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CHAPTER 2: SOLUTION MANUAL

2.1

Let f: R" — R be a given function.

(a) Consider a vector z* such that f is convex over a sphere centered at z*.
Show that z* is a local minimum of f if and only if it is a local minimum
of f along every line passing through z* [i.e., for all d € R", the function
g: R — R, defined by g(a) = f(z* +ad), has o™ = 0 as its local minimum].

(b) Assume that f is not convex. Show that a vector z* need not be a local
minimum of f if it is a local minimum of f along every line passing through
x*. Hint: Use the function f : #2 — R given by

fz1,22) = (22 — pai)(z2 — q27),

where p and ¢ are scalars with 0 < p < ¢, and z* = (0,0). Show that
f(y,my*) < 0 for y # 0 and m satisfying p < m < ¢, while £(0,0) = 0.

Solution: (a) If z* is a local minimum of f, evidently it is also a local minimum
of f along any line passing through z*.

Conversely, let * be a local minimum of f along any line passing through
z*. Assume, to arrive at a contradiction, that z* is not a local minimum of f
and that we have f(Z) < f(z*) for some T in the sphere centered at z* within
which f is assumed convex. Then, by convexity, for all a € (0,1),

flaz" + (1 - a)F) < af(@) + (1 -a)f(@) < f(z7),
so f decreases monotonically along the line segment connecting ™ and Z. This

contradicts the hypothesis that z* is a local minimum of f along any line passing
through z*.

(b) Consider the function f(z1,x2) = (x2 — pxi)(x2 — qa?), where 0 < p < q and
let * = (0,0).

We first show that g(a) = f(x* + ad) is minimized at « = 0 for all d € 2.
We have
gla) = f(z* + ad) = (ady — pa’d;)(ads — go’d}) = o*(da — pad;)(ds — qods).
Also,
g'(@) = 2a(dz — pad?)(dz — gadi) + a* (—pd?) (d2 — gadi) + a® (d2 — pad?)(—qd}).
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Thus ¢'(0) = 0. Furthermore,

9" (a) = 2(d2 — pad?)(d2 — qad?) + 20((—pd?) (d2 — qad?)
+ 2a(d2 — pad?)(—qdi) + 2a(—pd?)(dz — qad?) + o (—pd? ) (—qd7)
+ 2a(dz — pad?)(—qd?) + a®(—pd?)(—qd?).

Thus g (0) = 2d3, which is greater than 0 if d2 # 0. If d2 = 0, g(a) = pga’ds],
which is clearly minimized at « = 0. Therefore, (0,0) is a local minimum of f
along every line that passes through (0,0).

Let’s now show that if p < m < ¢, f(y,my?) < 0 if y # 0 and that
fly,my®) = 0 otherwise. Consider a point of the form (y,my?). We have
fly,my*) = y*(m — p)(m — q). Clearly, f(y, my®) < 0 if and only if p < m < ¢
and y # 0. In any e—neighborhood of (0,0), there exists a y # 0 such that for
some m € (p,q), (y,my?) also belongs to the neighborhood. Since f(0,0) = 0,
we see that (0,0) is not a local minimum.

2.2 (Lipschitz Continuity of Convex Functions)

Let f: R"™ — R be a convex function and X be a bounded set in R™. Show that
f is Lipschitz continuous over X, i.e., there exists a positive scalar L such that

[f(2) = fy)] < Lllz —yl,  VazyeX.

Solution: Let € be a positive scalar and let C¢ be the set given by
Ce= {z | Iz — z|| <€, for some z € cl(X)}.

We claim that the set C. is compact. Indeed, since X is bounded, so is its closure,
which implies that ||z|| < max,cq(x) ||| + € for all z € C¢, showing that C. is
bounded. To show the closedness of C¢, let {zx} be a sequence in C.¢ converging
to some z. By the definition of C., there is a corresponding sequence {z} in
cl(X) such that

Iz — zil] <€, v k. (2.1)

Because cl(X) is compact, {x} has a subsequence converging to some z € cl(X).
Without loss of generality, we may assume that {zx} converges to x € cl(X). By
taking the limit in Eq. (2.1) as k — oo, we obtain ||z — z|| < € with z € cl(X),
showing that z € C.. Hence, C¢ is closed.

We now show that f has the Lipschitz property over X. Let z and y be
two distinct points in X. Then, by the definition of C¢, the point

€
Z:?JJrwa(y*x)

lly
is in C.. Thus
lly — =l €
Yy = zZ+ x
ly—zll+e  |ly—zl +e
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showing that y is a convex combination of z € Cc and = € C.. By convexity of

f, we have
€

lly — =]
fly) < f(z) + ool +e

=Ty —al+e T

implying that

) — fay < =2 () = pay) < Ly =2l (maXf(U) ~ min f(v)) ,

B Hy_IH + € € ueCe veCe

where in the last inequality we use Weierstrass’ theorem (f is continuous over
R™ by Prop. 1.4.6 and C¢ is compact). By switching the roles of z and y, we
similarly obtain

f2) - fly) < lz=vl <maxf<u> ~ min f(v)) ,

€ w€eCe veCe

which combined with the preceding relation yields |f(m) — f(y)} < Lz — vy,
where L = (rnaxuec6 f(u) — minyec, f(v))/e

2.3 (Exact Penalty Functions)

Let f: Y — R be a function defined on a subset Y of R". Assume that f is
Lipschitz continuous with constant L, i.e.,

|f@) = f)| < Llz—yl, VayeY.

Let also X be a nonempty closed subset of Y, and ¢ be a scalar with ¢ > L.

(a) Show that if ™ minimizes f over X, then z* minimizes
Fe(w) = f(z) + ¢ inf [ly —z|
yeXx

over Y.

(b) Show that if * minimizes F.(z) over Y, then z* € X, so that ™ minimizes
f over X.

Solution: We note that by Weierstrass’ Theorem, the minimum of ||y — z|| over
y € X is attained, so we can write minyex ||y — || in place of inf,cx ||y — z||.

(a) By assumption, * minimizes f over X, so that 2* € X, and we have for all
c>L,yeX,andz €Y,

Fe(x™) = f(z7) < f(y) < f(@) + Llly — 2l| < f(2) + clly — =l

where we use the Lipschitz continuity of f to get the second inequality. Taking
the minimum over all y € X, we obtain

F.(z") Sf(x)+cmi)1{1||y—x|| = F.(z), VzeY.
ye
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Hence, £* minimizes F.(z) over Y for all ¢ > L.

(b) It will suffice to show that z* € X. Suppose, to arrive at a contradiction,
that «* minimizes Fec(x) over Y, but " ¢ X.

We have that F.(z*) = f(z*) + cmingex ||y — z”||. Let £ € X be a point
where the minimum of ||y — z|| over y € X is attained. Then & # z*, and we

have
Fe(z")= f(2") + ||z — 27|

> f(@") + L]z — a7
> [(@)
Fc(i),

which contradicts the fact that z* minimizes Fe(x) over Y. (Here, the first
inequality follows from ¢ > L and & # 2™, and the second inequality follows from
the Lipschitz continuity of f.)

2.4 (Ekeland’s Variational Principle [Eke74])

This exercise shows how e-optimal solutions of optimization problems can be
approximated by (exactly) optimal solutions of some other slightly perturbed
problems. Let f : R" — (—o00, 0] be a closed proper function, and let T € R" be
a vector such that

f(@) < inf fz)+e

zERM

where € > 0. Then, for any § > 0, there exists a vector & € R™ such that
gzl <z f@ <@,
and ¥ is the unique optimal solution of the perturbed problem of minimizing
f(z) + 6||lx — Z|| over R".
Solution: For some § > 0, define the function F' : " — (—o0, o] by
F(z) = f(z) + ]|z — .

The function F is closed in view of the assumption that f is closed. Hence, by
Prop. 1.2.2, it follows that all the level sets of F' are closed. The level sets are
also bounded, since for all v > f*, we have

{2 |Fx)<vy}c{a|f +dlle—7| <y} =B <x,7 6f ) , (2.2)
where B(f7 (v - f*)/é) denotes the closed ball centered at T with radius (v —
f*)/6. Hence, it follows by Weierstrass’ Theorem that F attains a minimum over
R™, i.e., the set arg mingepn F(z) is nonempty and compact.

Consider now minimizing f over the set arg mingexn F(z). Since f is closed
by assumption, we conclude by using Weierstrass’ Theorem that f attains a
minimum at some Z over the set arg mingexn F(x). Hence, we have

7 (@) < f(x), Vzcarg Irg?r% F(z). (2.3)
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Since T € argmingexnn F(x), it follows that F(Z) < F(z), for all z € R", and

F(z) < F(z), V¢ arg mg%n F(z),
TzERT

which by using the triangle inequality implies that

F@)< 5(@) + dlle 7|~ o)z 7 »
< f@) +ole—Fl, V¢ arg min Flr). 24

Using Eqgs. (2.3) and (2.4), we see that
f@) < fl@)+dllz—zll, Vaz#i,

thereby implying that Z is the unique optimal solution of the problem of mini-
mizing f(z) + 0||z — Z|| over R™.
Moreover, since F(Z) < F(z) for all x € R", we have F(Z) < F(z), which
implies that
f@) < f(@) = dl|lz -zl < f(=@),

and also
F(3) < F@) = f@) < [ +e.

Using Eq. (2.2), it follows that Z € B(T,€/d), proving the desired result.

2.5 (Approximate Minima of Convex Functions)

Let X be a closed convex subset of ", and let f : " — (—o0, 0] be a closed
convex function such that X N dom(f) # @. Assume that f and X have no
common nonzero direction of recession. Let X™ be the set of global minima
of f over X (which is nonempty and compact by Prop. 2.3.2), and let f* =
infyex f(x). Show that:

(a) For every € > 0 there exists a § > 0 such that every vector x € X with
f(z) < f* + 6 satisfies ming«ecx* ||z — || < e.

(b) If f is real-valued, for every § > 0 there exists a € > 0 such that every
vector € X with min,«cx* ||z — z”|| < € satisfies f(z) < f* + 4.

(c) Every sequence {zr} C X satisfying f(zx) — f* is bounded and all its
limit points belong to X™*.

