∈ X, and we have for all
c > L, y ∈ X, and x ∈ Y ,

Fc(x
∗) = f(x∗) ≤ f(y) ≤ f(x) + L‖y − x‖ ≤ f(x) + c‖y − x‖,

where we use the Lipschitz continuity of f to get the second inequality. Taking
the minimum over all y ∈ X, we obtain

Fc(x
∗) ≤ f(x) + cmin

y∈X
‖y − x‖ = Fc(x), ∀ x ∈ Y.
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Hence, x∗ minimizes Fc(x) over Y for all c > L.

(b) It will suffice to show that x∗ ∈ X. Suppose, to arrive at a contradiction,
that x∗ minimizes Fc(x) over Y , but x∗ /∈ X.

We have that Fc(x
∗) = f(x∗) + cminy∈X ‖y − x∗‖. Let x̃ ∈ X be a point

where the minimum of ‖y − x‖ over y ∈ X is attained. Then x̃ 6= x∗, and we
have

Fc(x
∗)= f(x∗) + c‖x̃− x∗‖

> f(x∗) + L‖x̃− x∗‖

≥ f(x̃)

= Fc(x̃),

which contradicts the fact that x∗ minimizes Fc(x) over Y . (Here, the first
inequality follows from c > L and x̃ 6= x∗, and the second inequality follows from
the Lipschitz continuity of f .)

2.4 (Ekeland’s Variational Principle [Eke74])

This exercise shows how ε-optimal solutions of optimization problems can be
approximated by (exactly) optimal solutions of some other slightly perturbed
problems. Let f : <n 7→ (−∞,∞] be a closed proper function, and let x ∈ <n be
a vector such that

f(x) ≤ inf
x∈<n

f(x) + ε,

where ε > 0. Then, for any δ > 0, there exists a vector x̃ ∈ <n such that

‖x− x̃‖ ≤ ε

δ
, f(x̃) ≤ f(x),

and x̃ is the unique optimal solution of the perturbed problem of minimizing
f(x) + δ‖x− x̃‖ over <n.

Solution: For some δ > 0, define the function F : <n 7→ (−∞,∞] by

F (x) = f(x) + δ‖x− x‖.

The function F is closed in view of the assumption that f is closed. Hence, by
Prop. 1.2.2, it follows that all the level sets of F are closed. The level sets are
also bounded, since for all γ > f∗, we have{

x | F (x) ≤ γ
}
⊂
{
x | f∗ + δ‖x− x‖ ≤ γ

}
= B

(
x,
γ − f∗

δ

)
, (2.2)

where B
(
x, (γ − f∗)/δ

)
denotes the closed ball centered at x with radius (γ −

f∗)/δ. Hence, it follows by Weierstrass’ Theorem that F attains a minimum over
<n, i.e., the set arg minx∈<n F (x) is nonempty and compact.

Consider now minimizing f over the set arg minx∈<n F (x). Since f is closed
by assumption, we conclude by using Weierstrass’ Theorem that f attains a
minimum at some x̃ over the set arg minx∈<n F (x). Hence, we have

f(x̃) ≤ f(x), ∀ x ∈ arg min
x∈<n

F (x). (2.3)
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Since x̃ ∈ arg minx∈<n F (x), it follows that F (x̃) ≤ F (x), for all x ∈ <n, and

F (x̃) < F (x), ∀ x /∈ arg min
x∈<n

F (x),

which by using the triangle inequality implies that

f(x̃)< f(x) + δ‖x− x‖ − δ‖x̃− x‖

≤ f(x) + δ‖x− x̃‖, ∀ x /∈ arg min
x∈<n

F (x).
(2.4)

Using Eqs. (2.3) and (2.4), we see that

f(x̃) < f(x) + δ‖x− x̃‖, ∀ x 6= x̃,

thereby implying that x̃ is the unique optimal solution of the problem of mini-
mizing f(x) + δ‖x− x̃‖ over <n.

Moreover, since F (x̃) ≤ F (x) for all x ∈ <n, we have F (x̃) ≤ F (x), which
implies that

f(x̃) ≤ f(x)− δ‖x̃− x‖ ≤ f(x),

and also

F (x̃) ≤ F (x) = f(x) ≤ f∗ + ε.

Using Eq. (2.2), it follows that x̃ ∈ B(x, ε/δ), proving the desired result.

2.5 (Approximate Minima of Convex Functions)

Let X be a closed convex subset of <n, and let f : <n 7→ (−∞,∞] be a closed
convex function such that X ∩ dom(f) 6= Ø. Assume that f and X have no
common nonzero direction of recession. Let X∗ be the set of global minima
of f over X (which is nonempty and compact by Prop. 2.3.2), and let f∗ =
infx∈X f(x). Show that:

(a) For every ε > 0 there exists a δ > 0 such that every vector x ∈ X with
f(x) ≤ f∗ + δ satisfies minx∗∈X∗ ‖x− x∗‖ ≤ ε.

(b) If f is real-valued, for every δ > 0 there exists a ε > 0 such that every
vector x ∈ X with minx∗∈X∗ ‖x− x∗‖ ≤ ε satisfies f(x) ≤ f∗ + δ.

(c) Every sequence {xk} ⊂ X satisfying f(xk) → f∗ is bounded and all its
limit points belong to X∗.

Solution: (a) Let ε > 0 be given. Assume, to arrive at a contradiction, that for
any sequence {δk} with δk ↓ 0, there exists a sequence {xk} ∈ X such that for
all k

f∗ ≤ f(xk) ≤ f∗ + δk, min
x∗∈X∗

‖xk − x∗‖ ≥ ε.

It follows that, for all k, xk belongs to the set
{
x ∈ X | f(x) ≤ f∗ + δ0

}
, which

is compact since f and X are closed and have no common nonzero direction of
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recession. Therefore, the sequence {xk} has a limit point x ∈ X, which using
also the lower semicontinuity of f , satisfies

f(x) ≤ lim inf
k→∞

f(xk) = f∗, ‖x− x∗‖ ≥ ε, ∀ x∗ ∈ X∗,

a contradiction.

(b) Let δ > 0 be given. Assume, to arrive at a contradiction, that there exist
sequences {xk} ⊂ X, {x∗k} ⊂ X∗, and {εk} with εk ↓ 0 such that

f(xk) > f∗ + δ, ‖xk − x∗k‖ ≤ εk, ∀ k = 0, 1, . . .

(here x∗k is the projection of xk on X∗). Since X∗ is compact, there is a
subsequence {x∗k}K that converges to some x∗ ∈ X∗. It follows that {xk}K
also converges to x∗. Since f is real-valued, it is continuous, so we must have
f(xk)→ f(x∗), a contradiction.

(c) Let x be a limit point of the sequence {xk} ⊂ X satisfying f(xk) → f∗. By
lower semicontinuity of f , we have that

f(x) ≤ lim inf
k→∞

f(xk) = f∗.

Because {xk} ⊂ X and X is closed, we have x ∈ X, which in view of the preceding
relation implies that f(x) = f∗, i.e., x ∈ X∗.

2.6 (Directions Along Which a Function is Flat)

The purpose of the exercise is to provide refinements of results relating to set
intersections and existence of optimal solutions (cf. Props. 1.5.6 and 2.3.3). Let
f : <n 7→ (−∞,∞] be a closed proper convex function, and let Ff be the set
of all directions y such that for every x ∈ dom(f), the limit limα→∞ f(x + αy)
exists. We refer to Ff as the set of directions along which f is flat . Note that

Lf ⊂ Ff ⊂ Rf ,

where Lf and Rf are the constancy space and recession cone of f , respectively.
Let X be a subset of <n specified by linear inequality constraints, i.e.,

X = {x | a′jx ≤ bj , j = 1, . . . , r},

where aj are vectors in <n and bj are scalars. Assume that

RX ∩ Ff ⊂ Lf ,

where RX is the recession cone of X.

(a) Let

Ck =
{
x | f(x) ≤ wk

}
,
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where {wk} is a monotonically decreasing and convergent scalar sequence,
and assume that X ∩ Ck 6= Ø for all k. Show that

X ∩
(
∩∞k=0Ck

)
6= Ø.

(b) Show that if infx∈X f(x) is finite, the function f attains a minimum over
the set X.

(c) Show by example that f need not attain a minimum over X if we just
assume (as in Prop. 2.3.3) that X ∩ dom(f) 6= Ø.

Solution: (a) We will follow the line of proof of Prop. 1.5.6, with a modification
to use the condition RX ∩ Ff ⊂ Lf in place of the condition RX ∩Rf ⊂ Lf .

We use induction on the dimension of the set X. Suppose that the dimen-
sion of X is 0. Then X consists of a single point. This point belongs to X ∩ Ck
for all k, and hence belongs to the intersection X ∩

(
∩∞k=0Ck

)
.

Assume that, for some l < n, the intersection X ∩
(
∩∞k=0Ck

)
is nonempty

for every set X of dimension less than or equal to l that is specified by linear
inequality constraints, and is such thatX∩Ck is nonempty for all k and R

X
∩Ff ⊂

Lf . Let X be of the form

X = {x | a′jx ≤ bj , j = 1, . . . , r},

and be such that X ∩ Ck is nonempty for all k, satisfy RX ∩ Ff ⊂ Lf , and have
dimension l+ 1. We will show that the intersection X ∩

(
∩∞k=0Ck

)
is nonempty.

If LX ∩Lf = RX ∩Rf , then by Prop. 1.5.5 applied to the sets X ∩Ck, we
have that X ∩

(
∩∞k=0Ck

)
is nonempty, and we are done. We may thus assume

that LX ∩ Lf 6= RX ∩Rf . Let y ∈ RX ∩Rf with −y /∈ RX ∩Rf .
If y /∈ Ff , then, since y ∈ RX ∩ Rf , for all x ∈ X ∩ dom(f) we have

limα→∞ f(x + αy) = −∞ and x + αy ∈ X for all α ≥ 0. Therefore, x + αy ∈
X ∩

(
∩∞k=0Ck

)
for sufficiently large α, and we are done.

We may thus assume that y ∈ Ff , so that y ∈ RX ∩ Ff and therefore also
y ⊂ Lf , in view of the hypothesis RX ∩Ff ⊂ Lf . Since −y /∈ RX ∩Rf , it follows
that −y /∈ RX . Thus, we have

y ∈ RX , −y 6∈ RX , y ∈ Lf .

From this point onward, the proof that X ∩
(
∩∞k=0Ck

)
6= Ø is nearly identical to

the corresponding part of the proof of Prop. 1.5.6.
Using Prop. 1.5.1(e), it is seen that the recession cone of X is

RX = {y | a′jy ≤ 0, j = 1, . . . , r},

so the fact y ∈ RX implies that

a′jy ≤ 0, ∀ j = 1, . . . , r,

while the fact −y /∈ RX implies that the index set

J = {j | a′jy < 0}
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is nonempty.
Consider a sequence {xk} such that

xk ∈ X ∩ Ck, ∀ k.

