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Angelia Nedić and Asuman E. Ozdaglar

Massachusetts Institute of Technology

Athena Scientific, Belmont, Massachusetts

http://www.athenasc.com



LAST UPDATE April 3, 2004

CHAPTER 3: SOLUTION MANUAL

3.1 (Cone Decomposition Theorem)

Let C be a nonempty closed convex cone in <n and let x be a vector in <n. Show
that:

(a) x̂ is the projection of x on C if and only if

x̂ ∈ C, (x− x̂)′x̂ = 0, x− x̂ ∈ C∗.

(b) The following two statements are equivalent:

(i) x1 and x2 are the projections of x on C and C∗, respectively.

(ii) x = x1 + x2 with x1 ∈ C, x2 ∈ C∗, and x′1x2 = 0.

Solution: (a) Let x̂ be the projection of x on C, which exists and is unique since
C is closed and convex. By the Projection Theorem (Prop. 2.2.1), we have

(x− x̂)′(y − x̂) ≤ 0, ∀ y ∈ C.

Since C is a cone, we have (1/2)x̂ ∈ C and 2x̂ ∈ C, and by taking y = (1/2)x̂
and y = 2x̂ in the preceding relation, it follows that

(x− x̂)′x̂ = 0.

By combining the preceding two relations, we obtain

(x− x̂)′y ≤ 0, ∀ y ∈ C,

implying that x− x̂ ∈ C∗.
Conversely, if x̂ ∈ C, (x− x̂)′x̂ = 0, and x− x̂ ∈ C∗, then it follows that

(x− x̂)′(y − x̂) ≤ 0, ∀ y ∈ C,

and by the Projection Theorem, x̂ is the projection of x on C.

(b) Suppose that property (i) holds, i.e., x1 and x2 are the projections of x on C
and C∗, respectively. Then, by part (a), we have

x1 ∈ C, (x− x1)′x1 = 0, x− x1 ∈ C∗.

Let y = x− x1, so that the preceding relation can equivalently be written as

x− y ∈ C = (C∗)∗, y′(x− y) = 0, y ∈ C∗.
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By using part (a), we conclude that y is the projection of x on C∗. Since by the
Projection Theorem, the projection of a vector on a closed convex set is unique,
it follows that y = x2. Thus, we have x = x1 + x2 and in view of the preceding
two relations, we also have x1 ∈ C, x2 ∈ C∗, and x′1x2 = 0. Hence, property (ii)
holds.

Conversely, suppose that property (ii) holds, i.e., x = x1 +x2 with x1 ∈ C,
x2 ∈ C∗, and x′1x2 = 0. Then, evidently the relations

x1 ∈ C, (x− x1)′x1 = 0, x− x1 ∈ C∗,

x2 ∈ C∗, (x− x2)′x2 = 0, x− x2 ∈ C

are satisfied, so that by part (a), x1 and x2 are the projections of x on C and
C∗, respectively. Hence, property (i) holds.

3.2

Let C be a nonempty closed convex cone in <n and let a be a vector in <n. Show
that for any positive scalars β and γ, we have

max
‖x‖≤β, x∈C

a′x ≤ γ if and only if a ∈ C∗ +
{
x | ‖x‖ ≤ γ/β

}
.

(This may be viewed as an “approximate” version of the Polar Cone Theorem.)

Solution: If a ∈ C∗ +
{
x | ‖x‖ ≤ γ/β

}
, then

a = â+ a with â ∈ C∗ and ‖a‖ ≤ γ/β.

Since C is a closed convex cone, by the Polar Cone Theorem (Prop. 3.1.1), we
have (C∗)∗ = C, implying that for all x in C with ‖x‖ ≤ β,

â′x ≤ 0 and a′x ≤ ‖a‖ · ‖x‖ ≤ γ.

Hence,
a′x = (â+ a)′x ≤ γ, ∀ x ∈ C with ‖x‖ ≤ β,

thus implying that
max

‖x‖≤β, x∈C
a′x ≤ γ.

Conversely, assume that a′x ≤ γ for all x ∈ C with ‖x‖ ≤ β. Let â and a
be the projections of a on C∗ and C, respectively. By the Cone Decomposition
Theorem (cf. Exercise 3.1), we have a = â+ a with â ∈ C∗, a ∈ C, and â′a = 0.
Since a′x ≤ γ for all x ∈ C with ‖x‖ ≤ β and a ∈ C, we obtain

a′
a

‖a‖β = (â+ a)′
a

‖a‖β = ‖a‖β ≤ γ,

implying that ‖a‖ ≤ γ/β, and showing that a ∈ C∗ +
{
x | ‖x‖ ≤ γ/β

}
.
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3.3

Let C be a nonempty cone in <n. Show that

LC∗ =
(
aff(C)

)⊥
,

dim(C) + dim(LC∗) = n,

dim(C∗) + dim
(
Lconv(C)

)
≤ dim(C∗) + dim

(
Lcl(conv(C))

)
= n,

where LX denotes the lineality space of a convex set X.

Solution: Note that aff(C) is a subspace of <n because C is a cone in <n. We
first show that

LC∗ =
(
aff(C)

)⊥
.

Let y ∈ LC∗ . Then, by the definition of the lineality space (see Chapter 1), both
vectors y and −y belong to the recession cone RC∗ . Since 0 ∈ C∗, it follows that
0 + y and 0− y belong to C∗. Therefore,

y′x ≤ 0, (−y)′x ≤ 0, ∀ x ∈ C,

implying that
y′x = 0, ∀ x ∈ C. (3.1)

Let the dimension of the subspace aff(C) be m. By Prop. 1.4.1, there exist vectors
x0, x1, . . . , xm in ri(C) such that x1−x0, . . . , xm−x0 span aff(C). Thus, for any
z ∈ aff(C), there exist scalars β1, . . . , βm such that

z =

m∑
i=1

βi(xi − x0).

By using this relation and Eq. (3.1), for any z ∈ aff(C), we obtain

y′z =

m∑
i=1

βiy
′(xi − x0) = 0,

implying that y ∈
(
aff(C)

)⊥
. Hence, LC∗ ⊂

(
aff(C)

)⊥
.

Conversely, let y ∈
(
aff(C)

)⊥
, so that in particular, we have

y′x = 0, (−y)′x = 0, ∀ x ∈ C.

Therefore, 0+αy ∈ C∗ and 0+α(−y) ∈ C∗ for all α ≥ 0, and since C∗ is a closed
convex set, by the Recession Cone Theorem(b) [Prop. 1.5.1(b)], it follows that y
and −y belong to the recession cone RC∗ . Hence, y belongs to the lineality space

of C∗, showing that
(
aff(C)

)⊥ ⊂ LC∗ and completing the proof of the equality

LC∗ =
(
aff(C)

)⊥
.
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By definition, we have dim(C) = dim
(
aff(C)

)
and since LC∗ =

(
aff(C)

)⊥
,

we have dim(LC∗) = dim
((

aff(C)
)⊥)

. This implies that

dim(C) + dim(LC∗) = n.

By replacing C with C∗ in the preceding relation, and by using the Polar
Cone Theorem (Prop. 3.1.1), we obtain

dim(C∗) + dim
(
L(C∗)∗

)
= dim(C∗) + dim

(
Lcl(conv(C))

)
= n.

Furthermore, since
Lconv(C) ⊂ Lcl(conv(C)),

it follows that

dim(C∗) + dim
(
Lconv(C)

)
≤ dim(C∗) + dim

(
Lcl(conv(C))

)
= n.

3.4 (Polar Cone Operations)

Show the following:

(a) For any nonempty cones Ci ⊂ <ni , i = 1, . . . ,m, we have

(C1 × · · · × Cm)∗ = C∗1 × · · · × C∗m.

(b) For any collection of nonempty cones {Ci | i ∈ I}, we have(
∪i∈ICi

)∗
= ∩i∈IC∗i .

(c) For any two nonempty cones C1 and C2, we have

(C1 + C2)∗ = C∗1 ∩ C∗2 .

(d) For any two nonempty closed convex cones C1 and C2, we have

(C1 ∩ C2)∗ = cl(C∗1 + C∗2 ).

Furthermore, if ri(C1) ∩ ri(C2) 6= Ø, then the cone C∗1 + C∗2 is closed and
the closure operation in the preceding relation can be omitted.

(e) Consider the following cones in <3

C1 =
{

(x1, x2, x3) | x21 + x22 ≤ x23, x3 ≤ 0
}
,

C2 =
{

(x1, x2, x3) | x2 = −x3
}
.
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Verify that ri(C1)∩ri(C2) = Ø, (1, 1, 1) ∈ (C1∩C2)∗, and (1, 1, 1) 6∈ C∗1 +C∗2 ,
thus showing that the closure operation in the relation of part (d) may not
be omitted when ri(C1) ∩ ri(C2) = Ø.

Solution: (a) It suffices to consider the case where m = 2. Let (y1, y2) ∈
(C1 × C2)∗. Then, we have (y1, y2)′(x1, x2) ≤ 0 for all (x1, x2) ∈ C1 × C2, or
equivalently

y′1x1 + y′2x2 ≤ 0, ∀ x1 ∈ C1, ∀ x2 ∈ C2.