Solution: (a) Let € > 0 be given. Assume, to arrive at a contradiction, that for
any sequence {dy} with 05 | 0, there exists a sequence {zy} € X such that for
all k

< flaw) < f7 + ok, min_ lzi — 2" > e

It follows that, for all k, zx belongs to the set {CE eX| flx)y < fr+ 50}, which
is compact since f and X are closed and have no common nonzero direction of
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recession. Therefore, the sequence {zx} has a limit point T € X, which using
also the lower semicontinuity of f, satisfies

f@) <timint fo) = [, JF-a" 2 Vol e X,
—00

a contradiction.
(b) Let 6 > 0 be given. Assume, to arrive at a contradiction, that there exist
sequences {zx} C X, {z;} C X", and {ex} with € | 0 such that

flze) > f+4, |z — zk|| < ex, Vk=0,1,...

(here zj, is the projection of xy on X*). Since X* is compact, there is a
subsequence {z)}x that converges to some z* € X*. It follows that {xx}x
also converges to x*. Since f is real-valued, it is continuous, so we must have
f(zg) = f(z¥), a contradiction.

(c) Let T be a limit point of the sequence {zx} C X satisfying f(zx) — f*. By
lower semicontinuity of f, we have that

£(@) < liminf f(z) = .

Because {zx} C X and X is closed, we have T € X, which in view of the preceding
relation implies that f(z) = f*, ie.,, T € X™.

2.6 (Directions Along Which a Function is Flat)

The purpose of the exercise is to provide refinements of results relating to set
intersections and existence of optimal solutions (cf. Props. 1.5.6 and 2.3.3). Let
f:R* — (—o00,00] be a closed proper convex function, and let Fy be the set
of all directions y such that for every x € dom(f), the limit lima— oo f(z + ay)
exists. We refer to F; as the set of directions along which f is flat. Note that

Ly C Fy C Ry,

where Ly and Ry are the constancy space and recession cone of f, respectively.
Let X be a subset of R" specified by linear inequality constraints, i.e.,

X={z|asz<b;,j=1,...,7},
where a; are vectors in ®" and b; are scalars. Assume that
RxNFy C Ly,

where Rx is the recession cone of X.

(a) Let
Ci = {o] f(z) < we},
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where {ws} is a monotonically decreasing and convergent scalar sequence,
and assume that X N Cy # O for all k. Show that

XN (NPZeCx) # 0.

(b) Show that if infzex f(x) is finite, the function f attains a minimum over
the set X.

(c) Show by example that f need not attain a minimum over X if we just
assume (as in Prop. 2.3.3) that X Ndom(f) # .

Solution: (a) We will follow the line of proof of Prop. 1.5.6, with a modification
to use the condition Rx N Fy C Ly in place of the condition Rx N Ry C Ly.

We use induction on the dimension of the set X. Suppose that the dimen-
sion of X is 0. Then X consists of a single point. This point belongs to X N Ck
for all k, and hence belongs to the intersection X N (ﬁ,;“;oCk),

Assume that, for some I < n, the intersection X N (ﬂzozoCk) is nonempty
for every set X of dimension less than or equal to ! that is specified by linear
inequality constraints, and is such that X NC}, is nonempty for all k and RNFy C
Ly. Let X be of the form

X={z|dw<b;,j=1,...,r},

and be such that X N Cj is nonempty for all k, satisfy Rx N Fy C Ly, and have
dimension [ 4+ 1. We will show that the intersection X N (ﬂi":OCk) is nonempty.

If Ly N Ly = Rx N Ry, then by Prop. 1.5.5 applied to the sets X N Cy, we
have that X N (ﬂz":oCk) is nonempty, and we are done. We may thus assume
that Lx N Ly # Rx N Ry. Let y € Rx N Ry with —y ¢ Rx N Ry.

If y ¢ Fy, then, since § € Rx N Ry, for all z € X N dom(f) we have
limasoo f(z + ay) = —oc0 and z + ay € X for all @ > 0. Therefore, x + ay €
XN (ﬂzo:OCk) for sufficiently large «, and we are done.

We may thus assume that y € Fy, so that y € Rx N Fy and therefore also
Yy C Ly, in view of the hypothesis Rx N Fy C Ly. Since —y ¢ Rx N Ry, it follows
that —y ¢ Rx. Thus, we have

y € Rx, -y¢ Rx, YELy.
From this point onward, the proof that X N (m,;“;ock) # (J is nearly identical to
the corresponding part of the proof of Prop. 1.5.6.
Using Prop. 1.5.1(e), it is seen that the recession cone of X is

Rx ={y|djy<0, j=1,...,r},

so the fact § € Rx implies that

while the fact —7 ¢ Rx implies that the index set
J ={j | a;7 < 0}
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is nonempty.
Consider a sequence {zx} such that

rr € XNCr, VEk.

We then have
a;xkgbj, Vi=1,...,r, Vk.

We may assume that

a;xk<bj, Vjed Vk;
otherwise we can replace zx with zx + 7, which belongs to X N C}, (since § € Rx
andy € Ly).

Suppose that for each k, we start at x; and move along —7% as far as possible
without leaving the set X, up to the point where we encounter the vector

Ty = o1 — B,
where [y is the positive scalar given by

Br = min ka,r b

jes  ay
Since a}y = 0 for all j ¢ J, we have ajZTy = ajazx for all j ¢ J, so the number
of linear inequalities of X that are satisfied by T as equalities is strictly larger
than the number of those satisfied by x). Thus, there exists jo € J such that
aj Tk = by, for all k in an infinite index set K C {0,1,...}. By reordering the

o
linear inequalities if necessary, we can assume that jo = 1, i.e.,

a’lfk = by, a'lmk < by, Vkek.
To apply the induction hypothesis, consider the set

X ={z|diz = b1, a;-atgbj, j=2,...,7},
and note that {ZTx}x C X. Since T = zp — Bry with z, € C and § € Ly,
we have T, € Cj for all k, implying that T, € X N Cy for all k € IC.iThus,
X NCy # O for all k. Because thejets C) are nested, so are the sets X N Cj.
Furthermore, the recession cone of X is

Ry ={ylaly=0, ajy <0, j=2,...,7},
which is contained in Rx, so that

RyﬂFf C RxﬂFf C Lf.

Finally, to show that the dimension of X is smaller than the dimension of X, note

that the set { | aiz = b1} contains X, so that a; is orthogonal to the subspace
S% that is parallel to aff(X). Since a1y < 0, it follows that § ¢ S%. On the
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other hand, 7 belongs to Sx, the subspace that is parallel to aff (X)), since for all
k, we have x; € X and zr — O,y € X.

Based on the preceding, we can use the induction hypothesis to assert
that the intersection X N (ﬁZOZOCk) is nonempty. Since X C X, it follows that
XN (ﬂzo:OCk) is nonempty.

(b) We will use part (a) and the line of proof of Prop. 2.3.3 [condition (2)]. Denote

f7 = inf f(z),

rzeX
and assume without loss of generality that f* = 0 [otherwise, we replace f(z) by

f(x)— f*]. We choose a scalar sequence {wy} such that wy | f*, and we consider
the (nonempty) level sets

Cr = {x eR" | f(x) < wk}.

The set X NCY, is nonempty for all k. Furthermore, by assumption, Rx NFy C Ly
and X is specified by linear inequality constraints. By part (a), it follows that
XN (ﬁi‘;OCk), the set of minimizers of f over X, is nonempty.

(c) Let X =R and f(z) = . Then

Fr=L;={y|y=0},

so the condition Rx N Fy C Ly is satisfied. However, we have inf,ex f(z) = —o0
and f does not attain a minimum over X. Note that Prop. 2.3.3 [under condition
(2)] does not apply here, because the relation Rx N Ry C Ly is not satisfied.

2.7 (Bidirectionally Flat Functions)

The purpose of the exercise is to provide refinements of the results involving
convex quadratic functions and relating to set intersections, closedness under lin-
ear transformations, existence of optimal solutions, and closedness under partial
minimization [cf. Props. 1.5.7, 1.5.8(c), 1.5.9, 2.3.3, and 2.3.9].

Let f: R"™ — (—o00,00] be a closed proper convex function, and let Fy be
the set of directions along which f is flat (cf. Exercise 2.6). We say that f is
bidirectionally flat if Ly = Fy (i.e., if it is flat in some direction it must be flat,
and hence constant, in the opposite direction). Note that every convex quadratic
function is bidirectionally flat. More generally, a function of the form

f(x) = h(Az) + 'z,

where A is an m X n matrix and h : R™ — (—o0, 00| is a coercive closed proper
convex function, is bidirectionally flat. In this case, we have

Ly=F;={y|Ay=0,cy =0}

Let g; : R" — (—o00,00],  =0,1,...,r, be closed proper convex functions
that are bidirectionally flat.
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(a)

Assume that each vector x such that go(x) < 0 belongs to N;_;dom(g;),
and that for some scalar sequence {wy} with wy | 0, the set

Ck: {$|g0(1}) kaﬁgj(x) §07.j:17"'7r}

is nonempty for each k. Show that the intersection N7 oC} is nonempty.

Assume that each g;, j =1,...,r, is real-valued and the set
C= {1:|g](;r:) §0,j:1,...,r}

is nonempty. Show that for any m x n matrix A, the set AC is closed.

Show that a closed proper convex function f : R" — (—o0,00] that is
bidirectionally flat attains a minimum over the set C of part (b), provided
that infzec f(z) is finite.

Let F : R"™ — (—o00, o0] be a function of the form

F(z,2) = F(z,z) if (z,2) € C,
’ o0 otherwise,

where I is a bidirectionally flat real-valued convex function on R"™™ and
C is a subset of R"™™ that is specified by r convex inequalities involving
bidirectionally flat real-valued convex functions on R"*™ [cf. part (b)].
Consider the function
p(z) = inf F(z,z2).
zeR™

Assume that there exists a vector T € R™ such that —oo < p(Z) < co. Show
that p is convex, closed, and proper. Furthermore, for each € dom(p),
the set of points that attain the infimum of F(x,-) over R™ is nonempty.

Solution: (a) As a first step, we will show that either N2, Cy # @ or else

there exists j € {1,...,r} and y € Nj=oRg; With y & Fy_.
J

Let T be a vector in Cp, and for each k > 1, let xx be the projection of Z on
Ck. If {z} is bounded, then since the g; are closed, any limit point & of {x}

satisfies

g; () < liminf g; (zx) <0,
k—o0

so & € Ny, Cr, and NZ21Cr # @. If {x1} is unbounded, let y be a limit point
of the sequence {(mk —Z)/lzk —Z|| | z1 # E}, and without loss of generality,

assume that

Tk — T
lze — 2|

We claim that
Yy (S m;zoRg]. .
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Indeed, if for some j, we have y ¢ jo7 then there exists o > 0 such that
9; (T + ay) > wo. Let
T — T

2k =T+ oar———,

|z — ||

and note that for sufficiently large k, zj lies in the line segment connecting T and
Zk, so that ¢g1(zx) < wo. On the other hand, we have z, — T + ay, so using the
closedness of g;, we must have

9;(T + ay) < liminf g (2x) < wo,
k—oco

which contradicts the choice of « to satisfy g;(Z + ay) > wo.