We then have
a′jxk ≤ bj , ∀ j = 1, . . . , r, ∀ k.

We may assume that

a′jxk < bj , ∀ j ∈ J, ∀ k;

otherwise we can replace xk with xk + y, which belongs to X ∩Ck (since y ∈ RX
and y ∈ Lf ).

Suppose that for each k, we start at xk and move along −y as far as possible
without leaving the set X, up to the point where we encounter the vector

xk = xk − βky,

where βk is the positive scalar given by

βk = min
j∈J

a′jxk − bj
a′jy

.

Since a′jy = 0 for all j /∈ J , we have a′jxk = a′jxk for all j /∈ J , so the number
of linear inequalities of X that are satisfied by xk as equalities is strictly larger
than the number of those satisfied by xk. Thus, there exists j0 ∈ J such that
a′j0xk = bj0 for all k in an infinite index set K ⊂ {0, 1, . . .}. By reordering the
linear inequalities if necessary, we can assume that j0 = 1, i.e.,

a′1xk = b1, a′1xk < b1, ∀ k ∈ K.

To apply the induction hypothesis, consider the set

X = {x | a′1x = b1, a
′
jx ≤ bj , j = 2, . . . , r},

and note that {xk}K ⊂ X. Since xk = xk − βky with xk ∈ Ck and y ∈ Lf ,
we have xk ∈ Ck for all k, implying that xk ∈ X ∩ Ck for all k ∈ K. Thus,
X ∩ Ck 6= Ø for all k. Because the sets Ck are nested, so are the sets X ∩ Ck.
Furthermore, the recession cone of X is

R
X

= {y | a′1y = 0, a′jy ≤ 0, j = 2, . . . , r},

which is contained in RX , so that

RX ∩ Ff ⊂ RX ∩ Ff ⊂ Lf .

Finally, to show that the dimension of X is smaller than the dimension of X, note
that the set {x | a′1x = b1} contains X, so that a1 is orthogonal to the subspace
SX that is parallel to aff(X). Since a′1y < 0, it follows that y /∈ SX . On the
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other hand, y belongs to SX , the subspace that is parallel to aff(X), since for all
k, we have xk ∈ X and xk − βky ∈ X.

Based on the preceding, we can use the induction hypothesis to assert
that the intersection X ∩

(
∩∞k=0Ck

)
is nonempty. Since X ⊂ X, it follows that

X ∩
(
∩∞k=0Ck

)
is nonempty.

(b) We will use part (a) and the line of proof of Prop. 2.3.3 [condition (2)]. Denote

f∗ = inf
x∈X

f(x),

and assume without loss of generality that f∗ = 0 [otherwise, we replace f(x) by
f(x)−f∗]. We choose a scalar sequence {wk} such that wk ↓ f∗, and we consider
the (nonempty) level sets

Ck =
{
x ∈ <n | f(x) ≤ wk

}
.

The set X∩Ck is nonempty for all k. Furthermore, by assumption, RX∩Ff ⊂ Lf
and X is specified by linear inequality constraints. By part (a), it follows that
X ∩

(
∩∞k=0Ck

)
, the set of minimizers of f over X, is nonempty.

(c) Let X = < and f(x) = x. Then

Ff = Lf =
{
y | y = 0

}
,

so the condition RX ∩Ff ⊂ Lf is satisfied. However, we have infx∈X f(x) = −∞
and f does not attain a minimum over X. Note that Prop. 2.3.3 [under condition
(2)] does not apply here, because the relation RX ∩Rf ⊂ Lf is not satisfied.

2.7 (Bidirectionally Flat Functions)

The purpose of the exercise is to provide refinements of the results involving
convex quadratic functions and relating to set intersections, closedness under lin-
ear transformations, existence of optimal solutions, and closedness under partial
minimization [cf. Props. 1.5.7, 1.5.8(c), 1.5.9, 2.3.3, and 2.3.9].

Let f : <n 7→ (−∞,∞] be a closed proper convex function, and let Ff be
the set of directions along which f is flat (cf. Exercise 2.6). We say that f is
bidirectionally flat if Lf = Ff (i.e., if it is flat in some direction it must be flat,
and hence constant, in the opposite direction). Note that every convex quadratic
function is bidirectionally flat. More generally, a function of the form

f(x) = h(Ax) + c′x,

where A is an m× n matrix and h : <m 7→ (−∞,∞] is a coercive closed proper
convex function, is bidirectionally flat. In this case, we have

Lf = Ff = {y | Ay = 0, c′y = 0}.

Let gj : <n 7→ (−∞,∞], j = 0, 1, . . . , r, be closed proper convex functions
that are bidirectionally flat.
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(a) Assume that each vector x such that g0(x) ≤ 0 belongs to ∩rj=1dom(gj),
and that for some scalar sequence {wk} with wk ↓ 0, the set

Ck =
{
x | g0(x) ≤ wk, gj(x) ≤ 0, j = 1, . . . , r

}
is nonempty for each k. Show that the intersection ∩∞k=0Ck is nonempty.

(b) Assume that each gj , j = 1, . . . , r, is real-valued and the set

C =
{
x | gj(x) ≤ 0, j = 1, . . . , r

}
is nonempty. Show that for any m× n matrix A, the set AC is closed.

(c) Show that a closed proper convex function f : <n 7→ (−∞,∞] that is
bidirectionally flat attains a minimum over the set C of part (b), provided
that infx∈C f(x) is finite.

(d) Let F : <n+m 7→ (−∞,∞] be a function of the form

F (x, z) =

{
F (x, z) if (x, z) ∈ C,
∞ otherwise,

where F is a bidirectionally flat real-valued convex function on <n+m and
C is a subset of <n+m that is specified by r convex inequalities involving
bidirectionally flat real-valued convex functions on <n+m [cf. part (b)].
Consider the function

p(x) = inf
z∈<m

F (x, z).

Assume that there exists a vector x ∈ <n such that −∞ < p(x) <∞. Show
that p is convex, closed, and proper. Furthermore, for each x ∈ dom(p),
the set of points that attain the infimum of F (x, ·) over <m is nonempty.

Solution: (a) As a first step, we will show that either ∩∞k=1Ck 6= Ø or else

there exists j ∈ {1, . . . , r} and y ∈ ∩rj=0Rgj with y /∈ Fg
j
.

Let x be a vector in C0, and for each k ≥ 1, let xk be the projection of x on
Ck. If {xk} is bounded, then since the gj are closed, any limit point x̃ of {xk}
satisfies

gj(x̃) ≤ lim inf
k→∞

gj(xk) ≤ 0,

so x̃ ∈ ∩∞k=1Ck, and ∩∞k=1Ck 6= Ø. If {xk} is unbounded, let y be a limit point
of the sequence

{
(xk − x)/‖xk − x‖ | xk 6= x

}
, and without loss of generality,

assume that
xk − x
‖xk − x‖

→ y.

We claim that

y ∈ ∩rj=0Rgj .
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Indeed, if for some j, we have y /∈ Rgj , then there exists α > 0 such that
gj(x+ αy) > w0. Let

zk = x+ α
xk − x
‖xk − x‖

,

and note that for sufficiently large k, zk lies in the line segment connecting x and
xk, so that g1(zk) ≤ w0. On the other hand, we have zk → x+ αy, so using the
closedness of gj , we must have

gj(x+ αy) ≤ lim inf
k→∞

g1(zk) ≤ w0,

which contradicts the choice of α to satisfy gj(x+ αy) > w0.
If y ∈ ∩rj=0Fgj , since all the gj are bidirectionally flat, we have y ∈ ∩rj=0Lgj .

If the vectors x and xk, k ≥ 1, all lie in the same line [which must be the line
{x+ αy | α ∈ <}], we would have gj(x) = gj(xk) for all k and j. Then it follows
that x and xk all belong to ∩∞k=1Ck. Otherwise, there must be some xk, with
k large enough, and such that, by the Projection Theorem, the vector xk − αy
makes an angle greater than π/2 with xk − x. Since the gj are constant on the
line {xk − αy | α ∈ <}, all vectors on the line belong to Ck, which contradicts
the fact that xk is the projection of x on Ck.

Finally, if y ∈ Rg0 but y /∈ Fg0 , we have g0(x + αy) → −∞ as α → ∞, so
that ∩∞k=1Ck 6= Ø. This completes the proof that

∩∞k=1Ck = Ø ⇒ there exists j ∈ {1, . . . , r} and y ∈ ∩rj=0Rgj with y /∈ Fg
j
.

(1)
We now use induction on r. For r = 0, the preceding proof shows that

∩∞k=1Ck 6= Ø. Assume that ∩∞k=1Ck 6= Ø for all cases where r < r. We will show
that ∩∞k=1Ck 6= Ø for r = r. Assume the contrary. Then, by Eq. (1), there exists
j ∈ {1, . . . , r} and y ∈ ∩rj=0Rgj with y /∈ Fg

j
. Let us consider the sets

Ck =
{
x | g0(x) ≤ wk, gj(x) ≤ 0, j = 1, . . . , r, j 6= j

}
.

Since these sets are nonempty, by the induction hypothesis, ∩∞k=1Ck 6= Ø. For
any x̃ ∈ ∩∞k=1Ck, the vector x̃ + αy belongs to ∩∞k=1Ck for all α > 0, since
y ∈ ∩rj=0Rgj . Since g0(x̃) ≤ 0, we have x̃ ∈ dom(gj), by the hypothesis regarding
the domains of the gj . Since y ∈ ∩rj=0Rgj with y /∈ Fg

j
, it follows that gj(x̃ +

αy) → −∞ as α → ∞. Hence, for sufficiently large α, we have gj(x̃ + αy) ≤ 0,
so x̃+ αy belongs to ∩∞k=1Ck.

Note: To see that the assumption{
x | g0(x) ≤ 0

}
⊂ ∩rj=1dom(gj)

is essential for the result to hold, consider an example in <2. Let

g0(x1, x2) = x1, g1(x1, x2) = φ(x1)− x2,

where the function φ : < 7→ (−∞,∞] is convex, closed, and coercive with
dom(φ) = (0, 1) [for example, φ(t) = − ln t − ln(1 − t) for 0 < t < 1]. Then

12



it can be verified that Ck 6= Ø for every k and sequence {wk} ⊂ (0, 1) with
wk ↓ 0 [take x1 ↓ 0 and x2 ≥ φ(x1)]. On the other hand, we have ∩∞k=0Ck = Ø.
The difficulty here is that the set

{
x | g0(x) ≤ 0

}
, which is equal to

{x | x1 ≤ 0, x2 ∈ <},

is not contained in dom(g1), which is equal to

{x | 0 < x1 < 1, x2 ∈ <}

(in fact the two sets are disjoint).

(b) We will use part (a) and the line of proof of Prop. 1.5.8(c). In particular,
let {yk} be a sequence in AC converging to some y ∈ <n. We will show that
y ∈ AC. We let

g0(x) = ‖Ax− y‖2, wk = ‖yk − y‖2,

and
Ck =

{
x | g0(x) ≤ wk, gj(x) ≤ 0, j = 1, . . . , r

}
.