Since C2 is a cone, 0 belongs to its closure, so by letting x2 → 0 in the preceding
relation, we obtain y′1x1 ≤ 0 for all x1 ∈ C1, showing that y1 ∈ C∗1 . Similarly, we
obtain y2 ∈ C∗2 , and therefore (y1, y2) ∈ C∗1 × C∗2 , implying that (C1 × C2)∗ ⊂
C∗1 × C∗2 .

Conversely, let y1 ∈ C∗1 and y2 ∈ C∗2 . Then, we have

(y1, y2)′(x1, x2) = y′1x1 + y′2x2 ≤ 0, ∀ x1 ∈ C1, ∀ x2 ∈ C2,

implying that (y1, y2) ∈ (C1 × C2)∗, and showing that C∗1 × C∗2 ⊂ (C1 × C2)∗.

(b) A vector y belongs to the polar cone of ∪i∈ICi if and only if y′x ≤ 0 for all
x ∈ Ci and all i ∈ I, which is equivalent to having y ∈ C∗i for every i ∈ I. Hence,
y belongs to

(
∪i∈ICi

)∗
if and only if y belongs to ∩i∈IC∗i .

(c) Let y ∈ (C1 + C2)∗, so that

y′(x1 + x2) ≤ 0, ∀ x1 ∈ C1, ∀ x2 ∈ C2. (3.2)

Since the zero vector is in the closures of C1 and C2, by letting x2 → 0 with
x2 ∈ C2 in Eq. (3.2), we obtain

y′x1 ≤ 0, ∀ x1 ∈ C1,

and similarly, by letting x1 → 0 with x1 ∈ C1 in Eq. (3.2), we obtain

y′x2 ≤ 0, ∀ x2 ∈ C2.

Thus, y ∈ C∗1 ∩ C∗2 , showing that (C1 + C2)∗ ⊂ C∗1 ∩ C∗2 .
Conversely, let y ∈ C∗1 ∩ C∗2 . Then, we have

y′x1 ≤ 0, ∀ x1 ∈ C1,

y′x2 ≤ 0, ∀ x2 ∈ C2,

implying that

y′(x1 + x2) ≤ 0, ∀ x1 ∈ C1, ∀ x2 ∈ C2.

Hence y ∈ (C1 + C2)∗, showing that C∗1 ∩ C∗2 ⊂ (C1 + C2)∗.

(d) Since C1 and C2 are closed convex cones, by the Polar Cone Theorem (Prop.
3.1.1) and by part (b), it follows that

C1 ∩ C2 = (C∗1 )∗ ∩ (C∗2 )∗ = (C∗1 + C∗2 )∗.
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By taking the polars and by using the Polar Cone Theorem, we obtain

(C1 ∩ C2)∗ =
(
(C∗1 + C∗2 )∗

)∗
= cl

(
conv(C∗1 + C∗2 )

)
.

The cone C∗1 + C∗2 is convex, so that

(C1 ∩ C2)∗ = cl(C∗1 + C∗2 ).

Suppose now that ri(C1) ∩ ri(C2) 6= Ø. We will show that C∗1 + C∗2 is
closed by using Exercise 1.43. According to this exercise, if for any nonempty
closed convex sets C1 and C2 in <n, the equality y1 + y2 = 0 with y1 ∈ RC1

and

y2 ∈ RC2
implies that y1 and y2 belong to the lineality spaces of C1 and C2,

respectively, then the vector sum C1 + C2 is closed.
Let y1 + y2 = 0 with y1 ∈ RC∗

1
and y2 ∈ RC∗

2
. Because C∗1 and C∗2 are

closed convex cones, we have RC∗
1

= C∗1 and RC∗
2

= C∗2 , so that y1 ∈ C∗1 and

y2 ∈ C∗2 . The lineality space of a cone is the set of vectors y such that y and
−y belong to the cone, so that in view of the preceding discussion, to show that
C∗1 + C∗2 is closed, it suffices to prove that −y1 ∈ C∗1 and −y2 ∈ C∗2 .

Since y1 = −y2 and y1 ∈ C∗1 , it follows that

y′2x ≥ 0, ∀ x ∈ C1, (3.3)

and because y2 ∈ C∗2 , we have

y′2x ≤ 0, ∀ x ∈ C2,

which combined with the preceding relation yields

y′2x = 0, ∀ x ∈ C1 ∩ C2. (3.4)

In view of the fact ri(C1) ∩ ri(C2) 6= Ø, and Eqs. (3.3) and (3.4), it follows that
the linear function y′2x attains its minimum over the convex set C1 at a point in
the relative interior of C1, implying that y′2x = 0 for all x ∈ C1 (cf. Prop. 1.4.2).
Therefore, y2 ∈ C∗1 and since y2 = −y1, we have −y1 ∈ C∗1 . By exchanging the
roles of y1 and y2 in the preceding analysis, we similarly show that −y2 ∈ C∗2 ,
completing the proof.

(e) By drawing the cones C1 and C2, it can be seen that ri(C1)∩ ri(C2) = Ø and

C1 ∩ C2 =
{

(x1, x2, x3) | x1 = 0, x2 = −x3, x3 ≤ 0
}
,

C∗1 =
{

(y1, y2, y3) | y21 + y22 ≤ y23 , y3 ≥ 0
}
,

C∗2 =
{

(z1, z2, z3) | z1 = 0, z2 = z3
}
.

Clearly, x1 +x2 +x3 = 0 for all x ∈ C1 ∩C2, implying that (1, 1, 1) ∈ (C1 ∩C2)∗.
Suppose that (1, 1, 1) ∈ C∗1 + C∗2 , so that (1, 1, 1) = (y1, y2, y3) + (z1, z2, z3) for
some (y1, y2, y3) ∈ C∗1 and (z1, z2, z3) ∈ C∗2 , implying that y1 = 1, y2 = 1 − z2,
y3 = 1 − z2 for some z2 ∈ <. However, this point does not belong to C∗1 ,
which is a contradiction. Therefore, (1, 1, 1) is not in C∗1 + C∗2 . Hence, when
ri(C1) ∩ ri(C2) = Ø, the relation

(C1 ∩ C2)∗ = C∗1 + C∗2

may fail.
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3.5 (Linear Transformations and Polar Cones)

Let C be a nonempty cone in <n, K be a nonempty closed convex cone in <m,
and A be a linear transformation from <n to <m. Show that

(AC)∗ = (A′)−1 · C∗,
(
A−1 ·K

)∗
= cl(A′K∗).

Show also that if ri(K) ∩ R(A) 6= Ø, then the cone A′K∗ is closed and (A′)−1

and the closure operation in the above relation can be omitted.

Solution: We have y ∈ (AC)∗ if and only if y′Ax ≤ 0 for all x ∈ C, which is
equivalent to (A′y)′x ≤ 0 for all x ∈ C. This is in turn equivalent to A′y ∈ C∗.
Hence, y ∈ (AC)∗ if and only if y ∈ (A′)−1 · C∗, showing that

(AC)∗ = (A′)−1 · C∗. (3.5)

We next show that for a closed convex cone K ⊂ <m, we have(
A−1 ·K

)∗
= cl(A′K∗).

Let y ∈
(
A−1 ·K

)∗
and to arrive at a contradiction, assume that y 6∈ cl(A′K∗).

By the Strict Separation Theorem (Prop. 2.4.3), the closed convex cone cl(A′K∗)
and the vector y can be strictly separated, i.e., there exist a vector a ∈ <n and
a scalar b such that

a′x < b < a′y, ∀ x ∈ cl(A′K∗).

If a′x > 0 for some x ∈ cl(A′K∗), then since cl(A′K∗) is a cone, we would
have λx ∈ cl(A′K∗) for all λ > 0, implying that a′(λx) → ∞ when λ → ∞,
which contradicts the preceding relation. Thus, we must have a′x ≤ 0 for all
x ∈ cl(A′K∗), and since 0 ∈ cl(A′K∗), it follows that

sup
x∈cl(A′K∗)

a′x = 0 ≤ b < a′y. (3.6)

Therefore, a ∈
(
cl(A′K∗)

)∗
, and since

(
cl(A′K∗)

)∗ ⊂ (A′K∗)∗, it follows that
a ∈ (A′K∗)∗. In view of Eq. (3.5) and the Polar Cone Theorem (Prop. 3.1.1), we
have

(A′K∗)∗ = A−1(K∗)∗ = A−1 ·K,

implying that a ∈ A−1 · K. Because y ∈
(
A−1 · K

)∗
, it follows that y′a ≤ 0,

contradicting Eq. (3.6). Hence, we must have y ∈ cl(A′K∗), showing that(
A−1 ·K

)∗ ⊂ cl(A′K∗).

To show the reverse inclusion, let y ∈ A′K∗ and assume, to arrive at a con-
tradiction, that y 6∈ (A−1 ·K)∗. By the Strict Separation Theorem (Prop. 2.4.3),

8



the closed convex cone (A−1 ·K)∗ and the vector y can be strictly separated, i.e.,
there exist a vector a ∈ <n and a scalar b such that

a′x < b < a′y, ∀ x ∈ (A−1 ·K)∗.