Ify € ﬁ;zong, since all the g; are bidirectionally flat, we have y € ﬁgzong.
If the vectors T and xg, k > 1, all lie in the same line [Which must be the line
{T+ ay | @ € R}], we would have g;(ZT) = g;(xx) for all k and j. Then it follows
that T and zj all belong to Ny, Ck. Otherwise, there must be some x, with
k large enough, and such that, by the Projection Theorem, the vector x;, — ay
makes an angle greater than 7/2 with x; — Z. Since the g; are constant on the
line {zx — ay | @ € R}, all vectors on the line belong to Cjx, which contradicts
the fact that xj is the projection of T on C.

Finally, if y € Ry, but y ¢ Fy,, we have go(z + ay) = —oo as o — 00, 50
that NFZ,Cx # @. This completes the proof that

N2 Cr = J = there exists j € {1,...,r} and y € Mj=oRy; with y & Fy_.
j

(1)

We now use induction on r. For r = 0, the preceding proof shows that

N2 Cr # J. Assume that N2, Cy # O for all cases where r < 7. We will show

that N2, C, # @ for r =T. Assume the contrary. Then, by Eq. (1), there exists
je{l,...,r}and y € Nj=oRy; with y ¢ ng,_. Let us consider the sets

6’9:{xlgo(x)gwk,gj(m)govsz77'7.775.7}

Since these sets are nonempty, by the induction hypothesis, N3 ,Cx # @. For
any & € Ny2,C, the vector & + ay belongs to N, Cy for all & > 0, since
y € ﬂ;:Ojo, Since go(Z) < 0, we have & € dom(g?)7 by the hypothesis regarding
the domains of the g;. Since y € ﬁ;:ojo with y ¢ F}" it follows that g;(i: +

ay) — —oo as a — oo. Hence, for sufficiently large o, we have g5(Z + ay) < 0,
so T + ay belongs to Ny~ Ck.

Note: To see that the assumption
{ | go(z) <0} c Nj_ dom(g;)
is essential for the result to hold, consider an example in R2. Let
go(z1, x2) = x1, g1(z1,22) = ¢(x1) — 22,

where the function ¢ : R — (—o0,00] is convex, closed, and coercive with
dom(¢) = (0,1) [for example, ¢(t) = —Int —In(1 —¢) for 0 < ¢t < 1]. Then
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it can be verified that C, # @ for every k and sequence {wy} C (0,1) with
wg | 0 [take z1 | 0 and z2 > ¢(z1)]. On the other hand, we have N;2,C) = .
The difficulty here is that the set {:c | go(z) < 0}, which is equal to

{z |21 <0, 22 € R},
is not contained in dom(gi), which is equal to
{z]0<21 <1, 22 € R}

(in fact the two sets are disjoint).

(b) We will use part (a) and the line of proof of Prop. 1.5.8(c). In particular,
let {yx} be a sequence in AC converging to some § € R". We will show that
ye AC. We let

go(x) = Az —7I*,  we = |y — 77,

and
Ck = {x|go(x) kan g](‘r) §07 .] = 17"'7T}'

The functions involved in the definition of C are bidirectionally flat, and each C
is nonempty by construction. By applying part (a), we see that the intersection
NiheoCk is nonempty. For any z in this intersection, we have Ax = ¥ (since
Yk — Y), showing that g€ AC.

(c) We will use part (a) and the line of proof of Prop. 2.3.3 [condition (3)]. Denote

fr=inf f(z),

zeC

and assume without loss of generality that f* = 0 [otherwise, we replace f(z) by
f(z)— f*]. We choose a scalar sequence {wy} such that wy | f*, and we consider
the (nonempty) sets

Cr = {x eR"| fz) < wg, gi(z) <0, 5= 1,...,r}.
By part (a), it follows that N;2,Cy, the set of minimizers of f over C, is nonempty.
(d) Use the line of proof of Prop. 2.3.9.
2.8 (Minimization of Quasiconvex Functions)
We say that a function f : R" — (—o0, 00] is quasiconvez if all its level sets
sz{x‘f(w)S'Y}

are convex. Let X be a convex subset of R, let f be a quasiconvex function such

that X Ndom(f) # &, and denote f* = inf.cx f(z).
(a) Assume that f is not constant on any line segment of X, i.e., we do not
have f(z) = c for some scalar ¢ and all  in the line segment connecting
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any two distinct points of X. Show that every local minimum of f over X
is also global.

(b) Assume that X is closed, and f is closed and proper. Let I' be the set of
all v > f*, and denote
Ry = NyerRy, Ly =MyerLy,

where R, and L., are the recession cone and the lineality space of V,,
respectively. Use the line of proof of Prop. 2.3.3 and Exercise 2.7 to show
that f attains a minimum over X if any one of the following conditions
holds:

(1) RxNRy=LxNLy.
(2) Rx N Ry C Ly, and the set X is of the form

X:{x|a;x§bj,j:1,...,r},

where a; are vectors in R" and b; are scalars.

(3) f* > —oo, the set X is of the form
X = {x | 2'Qjx + djz + b; <0, j:l,.,.,r},

where Q; are symmetric positive semidefinite n x n matrices, a; are
vectors in R", and b; are scalars, and for some 7 € I" and all v € T’
with v <7, the level sets V,, are of the form

V, = {x | 2'Qx + 'z +b(y) < O},

where @ is a symmetric positive semidefinite n X n matrix, c is a
vector in 1", and b(y) is a monotonically nondecreasing function of
7, such that the set {b(v) | ff<y< 7} is bounded.

(4) f* > —o0, the set X is of the form
X={a]g@=<0,j=1...r1},

and for some ¥ € I' and all v € I" with v <7, the level sets V, are of
the form

Vo = {z | go(z) + b(v) < 0},

where g;, 7 =0,1,...,r, are real-valued, convex, and bidirectionally
flat functions (cf. Exercise 2.7), and b(y) is a monotonically nonde-
creasing function of 7, such that the set {b(v) | <y < 7} is
bounded.

Solution: (a) Let 2* be a local minimum of f over X and assume, to arrive at
a contradiction, that there exists a vector T € X such that f(Z) < f(z*). Then,
7 and z* belong to the set X N V,«, where v* = f(z). Since this set is convex,
the line segment connecting * and T belongs to the set, implying that

flaZ+ (1—a)z") < f(z"), Vaeclol] (1)
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For each integer k > 1, there exists an oy, € (0, 1/k] such that
f(akf +(1- ozk)x*) < f(z"), for some ay € (0,1/k]; (2)

otherwise, in view of Eq. (1), we would have that f(z) is constant for = on the
line segment connecting x* and (1/k)T + (1 — (l/k)):r* Equation (2) contradicts
the local optimality of z*.

(b) We consider the level sets
v, = {a| f(z) <7}

for v > f*. Let {7"} be a scalar sequence such that v* | f*. Using the fact
that for two nonempty closed convex sets C' and D such that C' C D, we have
Rc C Rp, it can be seen that

Ry =NyerRy = ﬂiole,yk.
Similarly, Ly can be written as
Ly =NyerLl, = ﬁzozlL,yk,

Under each of the conditions (1)-(4), we show that the set of minima of f
over X, which is given by

is nonempty.

Let condition (1) hold. The sets X N Vw’“ are nonempty, closed, convex,
and nested. Furthermore, for each k, their recession cone is given by Rx N ka
and their lineality space is given by Lx N L_x. We have that

ﬂzozl(RX n R,yk) = Rx N Rf,

and
ﬁ?:l(LX n L,yk) = Lx ﬂLf,

while by assumption Rx N Ry = Lx N Ly. Then it follows by Prop. 1.5.5 that
X is nonempty.

Let condition (2) hold. The sets V_x are nested and the intersection XNV«
is nonempty for all k. We also have by assumption that Rx N Ry C Ly and X is
specified by linear inequalities. By Prop. 1.5.6, it follows that X™ is nonempty.

Let condition (3) hold. The sets V_x have the form

_ n ’ ’ k
Vie={zeR"|2'Qz+cz+b") <0}

In view of the assumption that b(vy) is bounded for v € (f*,7], we can consider
a subsequence {b(7¥)}x that converges to a scalar. Furthermore, X is specified
by convex quadratic inequalities, and the intersection X N Vﬂ{k is nonempty for
all k € K. By Prop. 1.5.7, it follows that X* is nonempty.

Similarly, under condition (4), the result follows using Exercise 2.7(a).
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2.9 (Partial Minimization)

(a) Let f: R™ = [—o00, 00] be a function and consider the subset of R™ ™" given
by
By = {(z,w) | f(z) <w}.

Show that E is related to the epigraph of f as follows:
E; Cepi(f) C cl(Ey).

Show also that f is convex if and only if Ey is convex.

(b) Let F: ™™ s [—00, 00| be a function and let

f(z) = inf F(z,z), zeR".

zeRM

Show that Ey is the projection of the set {(w, z,w) | F(z,z) < w} on the
space of (z,w).

(c) Use parts (a) and (b) to show that convexity of F' implies convexity of f
(cf. Prop. 2.3.5).

Solution: (a) The epigraph of f is given by

epi(f) = {(z,w) | f(z) <w}.

If (z,w) € Ey, then it follows that (z,w) € epi(f), showing that E; C epi(f).
Next, assume that (z,w) € epi(f), i.e., f(z) < w. Let {wr} be a sequence with
wg > w for all k , and wy — w. Then we have, f(z) < wy for all k, implying
that (z,wy) € Ef for all k, and that the limit (z,w) € cl(Ey). Thus we have the
desired relations,

E; Cepi(f) C cl(Ey). (2.5)

We next show that f is convex if and only if Ey is convex. By definition, f
is convex if and only if epi(f) is convex. Assume that epi(f) is convex. Suppose,
to arrive at a contradiction, that Ey is not convex. This implies the existence of
vectors (z1,w1) € Ef, (2, w2) € Ey, and a scalar o € (0,1) such that o(z1,w1)+
(1 — a)(z2,w2) ¢ Ey, from which we get

f(am +(1- a)xg) > awr + (1 — a)ws

(2.6)
>af(z1) + (1 - a)f(z2),

where the second inequality follows from the fact that (x1,w1) and (2, w2) belong
to Ey. We have (m,f(a:l)) € epi(f) and (xg,f(xg)) € epi(f). In view of the

convexity assumption of epi(f), this yields oz(xl, f(;tl)) +(1-a) (acg, f(xg)) €
epi(f) and therefore,
flazy + (1 — a)z2) < af(z1) + (1 — a)f(22).
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Combined with Eq. (2.6), the preceding relation yields a contradiction, thus
showing that E; is convex.