The functions involved in the definition of Ck are bidirectionally flat, and each Ck
is nonempty by construction. By applying part (a), we see that the intersection
∩∞k=0Ck is nonempty. For any x in this intersection, we have Ax = y (since
yk → y), showing that y ∈ AC.

(c) We will use part (a) and the line of proof of Prop. 2.3.3 [condition (3)]. Denote

f∗ = inf
x∈C

f(x),

and assume without loss of generality that f∗ = 0 [otherwise, we replace f(x) by
f(x)−f∗]. We choose a scalar sequence {wk} such that wk ↓ f∗, and we consider
the (nonempty) sets

Ck =
{
x ∈ <n | f(x) ≤ wk, gj(x) ≤ 0, j = 1, . . . , r

}
.

By part (a), it follows that ∩∞k=0Ck, the set of minimizers of f over C, is nonempty.

(d) Use the line of proof of Prop. 2.3.9.

2.8 (Minimization of Quasiconvex Functions)

We say that a function f : <n 7→ (−∞,∞] is quasiconvex if all its level sets

Vγ =
{
x | f(x) ≤ γ

}
are convex. Let X be a convex subset of <n, let f be a quasiconvex function such
that X ∩ dom(f) 6= Ø, and denote f∗ = infx∈X f(x).

(a) Assume that f is not constant on any line segment of X, i.e., we do not
have f(x) = c for some scalar c and all x in the line segment connecting
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any two distinct points of X. Show that every local minimum of f over X
is also global.

(b) Assume that X is closed, and f is closed and proper. Let Γ be the set of
all γ > f∗, and denote

Rf = ∩γ∈ΓRγ , Lf = ∩γ∈ΓLγ ,

where Rγ and Lγ are the recession cone and the lineality space of Vγ ,
respectively. Use the line of proof of Prop. 2.3.3 and Exercise 2.7 to show
that f attains a minimum over X if any one of the following conditions
holds:

(1) RX ∩Rf = LX ∩ Lf .

(2) RX ∩Rf ⊂ Lf , and the set X is of the form

X = {x | a′jx ≤ bj , j = 1, . . . , r},

where aj are vectors in <n and bj are scalars.

(3) f∗ > −∞, the set X is of the form

X =
{
x | x′Qjx+ a′jx+ bj ≤ 0, j = 1, . . . , r

}
,

where Qj are symmetric positive semidefinite n× n matrices, aj are
vectors in <n, and bj are scalars, and for some γ ∈ Γ and all γ ∈ Γ
with γ ≤ γ, the level sets Vγ are of the form

Vγ =
{
x | x′Qx+ c′x+ b(γ) ≤ 0

}
,

where Q is a symmetric positive semidefinite n × n matrix, c is a
vector in <n, and b(γ) is a monotonically nondecreasing function of
γ, such that the set

{
b(γ) | f∗ < γ ≤ γ

}
is bounded.

(4) f∗ > −∞, the set X is of the form

X =
{
x | gj(x) ≤ 0, j = 1, . . . , r

}
,

and for some γ ∈ Γ and all γ ∈ Γ with γ ≤ γ, the level sets Vγ are of
the form

Vγ =
{
x | g0(x) + b(γ) ≤ 0

}
,

where gj , j = 0, 1, . . . , r, are real-valued, convex, and bidirectionally
flat functions (cf. Exercise 2.7), and b(γ) is a monotonically nonde-
creasing function of γ, such that the set

{
b(γ) | f∗ < γ ≤ γ

}
is

bounded.

Solution: (a) Let x∗ be a local minimum of f over X and assume, to arrive at
a contradiction, that there exists a vector x ∈ X such that f(x) < f(x∗). Then,
x and x∗ belong to the set X ∩ Vγ∗ , where γ∗ = f(x∗). Since this set is convex,
the line segment connecting x∗ and x belongs to the set, implying that

f
(
αx+ (1− α)x∗

)
≤ f(x∗), ∀ α ∈ [0, 1]. (1)

14



For each integer k ≥ 1, there exists an αk ∈ (0, 1/k] such that

f
(
αkx+ (1− αk)x∗

)
< f(x∗), for some αk ∈ (0, 1/k]; (2)

otherwise, in view of Eq. (1), we would have that f(x) is constant for x on the
line segment connecting x∗ and (1/k)x+

(
1− (1/k)

)
x∗. Equation (2) contradicts

the local optimality of x∗.

(b) We consider the level sets

Vγ =
{
x | f(x) ≤ γ

}
for γ > f∗. Let {γk} be a scalar sequence such that γk ↓ f∗. Using the fact
that for two nonempty closed convex sets C and D such that C ⊂ D, we have
RC ⊂ RD, it can be seen that

Rf = ∩γ∈ΓRγ = ∩∞k=1Rγk .

Similarly, Lf can be written as

Lf = ∩γ∈ΓLγ = ∩∞k=1Lγk .

Under each of the conditions (1)-(4), we show that the set of minima of f
over X, which is given by

X∗ = ∩∞k=1(X ∩ Vγk )

is nonempty.
Let condition (1) hold. The sets X ∩ Vγk are nonempty, closed, convex,

and nested. Furthermore, for each k, their recession cone is given by RX ∩ Rγk
and their lineality space is given by LX ∩ Lγk . We have that

∩∞k=1(RX ∩Rγk ) = RX ∩Rf ,

and
∩∞k=1(LX ∩ Lγk ) = LX ∩ Lf ,

while by assumption RX ∩ Rf = LX ∩ Lf . Then it follows by Prop. 1.5.5 that
X∗ is nonempty.

Let condition (2) hold. The sets Vγk are nested and the intersection X∩Vγk
is nonempty for all k. We also have by assumption that RX ∩Rf ⊂ Lf and X is
specified by linear inequalities. By Prop. 1.5.6, it follows that X∗ is nonempty.

Let condition (3) hold. The sets Vγk have the form

Vγk = {x ∈ <n | x′Qx+ c′x+ b(γk) ≤ 0}.

In view of the assumption that b(γ) is bounded for γ ∈ (f∗, γ], we can consider
a subsequence {b(γk)}K that converges to a scalar. Furthermore, X is specified
by convex quadratic inequalities, and the intersection X ∩ Vγk is nonempty for
all k ∈ K. By Prop. 1.5.7, it follows that X∗ is nonempty.

Similarly, under condition (4), the result follows using Exercise 2.7(a).
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2.9 (Partial Minimization)

(a) Let f : <n 7→ [−∞,∞] be a function and consider the subset of <n+1 given
by

Ef =
{

(x,w) | f(x) < w
}
.

Show that Ef is related to the epigraph of f as follows:

Ef ⊂ epi(f) ⊂ cl(Ef ).

Show also that f is convex if and only if Ef is convex.

(b) Let F : <m+n 7→ [−∞,∞] be a function and let

f(x) = inf
z∈<m

F (x, z), x ∈ <n.

Show that Ef is the projection of the set
{

(x, z, w) | F (x, z) < w
}

on the
space of (x,w).

(c) Use parts (a) and (b) to show that convexity of F implies convexity of f
(cf. Prop. 2.3.5).

Solution: (a) The epigraph of f is given by

epi(f) =
{

(x,w) | f(x) ≤ w
}
.

If (x,w) ∈ Ef , then it follows that (x,w) ∈ epi(f), showing that Ef ⊂ epi(f).
Next, assume that (x,w) ∈ epi(f), i.e., f(x) ≤ w. Let {wk} be a sequence with
wk > w for all k , and wk → w. Then we have, f(x) < wk for all k, implying
that (x,wk) ∈ Ef for all k, and that the limit (x,w) ∈ cl(Ef ). Thus we have the
desired relations,

Ef ⊂ epi(f) ⊂ cl(Ef ). (2.5)

We next show that f is convex if and only if Ef is convex. By definition, f
is convex if and only if epi(f) is convex. Assume that epi(f) is convex. Suppose,
to arrive at a contradiction, that Ef is not convex. This implies the existence of
vectors (x1, w1) ∈ Ef , (x2, w2) ∈ Ef , and a scalar α ∈ (0, 1) such that α(x1, w1)+
(1− α)(x2, w2) /∈ Ef , from which we get

f
(
αx1 + (1− α)x2

)
≥ αw1 + (1− α)w2

> αf(x1) + (1− α)f(x2),
(2.6)

where the second inequality follows from the fact that (x1, w1) and (x2, w2) belong
to Ef . We have

(
x1, f(x1)

)
∈ epi(f) and

(
x2, f(x2)

)
∈ epi(f). In view of the

convexity assumption of epi(f), this yields α
(
x1, f(x1)

)
+ (1 − α)

(
x2, f(x2)

)
∈

epi(f) and therefore,

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).
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Combined with Eq. (2.6), the preceding relation yields a contradiction, thus
showing that Ef is convex.

Next assume that Ef is convex. We show that epi(f) is convex. Let
(x1, w1) and (x2, w2) be arbitrary vectors in epi(f). Consider sequences of vectors
(x1, w

k
1 ) and (x2, w

k
2 ) such that wk1 > w1, wk2 > w2, and wk1 → w1, wk2 →

w2. It follows that for each k, (x1, w
k
1 ) and (x2, w

k
2 ) belong to Ef . Since Ef is

convex by assumption, this implies that for each α ∈ [0, 1] and all k, the vector(
αx1 + (1− α)x2, αw

k
1 + (1− α)wk2

)
∈ Ef , i.e., we have for each k

f
(
αx1 + (1− α)x2

)
< αwk1 + (1− α)wk2 .

Taking the limit in the preceding relation, we get

f
(
αx1 + (1− α)x2

)
≤ αw1 + (1− α)w2,

showing that
(
αx1 +(1−α)x2, αw1 +(1−α)w2

)
∈ epi(f). Hence epi(f) is convex.

(b) Let T denote the projection of the set
{

(x, z, w) | F (x, z) < w
}

on the space
of (x,w). We show that Ef = T . Let (x,w) ∈ Ef . By definition, we have

inf
z∈<m

F (x, z) < w,

which implies that there exists some z ∈ <m such that

F (x, z) < w,

showing that (x, z, w) belongs to the set
{

(x, z, w) | F (x, z) < w
}

, and (x,w) ∈ T .
Conversely, let (x,w) ∈ T . This implies that there exists some z such that
F (x, z) < w, from which we get

f(x) = inf
z∈<m

F (x, z) < w,

showing that (x,w) ∈ Ef , and completing the proof.

(c) Let F be a convex function. Using part (a), the convexity of F implies that
the set

{
(x, z, w) | F (x, z) < w

}
is convex. Since the projection mapping is

linear, and hence preserves convexity, we have, using part (b), that the set Ef is
convex, which implies by part (a) that f is convex.