Similar to the preceding analysis, since (A−1 ·K)∗ is a cone, it can be seen that

sup
x∈(A−1·K)∗

a′x = 0 ≤ b < a′y, (3.7)

implying that a ∈
(
(A−1 ·K)∗

)∗
. Since K is a closed convex cone and A is a linear

(and therefore continuous) transformation, the set A−1 ·K is a closed convex cone.

Furthermore, by the Polar Cone Theorem, we have that
(
(A−1 ·K)∗

)∗
= A−1 ·K.

Therefore, a ∈ A−1 ·K, implying that Aa ∈ K. Since y ∈ A′K∗, we have y = A′v
for some v ∈ K∗, and it follows that

y′a = (A′v)′a = v′Aa ≤ 0,

contradicting Eq. (3.7). Hence, we must have y ∈ (A−1 ·K)∗, implying that

A′K∗ ⊂ (A−1 ·K)∗.

Taking the closure of both sides of this relation, we obtain

cl(A′K∗) ⊂ (A−1 ·K)∗,

completing the proof.
Suppose that ri(K∗) ∩ R(A) 6= Ø. We will show that the cone A′K∗ is

closed by using Exercise 1.42. According to this exercise, if RK∗ ∩ N(A′) is a
subspace of the lineality space LK∗ of K∗, then

cl(A′K∗) = A′K∗.

Thus, it suffices to verify that RK∗ ∩ N(A′) is a subspace of LK∗ . Indeed, we
will show that RK∗ ∩N(A′) = LK∗ ∩N(A′).

Let y ∈ K∗ ∩N(A′). Because y ∈ K∗, we obtain

(−y)′x ≥ 0, ∀ x ∈ K. (3.8)

For y ∈ N(A′), we have −y ∈ N(A′) and since N(A′) = R(A)⊥, it follows that

(−y)′z = 0, ∀ z ∈ R(A). (3.9)

In view of the relation ri(K) ∩ R(A) 6= Ø, and Eqs. (3.8) and (3.9), the linear
function (−y)′x attains its minimum over the convex set K at a point in the
relative interior of K, implying that (−y)′x = 0 for all x ∈ K (cf. Prop. 1.4.2).
Hence (−y) ∈ K∗, so that y ∈ LK∗ and because y ∈ N(A′), we see that y ∈
LK∗∩N(A′). The reverse inclusion follows directly from the relation LK∗ ⊂ RK∗ ,
thus completing the proof.
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3.6 (Pointed Cones and Bases)

Let C be a closed convex cone in <n. We say that C is a pointed cone if C∩(−C) =
{0}. A convex set D ⊂ <n is said to be a base for C if C = cone(D) and 0 6∈ cl(D).
Show that the following properties are equivalent:

(a) C is a pointed cone.

(b) cl(C∗ − C∗) = <n.

(c) C∗ − C∗ = <n.

(d) C∗ has nonempty interior.

(e) There exist a nonzero vector x̂ ∈ <n and a positive scalar δ such that
x̂′x ≥ δ‖x‖ for all x ∈ C.

(f) C has a bounded base.

Hint : Use Exercise 3.4 to show the implications (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e)
⇒ (f) ⇒ (a).

Solution: (a) ⇒ (b) Since C is a pointed cone, C ∩ (−C) = {0}, so that(
C ∩ (−C)

)∗
= <n.

On the other hand, by Exercise 3.4, it follows that(
C ∩ (−C)

)∗
= cl(C∗ − C∗),

which when combined with the preceding relation yields cl(C∗ − C∗) = <n.

(b)⇒ (c) Since C is a closed convex cone, by the polar cone operations of Exercise
3.4, it follows that (

C ∩ (−C)
)∗

= cl(C∗ − C∗) = <n.

By taking the polars and using the Polar Cone Theorem (Prop. 3.1.1), we obtain((
C ∩ (−C)

)∗)∗
= C ∩ (−C) = {0}. (3.10)

Now, to arrive at a contradiction assume that there is a vector x̂ ∈ <n such that
x̂ 6∈ C∗ −C∗. Then, by the Separating Hyperplane Theorem (Prop. 2.4.2), there
exists a nonzero vector a ∈ <n such that

a′x̂ ≥ a′x, ∀ x ∈ C∗ − C∗.

If a′x > 0 for some x ∈ C∗−C∗, then since C∗−C∗ is a cone, the right hand-side
of the preceding relation can be arbitrarily large, a contradiction. Thus, we have
a′x ≤ 0 for all x ∈ C∗ − C∗, implying that a ∈ (C∗ − C∗)∗. By the polar cone
operations of Exercise 3.4(b) and the Polar Cone Theorem, it follows that

(C∗ − C∗)∗ = (C∗)∗ ∩ (−C∗)∗ = C ∩ (−C).
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Thus, a ∈ C ∩ (−C) with a 6= 0, contradicting Eq. (3.10). Hence, we must have
C∗ − C∗ = <n.

(c)⇒ (d) Because C∗ ⊂ aff(C∗) and −C∗ ⊂ aff(C∗), we have C∗−C∗ ⊂ aff(C∗)
and since C∗ − C∗ = <n, it follows that aff(C∗) = <n, showing that C∗ has
nonempty interior.

(d) ⇒ (e) Let v be a vector in the interior of C∗. Then, there exists a positive
scalar δ such that the vector v + δ y

‖y‖ is in C∗ for all y ∈ <n with y 6= 0, i.e.,(
v + δ

y

‖y‖

)′
x ≤ 0, ∀ x ∈ C, ∀ y ∈ <n, y 6= 0.

By taking y = x, it follows that(
v + δ

x

‖x‖

)′
x ≤ 0, ∀ x ∈ C, x 6= 0,

implying that
v′x+ δ‖x‖ ≤ 0, ∀ x ∈ C, x 6= 0.

Clearly, this relation holds for x = 0, so that

v′x ≤ −δ‖x‖, ∀ x ∈ C.

Multiplying the preceding relation with −1 and letting x̂ = −v, we obtain

x̂′x ≥ δ‖x‖, ∀ x ∈ C.

(e) ⇒ (f) Let
D =

{
y ∈ C | x̂′y = 1

}
.

Then, D is a closed convex set since it is the intersection of the closed convex
cone C and the closed convex set {y | x̂′y = 1}. Obviously, 0 6∈ D. Thus, to show
that D is a base for C, it remains to prove that C = cone(D). Take any x ∈ C.
If x = 0, then x ∈ cone(D) and we are done, so assume that x 6= 0. We have by
hypothesis

x̂′x ≥ δ‖x‖ > 0, ∀ x ∈ C, x 6= 0,

so we may define ŷ = x
x̂′x . Clearly, ŷ ∈ D and x = (x̂′x)ŷ with x̂′x > 0,

showing that x ∈ cone(D) and that C ⊂ cone(D). Since D ⊂ C, the inclusion
cone(D) ⊂ C is obvious. Thus, C = cone(D) and D is a base for C. Furthermore,
for every y in D, since y is also in C, we have

1 = x̂′y ≥ δ‖y‖,

showing that D is bounded and completing the proof.

(f) ⇒ (a) Since C has a bounded base, C = cone(D) for some bounded convex
set D with 0 6∈ cl(D). To arrive at a contradiction, we assume that the cone C is
not pointed, so that there exists a nonzero vector d ∈ C ∩ (−C), implying that d
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and −d are in C. Let {λk} be a sequence of positive scalars. Since λkd ∈ C for
all k and D is a base for C, there exist a sequence {µk} of positive scalars and a
sequence {yk} of vectors in D such that

λkd = µkyk, ∀ k.

Therefore, yk =
λk
µk
d ∈ D for all k and because D is bounded, the sequence

{
yk}

has a subsequence converging to some y ∈ cl(D). Without loss of generality, we

may assume that yk → y, which in view of yk =
λk
µk
d for all k, implies that y = αd

and αd ∈ cl(D) for some α ≥ 0. Furthermore, by the definition of base, we have
0 6∈ cl(D), so that α > 0. Similar to the preceding, by replacing d with −d, we
can show that α̃(−d) ∈ cl(D) for some positive scalar α̃. Therefore, αd ∈ cl(D)
and α̃(−d) ∈ cl(D) with α > 0 and α̃ > 0. Since D is convex, its closure cl(D)
is also convex, implying that 0 ∈ cl(D), contradicting the definition of a base.
Hence, the cone C must be pointed.

3.7

Show that a closed convex cone is polyhedral if and only if its polar cone is
polyhedral.

Solution: Let the closed convex cone C be polyhedral, and of the form

C =
{
x | a′jx ≤ 0, j = 1, . . . , r

}
,

for some vectors aj in <n. By Farkas’ Lemma [Prop. 3.2.1(b)], we have

C∗ = cone
(
{a1, . . . , ar}

)
,

so the polar cone of a polyhedral cone is finitely generated. Conversely, using the
Polar Cone Theorem, we have

cone
(
{a1, . . . , ar}

)∗
=
{
x | a′jx ≤ 0, j = 1, . . . , r

}
,

so the polar of a finitely generated cone is polyhedral. Thus, a closed convex cone
is polyhedral if and only if its polar cone is finitely generated. By the Minkowski-
Weyl Theorem [Prop. 3.2.1(c)], a cone is finitely generated if and only if it is
polyhedral. Therefore, a closed convex cone is polyhedral if and only if its polar
cone is polyhedral.