Next assume that E; is convex. We show that epi(f) is convex. Let
(z1,w1) and (z2,w2) be arbitrary vectors in epi(f). Consider sequences of vectors
(z1,w}) and (z2,w5) such that wf > wi, w > ws, and w¥ — wi, w§ —
wa. Tt follows that for each k, (x1,w¥) and (x2,wk) belong to Ef. Since E; is
convex by assumption, this implies that for each « € [0, 1] and all k, the vector
(aml + (1 — a)z2, awf + (1 — a)w’g) € Ey, i.e., we have for each k

f(axl +(1-— a)xg) < owt + (1 — a)wh.
Taking the limit in the preceding relation, we get
f(oz:m +(1- a)xz) <aw + (1 — @)ws,

showing that (aazl +(1—a)ze, cwi +(1 —Oé)’wg) € epi(f). Hence epi(f) is convex.
(b) Let T denote the projection of the set {(:c7 z,w) | F(z,z) < w} on the space
of (z,w). We show that E; = T. Let (z,w) € Ey. By definition, we have

dei;n F(z,z) < w,

which implies that there exists some zZ € R™ such that
F(z,%z) < w,

showing that (z,Z, w) belongs to the set {(w, z,w) | F(z,z) < w}, and (z,w) € T.
Conversely, let (z,w) € T. This implies that there exists some z such that
F(z,z) < w, from which we get

f(@)= inf F(z,z) <w,
zZER™

showing that (z,w) € Ef, and completing the proof.

(c¢) Let F be a convex function. Using part (a), the convexity of F' implies that
the set {(x,z,w) | F(z,2) < w} is convex. Since the projection mapping is
linear, and hence preserves convexity, we have, using part (b), that the set Ey is
convex, which implies by part (a) that f is convex.

2.10 (Partial Minimization of Nonconvex Functions)

Let f: R" X R™ — (—o00,00] be a closed proper function. Assume that f has
the following property: for all u* € R™ and v € R, there exists a neighborhood
N of u* such that the set {(Jc,u) | uw €N, f(z,u) < fy} is bounded, i.e., f(z,u)

is level-bounded in x locally uniformly in u. Let

p(u) = inf f(z,u), P(u) = argmin f(z,u), ue RN
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(a) Show that the function p is closed and proper. Show also that for each
u € dom(p), the set P(u) is nonempty and compact.

(b) Consider the following weaker assumption: for all v € ™ and v € R,
the set {;r | flz,u) < *y} is bounded. Show that this assumption is not
sufficient to guarantee the closedness of p.

(¢) Let {ur} be a sequence such that ur — u* for some u* € dom(p), and
assume that p(ug) — p(u*) (which holds when p is continuous at u*). Let
also zp € P(u) for all k. Show that the sequence {z} is bounded and all
its limit points lie in P(u™).

(d) Show that a sufficient condition for p to be continuous at u* is the existence
of some z* € P(u") such that f(z*,-) is continuous at u™.

Solution: (a) For each u € R™, let fu(x) = f(x,u). There are two cases; either
w = 00, or fy is lower semicontinuous with bounded level sets. The first case,
which corresponds to p(u) = oo, can’t hold for every u, since f is not identically
equal to co. Therefore, dom(p) # ¢J, and for each u € dom(p), we have by
Weierstrass’ Theorem that p(u) = inf, f.(z) is finite [i.e., p(u) > —oo for all
u € dom(p)] and the set P(u) = argmin, f,(z) is nonempty and compact.
We now show that p is lower semicontinuous. By assumption, for all w €
R™ and for all & € R, there exists a neighborhood N of @ such that the set
{(m,u) | flz,u) < a} N (R™ x N) is bounded in ®" x R™. We can choose a
smaller closed set N containing u such that the set {(:E,'LL) | f(z,u) < a} N
(R™ x N) is closed (since f is lower semicontinuous) and bounded. In view of the
assumption that f, is lower semicontinuous with bounded level sets, it follows
using Weierstrass’ Theorem that for any scalar «,

p(u) < a if and only if there exists x such that f(z,u) < a.

Hence, the set {u | p(u) < a} N N is the image of the set {(Jz,u) | flz,u) <
a} N (R™ x N) under the continuous mapping (z,u) — u. Since the image of a
compact set under a continuous mapping is compact [cf. Prop. 1.1.9(d)], we see
that {u | p(u) < a} N N is closed.

Thus, each w € R™ is contained in a closed set whose intersection with
{u | p(u) < oz} is closed, so that the set {u | p(u) < a} itself is closed for all
scalars a. It follows from Prop. 1.2.2 that p is lower semicontinuous.

(b) Consider the following example

_ min{|x—1/u\,1+\x|} ifu#0,zeR,
f@,w) {1+|:c| ifu=0,z¢€R,

where 2 and u are scalars. This function is continuous in (z,u) and the level sets
are bounded in x for each u, but not locally uniformly in wu, i.e., there does not
exists a neighborhood N of u = 0 such that the set {(oc, u)|u €N, flz,u) < a}
is bounded for some a > 0.

For this function, we have

0 ifuo0,
p(“)*{l if u = 0.
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Hence, the function p is not lower semicontinuous at 0.

(c) Let {ur} be a sequence such that uy — u* for some u* € dom(p), and also
p(ur) = p(u™). Let a be any scalar such that p(u*) < «. Since p(ur) — p(u*),
we obtain

flar,ur) = puk) < o, (2.7)

for all k sufficiently large, where we use the fact that z, € P(ux) for all k. We
take N to be a closed neighborhood of u* as in part (a). Since ux — u*, using Eq.
(2.7), we see that for all k sufficiently large, the pair (xx,ux) lies in the compact
set

{(@,u) | f@,u) < a} N (R x N,

Hence, the sequence {zx} is bounded, and therefore has a limit point, call it z*.
It follows that

(z*,u") € {(m,u) | f(z,u) < a}.

Since this is true for arbitrary o > p(u*), we see that f(z*,u") < p(u™), which,
by the definition of p(u), implies that z* € P(u™).

(d) By definition, we have p(u) < f(z*,u) for all v and p(u*) = f(z*,u"). Since
f(z*,-) is continuous at u*, we have for any sequence {ux} converging to u*

lim sup p(ux) < limsup f(2", ur) = f(2*,u”) = p(u’),

k—o0 k— o0
thereby implying that p is upper semicontinuous at u*. Since p is also lower

semicontinuous at u* by part (a), we conclude that p is continuous at u™.

2.11 (Projection on a Nonconvex Set)

Let C be a nonempty closed subset of ™.
(a) Show that the distance function dec(z) : R™ — R, defined by

d — inf |lw—
c(x) ﬁam x|,

is a continuous function of x.

(b) Show that the projection set Pc(z), defined by

Pc(z) = argmin ||lw — x|,
weC

is nonempty and compact.

(c) Let {zx} be a sequence that converges to a vector z* and let {wx} be a
sequence with wy € Po(zy). Show that the sequence {wg} is bounded and
all its limit points belong to the set Pc(z™).

Solution: We define the function f by

_Jllw—z| ifweC,
fw,z) {m if w ¢ C.
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With this identification, we get

de(z) = inf f(w, x), Pc(z) = argmin f(w, x).

We now show that f(w,x) satisfies the assumptions of Exercise 2.10, so that we
can apply the results of this exercise to this problem.

Since the set C is closed by assumption, it follows that f(w,z) is lower
semicontinuous. Moreover, by Weierstrass’ Theorem, we see that f(w,z) > —oo
for all x and w. Since the set C' is nonempty by assumption, we also have that
dom(f) is nonempty. It is also straightforward to see that the function || - ||,
and therefore the function f, satisfies the locally uniformly level-boundedness
assumption of Exercise 2.10.

(a) Since the function ||-|| is lower semicontinuous and the set C' is closed, it follows
from Weierstrass’ Theorem that for all * € ", the infimum in inf,, f(w,z) is
attained at some w*, i.e., P(z*) is nonempty. Hence, we see that for all z* € R",
there exists some w* € P(z*) such that f(w",-) is continuous at z*, which
follows by continuity of the function || - ||. Hence, the function f(w,x) satisfies
the sufficiency condition given in Exercise 2.10(d), and it follows that d¢(z)
depends continuously on =z.

(b) This part follows from part (a) of Exercise 2.10.
(c) This part follows from part (c) of Exercise 2.10.

2.12 (Convergence of Penalty Methods [RoW98])

Let f : R" — (—o0,00] be a closed proper function, let F' : " — R™ be a
continuous function, and let D C R™ be a nonempty closed set. Consider the
problem

minimize f(x)

subject to F(z) € D.

Consider also the following approximation of this problem:

minimize f(z)+ G(F(:r), c)

: n (Pe)
subject to x € R",

with ¢ € (0, 00), where the function 6 : ™ x (0,00) — (—o0, 0] is lower semi-

continuous, monotonically increasing in ¢ for each u € R™, and satisfies

lim 6(u,c) =
c—r 00

{0 ifue D,
oo ifué¢ D.

Assume that for some ¢ € (0, 00) sufficiently large, the level sets of the function
flx)+6 (F(m),E) are bounded, and consider any sequence of parameter values
¢k > ¢ with ¢ — 0o. Show the following;:

(a) The sequence of optimal values of the approximate problems (P,

Ck) con-
verges to the optimal value of the original problem.
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(b) Any sequence {zx}, where z is an optimal solution of the approximate
problem (P, ), is bounded and each of its limit points is an optimal solution
of the original problem.