2.10 (Partial Minimization of Nonconvex Functions)

Let f : <n × <m 7→ (−∞,∞] be a closed proper function. Assume that f has
the following property: for all u∗ ∈ <m and γ ∈ <, there exists a neighborhood
N of u∗ such that the set

{
(x, u) | u ∈ N, f(x, u) ≤ γ

}
is bounded, i.e., f(x, u)

is level-bounded in x locally uniformly in u. Let

p(u) = inf
x
f(x, u), P (u) = arg min

x
f(x, u), u ∈ <m.
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(a) Show that the function p is closed and proper. Show also that for each
u ∈ dom(p), the set P (u) is nonempty and compact.

(b) Consider the following weaker assumption: for all u ∈ <m and γ ∈ <,
the set

{
x | f(x, u) ≤ γ

}
is bounded. Show that this assumption is not

sufficient to guarantee the closedness of p.

(c) Let {uk} be a sequence such that uk → u∗ for some u∗ ∈ dom(p), and
assume that p(uk)→ p(u∗) (which holds when p is continuous at u∗). Let
also xk ∈ P (uk) for all k. Show that the sequence {xk} is bounded and all
its limit points lie in P (u∗).

(d) Show that a sufficient condition for p to be continuous at u∗ is the existence
of some x∗ ∈ P (u∗) such that f(x∗, ·) is continuous at u∗.

Solution: (a) For each u ∈ <m, let fu(x) = f(x, u). There are two cases; either
fu ≡ ∞, or fu is lower semicontinuous with bounded level sets. The first case,
which corresponds to p(u) =∞, can’t hold for every u, since f is not identically
equal to ∞. Therefore, dom(p) 6= Ø, and for each u ∈ dom(p), we have by
Weierstrass’ Theorem that p(u) = infx fu(x) is finite [i.e., p(u) > −∞ for all
u ∈ dom(p)] and the set P (u) = arg minx fu(x) is nonempty and compact.

We now show that p is lower semicontinuous. By assumption, for all u ∈
<m and for all α ∈ <, there exists a neighborhood N of u such that the set{

(x, u) | f(x, u) ≤ α
}
∩ (<n × N) is bounded in <n × <m. We can choose a

smaller closed set N containing u such that the set
{

(x, u) | f(x, u) ≤ α
}
∩

(<n×N) is closed (since f is lower semicontinuous) and bounded. In view of the
assumption that fu is lower semicontinuous with bounded level sets, it follows
using Weierstrass’ Theorem that for any scalar α,

p(u) ≤ α if and only if there exists x such that f(x, u) ≤ α.

Hence, the set
{
u | p(u) ≤ α

}
∩ N is the image of the set

{
(x, u) | f(x, u) ≤

α
}
∩ (<n ×N) under the continuous mapping (x, u) 7→ u. Since the image of a

compact set under a continuous mapping is compact [cf. Prop. 1.1.9(d)], we see
that

{
u | p(u) ≤ α

}
∩N is closed.

Thus, each u ∈ <m is contained in a closed set whose intersection with{
u | p(u) ≤ α

}
is closed, so that the set

{
u | p(u) ≤ α

}
itself is closed for all

scalars α. It follows from Prop. 1.2.2 that p is lower semicontinuous.

(b) Consider the following example

f(x, u) =

{
min
{
|x− 1/u|, 1 + |x|

}
if u 6= 0, x ∈ <,

1 + |x| if u = 0, x ∈ <,

where x and u are scalars. This function is continuous in (x, u) and the level sets
are bounded in x for each u, but not locally uniformly in u, i.e., there does not
exists a neighborhood N of u = 0 such that the set

{
(x, u) | u ∈ N, f(x, u) ≤ α

}
is bounded for some α > 0.

For this function, we have

p(u) =
{

0 if u 6= 0,
1 if u = 0.
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Hence, the function p is not lower semicontinuous at 0.

(c) Let {uk} be a sequence such that uk → u∗ for some u∗ ∈ dom(p), and also
p(uk) → p(u∗). Let α be any scalar such that p(u∗) < α. Since p(uk) → p(u∗),
we obtain

f(xk, uk) = p(uk) < α, (2.7)

for all k sufficiently large, where we use the fact that xk ∈ P (uk) for all k. We
take N to be a closed neighborhood of u∗ as in part (a). Since uk → u∗, using Eq.
(2.7), we see that for all k sufficiently large, the pair (xk, uk) lies in the compact
set {

(x, u) | f(x, u) ≤ α
}
∩ (<n ×N).

Hence, the sequence {xk} is bounded, and therefore has a limit point, call it x∗.
It follows that

(x∗, u∗) ∈
{

(x, u) | f(x, u) ≤ α
}
.

Since this is true for arbitrary α > p(u∗), we see that f(x∗, u∗) ≤ p(u∗), which,
by the definition of p(u), implies that x∗ ∈ P (u∗).

(d) By definition, we have p(u) ≤ f(x∗, u) for all u and p(u∗) = f(x∗, u∗). Since
f(x∗, ·) is continuous at u∗, we have for any sequence {uk} converging to u∗

lim sup
k→∞

p(uk) ≤ lim sup
k→∞

f(x∗, uk) = f(x∗, u∗) = p(u∗),

thereby implying that p is upper semicontinuous at u∗. Since p is also lower
semicontinuous at u∗ by part (a), we conclude that p is continuous at u∗.

2.11 (Projection on a Nonconvex Set)

Let C be a nonempty closed subset of <n.

(a) Show that the distance function dC(x) : <n 7→ <, defined by

dC(x) = inf
w∈C
‖w − x‖,

is a continuous function of x.

(b) Show that the projection set PC(x), defined by

PC(x) = arg min
w∈C
‖w − x‖,

is nonempty and compact.

(c) Let {xk} be a sequence that converges to a vector x∗ and let {wk} be a
sequence with wk ∈ PC(xk). Show that the sequence {wk} is bounded and
all its limit points belong to the set PC(x∗).

Solution: We define the function f by

f(w, x) =
{
‖w − x‖ if w ∈ C,
∞ if w /∈ C.
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With this identification, we get

dC(x) = inf
w
f(w, x), PC(x) = arg min

w
f(w, x).

We now show that f(w, x) satisfies the assumptions of Exercise 2.10, so that we
can apply the results of this exercise to this problem.

Since the set C is closed by assumption, it follows that f(w, x) is lower
semicontinuous. Moreover, by Weierstrass’ Theorem, we see that f(w, x) > −∞
for all x and w. Since the set C is nonempty by assumption, we also have that
dom(f) is nonempty. It is also straightforward to see that the function ‖ · ‖,
and therefore the function f , satisfies the locally uniformly level-boundedness
assumption of Exercise 2.10.

(a) Since the function ‖·‖ is lower semicontinuous and the set C is closed, it follows
from Weierstrass’ Theorem that for all x∗ ∈ <n, the infimum in infw f(w, x) is
attained at some w∗, i.e., P (x∗) is nonempty. Hence, we see that for all x∗ ∈ <n,
there exists some w∗ ∈ P (x∗) such that f(w∗, ·) is continuous at x∗, which
follows by continuity of the function ‖ · ‖. Hence, the function f(w, x) satisfies
the sufficiency condition given in Exercise 2.10(d), and it follows that dC(x)
depends continuously on x.

(b) This part follows from part (a) of Exercise 2.10.

(c) This part follows from part (c) of Exercise 2.10.

2.12 (Convergence of Penalty Methods [RoW98])

Let f : <n 7→ (−∞,∞] be a closed proper function, let F : <n 7→ <m be a
continuous function, and let D ⊂ <m be a nonempty closed set. Consider the
problem

minimize f(x)

subject to F (x) ∈ D.

Consider also the following approximation of this problem:

minimize f(x) + θ
(
F (x), c

)
subject to x ∈ <n,

(Pc)

with c ∈ (0,∞), where the function θ : <m × (0,∞) 7→ (−∞,∞] is lower semi-
continuous, monotonically increasing in c for each u ∈ <m, and satisfies

lim
c→∞

θ(u, c) =
{

0 if u ∈ D,
∞ if u /∈ D.

Assume that for some c ∈ (0,∞) sufficiently large, the level sets of the function
f(x) + θ

(
F (x), c

)
are bounded, and consider any sequence of parameter values

ck ≥ c with ck →∞. Show the following:

(a) The sequence of optimal values of the approximate problems (Pck ) con-
verges to the optimal value of the original problem.
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(b) Any sequence {xk}, where xk is an optimal solution of the approximate
problem (Pck ), is bounded and each of its limit points is an optimal solution
of the original problem.

Solution: (a) We set s = 1/c and consider the function g(x, s) : <n × < 7→
(−∞,∞] defined by

g(x, s) = f(x) + θ̃
(
F (x), s

)
,

with the function θ̃ given by

θ̃(u, s) =

{
θ(u, 1/s) if s ∈ (0, s],
δD(u) if s = 0,
∞ if s < 0 or s > s,

where

δD(u) =
{

0 if u ∈ D,
∞ if u /∈ D.

We identify the original problem with that of minimizing g(x, 0) in x ∈ <n, and
the approximate problem for parameter s ∈ (0, s] with that of minimizing g(x, s)
in x ∈ <n where s = 1/c. With the notation introduced in Exercise 2.10, the
optimal value of the original problem is given by p(0) and the optimal value of
the approximate problem is given by p(s). Hence, we have

p(s) = inf
x∈<n

g(x, s).

We now show that, for the function g(x, s), the assumptions of Exercise 2.10 are
satisfied.

We have that g(x, s) > −∞ for all (x, s), since by assumption f(x) > −∞
for all x and θ(u, s) > −∞ for all (u, s). The function θ̃ is such that θ̃(u, s) <∞
at least for one vector (u, s), since the set D is nonempty. Therefore, it follows
that g(x, s) < ∞ for at least one vector (x, s), unless g ≡ ∞, in which case all
the results of this exercise follow trivially.

We now show that the function θ̃ is lower semicontinuous. This is easily
seen at all points where s 6= 0 in view of the assumption that the function θ is
lower semicontinuous on <m × (0,∞). We next consider points where s = 0. We
claim that for any α ∈ <,{

u | θ̃(u, 0) ≤ α
}

=
⋂

s∈(0,s]

{
u | θ̃(u, s) ≤ α

}
. (2.8)

To see this, assume that θ̃(u, 0) ≤ α. Since θ̃(u, s) ↑ θ̃(u, 0) as s ↓ 0, we have
θ̃(u, s) ≤ α for all s ∈ (0, s]. Conversely, assume that θ̃(u, s) ≤ α for all s ∈ (0, s].
By definition of θ̃, this implies that

θ(u, 1/s) ≤ α, ∀ s ∈ (0, s].

Taking the limit as s→ 0 in the preceding relation, we get

lim
s→0

θ(u, 1/s) = δD(u) = θ̃(u, 0) ≤ α,
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thus, proving the relation in (2.8). Note that for all α ∈ < and all s ∈ (0, s], the
set {

u | θ̃(u, s) ≤ α
}

=
{
u | θ(u, 1/s) ≤ α

}
,

is closed by the lower semicontinuity of the function θ. Hence, the relation
in Eq. (2.8) implies that the set

{
u | θ̃(u, 0) ≤ α

}
is closed for all α ∈ <,

thus showing that the function θ̃ is lower semicontinuous everywhere (cf. Prop.
1.2.2). Together with the assumptions that f is lower semicontinuous and F is
continuous, it follows that g is lower semicontinuous.