3.8

Let P be a polyhedral set in <n, with a Minkowski-Weyl Representation

P =

{
x

∣∣∣ x =

m∑
j=1

µjvj + y,

m∑
j=1

µj = 1, µj ≥ 0, j = 1, . . . ,m, y ∈ C

}
,
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where v1, . . . , vm are some vectors in <n and C is a finitely generated cone in <n
(cf. Prop. 3.2.2). Show that:

(a) The recession cone of P is equal to C.

(b) Each extreme point of P is equal to some vector vi that cannot be repre-
sented as a convex combination of the remaining vectors vj , j 6= i.

Solution: (a) We first show that C is a subset of RP , the recession cone of P .
Let y ∈ C, and choose any α ≥ 0 and x ∈ P of the form x =

∑m

j=1
µjvj . Since

C is a cone, αy ∈ C, so that x + αy ∈ P for all α ≥ 0. It follows that y ∈ RP .
Hence C ⊂ RP .

Conversely, to show that RP ⊂ C, let y ∈ RP and take any x ∈ P . Then
x + ky ∈ P for all k ≥ 1. Since P = V + C, where V = conv

(
{v1, . . . , vm}

)
, it

follows that

x+ ky = vk + yk, ∀ k ≥ 1,

with vk ∈ V and yk ∈ C for all k ≥ 1. Because V is compact, the sequence
{vk} has a limit point v ∈ V , and without loss of generality, we may assume that
vk → v. Then

lim
k→∞

‖ky − yk‖ = lim
k→∞

‖vk − x‖ = ‖v − x‖,

implying that

lim
k→∞

∥∥y − (1/k)yk
∥∥ = 0.

Therefore, the sequence
{

(1/k)yk
}

converges to y. Since yk ∈ C for all k ≥ 1,

the sequence
{

(1/k)yk
}

is in C, and by the closedness of C, it follows that y ∈ C.
Hence, RP ⊂ C.

(b) Any point in P has the form v + y with v ∈ conv
(
{v1, . . . , vm}

)
and y ∈ C,

or equivalently

v + y =
1

2
v +

1

2
(v + 2y),

with v and v+ 2y being two distinct points in P if y 6= 0. Therefore, none of the
points v + y, with v ∈ conv

(
{v1, . . . , vm}

)
and y ∈ C, is an extreme point of P

if y 6= 0. Hence, an extreme point of P must be in the set {v1, . . . , vm}. Since
by definition, an extreme point of P is not a convex combination of points in P ,
an extreme point of P must be equal to some vi that cannot be expressed as a
convex combination of the remaining vectors vj , j 6= i.

3.9 (Polyhedral Cones and Sets under Linear Transformations)

(a) Show that the image and the inverse image of a polyhedral cone under a
linear transformation are polyhedral cones.

(b) Show that the image and the inverse image of a polyhedral set under a
linear transformation are polyhedral sets.

13



Solution: (a) Let A be an m× n matrix and let C be a polyhedral cone in <n.
By the Minkowski-Weyl Theorem [Prop. 3.2.1(c)], C is finitely generated, so that

C =

{
x

∣∣∣ x =

r∑
j=1

µjaj , µj ≥ 0, j = 1, . . . , r

}
,

for some vectors a1, . . . , ar in <n. The image of C under A is given by

AC = {y | y = Ax, x ∈ C} =

{
y

∣∣∣ y =

r∑
j=1

µjAaj , µj ≥ 0, j = 1, . . . , r

}
,

showing that AC is a finitely generated cone in <m. By the Minkowski-Weyl
Theorem, the cone AC is polyhedral.

Let now K be a polyhedral cone in <m given by

K =
{
y | d′jy ≤ 0, j = 1, . . . , r

}
,

for some vectors d1, . . . , dr in <m. Then, the inverse image of K under A is

A−1 ·K = {x | Ax ∈ K}

=
{
x | d′jAx ≤ 0, j = 1, . . . , r

}
=
{
x | (A′dj)′x ≤ 0, j = 1, . . . , r

}
,

showing that A−1 ·K is a polyhedral cone in <n.

(b) Let P be a polyhedral set in <n with Minkowski-Weyl Representation

P =

{
x

∣∣∣ x =

m∑
j=1

µjvj + y,

m∑
j=1

µj = 1, µj ≥ 0, j = 1, . . . ,m, y ∈ C

}
,

where v1, . . . , vm are some vectors in <n and C is a finitely generated cone in <n
(cf. Prop. 3.2.2). The image of P under A is given by

AP = {z | z = Ax, x ∈ P}

=

{
z

∣∣∣ z =

m∑
j=1

µjAvj +Ay,

m∑
j=1

µj = 1, µj ≥ 0, j = 1, . . . ,m, Ay ∈ AC

}
.

By setting Avj = wj and Ay = u, we obtain

AP =

{
z

∣∣∣ z =

m∑
j=1

µjwj + u,

m∑
j=1

µj = 1, µj ≥ 0, j = 1, . . . ,m, u ∈ AC

}
= conv

(
{w1, . . . , wm}

)
+AC,

where w1, . . . , wm ∈ <m. By part (a), the cone AC is polyhedral, implying by the
Minkowski-Weyl Theorem [Prop. 3.2.1(c)] that AC is finitely generated. Hence,
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the set AP has a Minkowski-Weyl representation and therefore, it is polyhedral
(cf. Prop. 3.2.2).

Let also Q be a polyhedral set in <m given by

Q =
{
y | d′jy ≤ bj , j = 1, . . . , r

}
,

for some vectors d1, . . . , dr in <m. Then, the inverse image of Q under A is

A−1 ·Q = {x | Ax ∈ Q}

=
{
x | d′jAx ≤ bj , j = 1, . . . , r

}
=
{
x | (A′dj)′x ≤ bj , j = 1, . . . , r

}
,

showing that A−1 ·Q is a polyhedral set in <n.

3.10

Show the following:

(a) For polyhedral cones Ci ⊂ <ni , i = 1, . . . ,m, the Cartesian product C1 ×
· · · × Cm is a polyhedral cone.

(b) For polyhedral cones Ci ⊂ <n, i = 1 . . . ,m, the intersection ∩mi=1Ci and
the vector sum

∑m

i=1
Ci are polyhedral cones.

(c) For polyhedral sets Pi ⊂ <ni , i = 1, . . . ,m, the Cartesian product P1 ×
· · · × Pm is a polyhedral set.

(d) For polyhedral sets Pi ⊂ <n, i = 1 . . . ,m, the intersection ∩mi=1Pi and the
vector sum

∑m

i=1
Pi are polyhedral sets.

Hint : In part (b) and in part (d), for the case of the vector sum, use Exercise
3.9.

Solution: It suffices to show the assertions for m = 2.

(a) Let C1 and C2 be polyhedral cones in <n1 and <n2 , respectively, given by

C1 =
{
x1 ∈ <n1 | a′jx1 ≤ 0, j = 1, . . . , r1

}
,

C2 =
{
x2 ∈ <n2 | ã′jx2 ≤ 0, j = 1, . . . , r2

}
,

where a1, . . . , ar1 and ã1, . . . , ãr2 are some vectors in <n1 and <n2 , respectively.
Define

aj = (aj , 0), ∀ j = 1, . . . , r1,

aj = (0, ãj), ∀ j = r1 + 1, . . . , r1 + r2.

We have (x1, x2) ∈ C1 × C2 if and only if

a′jx1 ≤ 0, ∀ j = 1, . . . , r1,

ã′jx2 ≤ 0, ∀ j = r1 + 1, . . . , r1 + r2,
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or equivalently
a′j(x1, x2) ≤ 0, ∀ j = 1, . . . , r1 + r2.

Therefore,

C1 × C2 =
{
x ∈ <n1+n2 | a′jx ≤ 0, j = 1, . . . , r1 + r2

}
,

showing that C1 × C2 is a polyhedral cone in <n1+n2 .

(b) Let C1 and C2 be polyhedral cones in <n. Then, straightforwardly from the
definition of a polyhedral cone, it follows that the cone C1 ∩ C2 is polyhedral.

By part (a), the Cartesian product C1 × C2 is a polyhedral cone in <n+n.
Under the linear transformation A that maps (x1, x2) ∈ <n+n into x1 + x2 ∈
<n, the image A · (C1 × C2) is the set C1 + C2, which is a polyhedral cone by
Exercise 3.9(a).

(c) Let P1 and P2 be polyhedral sets in <n1 and <n2 , respectively, given by

P1 =
{
x1 ∈ <n1 | a′jx1 ≤ bj , j = 1, . . . , r1

}
,

P2 =
{
x2 ∈ <n2 | ã′jx2 ≤ b̃j , j = 1, . . . , r2

}
,

where a1, . . . , ar1 and ã1, . . . , ãr2 are some vectors in <n1 and <n2 , respectively,

and bj and b̃j are some scalars. By defining

aj = (aj , 0), bj = bj , ∀ j = 1, . . . , r1,

aj = (0, ãj), bj = b̃j , ∀ j = r1 + 1, . . . , r1 + r2,

similar to the proof of part (a), we see that

P1 × P2 =
{
x ∈ <n1+n2 | a′jx ≤ bj , j = 1, . . . , r1 + r2

}
,

showing that P1 × P2 is a polyhedral set in <n1+n2 .