Solution: (a) We set s = 1/¢ and consider the function g(z,s) : " x R —
(—o0, 00| defined by ~
9(z,5) = f(2) +0(F(2),5),

with the function 6 given by

5 O(u,1/s) if s € (0,3],
O(u,s) =4 6p(u) if s =0,
%) ifs<0ors>s,

where

0 ifueD,
0p(u) = {oo if u ¢ D.
We identify the original problem with that of minimizing ¢g(z,0) in z € R", and
the approximate problem for parameter s € (0,3] with that of minimizing g(z, s)
in x € R" where s = 1/c. With the notation introduced in Exercise 2.10, the
optimal value of the original problem is given by p(0) and the optimal value of
the approximate problem is given by p(s). Hence, we have

p(s) = inf g(z,s).
zeERM

We now show that, for the function g(z, s), the assumptions of Exercise 2.10 are

satisfied.

We have that g(z,s) > —oo for all (z,s), since by assumption f(z) > —oco
for all z and 0(u, s) > —oo for all (u,s). The function 6 is such that 6(u,s) < oo
at least for one vector (u, s), since the set D is nonempty. Therefore, it follows
that g(x,s) < oo for at least one vector (x,s), unless g = oo, in which case all
the results of this exercise follow trivially.

We now show that the function 0 is lower semicontinuous. This is easily
seen at all points where s # 0 in view of the assumption that the function 0 is
lower semicontinuous on R™ x (0, 00). We next consider points where s = 0. We
claim that for any a € R,

{u | 6(u,0) < a} = ﬂ {u | B(u,s) < a}. (2.8)

5€(0,3]
To see this, assume that 0(u,0) < a. Since O(u, s) T 0(u,0) as s | 0, we have
O(u, s) < o for all s € (0,3]. Conversely, assume that 6(u, s) < « for all s € (0,3].
By definition of 6, this implies that
0(u,1/s) < a, Vs € (0,3].

Taking the limit as s — 0 in the preceding relation, we get

lir% 0(u,1/s) = 6p(u) = O(u,0) < a,
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thus, proving the relation in (2.8). Note that for all @ € R and all s € (0, 3], the
set

{u | O(u, s) < a} = {u | O(u,1/s) < a},

is closed by the lower semicontinuity of the function 6. Hence, the relation
in Eq. (2.8) implies that the set {u | 6(u,0) < a} is closed for all a € R,
thus showing that the function 6 is lower semicontinuous everywhere (cf. Prop.
1.2.2). Together with the assumptions that f is lower semicontinuous and F' is
continuous, it follows that g is lower semicontinuous.

Finally, we show that g satisfies the locally uniform level boundedness
property given in Exercise 2.10, i.e., for all s* € R and for all « € R, there
exists a neighborhood N of s* such that the set {(m,s) | s € N,g(z,s) < a} is
bounded. By assumption, we have that the level sets of the function g(x,s) =
f(x) —&—é(F(z), 1/§) are bounded. The definition of §, together with the fact that

0(u, s) is monotonically increasing as s | 0, implies that g is indeed level-bounded
in z locally uniformly in s.

Therefore, all the assumptions of Exercise 2.10 are satisfied and we get
that the function p is lower semicontinuous in s. Since é(u, s) is monotonically
increasing as s | 0, it follows that p is monotonically nondecreasing as s | 0. This
implies that

p(s) — p(0), as s | 0.

Defining s, = 1/¢y, for all k, where {c } is the given sequence of parameter values,
we get
p(sk) — p(0),

thus proving that the optimal value of the approximate problem converges to the
optimal value of the original problem.

(b) We have by assumption that sy — 0 with z € Py /5, . It follows from part (a)
that p(sx) — p(0), so Exercise 2.10(c) implies that the sequence {zx} is bounded
and all its limit points are optimal solutions of the original problem.

2.13 (Approximation by Envelope Functions [RoW98|)

Let f: R™ — (—00,00] be a closed proper function. For a scalar ¢ > 0, define
the corresponding envelope function e.f and the proximal mapping P.f by

eof () = int { w) + 5w — o}

Pef(z) = axgmin { f(w) + -l — o]*}.

Assume that there exists some ¢ > 0 with e.f(z) > —oo for some z € R". Let
¢y be the supremum of the set of all such ¢. Show the following:

(a) For every c € (0,cy), the set P.f(z) is nonempty and compact, while the
value e.f(zx) is finite and depends continuously on (z,c¢) with

ecf(x) 1 f(z) for all z, as ¢ 0.
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(b) Let {wx} be a sequence such that wy € P, f(xx) for some sequences {x}
and {cx} such that z;, — 2™ and ¢, — ¢* € (0,¢f). Then {ws} is bounded
and all its limit points belong to the set P.x f(x*).

[Note: The approximation e. f is an underestimate of the function f, i.e., e. f(z) <
f(z) for all z € R". Furthermore, e.f is a real-valued continuous function,
whereas f itself may only be extended real-valued and lower semicontinuous.]

Solution: (a) We fix a c¢o € (0,cy) and consider the function

fw) + (5)lw =zl if ¢ € (0, co],
h(w,z,¢) = f(z) ifc=0and w =z,
00 otherwise.

We consider the problem of minimizing h(w,z,c) in w. With this identification
and using the notation introduced in Exercise 2.10, for some ¢ € (0, ¢p), we obtain

6Cf(x) = p(ZC,C) = ll'lf h(w,x, C)?

w

and
P.f(z) = P(x,c) = argmin h(w, z, c).

We now show that, for the function h(w, z, ¢), the assumptions given in Exercise
2.10 are satisfied.

We have that h(w,z,c) > —oo for all (w, z, ¢), since by assumption f(z) >
—oo for all z € R™. Furthermore, h(w, z,c) < oo for at least one vector (w,z, ¢),
since by assumption f(z) < oo for at least one vector =z € X.

We next show that the function h is lower semicontinuous in (w, z, ¢). This
is easily seen at all points where ¢ € (0, co] in view of the assumption that f is
lower semicontinuous and the function | - ||* is lower semicontinuous. We now
consider points where ¢ = 0 and w # z. Let {(wk, Tk, ck)} be a sequence that
converges to some (w, z,0) with w # z. We can assume without loss of generality
that wg # xx for all k. Note that for some k, we have

%) if ¢, =0,
h(we, Ty ) = 4 ) + (5o llwie = zxl|*if e > 0.

Taking the limit as k — oo, we have

lim h(wg, g, ck) = 00 > h(w, z,0),
k—oo

since w # x by assumption. This shows that h is lower semicontinuous at points
where ¢ = 0 and w # x. We finally consider points where ¢ = 0 and w = z. At
these points, we have h(w,z,c) = f(z). Let {(wk,xk,ck)} be a sequence that
converges to some (w, z,0) with w = z. Considering all possibilities, we see that
the limit inferior of the sequence {h(wk,xk, ck)} cannot be less than f(x), thus
showing that h is also lower semicontinuous at points where ¢ = 0 and w = z.
Finally, we show that h satisfies the locally uniform level-boundedness prop-
erty given in Exercise 2.10, i.e., for all (z*,c¢") and for all @ € R, there exists a
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neighborhood N of (z*,c*) such that the set {(ww,c) | (z,¢) € N,h(w,z,c) <
a} is bounded. Assume, to arrive at a contradiction, that there exists a sequence
{(wk,mk, ck)} such that

h(wg, Tk, k) < a < 00, (2.9)

for some scalar a, with (zx, cx) — (z*,¢"), and |Jwg|| = oo. Then, for sufficiently
large k, we have wy # xk, which in view of Eq. (2.9) and the definition of the
function h, implies that ¢, € (0, co] and

1
J(wx) + Euwk —z|? <o,

for all sufficiently large k. In particular, since cx < co, it follows from the pre-
ceding relation that
fwy) + LHwk —a]* < o (2.10)
200
The choice of ¢y ensures, through the definition of cf, the existence of some
c1 > ¢, some T € R", and some scalar 8 such that

1 _
fw) > —o-llw =7+ 8, Vw
C1
Together with Eq. (2.10), this implies that
1 —2 1 2
N _ - _ <a—
2o, 1wk =217+ 5 llws — 2" < o = B,

for all sufficiently large k. Dividing this relation by ||wk||* and taking the limit

as k — 0o, we get ) )
_261 + 260 S O,
from which it follows that ¢i < ¢o. This is a contradiction by our choice of ¢;.
Hence, the function h(w,z, c¢) satisfies all the assumptions of Exercise 2.10.
By assumption, we have that f(Z) < oo for some T € R". Using the
definition of e.f(z), this implies that

. 1
ecf (@)= int { f(w) + 5w ~ o}
< f@+ %Hf—wﬂz <00, VaeR

where the first inequality is obtained by setting w = T in f(w) + 5
Together with Exercise 2.10(a), this shows that for every ¢ € (0,co) and all
x € RN", the function e. f(z) is finite, and the set P, f(z) is nonempty and compact.
Furthermore, it can be seen from the definition of h(w, z, ¢), that for all ¢ € (0, o),
h(w, z, c) is continuous in (z, c). Therefore, it follows from Exercise 2.10(d) that
for all ¢ € (0,co), ecf(x) is continuous in (z,c). In particular, since e.f(x) is a
monotonically decreasing function of ¢, it follows that

ecf(z) =p(z,c) T p(z,0) = f(z), VzasclO.

This concludes the proof for part (a).
(b) Directly follows from Exercise 2.10(c).
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2.14 (Envelopes and Proximal Mappings under Convexity [RoW98])

Let f: ™ — (—o00,00] be a closed proper convex function. For ¢ > 0, consider
the envelope function e.f and the proximal mapping P.f (cf. Exercise 2.13).
Show the following:

(a) The supremum of the set of all ¢ > 0 such that e.f(z) > —oo for some
xz e R", is oco.

(b) The proximal mapping P.f is single-valued and is continuous in the sense
that P.f(x) — P f(z*) whenever (z,c) — (z*, ") with ¢* > 0.

(¢) The envelope function e.f is convex and smooth, and its gradient is given
by

1
Veof(z) = - (m — Pcf(x)).

Note: The envelope function e, f is smooth, regardless of whether f is nonsmooth.

Solution: We consider the function g. defined by

9ol w) = J(w) + o |lw o],

In view of the assumption that f is lower semicontinuous, it follows that g.(z, w)
is lower semicontinuous. We also have that g.(z,w) > —oo for all (z,w) and
ge(z,w) < oo for at least one vector (x,w). Moreover, since f(z) is convex by
assumption, g.(x,w) is convex in (z,w), even strictly convex in w.

Note that by definition, we have

ecf(x) = inf ge(z, w),

P.f(z) = arg min gc(z, w).