Finally, we show that g satisfies the locally uniform level boundedness
property given in Exercise 2.10, i.e., for all s∗ ∈ < and for all α ∈ <, there
exists a neighborhood N of s∗ such that the set

{
(x, s) | s ∈ N, g(x, s) ≤ α

}
is

bounded. By assumption, we have that the level sets of the function g(x, s) =
f(x)+ θ̃

(
F (x), 1/s

)
are bounded. The definition of θ̃, together with the fact that

θ̃(u, s) is monotonically increasing as s ↓ 0, implies that g is indeed level-bounded
in x locally uniformly in s.

Therefore, all the assumptions of Exercise 2.10 are satisfied and we get
that the function p is lower semicontinuous in s. Since θ̃(u, s) is monotonically
increasing as s ↓ 0, it follows that p is monotonically nondecreasing as s ↓ 0. This
implies that

p(s)→ p(0), as s ↓ 0.

Defining sk = 1/ck for all k, where {ck} is the given sequence of parameter values,
we get

p(sk)→ p(0),

thus proving that the optimal value of the approximate problem converges to the
optimal value of the original problem.

(b) We have by assumption that sk → 0 with xk ∈ P1/sk
. It follows from part (a)

that p(sk)→ p(0), so Exercise 2.10(c) implies that the sequence {xk} is bounded
and all its limit points are optimal solutions of the original problem.

2.13 (Approximation by Envelope Functions [RoW98])

Let f : <n 7→ (−∞,∞] be a closed proper function. For a scalar c > 0, define
the corresponding envelope function ecf and the proximal mapping Pcf by

ecf(x) = inf
w

{
f(w) +

1

2c
‖w − x‖2

}
,

Pcf(x) = arg min
w

{
f(w) +

1

2c
‖w − x‖2

}
.

Assume that there exists some c > 0 with ecf(x) > −∞ for some x ∈ <n. Let
cf be the supremum of the set of all such c. Show the following:

(a) For every c ∈ (0, cf ), the set Pcf(x) is nonempty and compact, while the
value ecf(x) is finite and depends continuously on (x, c) with

ecf(x) ↑ f(x) for all x, as c ↓ 0.
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(b) Let {wk} be a sequence such that wk ∈ Pckf(xk) for some sequences {xk}
and {ck} such that xk → x∗ and ck → c∗ ∈ (0, cf ). Then {wk} is bounded
and all its limit points belong to the set Pc∗f(x∗).

[Note: The approximation ecf is an underestimate of the function f , i.e., ecf(x) ≤
f(x) for all x ∈ <n. Furthermore, ecf is a real-valued continuous function,
whereas f itself may only be extended real-valued and lower semicontinuous.]

Solution: (a) We fix a c0 ∈ (0, cf ) and consider the function

h(w, x, c) =

{
f(w) + ( 1

2c
)‖w − x‖2 if c ∈ (0, c0],

f(x) if c = 0 and w = x,
∞ otherwise.

We consider the problem of minimizing h(w, x, c) in w. With this identification
and using the notation introduced in Exercise 2.10, for some c ∈ (0, c0), we obtain

ecf(x) = p(x, c) = inf
w
h(w, x, c),

and
Pcf(x) = P (x, c) = arg min

w
h(w, x, c).

We now show that, for the function h(w, x, c), the assumptions given in Exercise
2.10 are satisfied.

We have that h(w, x, c) > −∞ for all (w, x, c), since by assumption f(x) >
−∞ for all x ∈ <n. Furthermore, h(w, x, c) <∞ for at least one vector (w, x, c),
since by assumption f(x) <∞ for at least one vector x ∈ X.

We next show that the function h is lower semicontinuous in (w, x, c). This
is easily seen at all points where c ∈ (0, c0] in view of the assumption that f is
lower semicontinuous and the function ‖ · ‖2 is lower semicontinuous. We now
consider points where c = 0 and w 6= x. Let

{
(wk, xk, ck)

}
be a sequence that

converges to some (w, x, 0) with w 6= x. We can assume without loss of generality
that wk 6= xk for all k. Note that for some k, we have

h(wk, xk, ck) =

{
∞ if ck = 0,
f(wk) + ( 1

2ck
)‖wk − xk‖2 if ck > 0.

Taking the limit as k →∞, we have

lim
k→∞

h(wk, xk, ck) =∞ ≥ h(w, x, 0),

since w 6= x by assumption. This shows that h is lower semicontinuous at points
where c = 0 and w 6= x. We finally consider points where c = 0 and w = x. At
these points, we have h(w, x, c) = f(x). Let

{
(wk, xk, ck)

}
be a sequence that

converges to some (w, x, 0) with w = x. Considering all possibilities, we see that
the limit inferior of the sequence

{
h(wk, xk, ck)

}
cannot be less than f(x), thus

showing that h is also lower semicontinuous at points where c = 0 and w = x.
Finally, we show that h satisfies the locally uniform level-boundedness prop-

erty given in Exercise 2.10, i.e., for all (x∗, c∗) and for all α ∈ <, there exists a
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neighborhood N of (x∗, c∗) such that the set
{

(w, x, c) | (x, c) ∈ N,h(w, x, c) ≤
α
}

is bounded. Assume, to arrive at a contradiction, that there exists a sequence{
(wk, xk, ck)

}
such that

h(wk, xk, ck) ≤ α <∞, (2.9)

for some scalar α, with (xk, ck)→ (x∗, c∗), and ‖wk‖ → ∞. Then, for sufficiently
large k, we have wk 6= xk, which in view of Eq. (2.9) and the definition of the
function h, implies that ck ∈ (0, c0] and

f(wk) +
1

2ck
‖wk − xk‖2 ≤ α,

for all sufficiently large k. In particular, since ck ≤ c0, it follows from the pre-
ceding relation that

f(wk) +
1

2c0
‖wk − xk‖2 ≤ α. (2.10)

The choice of c0 ensures, through the definition of cf , the existence of some
c1 > c0, some x ∈ <n, and some scalar β such that

f(w) ≥ − 1

2c1
‖w − x‖2 + β, ∀ w.

Together with Eq. (2.10), this implies that

− 1

2c1
‖wk − x‖2 +

1

2c0
‖wk − xk‖2 ≤ α− β,

for all sufficiently large k. Dividing this relation by ‖wk‖2 and taking the limit
as k →∞, we get

− 1

2c1
+

1

2c0
≤ 0,

from which it follows that c1 ≤ c0. This is a contradiction by our choice of c1.
Hence, the function h(w, x, c) satisfies all the assumptions of Exercise 2.10.

By assumption, we have that f(x) < ∞ for some x ∈ <n. Using the
definition of ecf(x), this implies that

ecf(x)= inf
w

{
f(w) +

1

2c
‖w − x‖2

}
≤ f(x) +

1

2c
‖x− x‖2 <∞, ∀ x ∈ <n,

where the first inequality is obtained by setting w = x in f(w) + 1
2c
‖w − x‖2.

Together with Exercise 2.10(a), this shows that for every c ∈ (0, c0) and all
x ∈ <n, the function ecf(x) is finite, and the set Pcf(x) is nonempty and compact.
Furthermore, it can be seen from the definition of h(w, x, c), that for all c ∈ (0, c0),
h(w, x, c) is continuous in (x, c). Therefore, it follows from Exercise 2.10(d) that
for all c ∈ (0, c0), ecf(x) is continuous in (x, c). In particular, since ecf(x) is a
monotonically decreasing function of c, it follows that

ecf(x) = p(x, c) ↑ p(x, 0) = f(x), ∀ x as c ↓ 0.

This concludes the proof for part (a).
(b) Directly follows from Exercise 2.10(c).
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2.14 (Envelopes and Proximal Mappings under Convexity [RoW98])

Let f : <n 7→ (−∞,∞] be a closed proper convex function. For c > 0, consider
the envelope function ecf and the proximal mapping Pcf (cf. Exercise 2.13).
Show the following:

(a) The supremum of the set of all c > 0 such that ecf(x) > −∞ for some
x ∈ <n, is ∞.

(b) The proximal mapping Pcf is single-valued and is continuous in the sense
that Pcf(x)→ Pc∗f(x∗) whenever (x, c)→ (x∗, c∗) with c∗ > 0.

(c) The envelope function ecf is convex and smooth, and its gradient is given
by

∇ecf(x) =
1

c

(
x− Pcf(x)

)
.

Note: The envelope function ecf is smooth, regardless of whether f is nonsmooth.

Solution: We consider the function gc defined by

gc(x,w) = f(w) +
1

2c
‖w − x‖2.

In view of the assumption that f is lower semicontinuous, it follows that gc(x,w)
is lower semicontinuous. We also have that gc(x,w) > −∞ for all (x,w) and
gc(x,w) < ∞ for at least one vector (x,w). Moreover, since f(x) is convex by
assumption, gc(x,w) is convex in (x,w), even strictly convex in w.

Note that by definition, we have

ecf(x) = inf
w
gc(x,w),

Pcf(x) = arg min
w
gc(x,w).

(a) In order to show that cf is ∞, it suffices to show that ecf(0) > −∞ for all
c > 0. This will follow from Weierstrass’ Theorem, once we show the boundedness
of the level sets of gc(0, ·). Assume the contrary, i.e., there exists some α ∈ <
and a sequence {xk} such that ‖xk‖ → ∞ and

gc(0, xk) = f(xk) +
1

2c
‖xk‖2 ≤ α, ∀ k. (2.11)

Assume without loss of generality that ‖xk‖ > 1 for all k. We fix an x0 with
f(x0) <∞. We define

τk =
1

‖xk‖
∈ (0, 1),

and
xk = (1− τk)x0 + τkxk.

Since ‖xk‖ → ∞, it follows that τk → 0. Using Eq. (2.11) and the convexity of
f , we obtain

f(xk)≤ (1− τk)f(x0) + τkf(xk)

≤ (1− τk)f(x0) + τkα−
τk
2c
‖xk‖2.
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Taking the limit as k → ∞ in the above equation, we see that f(xk) → −∞. It
follows from the definitions of τk and xk that

‖xk‖ ≤ ‖1− τk‖‖x0‖+ ‖τk‖‖xk‖

≤ ‖x0‖+ 1.

Therefore, the sequence {xk} is bounded. Since f is lower semicontinuous, Weier-
strass’ Theorem suggests that f is bounded from below on every bounded subset
of <n. Since the sequence {xk} is bounded, this implies that the sequence f(xk) is
bounded from below, which contradicts the fact that f(xk)→ −∞. This proves
that the level sets of the function gc(0, ·) are bounded. Therefore, using Weier-
strass’ Theorem, we have that the infimum in ecf(0) = infw gc(0, w) is attained,
and ecf(0) > −∞ for every c > 0. This shows that the supremum cf of all c > 0,
such that ecf(x) > −∞ for some x ∈ <n, is ∞.