(d) Let P1 and P2 be polyhedral sets in <n. Then, using the definition of a
polyhedral set, it follows that the set P1 ∩ P2 is polyhedral.

By part (c), the set P1 × P2 is polyhedral. Furthermore, under the linear
transformation A that maps (x1, x2) ∈ <n+n into x1 + x2 ∈ <n, the image
A · (P1 × P2) is the set P1 + P2, which is polyhedral by Exercise 3.9(b).

3.11

Show that if P is a polyhedral set in <n containing the origin, then cone(P ) is a
polyhedral cone. Give an example showing that if P does not contain the origin,
then cone(P ) may not be a polyhedral cone.

Solution: We give two proofs. The first is based on the Minkowski-Weyl Rep-
resentation of a polyhedral set P (cf. Prop. 3.2.2), while the second is based on
a representation of P by a system of linear inequalities.
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Let P be a polyhedral set with Minkowski-Weyl representation

P =

{
x

∣∣∣ x =

m∑
j=1

µjvj + y,

m∑
j=1

µj = 1, µj ≥ 0, j = 1, . . . ,m, y ∈ C

}
,

where v1, . . . , vm are some vectors in <n and C is a finitely generated cone in <n.
Let C be given by

C =

{
y

∣∣∣ y =

r∑
i=1

λiai, λi ≥ 0, i = 1, . . . , r

}
,

where a1, . . . , ar are some vectors in <n, so that

P =

{
x

∣∣∣ x =

m∑
j=1

µjvj +

r∑
i=1

λiai,

m∑
j=1

µj = 1, µj ≥ 0, ∀ j, λi ≥ 0, ∀ i

}
.

We claim that

cone(P ) = cone
(
{v1, . . . , vm, a1, . . . , ar}

)
.

Since P ⊂ cone
(
{v1, . . . , vm, a1, . . . , ar}

)
, it follows that

cone(P ) ⊂ cone
(
{v1, . . . , vm, a1, . . . , ar}

)
.

Conversely, let y ∈ cone
(
{v1, . . . , vm, a1, . . . , ar}

)
. Then, we have

y =

m∑
j=1

µjvj +

r∑
i=1

λiai,

with µj ≥ 0 and λi ≥ 0 for all i and j. If µj = 0 for all j, then y =
∑r

i=1
λiai ∈ C,

and since C = RP (cf. Exercise 3.8), it follows that y ∈ RP . Because the origin
belongs to P and y ∈ RP , we have 0 + y ∈ P , implying that y ∈ P , and
consequently y ∈ cone(P ). If µj > 0 for some j, then by setting µ =

∑m

j=1
µj ,

µj = µj/µ for all j, and λi = λi/µ for all i, we obtain

y = µ

(
m∑
j=1

µjvj +

r∑
i=1

λiai

)
,

where µ > 0, µj ≥ 0 with
∑m

j=1
µj = 1, and λi ≥ 0. Therefore y = µ x with

x ∈ P and µ > 0, implying that y ∈ cone(P ) and showing that

cone
(
{v1, . . . , vm, a1, . . . , ar}

)
⊂ cone(P ).
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We now give an alternative proof using the representation of P by a system
of linear inequalities. Let P be given by

P =
{
x | a′jx ≤ bj , j = 1, . . . , r

}
,

where a1, . . . , ar are vectors in <n and b1, . . . , br are scalars. Since P contains
the origin, it follows that bj ≥ 0 for all j. Define the index set J as follows

J = {j | bj = 0}.

We consider separately the two cases where J 6= Ø and J = Ø. If J 6= Ø,
then we will show that

cone(P ) =
{
x | a′jx ≤ 0, j ∈ J

}
.

To see this, note that since P ⊂
{
x | a′jx ≤ 0, j ∈ J

}
, we have

cone(P ) ⊂
{
x | a′jx ≤ 0, j ∈ J

}
.

Conversely, let x ∈
{
x | a′jx ≤ 0, j ∈ J

}
. We will show that x ∈ cone(P ).

If x ∈ P , then x ∈ cone(P ) and we are done, so assume that x 6∈ P , implying
that the set

J = {j 6∈ J | a′jx > bj} (3.11)

is nonempty. By the definition of J , we have bj > 0 for all j 6∈ J , so let

µ = min
j∈J

bj
a′jx

,

and note that 0 < µ < 1. We have

a′j(µx) ≤ 0, ∀ j ∈ J,

a′j(µx) ≤ bj , ∀ j ∈ J.

For j 6∈ J ∪ J and a′jx ≤ 0 < bj , since µ > 0, we still have a′j(µx) ≤ 0 < bj . For

j 6∈ J ∪ J and 0 < a′jx ≤ bj , since µ < 1, we have 0 < a′j(µx) < bj . Therefore,
µx ∈ P , implying that x = 1

µ
(µx) ∈ cone(P ). It follows that{

x | a′jx ≤ 0, j ∈ J
}
⊂ cone(P ),

and hence, cone(P ) =
{
x | a′jx ≤ 0, j ∈ J

}
.

If J = Ø, then we will show that cone(P ) = <n. To see this, take any
x ∈ <n. If x ∈ P , then clearly x ∈ cone(P ), so assume that x 6∈ P , implying that
the set J as defined in Eq. (3.11) is nonempty. Note that bj > 0 for all j, since
J is empty. The rest of the proof is similar to the preceding case.

As an example, where cone(P ) is not polyhedral when P does not contain
the origin, consider the polyhedral set P ⊂ <2 given by

P =
{

(x1, x2) | x1 ≥ 0, x2 = 1
}
.

Then, we have

cone(P ) =
{

(x1, x2) | x1 > 0, x2 > 0
}
∪
{

(x1, x2) | x1 = 0, x2 ≥ 0
}
,

which is not closed and therefore not polyhedral.
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3.12 (Properties of Polyhedral Functions)

Show the following:

(a) The sum of two polyhedral functions f1 and f2, such that dom(f1) ∩
dom(f2) 6= Ø, is a polyhedral function.

(b) If A is a matrix and g is a polyhedral function such that dom(g) contains a
point in the range of A, the function f given by f(x) = g(Ax) is polyhedral.

Solution: (a) Let f1 and f2 be polyhedral functions such that dom(f1)∩dom(f2) 6=
Ø. By Prop. 3.2.3, dom(f1) and dom(f2) are polyhedral sets in <n, and

f1(x) = max
{
a′1x+ b1, . . . , a

′
mx+ bm

}
, ∀ x ∈ dom(f1),

f2(x) = max
{
a′1x+ b1, . . . , a

′
mx+ bm

}
, ∀ x ∈ dom(f2),

where ai and ai are vectors in <n, and bi and bi are scalars. The domain of
f1+f2 coincides with dom(f1)∩dom(f2), which is polyhedral by Exercise 3.10(d).
Furthermore, we have for all x ∈ dom(f1 + f2),

f1(x) + f2(x) = max
{
a′1x+ b1, . . . , a

′
mx+ bm

}
+ max

{
a′1x+ b1, . . . , a

′
mx+ bm

}
= max

1≤i≤m, 1≤j≤m

{
a′ix+ bi + a′jx+ bj

}
= max

1≤i≤m, 1≤j≤m

{
(ai + aj)

′x+ (bi + bj)
}
.

Therefore, by Prop. 3.2.3, the function f1 + f2 is polyhedral.

(b) Since g : <m 7→ (−∞,∞] is a polyhedral function, by Prop. 3.2.3, dom(g) is
a polyhedral set in <m and g is given by

g(y) = max
{
a′1y + b1, . . . , a

′
my + bm

}
, ∀ y ∈ dom(g),

for some vectors ai in <m and scalars bi. The domain of f can be expressed as

dom(f) =
{
x | f(x) <∞

}
=
{
x | g(Ax) <∞

}
=
{
x | Ax ∈ dom(g)

}
.

Thus, dom(f) is the inverse image of the polyhedral set dom(g) under the linear
transformation A. By the assumption that dom(g) contains a point in the range
of A, it follows that dom(f) is nonempty, while by Exercise 3.9(b), the set dom(f)
is polyhedral. Furthermore, for all x ∈ dom(f), we have

f(x) = g(Ax)

= max
{
a′1Ax+ b1, . . . , a

′
mAx+ bm

}
= max

{
(A′a1)′x+ b1, . . . , (A

′am)′x+ bm
}
.