(a) In order to show that cy is oo, it suffices to show that e.f(0) > —oo for all
¢ > 0. This will follow from Weierstrass’ Theorem, once we show the boundedness
of the level sets of gc(0,-). Assume the contrary, i.e., there exists some a € R
and a sequence {x} such that ||zx| — oo and

1
9c(0,x) = f(zx) + %\IIkHQ <a, Vk (2.11)

Assume without loss of generality that ||zx| > 1 for all k. We fix an xg with

f(zo) < co. We define
1

=7 €(01),
[l

Tk
and
T = (1 — Tk)xo + TkTk.

Since ||zk|| — oo, it follows that 7, — 0. Using Eq. (2.11) and the convexity of
f, we obtain

f@e)< (1= 7) f(@o) + 70 f ()
(1= 78)f (o) + mer = 5 e

IA
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Taking the limit as & — oo in the above equation, we see that f(ZTr) — —oo. It
follows from the definitions of 74, and ) that

[zl < 111 = 7rllllzoll + Il |zl

< ||zoll + 1.

Therefore, the sequence {Zx} is bounded. Since f is lower semicontinuous, Weier-
strass’ Theorem suggests that f is bounded from below on every bounded subset
of R™. Since the sequence {Z } is bounded, this implies that the sequence f(Ty) is
bounded from below, which contradicts the fact that f(Zx) — —oo. This proves
that the level sets of the function g.(0,-) are bounded. Therefore, using Weier-
strass’ Theorem, we have that the infimum in e.f(0) = inf,, g.(0,w) is attained,
and e f(0) > —oo for every ¢ > 0. This shows that the supremum cy of all ¢ > 0,
such that e.f(z) > —oo for some z € R", is oo.

(b) Since the value ¢y is equal to co by part (a), it follows that e.f and P.f have
all the properties given in Exercise 2.13 for all ¢ > 0: The set P, f(x) is nonempty
and compact, and the function e. f(z) is finite for all z, and is continuous in (z, ¢).
Consider a sequence {wy} with wy € Pe, f(zx) for some sequences zx — z* and
¢k — ¢ > 0. Then, it follows from Exercise 2.13(b) that the sequence {wy}
is bounded and all its limit points belong to the set P.x f(z). Since g.(z,w) is
strictly convex in w, it follows from Prop. 2.1.2 that the proximal mapping P. f is
single-valued. Hence, we have that P, f(z) — P.x f(z*) whenever (z,c) — (z*,¢")
with ¢* > 0.

(c) The envelope function e, f is convex by Prop. 2.3.6 [since g.(z, w) is convex in
(z,w)], and continuous by Exercise 2.13. We now prove that it is differentiable.
Consider any point 7, and let w = P, f(Z). We will show that e.f is differentiable
at T with

(7 —w)

Ve f(Z) = -

Equivalently, we will show that the function h given by

@ —w)'

h(u) = ecf (T +u) —ecf(T) — (2.12)

c
is differentiable at 0 with Vh(0) = 0. Since w = P.f(Z), we have
ef (@) = f(w) + 5 [w 3]’
© a 2¢c ’

whereas 1
ecf(f-l-u)Sf(@)-l-%ﬂﬁ—(i-i-u)\ﬁ v u,

so that
1 _ 2 1. _ 0 1 _ 1 2
< — —_ — —_ —_ — — = — . 21
hu) < oo l@— @+l = o [T -3l - 2@ - @)= _[ul, Vu. (213)

Since e.f is convex, it follows from Eq. (2.12) that h is convex, and therefore,

0=h(0)=h (%u + %(—u)) < Sh(w) + Sh(-u)
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which implies that hA(u) > —h(—u). From Eq. (2.13), we obtain
1 2 1 2
Ch—w) > —— | — - _ =
M) 2 ol =l = ol Y
which together with the preceding relation yields

1,2
> —— .
hw) 2 —oflul?, Y

Thus, we have
bl < ool Vo

which implies that h is differentiable at 0 with VA(0) = 0. From the formula
for Ve.f(-) and the continuity of P.f(-), it also follows that e. is continuously
differentiable.

2.15

(a) Let Ci be a convex set with nonempty interior and C2 be a nonempty
convex set that does not intersect the interior of C'y. Show that there exists
a hyperplane such that one of the associated closed halfspaces contains Cs,
and does not intersect the interior of C;.

(b) Show by an example that we cannot replace interior with relative interior
in the statement of part (a).

Solution: (a) In view of the assumption that int(C}) and C> are disjoint and
convex [cf Prop. 1.2.1(d)], it follows from the Separating Hyperplane Theorem
that there exists a vector a # 0 such that
a'z1 < a'xo, YV z1 € int(Ch), VY z2 € Ch.

Let b = infs,ec, a’z2. Then, from the preceding relation, we have

a'z <b, vV z € int(Ch). (2.14)
We claim that the closed halfspace {z | a’z > b}, which contains C>, does not
intersect int(Ch).

Assume to arrive at a contradiction that there exists some Z1 € int(Ch)

such that a'z; > b. Since T, € int(C1), we have that there exists some ¢ > 0
such that Z1 4 ea € int(C4), and

a' (T1 + €a) > b+ €|al)® > b.
This contradicts Eq. (2.14). Hence, we have

int(C1) C {z | d'z < b}.
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(b) Consider the sets

Cr = {(z1,22) | 71 =0},
Ca = {(931@2) | z1 > 0, xoz1 > 1},

These two sets are convex and C? is disjoint from ri(C1), which is equal to C1. The
only separating hyperplane is the z2 axis, which corresponds to having a = (0, 1),
as defined in part (a). For this example, there does not exist a closed halfspace
that contains C but is disjoint from ri(C1).

2.16

Let C be a nonempty convex set in ", and let M be a nonempty affine set in
R™. Show that M Nri(C) = @ is a necessary and sufficient condition for the
existence of a hyperplane H containing M, and such that ri(C) is contained in
one of the open halfspaces associated with H.

Solution: If there exists a hyperplane H with the properties stated, the condition
M Nri(C) = O clearly holds. Conversely, if M Nri(C) = @, then M and C can
be properly separated by Prop. 2.4.5. This hyperplane can be chosen to contain
M since M is affine. If this hyperplane contains a point in ri(C'), then it must
contain all of C' by Prop. 1.4.2. This contradicts the proper separation property,
thus showing that ri(C) is contained in one of the open halfspaces.

2.17 (Strong Separation)

Let Cy and C>2 be nonempty convex subsets of R", and let B denote the unit
ball in R", B = {z | ||z|| < 1}. A hyperplane H is said to separate strongly C1
and Cs if there exists an € > 0 such that C; 4+ ¢B is contained in one of the open
halfspaces associated with H and C + €B is contained in the other. Show that:

(a) The following three conditions are equivalent.
(i) There exists a hyperplane separating strongly Cy and Co.
(ii) There exists a vector a € R" such that infzec, a'z > sup,cq, 'z
(iil) infe,ecy,egecy |1 — 22| >0, ie., 0 & cl(Ce — C1).
(b) If Cy and C- are disjoint, any one of the five conditions for strict separation,

given in Prop. 2.4.3, implies that C; and C2 can be strongly separated.

Solution: (a) We first show that (i) implies (ii). Suppose that C; and C3 can
be separated strongly. By definition, this implies that for some nonzero vector
ac R, be R, and € > 0, we have

Ci+eBC{x|adz>b},
Co+eB C {z|ad'z <b},
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where B denotes the closed unit ball. Since a # 0, we also have
inf{a'y |y € B} <0, sup{a'y | y € B} > 0.
Therefore, it follows from the preceding relations that
b<inf{a'z+ea'y|x€Cr,y€ B} <inf{a'z |z € Ci},

b>sup{a'z+ea'y |z € Cay € B} >sup{a'x |z € Ca}.

Thus, there exists a vector a € "™ such that

. ! !/
inf ax > sup a'z,
zeCy z€Cy

proving (ii).

Next, we show that (ii) implies (iii). Suppose that (ii) holds, i.e., there
exists some vector a € R™ such that

inf o'z > sup d'z, (2.15)
z€0] z€Cy

Using the Schwartz inequality, we see that

0 < inf a'z — sup d'z

zeCy z€Cy
= inf a'(wl — z2),
x1€CY, x9€Cy
< inf laf|f|z — 22|
z1€Cq, x9€Cy
It follows that
inf |lz1 — z2|| > 0,

z1€C1,22€C
thus proving (iii).

Finally, we show that (iii) implies (i). If (iii) holds, we have for some € > 0,

inf lz1 — z2]] > 2¢ > 0.
z1€C,x9€Co

From this we obtain for all z; € C1, all o € Cs, and for all y1, y2 with [jy1|| <€,

ly2ll < e,

(@1 +y1) = (22 + y2)l| = 21 — z2l = [l = [[g2]l >0,

which implies that 0 ¢ (Cy 4+ €B) — (C2 +€B). Therefore, the convex sets C +€B
and C5 + €B are disjoint. By the Separating Hyperplane Theorem, we see that
C1 4+ eB and C3 + eB can be separated, i.e., C1 + eB and C2 + €B lie in opposite
closed halfspaces associated with the hyperplane that separates them. Then,
the sets C1 + (¢/2)B and C> + (¢/2)B lie in opposite open halfspaces, which by
definition implies that C; and Cs can be separated strongly.
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(b) Since C: and C- are disjoint, we have 0 ¢ (C1 — C2). Any one of conditions
(2)-(5) of Prop. 2.4.3 imply condition (1) of that proposition (see the discussion
in the proof of Prop. 2.4.3), which states that the set C1 — C5 is closed, i.e.,

01(01 — 02) = 01 — 02.
Hence, we have 0 ¢ cl(C1 — C?3), which implies that

inf ||JZ1 — J,‘QH > 0.
z1€C,29€Co

From part (a), it follows that there exists a hyperplane separating C1 and Cs
strongly.

2.18

Let C1 and C3 be nonempty convex subsets of 8" such that Cs is a cone.

(a) Suppose that there exists a hyperplane that separates Ci and C> properly.
Show that there exists a hyperplane which separates C1 and C2 properly
and passes through the origin.

(b) Suppose that there exists a hyperplane that separates Ci and Cb strictly.
Show that there exists a hyperplane that passes through the origin such
that one of the associated closed halfspaces contains the cone C2 and does
not intersect C1.