(b) Since the value cf is equal to∞ by part (a), it follows that ecf and Pcf have
all the properties given in Exercise 2.13 for all c > 0: The set Pcf(x) is nonempty
and compact, and the function ecf(x) is finite for all x, and is continuous in (x, c).
Consider a sequence {wk} with wk ∈ Pckf(xk) for some sequences xk → x∗ and
ck → c∗ > 0. Then, it follows from Exercise 2.13(b) that the sequence {wk}
is bounded and all its limit points belong to the set Pc∗f(x∗). Since gc(x,w) is
strictly convex in w, it follows from Prop. 2.1.2 that the proximal mapping Pcf is
single-valued. Hence, we have that Pcf(x)→ Pc∗f(x∗) whenever (x, c)→ (x∗, c∗)
with c∗ > 0.

(c) The envelope function ecf is convex by Prop. 2.3.6 [since gc(x,w) is convex in
(x,w)], and continuous by Exercise 2.13. We now prove that it is differentiable.
Consider any point x, and let w = Pcf(x). We will show that ecf is differentiable
at x with

∇ecf(x) =
(x− w)

c
.

Equivalently, we will show that the function h given by

h(u) = ecf(x+ u)− ecf(x)− (x− w)

c

′
u (2.12)

is differentiable at 0 with ∇h(0) = 0. Since w = Pcf(x), we have

ecf(x) = f(w) +
1

2c
‖w − x‖2,

whereas

ecf(x+ u) ≤ f(w) +
1

2c
‖w − (x+ u)‖2, ∀ u,

so that

h(u) ≤ 1

2c
‖w − (x+ u)‖2 − 1

2c
‖w − x‖2 − 1

c
(x− w)′u =

1

2c
‖u‖2, ∀ u. (2.13)

Since ecf is convex, it follows from Eq. (2.12) that h is convex, and therefore,

0 = h(0) = h
(

1

2
u+

1

2
(−u)

)
≤ 1

2
h(u) +

1

2
h(−u),
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which implies that h(u) ≥ −h(−u). From Eq. (2.13), we obtain

−h(−u) ≥ − 1

2c
‖ − u‖2 = − 1

2c
‖u‖2, ∀ u,

which together with the preceding relation yields

h(u) ≥ − 1

2c
‖u‖2, ∀ u.

Thus, we have

|h(u)| ≤ 1

2c
‖u‖2, ∀ u,

which implies that h is differentiable at 0 with ∇h(0) = 0. From the formula
for ∇ecf(·) and the continuity of Pcf(·), it also follows that ec is continuously
differentiable.

2.15

(a) Let C1 be a convex set with nonempty interior and C2 be a nonempty
convex set that does not intersect the interior of C1. Show that there exists
a hyperplane such that one of the associated closed halfspaces contains C2,
and does not intersect the interior of C1.

(b) Show by an example that we cannot replace interior with relative interior
in the statement of part (a).

Solution: (a) In view of the assumption that int(C1) and C2 are disjoint and
convex [cf Prop. 1.2.1(d)], it follows from the Separating Hyperplane Theorem
that there exists a vector a 6= 0 such that

a′x1 ≤ a′x2, ∀ x1 ∈ int(C1), ∀ x2 ∈ C2.

Let b = infx2∈C2 a
′x2. Then, from the preceding relation, we have

a′x ≤ b, ∀ x ∈ int(C1). (2.14)

We claim that the closed halfspace {x | a′x ≥ b}, which contains C2, does not
intersect int(C1).

Assume to arrive at a contradiction that there exists some x1 ∈ int(C1)
such that a′x1 ≥ b. Since x1 ∈ int(C1), we have that there exists some ε > 0
such that x1 + εa ∈ int(C1), and

a′(x1 + εa) ≥ b+ ε‖a‖2 > b.

This contradicts Eq. (2.14). Hence, we have

int(C1) ⊂ {x | a′x < b}.
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(b) Consider the sets

C1 =
{

(x1, x2) | x1 = 0
}
,

C2 =
{

(x1, x2) | x1 > 0, x2x1 ≥ 1
}
.

These two sets are convex and C2 is disjoint from ri(C1), which is equal to C1. The
only separating hyperplane is the x2 axis, which corresponds to having a = (0, 1),
as defined in part (a). For this example, there does not exist a closed halfspace
that contains C2 but is disjoint from ri(C1).

2.16

Let C be a nonempty convex set in <n, and let M be a nonempty affine set in
<n. Show that M ∩ ri(C) = Ø is a necessary and sufficient condition for the
existence of a hyperplane H containing M , and such that ri(C) is contained in
one of the open halfspaces associated with H.

Solution: If there exists a hyperplane H with the properties stated, the condition
M ∩ ri(C) = Ø clearly holds. Conversely, if M ∩ ri(C) = Ø, then M and C can
be properly separated by Prop. 2.4.5. This hyperplane can be chosen to contain
M since M is affine. If this hyperplane contains a point in ri(C), then it must
contain all of C by Prop. 1.4.2. This contradicts the proper separation property,
thus showing that ri(C) is contained in one of the open halfspaces.

2.17 (Strong Separation)

Let C1 and C2 be nonempty convex subsets of <n, and let B denote the unit
ball in <n, B = {x | ‖x‖ ≤ 1}. A hyperplane H is said to separate strongly C1

and C2 if there exists an ε > 0 such that C1 + εB is contained in one of the open
halfspaces associated with H and C2 + εB is contained in the other. Show that:

(a) The following three conditions are equivalent.

(i) There exists a hyperplane separating strongly C1 and C2.

(ii) There exists a vector a ∈ <n such that infx∈C1 a
′x > supx∈C2

a′x.

(iii) infx1∈C1, x2∈C2 ‖x1 − x2‖ > 0, i.e., 0 /∈ cl(C2 − C1).

(b) If C1 and C2 are disjoint, any one of the five conditions for strict separation,
given in Prop. 2.4.3, implies that C1 and C2 can be strongly separated.

Solution: (a) We first show that (i) implies (ii). Suppose that C1 and C2 can
be separated strongly. By definition, this implies that for some nonzero vector
a ∈ <n, b ∈ <, and ε > 0, we have

C1 + εB ⊂ {x | a′x > b},

C2 + εB ⊂ {x | a′x < b},
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where B denotes the closed unit ball. Since a 6= 0, we also have

inf{a′y | y ∈ B} < 0, sup{a′y | y ∈ B} > 0.

Therefore, it follows from the preceding relations that

b ≤ inf{a′x+ εa′y | x ∈ C1, y ∈ B} < inf{a′x | x ∈ C1},

b ≥ sup{a′x+ εa′y | x ∈ C2, y ∈ B} > sup{a′x | x ∈ C2}.

Thus, there exists a vector a ∈ <n such that

inf
x∈C1

a′x > sup
x∈C2

a′x,

proving (ii).

Next, we show that (ii) implies (iii). Suppose that (ii) holds, i.e., there
exists some vector a ∈ <n such that

inf
x∈C1

a′x > sup
x∈C2

a′x, (2.15)

Using the Schwartz inequality, we see that

0 < inf
x∈C1

a′x− sup
x∈C2

a′x

= inf
x1∈C1, x2∈C2

a′(x1 − x2),

≤ inf
x1∈C1, x2∈C2

‖a‖‖x1 − x2‖.

It follows that
inf

x1∈C1, x2∈C2

‖x1 − x2‖ > 0,

thus proving (iii).

Finally, we show that (iii) implies (i). If (iii) holds, we have for some ε > 0,

inf
x1∈C1, x2∈C2

‖x1 − x2‖ > 2ε > 0.

From this we obtain for all x1 ∈ C1, all x2 ∈ C2, and for all y1, y2 with ‖y1‖ ≤ ε,
‖y2‖ ≤ ε,

‖(x1 + y1)− (x2 + y2)‖ ≥ ‖x1 − x2‖ − ‖y1‖ − ‖y2‖ > 0,

which implies that 0 /∈ (C1 +εB)− (C2 +εB). Therefore, the convex sets C1 +εB
and C2 + εB are disjoint. By the Separating Hyperplane Theorem, we see that
C1 + εB and C2 + εB can be separated, i.e., C1 + εB and C2 + εB lie in opposite
closed halfspaces associated with the hyperplane that separates them. Then,
the sets C1 + (ε/2)B and C2 + (ε/2)B lie in opposite open halfspaces, which by
definition implies that C1 and C2 can be separated strongly.
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(b) Since C1 and C2 are disjoint, we have 0 /∈ (C1 − C2). Any one of conditions
(2)-(5) of Prop. 2.4.3 imply condition (1) of that proposition (see the discussion
in the proof of Prop. 2.4.3), which states that the set C1 − C2 is closed, i.e.,

cl(C1 − C2) = C1 − C2.

Hence, we have 0 /∈ cl(C1 − C2), which implies that

inf
x1∈C1, x2∈C2

‖x1 − x2‖ > 0.

From part (a), it follows that there exists a hyperplane separating C1 and C2

strongly.

2.18

Let C1 and C2 be nonempty convex subsets of <n such that C2 is a cone.

(a) Suppose that there exists a hyperplane that separates C1 and C2 properly.
Show that there exists a hyperplane which separates C1 and C2 properly
and passes through the origin.

(b) Suppose that there exists a hyperplane that separates C1 and C2 strictly.
Show that there exists a hyperplane that passes through the origin such
that one of the associated closed halfspaces contains the cone C2 and does
not intersect C1.

Solution: (a) If C1 and C2 can be separated properly, we have from the Proper
Separation Theorem that there exists a vector a 6= 0 such that

inf
x∈C1

a′x ≥ sup
x∈C2

a′x, (2.16)

sup
x∈C1

a′x > inf
x∈C2

a′x. (2.17)

Let
b = sup

x∈C2

a′x. (2.18)

and consider the hyperplane

H = {x | a′x = b}.

Since C2 is a cone, we have

λa′x = a′(λx) ≤ b <∞, ∀ x ∈ C2, ∀ λ > 0.

This relation implies that a′x ≤ 0, for all x ∈ C2, since otherwise it is possible to
choose λ large enough and violate the above inequality for some x ∈ C2. Hence,
it follows from Eq. (2.18) that b ≤ 0. Also, by letting λ → 0 in the preceding
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relation, we see that b ≥ 0. Therefore, we have that b = 0 and the hyperplane H
contains the origin.

(b) If C1 and C2 can be separated strictly, we have by definition that there exists
a vector a 6= 0 and a scalar β such that

a′x2 < β < a′x1, ∀ x1 ∈ C1, ∀ x2 ∈ C2. (2.19)

We choose b to be
b = sup

x∈C2

a′x, (2.20)

and consider the closed halfspace

K = {x | a′x ≤ b},

which contains C2. By Eq. (2.19), we have

b ≤ β < a′x, ∀ x ∈ C1,

so the closed halfspace K does not intersect C1.
Since C2 is a cone, an argument similar to the one in part (a) shows that

b = 0, and hence the hyperplane associated with the closed halfspace K passes
through the origin, and has the desired properties.