Thus, by Prop. 3.2.3, it follows that the function f is polyhedral.
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3.13 (Partial Minimization of Polyhedral Functions)

Let F : <n+m 7→ (−∞,∞] be a polyhedral function. Show that the function f
obtained by the partial minimization

f(x) = inf
z∈<m

F (x, z), x ∈ <n,

has a polyhedral epigraph, and is therefore polyhedral under the additional as-
sumption f(x) > −∞ for all x ∈ <n. Hint : Use the following relation, shown at
the end of Section 2.3:

P
(
epi(F )

)
⊂ epi(f) ⊂ cl

(
P
(
epi(F )

))
,

where P (·) denotes projection on the space of (x,w), i.e., P (x, z, w) = (x,w).

Solution: As shown at the end of Section 2.3, we have

P
(
epi(F )

)
⊂ epi(f) ⊂ cl

(
P
(
epi(F )

))
.

Since the function F is polyhedral, its epigraph

epi(F ) =
{

(x, z, w) | F (x, z) ≤ w, (x,w) ∈ dom(F )
}

is a polyhedral set in <n+m+1. The set P
(
epi(F )

)
is the image of the polyhedral

set epi(F ) under the linear transformation P , and therefore, by Exercise 3.9(b),
the set P

(
epi(F )

)
is polyhedral. Furthermore, a polyhedral set is always closed,

and hence

P
(
epi(F )

)
= cl

(
P
(
epi(F )

))
.

The preceding two relations yield

epi(f) = P
(
epi(F )

)
,

implying that the function f is polyhedral.

3.14 (Existence of Minima of Polyhedral Functions)

Let P be a polyhedral set in <n, and let f : <n 7→ (−∞,∞] be a polyhedral
function such that P ∩ dom(f) 6= Ø. Show that the set of minima of f over P
is nonempty if and only if infx∈P f(x) is finite. Hint : Use Prop. 3.2.3 to replace
the problem of minimizing f over P with an equivalent linear program.

Solution: If the set of minima of f over P is nonempty, then evidently infx∈P f(x)
must be finite.

Conversely, suppose that infx∈P f(x) is finite. Since f is a polyhedral
function, by Prop. 3.2.3, we have

f(x) = max
{
a′1x+ b1, . . . , a

′
mx+ bm

}
, ∀ x ∈ dom(f),
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where dom(f) is a polyhedral set. Therefore,

inf
x∈P

f(x) = inf
x∈P∩dom(f)

f(x) = inf
x∈P∩dom(f)

max
{
a′1x+ b1, . . . , a

′
mx+ bm

}
.

Let P = P ∩dom(f) and note that P is nonempty by assumption. Since P is the
intersection of the polyhedral sets P and dom(f), the set P is polyhedral. The
problem

minimize max
{
a′1x+ b1, . . . , a

′
mx+ bm

}
subject to x ∈ P

is equivalent to the following linear program

minimize y

subject to a′jx+ bj ≤ y, j = 1, . . . ,m, x ∈ P , y ∈ <.

By introducing the variable z = (x, y) ∈ <n+1, the vector c = (0, . . . , 0, 1) ∈
<n+1, and the set

P̂ =
{

(x, y) | a′jx+ bj ≤ y, j = 1, . . . ,m, x ∈ P , y ∈ <
}
,

we see that the original problem is equivalent to

minimize c′z

subject to z ∈ P̂ ,

where P̂ is polyhedral (P̂ 6= Ø since P 6= Ø). Furthermore, because infx∈P f(x)
is finite, it follows that infz∈P̂ c

′z is also finite. Thus, by Prop. 2.3.4 of Chapter

2, the set Z∗ of minimizers of c′z over P̂ is nonempty, and the nonempty set{
x | z = (x, y), z ∈ Z∗

}
is the set of minimizers of f over P .

3.15 (Existence of Solutions of Quadratic Nonconvex Programs
[FrW56])

We use induction on the dimension of the set X. Suppose that the dimension
of X is 0. Then, X consists of a single point, which is the global minimum of f
over X.

Assume that, for some l < n, f attains its minimum over every set X of
dimension less than or equal to l that is specified by linear inequality constraints,
and is such that f is bounded over X. Let X be of the form

X = {x | a′jx ≤ bj , j = 1, . . . , r},

have dimension l+ 1, and be such that f is bounded over X. We will show that
f attains its minimum over X.

If X is a bounded polyhedral set, f attains a minimum over X by Weier-
strass’ Theorem. We thus assume thatX is unbounded. Using the the Minkowski-
Weyl representation, we can write X as

X = {x | x = v + αy, v ∈ V, y ∈ C, α ≥ 0},
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where V is the convex hull of finitely many vectors and C is the intersection of a
finitely generated cone with the surface of the unit sphere {x | ‖x‖ = 1}. Then,
for any x ∈ X and y ∈ C, the vector x+αy belongs to X for every positive scalar
α and

f(x+ αy) = f(x) + α(c′ + x′Q)y + α2y′Qy.

In view of the assumption that f is bounded over X, this implies that y′Qy ≥ 0
for all y ∈ C.

If y′Qy > 0 for all y ∈ C, then, since C and V are compact, there exist
some δ > 0 and γ > 0 such that y′Qy > δ for all y ∈ C, and (c′+ v′Q)y > −γ for
all v ∈ V and y ∈ C. It follows that for all v ∈ V , y ∈ C, and α ≥ γ/δ, we have

f(v + αy)= f(v) + α(c′ + v′Q)y + α2y′Qy

> f(v) + α(−γ + αδ)

≥ f(v),

which implies that
inf
x∈X

f(x) = inf
x∈(V+αC)

0≤α≤ γ
δ

f(x).

Since the minimization in the right hand side is over a compact set, it follows
from Weierstrass’ Theorem and the preceding relation that the minimum of f
over X is attained.

Next, assume that there exists some y ∈ C such that y′Qy = 0. From
Exercise 3.8, it follows that y belongs to the recession cone of X, denoted by RX .
If y is in the lineality space of X, denoted by LX , the vector x + αy belongs to
X for every x ∈ X and every scalar α, and we have

f(x+ αy) = f(x) + α(c′ + x′Q)y.

This relation together with the boundedness of f over X implies that

(c′ + x′Q)y = 0, ∀ x ∈ X. (3.12)

Let S = {γy | γ ∈ <} be the subspace generated by y and consider the following
decomposition of X:

X = S + (X ∩ S⊥),

(cf. Prop. 1.5.4). Then, we can write any x ∈ X as x = z+αy for some z ∈ X∩S⊥
and some scalar α, and it follows from Eq. (3.12) that f(x) = f(z), which implies
that

inf
x∈X

f(x) = inf
x∈X∩S⊥

f(x).

It can be seen that the dimension of set X ∩ S⊥ is smaller than the dimension
of set X. To see this, note that S⊥ contains the subspace parallel to the affine
hull of X ∩ S⊥. Therefore, y does not belong to the subspace parallel to the
affine hull of X ∩ S⊥. On the other hand, y belongs to the subspace parallel to
the affine hull of X, hence showing that the dimension of set X ∩ S⊥ is smaller
than the dimension of set X. Since X ∩ S⊥ ⊂ X, f is bounded over X ∩ S⊥,
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so by using the induction hypothesis, it follows that f attains its minimum over
X ∩ S⊥, which, in view of the preceding relation, is also the minimum of f over
X.

Finally, assume that y is not in LX , i.e., y ∈ RX , but −y /∈ RX . The
recession cone of X is of the form

RX = {y | a′jy ≤ 0, j = 1, . . . , r}.

Since y ∈ RX , we have

a′jy ≤ 0, ∀ j = 1, . . . , r,

and since −y /∈ RX , the index set

J = {j | a′jy < 0}

is nonempty.
Let {xk} be a minimizing sequence, i.e.,

f(xk)→ f∗,

where f∗ = infx inX f(x). Suppose that for each k, we start at xk and move
along −y as far as possible without leaving the set X, up to the point where we
encounter the vector

xk = xk − βky,

where βk is the nonnegative scalar given by

βk = min
j∈J

a′jxk − bj
a′jy

.

Since y ∈ RX and f is bounded over X, we have (c′ + x′Q)y ≥ 0 for all x ∈ X,
which implies that

f(xk) ≤ f(xk), ∀ k. (3.13)

By construction of the sequence {xk}, it follows that there exists some j0 ∈ J such
that a′j0xk = bj0 for all k in an infinite index set K ⊂ {0, 1, . . .}. By reordering
the linear inequalities if necessary, we can assume that j0 = 1, i.e.,

a′1xk = b1, ∀ k ∈ K.

To apply the induction hypothesis, consider the set

X = {x | a′1x = b1, a
′
jx ≤ bj , j = 2, . . . , r},

and note that {xk}K ⊂ X. The dimension of X is smaller than the dimension
of X. To see this, note that the set {x | a′1x = b1} contains X, so that a1 is
orthogonal to the subspace SX that is parallel to aff(X). Since a′1y < 0, it follows
that y /∈ SX . On the other hand, y belongs to SX , the subspace that is parallel
to aff(X), since for all k, we have xk ∈ X and xk − βky ∈ X.
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Since X ⊂ X, f is also bounded over X, so it follows from the induction
hypothesis that f attains its minimum over X at some x∗. Because {xk}K ⊂ X,
and using also Eq. (3.13), we have

f(x∗) ≤ f(xk) ≤ f(xk), ∀ k ∈ K.