Solution: (a) If C1 and C> can be separated properly, we have from the Proper
Separation Theorem that there exists a vector a # 0 such that

inf o'z > sup 'z, (2.16)
zeCy z€Cy
sup ¢’z > inf o'z (2.17)
zeCq z€Cy
Let
b= sup a'z. (2.18)
z€Cq

and consider the hyperplane
H={z]|dz=0}
Since C5 is a cone, we have
Mo’z =a' (\x) <b< oo, Vzely VA>O0.
This relation implies that o’z < 0, for all € Cs, since otherwise it is possible to
choose A large enough and violate the above inequality for some x € C2. Hence,

it follows from Eq. (2.18) that b < 0. Also, by letting A — 0 in the preceding
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relation, we see that b > 0. Therefore, we have that b = 0 and the hyperplane H
contains the origin.

(b) If Cy and C> can be separated strictly, we have by definition that there exists
a vector a # 0 and a scalar 8 such that

a'xs <B<a/x1, Vo1 €C1, Va2 e (. (2.19)
We choose b to be
b= sup a'z, (2.20)
zeCyo

and consider the closed halfspace
K ={z|dz <b},
which contains Ca. By Eq. (2.19), we have
b<B<du, vz e Ch,

so the closed halfspace K does not intersect C'.

Since Cs is a cone, an argument similar to the one in part (a) shows that
b = 0, and hence the hyperplane associated with the closed halfspace K passes
through the origin, and has the desired properties.

2.19 (Separation Properties of Cones)

Define a homogeneous halfspace to be a closed halfspace associated with a hyper-
plane that passes through the origin. Show that:

(a) A nonempty closed convex cone is the intersection of the homogeneous
halfspaces that contain it.

(b) The closure of the convex cone generated by a nonempty set X is the
intersection of all the homogeneous halfspaces containing X.

Solution: (a) C is contained in the intersection of the homogeneous closed half-
spaces that contain C, so we focus on proving the reverse inclusion. Let « ¢ C.
Since C'is closed and convex by assumption, by using the Strict Separation The-
orem, we see that the sets C' and {z} can be separated strictly. From Exercise
2.18(c), this implies that there exists a hyperplane that passes through the origin
such that one of the associated closed halfspaces contains C, but is disjoint from
x. Hence, if z ¢ C, then z cannot belong to the intersection of the homogeneous
closed halfspaces containing C, proving that C' contains that intersection.

(b) A homogeneous halfspace is in particular a closed convex cone containing
the origin, and such a cone includes X if and only if it includes cl(cone(X)).
Hence, the intersection of all closed homogeneous halfspaces containing X and
the intersection of all closed homogeneous halfspaces containing cl (Cone(X )) co-
incide. From what has been proved in part(a), the latter intersection is equal to
cl(cone(X)).
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2.20 (Convex System Alternatives)

Let g; : R" — (—o0,00], j = 1,...,r, be closed proper convex functions, and
let X be a nonempty closed convex set. Assume that one of the following four
conditions holds:

(1) Rx "Ry, N---NRy. =Lx N Ly N---NLy,.

(2) RxNRy, N---NRg, C Ly N---NLg, and X is specified by linear inequality
constraints.

(3) Each g; is a convex quadratic function and X is specified by convex quadratic
inequality constraints.

(4) Each g; is a convex bidirectionally flat function (see Exercise 2.7) and X
is specified by convex bidirectionally flat functions.

Show that:
(a) If there is no vector z € X such that

gl(x) S 07 e 7gT(x) S 07
then there exist a positive scalar €, and a vector p € R with p > 0, such

that
pigi(x) + -+ prgr(z) > €, VaoelX.

Hint: Show that under any one of the conditions (1)-(4), the set
C= {u | there exists an « € X such that g;(z) <w;, j=1,... ,r}
is closed, by viewing it as the projection of the set
{(x,u) |z e X, gj(x) <uy, j= 1,...,r}
on the space of u. Furthermore, the origin does not belong to C, so it can be

strictly separated from C by a hyperplane. The normal of this hyperplane
provides the desired vector p.

(b) If for every € > 0, there exists a vector € X such that
gi(z) <e€...,g-(x) <e,
then there exists a vector x € X such that
g1(x) <0,...,g-(z) <0.

Hint: Argue by contradiction and use part (a).

Solution: (a) Consider the set
C= {u | there exists an € X such that g;(z) <wuj, j=1,... ,r},
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which may be viewed as the projection of the set
M = {(x,u) |z € X, gj(x) < uyj, jzl,...,r}

on the space of u. Let us denote this linear transformation by A. It can be seen
that
R]WQN(A) = {(yvo) |y€RxﬁR91 “.ng'r I

where Rjs denotes the recession cone of set M. Similarly, we have
Ly NN(A) = {(y,0) |y € Lx N Lg; ---N Ly, },

where L) denotes the lineality space of set M. Under conditions (1), (2), and
(3), it follows from Prop. 1.5.8 that the set AM = C' is closed. Similarly, under
condition (4), it follows from Exercise 2.7(b) that the set AM = C'is closed.

By assumption, there is no vector z € X such that

gl(fL’) S 07 e 797"(‘73) S 0.

This implies that the origin does not belong to C'. Therefore, by the Strict Sep-
aration Theorem, it follows that there exists a hyperplane that strictly separates
the origin and the set C, i.e., there exists a vector p such that

0<e<pu, VueC. (2.21)

This equation implies that p > 0 since for each u € C, we have that (u1,...,u; +
Y, .. up) € C for all j and v > 0. Since (gl(x),...,gT(x)) € CforalzelX,
Eq. (2.21) yields

pigi(z) + -+ prgr(z) > €, VoelX. (2.22)

(b) Assume that there is no vector x € X such that
gl($) S 07 e ,gr(l') S 0

This implies by part (a) that there exists a positive scalar €, and a vector u € R"
with g > 0, such that

pigr(x) 4+ -+ prgr(z) > €, VazelX.

Let = be an arbitrary vector in X and let j(z) be the smallest index that satisfies
j(x) = argmax;j=1,..r gj(x). Then Eq. (2.22) implies that for all x € X

€< migi(@) <Y igi (@) = gy (@) Y -
j=1 j=1 j=1
Hence, for all x € X, there exists some j(x) such that
€
9i@) () 2 =—— > 0.
! Zj:l Hi

This contradicts the statement that for every € > 0, there exists a vector x € X
such that

g1(z) <e€...,9-(z) <e,

and concludes the proof.
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2.21

Let C be a nonempty closed convex subset of #" ! that contains no vertical lines.
Show that C' is equal to the intersection of the closed halfspaces that contain it
and correspond to nonvertical hyperplanes.

Solution: C is contained in the intersection of the closed halfspaces that contain
C' and correspond to nonvertical hyperplanes, so we focus on proving the reverse
inclusion. Let z ¢ C. Since by assumption C does not contain any vertical
lines, we can apply Prop. 2.5.1, and we see that there exists a closed halfspace
that correspond to a nonvertical hyperplane, containing C' but not containing
z. Hence, if z ¢ C, then z cannot belong to the intersection of the closed
halfspaces containing C' and corresponding to nonvertical hyperplanes, proving
that C' contains that intersection.

2.22 (Min Common/Max Crossing Duality)

Consider the min common/max crossing framework, assuming that w* < oo.

(a) Assume that M is compact. Show that ¢* is equal to the optimal value of
the min common point problem corresponding to conv(M).

(b) Assume that M is closed and convex, and does not contain a halfline of the
form {(:mw +a)la< 0}. Show that M is the epigraph of the function
given by

f(a:):inf{w|(a;,w)€M}, zeR”,

and that f is closed proper and convex.

(c) Assume that w* is finite, and that M is convex and closed. Show that

¢ =w"
Solution: (a) Let us denote the optimal value of the min common point problem
and the max crossing point problem corresponding to conv(M) by w(o,,(ar) and
q:onv( ), respectively. In view of the assumption that M is compact, it follows
from Prop. 1.3.2 that the set conv(M) is compact. Therefore, by Weierstrass’
Theorem, we,,(ar), defined by

* — . f
Weonv(a) (O,M)Elf:lonv(lw)

is finite. It can also be seen that the set

conv(M) = {(u,w) | there exists w with w < w and (u, W) € conv(M)}

is convex. Indeed, we consider vectors (u,w) € conv(M) and (%, w) € conv(M),
and we show that their convex combinations lie in conv(M). The definition of
conv(M) implies that there exists some was and war such that

wy < w, (u, wnr) € conv(M),
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wy < W, (@, war) € conv(M).

For any « € [0, 1], we multiply these relations with a and (1 — «), respectively,
and add. We obtain

awy + (1 — a)om < aw+ (1 — a)w.

In view of the convexity of conv(M), we have a(u,wn) + (1 — a)(&,wm) €
conv(M), so these equations imply that the convex combination of (u,w) and
(4, @) belongs to conv(M). This proves the convexity of conv(M).

Using the compactness of conv(M), it can be shown that for every sequence
{(uk,wk)} C conv(M) with uy — 0, there holds wl,, ) < liminfr— e wy.
Let {(uk,wk)} C conv(M) be a sequence with ur — 0. Since conv(M) is
compact, the sequence {(uk,wk)} has a subsequence that converges to some

(0,w) € conv(M). Assume without loss of generality that {(uk, wk)} converges
to (0,w). Since (0,w) € conv(M), we get

Weony(ar) S W = 1iginf Wy
oo

Therefore, by Min Common/Max Crossing Theorem I, we have

w:onv(l\/l) = q:onv(]V[)‘ (223)

Let ¢* be the optimal value of the max crossing point problem corresponding to
M, ie.,

¢ = sup q(p),
pERT

where for all 4 € R"

= inf + pul.
q(p) (ujuH)EM{w wu}

We will show that ¢" = w,,,(a)- For every p € R, q(n) can be expressed as
q(1) = infyenm 'z, where ¢ = (i, 1) and z = (u, w). From Exercise 2.23, it follows
that minimization of a linear function over a set is equivalent to minimization
over its convex hull. In particular, we have

=inf dz= inf C(ux
q(M) zeX z€conv(X) ’

from which using Eq. (2.23), we get

q* = qzonv(M) = wzonv(M)7

proving the desired claim.