2.19 (Separation Properties of Cones)

Define a homogeneous halfspace to be a closed halfspace associated with a hyper-
plane that passes through the origin. Show that:

(a) A nonempty closed convex cone is the intersection of the homogeneous
halfspaces that contain it.

(b) The closure of the convex cone generated by a nonempty set X is the
intersection of all the homogeneous halfspaces containing X.

Solution: (a) C is contained in the intersection of the homogeneous closed half-
spaces that contain C, so we focus on proving the reverse inclusion. Let x /∈ C.
Since C is closed and convex by assumption, by using the Strict Separation The-
orem, we see that the sets C and {x} can be separated strictly. From Exercise
2.18(c), this implies that there exists a hyperplane that passes through the origin
such that one of the associated closed halfspaces contains C, but is disjoint from
x. Hence, if x /∈ C, then x cannot belong to the intersection of the homogeneous
closed halfspaces containing C, proving that C contains that intersection.

(b) A homogeneous halfspace is in particular a closed convex cone containing
the origin, and such a cone includes X if and only if it includes cl

(
cone(X)

)
.

Hence, the intersection of all closed homogeneous halfspaces containing X and
the intersection of all closed homogeneous halfspaces containing cl

(
cone(X)

)
co-

incide. From what has been proved in part(a), the latter intersection is equal to
cl
(
cone(X)

)
.
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2.20 (Convex System Alternatives)

Let gj : <n 7→ (−∞,∞], j = 1, . . . , r, be closed proper convex functions, and
let X be a nonempty closed convex set. Assume that one of the following four
conditions holds:

(1) RX ∩Rg1 ∩ · · · ∩Rgr = LX ∩ Lg1 ∩ · · · ∩ Lgr .

(2) RX∩Rg1∩· · ·∩Rgr ⊂ Lg1∩· · ·∩Lgr and X is specified by linear inequality
constraints.

(3) Each gj is a convex quadratic function andX is specified by convex quadratic
inequality constraints.

(4) Each gj is a convex bidirectionally flat function (see Exercise 2.7) and X
is specified by convex bidirectionally flat functions.

Show that:

(a) If there is no vector x ∈ X such that

g1(x) ≤ 0, . . . , gr(x) ≤ 0,

then there exist a positive scalar ε, and a vector µ ∈ <r with µ ≥ 0, such
that

µ1g1(x) + · · ·+ µrgr(x) ≥ ε, ∀ x ∈ X.

Hint : Show that under any one of the conditions (1)-(4), the set

C =
{
u | there exists an x ∈ X such that gj(x) ≤ uj , j = 1, . . . , r

}
is closed, by viewing it as the projection of the set{

(x, u) | x ∈ X, gj(x) ≤ uj , j = 1, . . . , r
}

on the space of u. Furthermore, the origin does not belong to C, so it can be
strictly separated from C by a hyperplane. The normal of this hyperplane
provides the desired vector µ.

(b) If for every ε > 0, there exists a vector x ∈ X such that

g1(x) < ε, . . . , gr(x) < ε,

then there exists a vector x ∈ X such that

g1(x) ≤ 0, . . . , gr(x) ≤ 0.

Hint : Argue by contradiction and use part (a).

Solution: (a) Consider the set

C =
{
u | there exists an x ∈ X such that gj(x) ≤ uj , j = 1, . . . , r

}
,
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which may be viewed as the projection of the set

M =
{

(x, u) | x ∈ X, gj(x) ≤ uj , j = 1, . . . , r
}

on the space of u. Let us denote this linear transformation by A. It can be seen
that

RM ∩N(A) =
{

(y, 0) | y ∈ RX ∩Rg1 · · · ∩Rgr
}
,

where RM denotes the recession cone of set M . Similarly, we have

LM ∩N(A) =
{

(y, 0) | y ∈ LX ∩ Lg1 · · · ∩ Lgr
}
,

where LM denotes the lineality space of set M . Under conditions (1), (2), and
(3), it follows from Prop. 1.5.8 that the set AM = C is closed. Similarly, under
condition (4), it follows from Exercise 2.7(b) that the set AM = C is closed.

By assumption, there is no vector x ∈ X such that

g1(x) ≤ 0, . . . , gr(x) ≤ 0.

This implies that the origin does not belong to C. Therefore, by the Strict Sep-
aration Theorem, it follows that there exists a hyperplane that strictly separates
the origin and the set C, i.e., there exists a vector µ such that

0 < ε ≤ µ′u, ∀ u ∈ C. (2.21)

This equation implies that µ ≥ 0 since for each u ∈ C, we have that (u1, . . . , uj +
γ, . . . , ur) ∈ C for all j and γ > 0. Since

(
g1(x), . . . , gr(x)

)
∈ C for all x ∈ X,

Eq. (2.21) yields

µ1g1(x) + · · ·+ µrgr(x) ≥ ε, ∀ x ∈ X. (2.22)

(b) Assume that there is no vector x ∈ X such that

g1(x) ≤ 0, . . . , gr(x) ≤ 0.

This implies by part (a) that there exists a positive scalar ε, and a vector µ ∈ <r
with µ ≥ 0, such that

µ1g1(x) + · · ·+ µrgr(x) ≥ ε, ∀ x ∈ X.

Let x be an arbitrary vector in X and let j(x) be the smallest index that satisfies
j(x) = arg maxj=1,...,r gj(x). Then Eq. (2.22) implies that for all x ∈ X

ε ≤
r∑
j=1

µjgj(x) ≤
r∑
j=1

µjgj(x)(x) = gj(x)(x)

r∑
j=1

µj .

Hence, for all x ∈ X, there exists some j(x) such that

gj(x)(x) ≥ ε∑r

j=1
µj

> 0.

This contradicts the statement that for every ε > 0, there exists a vector x ∈ X
such that

g1(x) < ε, . . . , gr(x) < ε,

and concludes the proof.
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2.21

Let C be a nonempty closed convex subset of <n+1 that contains no vertical lines.
Show that C is equal to the intersection of the closed halfspaces that contain it
and correspond to nonvertical hyperplanes.

Solution: C is contained in the intersection of the closed halfspaces that contain
C and correspond to nonvertical hyperplanes, so we focus on proving the reverse
inclusion. Let x /∈ C. Since by assumption C does not contain any vertical
lines, we can apply Prop. 2.5.1, and we see that there exists a closed halfspace
that correspond to a nonvertical hyperplane, containing C but not containing
x. Hence, if x /∈ C, then x cannot belong to the intersection of the closed
halfspaces containing C and corresponding to nonvertical hyperplanes, proving
that C contains that intersection.

2.22 (Min Common/Max Crossing Duality)

Consider the min common/max crossing framework, assuming that w∗ <∞.

(a) Assume that M is compact. Show that q∗ is equal to the optimal value of
the min common point problem corresponding to conv(M).

(b) Assume that M is closed and convex, and does not contain a halfline of the
form

{
(x,w + α) | α ≤ 0

}
. Show that M is the epigraph of the function

given by

f(x) = inf
{
w | (x,w) ∈M

}
, x ∈ <n,

and that f is closed proper and convex.

(c) Assume that w∗ is finite, and that M is convex and closed. Show that
q∗ = w∗.

Solution: (a) Let us denote the optimal value of the min common point problem
and the max crossing point problem corresponding to conv(M) by w∗conv(M) and
q∗conv(M), respectively. In view of the assumption that M is compact, it follows
from Prop. 1.3.2 that the set conv(M) is compact. Therefore, by Weierstrass’
Theorem, w∗conv(M), defined by

w∗conv(M) = inf
(0,w)∈conv(M)

w

is finite. It can also be seen that the set

conv(M) =
{

(u,w) | there exists w with w ≤ w and (u,w) ∈ conv(M)
}

is convex. Indeed, we consider vectors (u,w) ∈ conv(M) and (ũ, w̃) ∈ conv(M),
and we show that their convex combinations lie in conv(M). The definition of
conv(M) implies that there exists some wM and w̃M such that

wM ≤ w, (u,wM ) ∈ conv(M),
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w̃M ≤ w̃, (ũ, w̃M ) ∈ conv(M).

For any α ∈ [0, 1], we multiply these relations with α and (1 − α), respectively,
and add. We obtain

αwM + (1− α)w̃M ≤ αw + (1− α)w̃.

In view of the convexity of conv(M), we have α(u,wM ) + (1 − α)(ũ, w̃M ) ∈
conv(M), so these equations imply that the convex combination of (u,w) and
(ũ, w̃) belongs to conv(M). This proves the convexity of conv(M).

Using the compactness of conv(M), it can be shown that for every sequence{
(uk, wk)

}
⊂ conv(M) with uk → 0, there holds w∗conv(M) ≤ lim infk→∞ wk.

Let
{

(uk, wk)
}
⊂ conv(M) be a sequence with uk → 0. Since conv(M) is

compact, the sequence
{

(uk, wk)
}

has a subsequence that converges to some

(0, w) ∈ conv(M). Assume without loss of generality that
{

(uk, wk)
}

converges
to (0, w). Since (0, w) ∈ conv(M), we get

w∗conv(M) ≤ w = lim inf
k→∞

wk.

Therefore, by Min Common/Max Crossing Theorem I, we have

w∗conv(M) = q∗conv(M). (2.23)

Let q∗ be the optimal value of the max crossing point problem corresponding to
M , i.e.,

q∗ = sup
µ∈<n

q(µ),

where for all µ ∈ <n
q(µ) = inf

(u,w)∈M
{w + µ′u}.

We will show that q∗ = w∗conv(M). For every µ ∈ <n, q(µ) can be expressed as
q(µ) = infx∈M c′x, where c = (µ, 1) and x = (u,w). From Exercise 2.23, it follows
that minimization of a linear function over a set is equivalent to minimization
over its convex hull. In particular, we have

q(µ) = inf
x∈X

c′x = inf
x∈conv(X)

c′x,

from which using Eq. (2.23), we get

q∗ = q∗conv(M) = w∗conv(M),

proving the desired claim.

(b) The function f is convex by the result of Exercise 2.23. Furthermore, for all
x ∈ dom(f), the infimum in the definition of f(x) is attained. The reason is that,
for x ∈ dom(f), the set

{
w | (x,w) ∈ M

}
is closed and bounded below, since

M is closed and does not contain a halfline of the form
{

(x,w + α) | α ≤ 0
}

.
Thus, we have f(x) > −∞ for all x ∈ dom(f), while dom(f) is nonempty, since
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M is nonempty in the min common/max crossing framework. It follows that f
is proper. Furthermore, by its definition, M is the epigraph of f . Finally, to
show that f is closed, we argue by contradiction. If f is not closed, there exists
a vector x and a sequence {xk} that converges to x and is such that

f(x) > lim
k→∞

f(xk).