Since f(xk)→ f∗, we obtain

f(x∗) ≤ lim
k→∞, k∈K

f(xk) = f∗,

and since x∗ ∈ X ⊂ X, this implies that f attains the minimum over X at x∗,
concluding the proof.

3.16

Let P be a polyhedral set in <n of the form

P =
{
x | a′jx ≤ bj , j = 1, . . . , r

}
,

where aj are some vectors in <n and bj are some scalars. Show that P has an
extreme point if and only if the set of vectors {aj | j = 1, . . . , r} contains a subset
of n linearly independent vectors.

Solution: Assume that P has an extreme point, say v. Then, by Prop. 3.3.3(a),
the set

Av =
{
aj | a′jv = bj , j ∈ {1, . . . , r}

}
contains n linearly independent vectors, so the set of vectors {aj | j = 1, . . . , r}
contains a subset of n linearly independent vectors.

Assume now that the set {aj | j = 1, . . . , r} contains a subset of n linearly
independent vectors. Suppose, to obtain a contradiction, that P does not have
any extreme points. Then, by Prop. 3.3.1, P contains a line

L = {x+ λd | λ ∈ <},

where x ∈ P and d ∈ <n is a nonzero vector. Since L ⊂ P , it follows that a′jd = 0
for all j = 1, . . . , r. Since d 6= 0, this implies that the set {a1, . . . , ar} cannot
contain a subset of n linearly independent vectors, a contradiction.

3.17

Let C be a nonempty convex subset of <n, and let A be an m × n matrix with
linearly independent columns. Show that a vector x ∈ C is an extreme point of
C if and only if Ax is an extreme point of the image AC. Show by example that
if the columns of A are linearly dependent, then Ax can be an extreme point of
AC, for some non-extreme point x of C.
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Solution: Suppose that x is not an extreme point of C. Then x = αx1+(1−α)x2
for some x1, x2 ∈ C with x1 6= x and x2 6= x, and a scalar α ∈ (0, 1), so that
Ax = αAx1 + (1 − α)Ax2. Since the columns of A are linearly independent, we
have Ay1 = Ay2 if and only if y1 = y2. Therefore, Ax1 6= Ax and Ax2 6= Ax,
implying that Ax is a convex combination of two distinct points in AC, i.e., Ax
is not an extreme point of AC.

Suppose now that Ax is not an extreme point of AC, so that Ax = αAx1 +
(1 − α)Ax2 for some x1, x2 ∈ C with Ax1 6= Ax and Ax2 6= Ax, and a scalar
α ∈ (0, 1). Then, A

(
x − αx1 − (1 − α)x2

)
= 0 and since the columns of A are

linearly independent, it follows that x = αx1 − (1− α)x2. Furthermore, because
Ax1 6= Ax and Ax2 6= Ax, we must have x1 6= x and x2 6= x, implying that x is
not an extreme point of C.

As an example showing that if the columns of A are linearly dependent,
then Ax can be an extreme point of AC, for some non-extreme point x of C,
consider the 1× 2 matrix A = [1 0], whose columns are linearly dependent. The
polyhedral set C given by

C =
{

(x1, x2) | x1 ≥ 0, 0 ≤ x2 ≤ 1
}

has two extreme points, (0,0) and (0,1). Its image AC ⊂ < is given by

AC = {x1 | x1 ≥ 0},

whose unique extreme point is x1 = 0. The point x = (0, 1/2) ∈ C is not an
extreme point of C, while its image Ax = 0 is an extreme point of AC. Actually,
all the points in C on the line segment connecting (0,0) and (0,1), except for
(0,0) and (0,1), are non-extreme points of C that are mapped under A into the
extreme point 0 of AC.

3.18

Show by example that the set of extreme points of a nonempty compact set need
not be closed. Hint : Consider a line segment C1 =

{
(x1, x2, x3) | x1 = 0, x2 =

0,−1 ≤ x3 ≤ 1
}

and a circular disk C2 =
{

(x1, x2, x3) | (x1− 1)2 +x22 ≤ 1, x3 =

0
}

, and verify that the set conv(C1 ∪ C2) is compact, while its set of extreme
points is not closed.

Solution: For the sets C1 and C2 as given in this exercise, the set C1 ∪ C2 is
compact, and its convex hull is also compact by Prop. 1.3.2 of Chapter 1. The set
of extreme points of conv(C1 ∪C2) is not closed, since it consists of the two end
points of the line segment C1, namely (0, 0,−1) and (0, 0, 1), and all the points
x = (x1, x2, x3) such that

x 6= 0, (x1 − 1)2 + x22 = 1, x3 = 0.
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3.19

Show that a nonempty compact convex set is polyhedral if and only if it has a
finite number of extreme points. Give an example showing that the assertion
fails if compactness of the set is replaced by the weaker assumption that the set
is closed and does not contain a line.

Solution: By Prop. 3.3.2, a polyhedral set has a finite number of extreme
points. Conversely, let P be a compact convex set having a finite number of
extreme points {v1, . . . , vm}. By the Krein-Milman Theorem (Prop. 3.3.1), a
compact convex set is equal to the convex hull of its extreme points, so that
P = conv

(
{v1, . . . , vm}

)
, which is a polyhedral set by the Minkowski-Weyl Rep-

resentation Theorem (Prop. 3.2.2).
As an example showing that the assertion fails if compactness of the set

is replaced by a weaker assumption that the set is closed and contains no lines,
consider the set D ⊂ <3 given by

D =
{

(x1, x2, x3) | x21 + x22 ≤ 1, x3 = 1
}
.

Let C = cone(D). It can seen that C is not a polyhedral set. On the other hand,
C is closed, convex, does not contain a line, and has a unique extreme point at
the origin.

[For a more formal argument, note that if C were polyhedral, then the set

D = C ∩
{

(x1, x2, x3) | x3 = 1
}

would also be polyhedral by Exercise 3.10(d), since both C and
{

(x1, x2, x3) |
x3 = 1

}
are polyhedral sets. Thus, by Prop. 3.2.2, it would follow that D has a

finite number of extreme points. But this is a contradiction because the set of
extreme points of D coincides with

{
(x1, x2, x3) | x21 + x22 = 1, x3 = 1

}
, which

contains an infinite number of points. Thus, C is not a polyhedral cone, and
therefore not a polyhedral set, while C is closed, convex, does not contain a line,
and has a unique extreme point at the origin.]

3.20 (Faces)

Let P be a polyhedral set. For any hyperplane H that passes through a boundary
point of P and contains P in one of its halfspaces, we say that the set F = P ∩H
is a face of P . Show the following:

(a) Each face is a polyhedral set.

(b) Each extreme point of P , viewed as a singleton set, is a face.

(c) If P is not an affine set, there is a face of P whose dimension is dim(P )−1.

(d) The number of distinct faces of P is finite.

Solution: (a) Let P be a polyhedral set in <n, and let F = P ∩H be a face of
P , where H is a hyperplane passing through some boundary point x of P and
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containing P in one of its halfspaces. Then H is given by H = {x | a′x = a′x}
for some nonzero vector a ∈ <n. By replacing a′x = a′x with two inequalities
a′x ≤ a′x and −a′x ≤ −a′x, we see that H is a polyhedral set in <n. Since the
intersection of two nondisjoint polyhedral sets is a polyhedral set [cf. Exercise
3.10(d)], the set F = P ∩H is polyhedral.

(b) Let P be given by

P =
{
x | a′jx ≤ bj , j = 1, . . . , r

}
,

for some vectors aj ∈ <n and scalars bj . Let v be an extreme point of P , and
without loss of generality assume that the first n inequalities define v, i.e., the
first n of the vectors aj are linearly independent and such that

a′jv = bj , ∀ j = 1, . . . , n

[cf. Prop. 3.3.3(a)]. Define the vector a ∈ <n, the scalar b, and the hyperplane
H as follows

a =
1

n

n∑
j=1

aj , b =
1

n

n∑
j=1

bj , H =
{
x | a′x = b

}
.

Then, we have
a′v = b,

so that H passes through v. Moreover, for every x ∈ P , we have a′jx ≤ bj for
all j, implying that a′x ≤ b for all x ∈ P . Thus, H contains P in one of its
halfspaces.

We will next prove that P ∩H = {v}. We start by showing that for every
v ∈ P ∩H, we must have

a′jv = bj , ∀ j = 1, . . . , n. (3.14)

To arrive at a contradiction, assume that a′jv < bj for some v ∈ P ∩H and j ∈
{1, . . . , n}. Without loss of generality, we can assume that the strict inequality
holds for j = 1, so that

a′1v < b1, a′jv ≤ bj , ∀ j = 2, . . . , n.

By multiplying each of the above inequalities with 1/n and by summing the
obtained inequalities, we obtain

1

n

n∑
j=1

a′jv <
1

n

n∑
j=1

bj ,

implying that a′v < b, which contradicts the fact that v ∈ H. Hence, Eq. (3.14)
holds, and since the vectors a1, . . . , an are linearly independent, it follows that
v = v, showing that P ∩H = {v}.
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As discussed in Section 3.3, every extreme point of P is a relative boundary
point of P . Since every relative boundary point of P is also a boundary point of
P , it follows that every extreme point of P is a boundary point of P . Thus, v is
a boundary point of P , and as shown earlier, H passes through v and contains P
in one of its halfspaces. By definition, it follows that P ∩H = {v} is a face of P .