(b) The function f is convex by the result of Exercise 2.23. Furthermore, for all
z € dom(f), the infimum in the definition of f(z) is attained. The reason is that,
for x € dom(f), the set {w | (z,w) € M} is closed and bounded below, since

M is closed and does not contain a halfline of the form {(;c,w +a)|a< O}.
Thus, we have f(z) > —oo for all € dom(f), while dom(f) is nonempty, since
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M is nonempty in the min common/max crossing framework. It follows that f
is proper. Furthermore, by its definition, M is the epigraph of f. Finally, to
show that f is closed, we argue by contradiction. If f is not closed, there exists
a vector = and a sequence {xj} that converges to = and is such that

fw) > Tim f().

We claim that limg_ oo f(xx) is finite, i.e., that limg_, f(zx) > —o0o. Indeed, by
Prop. 2.5.1, the epigraph of f is contained in the upper halfspace of a nonvertical
hyperplane of R"*!. Since {z)} converges to x, the limit of {f(xk)} cannot be
equal to —oo. Thus the sequence (Ql'lm f (;rk)), which belongs to M, converges to
(m,limkﬁoo f(;rk)) Therefore, since M is closed, (m,limkﬂoo f(;rk)) € M. By the
definition of f, this implies that f(z) < limg— e f(zk), contradicting our earlier
hypothesis.

(c) We prove this result by showing that all the assumptions of Min Com-
mon/Max Crossing Theorem I are satisfied. By assumption, w* < oo and
the set M is convex. Therefore, we only need to show that for every sequence
{ug,wr} C M with ux — 0, there holds w* < liminfx_, o wi.

Consider a sequence {ug,wr} C M with up — 0. If liminf_ e wr = o0,
then we are done, so assume that liminfx_, o wr = @ for some scalar w. Since
M C M and M is closed by assumption, it follows that (0,@) € M. By the
definition of the set M, this implies that there exists some w with w < @ and
(0,w) € M. Hence we have

w' = inf w<w<®=liminfw,
(0,w)eM k—oo

*

proving the desired result, and thus showing that ¢* = w™.

2.23 (An Example of Lagrangian Duality)
Consider the problem

minimize f(x)
. ! .
subject to = € X, ex=d;, 1=1,...,m,
where f : R" — R is a convex function, X is a convex set, and e; and d; are

given vectors and scalars, respectively. Consider the min common/max crossing
framework where M is the subset of R™ ! given by

M:{(e’lx—dl,...,elmaz—dm,f(x)) |xEX}.

(a) Derive the corresponding max crossing problem.
(b) Show that the corresponding set M is convex.
(c) Show that if w* < co and X is compact, then ¢* = w™.
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(d) Show that if w* < co and there exists a vector T € ri(X) such that €;T = d;
for all ¢ = 1,...,m, then ¢* = w* and the max crossing problem has an
optimal solution.

Solution: (a) The corresponding max crossing problem is given by

¢ = sup q(u),
pERM

where g(p) is given by

g(p) = inf {w+p'up = inf {f(w) + > pilein — di)} ~

(u,w)eM

(b) Consider the set
M= {(ul,...,um,w) | 3z € X such that ejz — d; = ui, Vi, f(x) §w}.

We show that M is convex. To this end, we consider vectorsﬁ(u,w) € M and

(@, w) € M, and we show that their convex combinations lie in M. The definition
of M implies that for some z € X and & € X, we have

f@) <w,  ex—di=uw, i=1,...,m,

/(@)

~ ! ~ ~ .
w, er—di=1u;,, i=1,...,m.

IN

For any «a € [0, 1], we multiply these relations with a and 1-«, respectively, and
add. By using the convexity of f, we obtain

f(owc-i—(l —oz)fc) <af(z)+(1—-a)f(%) <aw+ (1 —a)w,

eg(am—i—(l—a)i") —di=au;+ (1 —a)i;, i=1,...,m.

In view of the convexity of X, we have az+(1—a)Z € X, so these equations imply
that the convex combination of (u,w) and (%, @) belongs to M, thus proving that
M is convex.

(c) We prove this result by showing that all the assumptions of Min Com-
mon/Max Crossing Theorem I are satisfied. By assumption, w* is finite. It
follows from part (b) that the set M is convex. Therefore, we only need to
show that for every sequence {(uk,wk)} C M with up — 0, there holds w* <
lim infy oo wg.

Consider a sequence {(uk,wk)} C M with ur — 0. Since X is compact
and f is convex by assumption (which implies that f is continuous by Prop.
1.4.6), it follows from Prop. 1.1.9(c) that set M is compact. Hence, the sequence
{(uk, wk)} has a subsequence that converges to some (0,w) € M. Assume with-
out loss of generality that {(uk, wk)} converges to (0,w). Since (0,w) € M, we
get,

w' = inf w <w = liminfwy,
(0,w)eM k— o0
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proving the desired result, and thus showing that ¢* = w™.

(d) We prove this result by showing that all the assumptions of Min Com-
mon/Max Crossing Theorem II are satisfied. By assumption, w* is finite. It
follows from part (b) that the set M is convex. Therefore, we only need to show
that the set

D= {(e'ledl,...,e/mxfdm) \ xEX}

contains the origin in its relative interior. The set D can equivalently be written
as
D=F-X—d,

where E is a matrix, whose rows are the vectors e}, i = 1,...,m, and d is a
vector with entries equal to d;, i = 1,...,m. By Prop. 1.4.4 and Prop. 1.4.5(b),
it follows that

ri(D) = E -ri(X) — d.

Hence the assumption that there exists a vector T € ri(X) such that Ex —d =0
implies that 0 belongs to the relative interior of D, thus showing that ¢* = w™
and that the max crossing problem has an optimal solution.

2.24 (Saddle Points in Two Dimensions)

Consider a function ¢ of two real variables z and z taking values in compact
intervals X and Z, respectively. Assume that for each z € Z, the function ¢(-, z)
is minimized over X at a unique point denoted #(z). Similarly, assume that for
each z € X, the function ¢(z,-) is maximized over Z at a unique point denoted
Z(x). Assume further that the functions #(z) and 2(x) are continuous over Z and
X, respectively. Show that ¢ has a saddle point (z*,2*). Use this to investigate
the existence of saddle points of ¢(x, 2) = 2° + 2% over X = [0,1] and Z = [0, 1].

Solution: We consider a function ¢ of two real variables z and z taking values
in compact intervals X and Z, respectively. We assume that for each z € Z, the
function ¢(+, z) is minimized over X at a unique point denoted Z(z), and for each
x € X, the function ¢(z,-) is maximized over Z at a unique point denoted z(x),

%(z) = argmin ¢(z, 2), 2(z) = argmax ¢(z, 2).
reX z2€Z
Consider the composite function f : X — X given by

fl@) =& (2()),

which is a continuous function in view of the assumption that the functions #(z)
and 2(z) are continuous over Z and X, respectively. Assume that the compact
interval X is given by [a,b]. We now show that the function f has a fixed point,
i.e., there exists some z* € [a, b] such that

) =a
Define the function g : X — X by
g(z) = flz) — @



Assume that f(a) > a and f(b) < b, since otherwise we are done. We have
g(a) = f(a) —a >0,

g(b) = F(b) — b < 0.

Since g is a continuous function, the preceding relations imply that there exists
some z* € (a,b) such that g(z*) =0, i.e., f(z*) = z*. Hence, we have

i’(%(z*)) =z".
Denoting 2(z*) by z*, we get
" = &(2"), 2" = z(z"). (2.24)
By definition, a pair (Z,Z) is a saddle point if and only if

max ¢(T, z) = ¢(T,z) = min ¢(z, 2),

z€Z zeX
or equivalently, if T = (Z) and Z = 2(Z). Therefore, from Eq. (2.24), we see that
(z*, 2z") is a saddle point of ¢.

We now consider the function ¢(z,2) = x> 4 2% over X = [0,1] and Z =

[0,1]. For each z € [0, 1], the function ¢(-, z) is minimized over [0, 1] at a unique
point Z(z) = 0, and for each = € [0, 1], the function ¢(z,-) is maximized over
[0,1] at a unique point 2(z) = 1. These two curves intersect at (z*,z*) = (0, 1),
which is the unique saddle point of ¢.

2.25 (Saddle Points of Quadratic Functions)
Consider a quadratic function ¢ : X X Z — R of the form
¢(x,2) =2'Qr + ' Dz — 2'Rz,

where @ and R are symmetric positive semidefinite n x n and m X m matrices,
respectively, D is some n X m matrix, and X and Z are subsets of R" and ™,
respectively. Derive conditions under which ¢ has at least one saddle point.

Solution: Let X and Z be closed and convex sets. Then, for each z € Z, the
function ¢, : R™ +— (—o0, oo] defined by

[ P(z,2) ifzeX,
te(z) = {oo otherwise,

is closed and convex in view of the assumption that @ is a positive semidefinite
symmetric matrix. Similarly, for each z € X, the function r; : R™ +— (—00, 0]
defined by
—o(x, 2 if z € Z,
2 (2) :{ o( )

00 otherwise,
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is closed and convex in view of the assumption that R is a positive semidefinite
symmetric matrix. Hence, Assumption 2.6.1 is satisfied. Let also Assumptions
2.6.2 and 2.6.3 hold, i.e,
inf sup ¢(z, z) < o0,
zeX zez
and
—oo < sup inf ¢(z, z).
zezrEX
By the positive semidefiniteness of @), it can be seen that, for each z € Z, the
recession cone of the function ¢, is given by

Ri, = Rx N N(Q)N{y |y’ Dz <0},

where Rx is the recession cone of the convex set X and N(Q) is the null space
of the matrix ). Similarly, for each z € Z, the constancy space of the function
t, is given by

L, =LxNN(@Q)N{y|y'Dz =0},

where Lx is the lineality space of the set X. By the positive semidefiniteness of
R, for each x € X, it can be seen that the recession cone of the function r, is
given by

R,, = RzN N(R)N{y | 2’ Dy > 0},

where Rz is the recession cone of the convex set Z and N(R) is the null space of
the matrix R. Similarly, for each x € X, the constancy space of the function 7,
is given by

L., =LzNN(R)N{y|z'Dy =0},

where Lz is the lineality space of the set Z.
It
() Re. ={0}, and () Re, = {0}, (2.25)
z2€Z reX

then it follows from the Saddle Point Theorem part (a), that the set of saddle
points of ¢ is nonempty and compact. [In particular, the condition given in Eq.
(2.25) holds when @ and R are positive definite matrices, or if X and Z are
compact.]

Similarly, if

ﬂth:ﬂLtz, and ﬂRmzﬂLW

z€Z z€Z zeX rzeEX

then it follows from the Saddle Point Theorem part (b), that the set of saddle
points of ¢ is nonempty.
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