We claim that limk→∞ f(xk) is finite, i.e., that limk→∞ f(xk) > −∞. Indeed, by
Prop. 2.5.1, the epigraph of f is contained in the upper halfspace of a nonvertical
hyperplane of <n+1. Since {xk} converges to x, the limit of

{
f(xk)

}
cannot be

equal to −∞. Thus the sequence
(
xk, f(xk)

)
, which belongs to M , converges to(

x, limk→∞ f(xk)
)

Therefore, since M is closed,
(
x, limk→∞ f(xk)

)
∈M . By the

definition of f , this implies that f(x) ≤ limk→∞ f(xk), contradicting our earlier
hypothesis.

(c) We prove this result by showing that all the assumptions of Min Com-
mon/Max Crossing Theorem I are satisfied. By assumption, w∗ < ∞ and
the set M is convex. Therefore, we only need to show that for every sequence
{uk, wk} ⊂M with uk → 0, there holds w∗ ≤ lim infk→∞ wk.

Consider a sequence {uk, wk} ⊂ M with uk → 0. If lim infk→∞ wk = ∞,
then we are done, so assume that lim infk→∞ wk = w̃ for some scalar w̃. Since
M ⊂ M and M is closed by assumption, it follows that (0, w̃) ∈ M . By the
definition of the set M , this implies that there exists some w with w ≤ w̃ and
(0, w) ∈M . Hence we have

w∗ = inf
(0,w)∈M

w ≤ w ≤ w̃ = lim inf
k→∞

wk,

proving the desired result, and thus showing that q∗ = w∗.

2.23 (An Example of Lagrangian Duality)

Consider the problem

minimize f(x)

subject to x ∈ X, e′ix = di, i = 1, . . . ,m,

where f : <n 7→ < is a convex function, X is a convex set, and ei and di are
given vectors and scalars, respectively. Consider the min common/max crossing
framework where M is the subset of <m+1 given by

M =
{(
e′1x− d1, . . . , e

′
mx− dm, f(x)

)
| x ∈ X

}
.

(a) Derive the corresponding max crossing problem.

(b) Show that the corresponding set M is convex.

(c) Show that if w∗ <∞ and X is compact, then q∗ = w∗.
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(d) Show that if w∗ <∞ and there exists a vector x ∈ ri(X) such that e′ix = di
for all i = 1, . . . ,m, then q∗ = w∗ and the max crossing problem has an
optimal solution.

Solution: (a) The corresponding max crossing problem is given by

q∗ = sup
µ∈<m

q(µ),

where q(µ) is given by

q(µ) = inf
(u,w)∈M

{w + µ′u} = inf
x∈X

{
f(x) +

m∑
i=1

µi(e
′
ix− di)

}
.

(b) Consider the set

M =
{(
u1, . . . , um, w

)
| ∃ x ∈ X such that e′ix− di = ui, ∀ i, f(x) ≤ w

}
.

We show that M is convex. To this end, we consider vectors (u,w) ∈ M and
(ũ, w̃) ∈M , and we show that their convex combinations lie in M . The definition
of M implies that for some x ∈ X and x̃ ∈ X, we have

f(x) ≤ w, e′ix− di = ui, i = 1, . . . ,m,

f(x̃) ≤ w̃, e′ix̃− di = ũi, i = 1, . . . ,m.

For any α ∈ [0, 1], we multiply these relations with α and 1-α, respectively, and
add. By using the convexity of f , we obtain

f
(
αx+ (1− α)x̃

)
≤ αf(x) + (1− α)f(x̃) ≤ αw + (1− α)w̃,

e′i
(
αx+ (1− α)x̃

)
− di = αui + (1− α)ũi, i = 1, . . . ,m.

In view of the convexity of X, we have αx+(1−α)x̃ ∈ X, so these equations imply
that the convex combination of (u,w) and (ũ, w̃) belongs to M , thus proving that
M is convex.

(c) We prove this result by showing that all the assumptions of Min Com-
mon/Max Crossing Theorem I are satisfied. By assumption, w∗ is finite. It
follows from part (b) that the set M is convex. Therefore, we only need to
show that for every sequence

{
(uk, wk)

}
⊂ M with uk → 0, there holds w∗ ≤

lim infk→∞ wk.
Consider a sequence

{
(uk, wk)

}
⊂ M with uk → 0. Since X is compact

and f is convex by assumption (which implies that f is continuous by Prop.
1.4.6), it follows from Prop. 1.1.9(c) that set M is compact. Hence, the sequence{

(uk, wk)
}

has a subsequence that converges to some (0, w) ∈M . Assume with-

out loss of generality that
{

(uk, wk)
}

converges to (0, w). Since (0, w) ∈ M , we
get

w∗ = inf
(0,w)∈M

w ≤ w = lim inf
k→∞

wk,
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proving the desired result, and thus showing that q∗ = w∗.

(d) We prove this result by showing that all the assumptions of Min Com-
mon/Max Crossing Theorem II are satisfied. By assumption, w∗ is finite. It
follows from part (b) that the set M is convex. Therefore, we only need to show
that the set

D =
{

(e′1x− d1, . . . , e
′
mx− dm) | x ∈ X

}
contains the origin in its relative interior. The set D can equivalently be written
as

D = E ·X − d,

where E is a matrix, whose rows are the vectors e′i, i = 1, . . . ,m, and d is a
vector with entries equal to di, i = 1, . . . ,m. By Prop. 1.4.4 and Prop. 1.4.5(b),
it follows that

ri(D) = E · ri(X)− d.

Hence the assumption that there exists a vector x ∈ ri(X) such that Ex− d = 0
implies that 0 belongs to the relative interior of D, thus showing that q∗ = w∗

and that the max crossing problem has an optimal solution.

2.24 (Saddle Points in Two Dimensions)

Consider a function φ of two real variables x and z taking values in compact
intervals X and Z, respectively. Assume that for each z ∈ Z, the function φ(·, z)
is minimized over X at a unique point denoted x̂(z). Similarly, assume that for
each x ∈ X, the function φ(x, ·) is maximized over Z at a unique point denoted
ẑ(x). Assume further that the functions x̂(z) and ẑ(x) are continuous over Z and
X, respectively. Show that φ has a saddle point (x∗, z∗). Use this to investigate
the existence of saddle points of φ(x, z) = x2 + z2 over X = [0, 1] and Z = [0, 1].

Solution: We consider a function φ of two real variables x and z taking values
in compact intervals X and Z, respectively. We assume that for each z ∈ Z, the
function φ(·, z) is minimized over X at a unique point denoted x̂(z), and for each
x ∈ X, the function φ(x, ·) is maximized over Z at a unique point denoted ẑ(x),

x̂(z) = arg min
x∈X

φ(x, z), ẑ(x) = arg max
z∈Z

φ(x, z).

Consider the composite function f : X 7→ X given by

f(x) = x̂
(
ẑ(x)

)
,

which is a continuous function in view of the assumption that the functions x̂(z)
and ẑ(x) are continuous over Z and X, respectively. Assume that the compact
interval X is given by [a, b]. We now show that the function f has a fixed point,
i.e., there exists some x∗ ∈ [a, b] such that

f(x∗) = x∗.

Define the function g : X 7→ X by

g(x) = f(x)− x.
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Assume that f(a) > a and f(b) < b, since otherwise we are done. We have

g(a) = f(a)− a > 0,

g(b) = f(b)− b < 0.

Since g is a continuous function, the preceding relations imply that there exists
some x∗ ∈ (a, b) such that g(x∗) = 0, i.e., f(x∗) = x∗. Hence, we have

x̂
(
ẑ(x∗)

)
= x∗.

Denoting ẑ(x∗) by z∗, we get

x∗ = x̂(z∗), z∗ = ẑ(x∗). (2.24)

By definition, a pair (x, z) is a saddle point if and only if

max
z∈Z

φ(x, z) = φ(x, z) = min
x∈X

φ(x, z),

or equivalently, if x = x̂(z) and z = ẑ(x). Therefore, from Eq. (2.24), we see that
(x∗, z∗) is a saddle point of φ.

We now consider the function φ(x, z) = x2 + z2 over X = [0, 1] and Z =
[0, 1]. For each z ∈ [0, 1], the function φ(·, z) is minimized over [0, 1] at a unique
point x̂(z) = 0, and for each x ∈ [0, 1], the function φ(x, ·) is maximized over
[0, 1] at a unique point ẑ(x) = 1. These two curves intersect at (x∗, z∗) = (0, 1),
which is the unique saddle point of φ.

2.25 (Saddle Points of Quadratic Functions)

Consider a quadratic function φ : X × Z 7→ < of the form

φ(x, z) = x′Qx+ x′Dz − z′Rz,

where Q and R are symmetric positive semidefinite n × n and m ×m matrices,
respectively, D is some n ×m matrix, and X and Z are subsets of <n and <m,
respectively. Derive conditions under which φ has at least one saddle point.

Solution: Let X and Z be closed and convex sets. Then, for each z ∈ Z, the
function tz : <n 7→ (−∞,∞] defined by

tz(x) =
{
φ(x, z) if x ∈ X,
∞ otherwise,

is closed and convex in view of the assumption that Q is a positive semidefinite
symmetric matrix. Similarly, for each x ∈ X, the function rx : <m 7→ (−∞,∞]
defined by

rx(z) =
{−φ(x, z) if z ∈ Z,
∞ otherwise,
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is closed and convex in view of the assumption that R is a positive semidefinite
symmetric matrix. Hence, Assumption 2.6.1 is satisfied. Let also Assumptions
2.6.2 and 2.6.3 hold, i.e,

inf
x∈X

sup
z∈Z

φ(x, z) <∞,

and
−∞ < sup

z∈Z
inf
x∈X

φ(x, z).

By the positive semidefiniteness of Q, it can be seen that, for each z ∈ Z, the
recession cone of the function tz is given by

Rtz = RX ∩N(Q) ∩ {y | y′Dz ≤ 0},

where RX is the recession cone of the convex set X and N(Q) is the null space
of the matrix Q. Similarly, for each z ∈ Z, the constancy space of the function
tz is given by

Ltz = LX ∩N(Q) ∩ {y | y′Dz = 0},

where LX is the lineality space of the set X. By the positive semidefiniteness of
R, for each x ∈ X, it can be seen that the recession cone of the function rx is
given by

Rrx = RZ ∩N(R) ∩ {y | x′Dy ≥ 0},

where RZ is the recession cone of the convex set Z and N(R) is the null space of
the matrix R. Similarly, for each x ∈ X, the constancy space of the function rx
is given by

Lrx = LZ ∩N(R) ∩ {y | x′Dy = 0},

where LZ is the lineality space of the set Z.
If ⋂

z∈Z

Rtz = {0}, and
⋂
x∈X

Rrx = {0}, (2.25)

then it follows from the Saddle Point Theorem part (a), that the set of saddle
points of φ is nonempty and compact. [In particular, the condition given in Eq.
(2.25) holds when Q and R are positive definite matrices, or if X and Z are
compact.]

Similarly, if⋂
z∈Z

Rtz =
⋂
z∈Z

Ltz , and
⋂
x∈X

Rrx =
⋂
x∈X

Lrx ,

then it follows from the Saddle Point Theorem part (b), that the set of saddle
points of φ is nonempty.
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