(c) Since P is not an affine set, it cannot consist of a single point, so we must
have dim(P ) > 0. Let P be given by

P =
{
x | a′jx ≤ bj , j = 1, . . . , r

}
,

for some vectors aj ∈ <n and scalars bj . Also, let A be the matrix with rows a′j
and b be the vector with components bj , so that

P = {x | Ax ≤ b}.

An inequality a′jx ≤ bj of the system Ax ≤ b is redundant if it is implied by the
remaining inequalities in the system. If the system Ax ≤ b has no redundant
inequalities, we say that the system is nonredundant. An inequality a′jx ≤ bj of
the system Ax ≤ b is an implicit equality if a′jx = bj for all x satisfying Ax ≤ b.

By removing the redundant inequalities if necessary, we may assume that
the system Ax ≤ b defining P is nonredundant. Since P is not an affine set,
there exists an inequality a′j0x ≤ bj0 that is not an implicit equality of the
system Ax ≤ b. Consider the set

F =
{
x ∈ P | a′j0x = bj0

}
.

Note that F 6= Ø, since otherwise a′j0x ≤ bj0 would be a redundant inequality
of the system Ax ≤ b, contradicting our earlier assumption that the system is
nonredundant. Note also that every point of F is a boundary point of P . Thus, F
is the intersection of P and the hyperplane

{
x | a′j0x = bj0

}
that passes through

a boundary point of P and contains P in one of its halfspaces, i.e., F is a face
of P . Since a′j0x ≤ bj0 is not an implicit equality of the system Ax ≤ b, the
dimension of F is dim(P )− 1.

(d) Let P be a polyhedral set given by

P =
{
x | a′jx ≤ bj , j = 1, . . . , r

}
,

with aj ∈ <n and bj ∈ <, or equivalently

P = {x | Ax ≤ b},

where A is an r×n matrix and b ∈ <r. We will show that F is a face of P if and
only if F is nonempty and

F =
{
x ∈ P | a′jx = bj , j ∈ J

}
,

where J ⊂ {1, . . . , r}. From this it will follow that the number of distinct faces
of P is finite.
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By removing the redundant inequalities if necessary, we may assume that
the system Ax ≤ b defining P is nonredundant. Let F be a face of P , so that
F = P ∩H, where H is a hyperplane that passes through a boundary point of P
and contains P in one of its halfspaces. Let H =

{
x | c′x = cx

}
for a nonzero

vector c ∈ <n and a boundary point x of P , so that

F =
{
x ∈ P | c′x = cx

}
and

c′x ≤ cx, ∀ x ∈ P.

These relations imply that the set of points x such that Ax ≤ b and c′x ≤ cx
coincides with P , and since the system Ax ≤ b is nonredundant, it follows that
c′x ≤ cx is a redundant inequality of the system Ax ≤ b and c′x ≤ cx. Therefore,
the inequality c′x ≤ cx is implied by the inequalities of Ax ≤ b, so that there
exists some µ ∈ <r with µ ≥ 0 such that

r∑
j=1

µjaj = c,

r∑
j=1

µjbj = c′x.

Let J = {j | µj > 0}. Then, for every x ∈ P , we have

c′x = cx ⇐⇒
∑
j∈J

µja
′
jx =

∑
j∈J

µjbj ⇐⇒ a′jx = bj , j ∈ J, (3.15)

implying that
F =

{
x ∈ P | a′jx = bj , j ∈ J

}
.

Conversely, let F be a nonempty set given by

F =
{
x ∈ P | a′jx = bj , j ∈ J

}
,

for some J ⊂ {1, . . . , r}. Define

c =
∑
j∈J

aj , β =
∑
j∈J

bj .

Then, we have {
x ∈ P | a′jx = bj , j ∈ J

}
=
{
x ∈ P | c′x = β

}
,

[cf. Eq. (3.15) where µj = 1 for all j ∈ J ]. Let H =
{
x | c′x = β

}
, so that in

view of the preceding relation, we have that F = P ∩H. Since every point of F
is a boundary point of P , it follows that H passes through a boundary point of
P . Furthermore, for every x ∈ P , we have a′jx ≤ bj for all j ∈ J , implying that
c′x ≤ β for every x ∈ P . Thus, H contains P in one of its halfspaces. Hence, F
is a face.
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3.21 (Isomorphic Polyhedral Sets)

Let P and Q be polyhedral sets in <n and <m, respectively. We say that P and
Q are isomorphic if there exist affine functions f : P 7→ Q and g : Q 7→ P such
that

x = g
(
f(x)

)
, ∀ x ∈ P, y = f

(
g(y)

)
, ∀ y ∈ Q.

(a) Show that if P and Q are isomorphic, then their extreme points are in
one-to-one correspondence.

(b) Let A be an r × n matrix and b be a vector in <r, and let

P = {x ∈ <n | Ax ≤ b, x ≥ 0},

Q =
{

(x, z) ∈ <n+r | Ax+ z = b, x ≥ 0, z ≥ 0
}
.

Show that P and Q are isomorphic.

Solution: (a) Let P and Q be isomorhic polyhedral sets, and let f : P 7→ Q and
g : Q 7→ P be affine functions such that

x = g
(
f(x)

)
, ∀ x ∈ P, y = f

(
g(y)

)
, ∀ y ∈ Q.

Assume that x∗ is an extreme point of P and let y∗ = f(x∗). We will show that
y∗ is an extreme point of Q. Since x∗ is an extreme point of P , by Exercise
3.20(b), it is also a face of P , and therefore, there exists a vector c ∈ <n such
that

c′x < c′x∗, ∀ x ∈ P, x 6= x∗.

For any y ∈ Q with y 6= y∗, we have

f
(
g(y)

)
= y 6= y∗ = f(x∗),

implying that
g(y) 6= g(y∗) = x∗, with g(y) ∈ P.

Hence,
c′g(y) < c′g(y∗), ∀ y ∈ Q, y 6= y∗.

Let the affine function g be given by g(y) = By + d for some n ×m matrix B
and vector d ∈ <n. Then, we have

c′(By + d) < c′(By∗ + d), ∀ y ∈ Q, y 6= y∗,

implying that
(B′c)′y < (B′c)′y∗, ∀ y ∈ Q, y 6= y∗.

If y∗ were not an extreme point of Q, then we would have y∗ = αy1 + (1− α)y2
for some distinct points y1, y2 ∈ Q, y1 6= y∗, y2 6= y∗, and α ∈ (0, 1), so that

(B′c)′y∗ = α(B′c)′y1 + (1− α)(B′c)′y2 < (B′c)′y∗,
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which is a contradiction. Hence, y∗ is an extreme point of Q.
Conversely, if y∗ is an extreme point of Q, then by using a symmetrical

argument, we can show that x∗ is an extreme point of P .

(b) For the sets
P = {x ∈ <n | Ax ≤ b, x ≥ 0},

Q =
{

(x, z) ∈ <n+r | Ax+ z = b, x ≥ 0, z ≥ 0
}
,

let f and g be given by

f(x) = (x, b−Ax), ∀ x ∈ P,

g(x, z) = x, ∀ (x, z) ∈ Q.

Evidently, f and g are affine functions. Furthermore, clearly

f(x) ∈ Q, g
(
f(x)

)
= x, ∀ x ∈ P,

g(x, z) ∈ P, f
(
g(x, z)

)
= x, ∀ (x, z) ∈ Q.

Hence, P and Q are isomorphic.

3.22 (Unimodularity I)

Let A be an n × n invertible matrix with integer entries. Show that A is uni-
modular if and only if the solution of the system Ax = b has integer components
for every vector b ∈ <n with integer components. Hint : To prove that A is
unimodular when the given property holds, use the system Ax = ui, where ui is
the ith unit vector, to show that A−1 has integer components, and then use the
equality det(A) · det(A−1) = 1. To prove the converse, use Cramer’s rule.

Solution: Suppose that the system Ax = b has integer components for every
vector b ∈ <n with integer components. Since A is invertible, it follows that the
vector A−1b has integer components for every b ∈ <n with integer components.
For i = 1, . . . , n, let ei be the vector with ith component equal to 1 and all other
components equal to 0. Then, for b = ei, the vectors A−1ei, i = 1, . . . , n, have
integer components, implying that the columns of A−1 are vectors with integer
components, so that A−1 has integer entries. Therefore, det(A−1) is integer,
and since det(A) is also integer and det(A) · det(A−1) = 1, it follows that either
det(A) = 1 or det(A) = −1, showing that A is unimodular.

Suppose now that A is unimodular. Take any vector b ∈ <n with integer
components, and for each i ∈ {1, . . . , n}, let Ai be the matrix obtained from A
by replacing the ith column of A with b. Then, according to Cramer’s rule, the
components of the solution x̂ of the system Ax = b are given by

x̂i =
det(Ai)

det(A)
, i = 1, . . . , n.

Since each matrix Ai has integer entries, it follows that det(Ai) is integer for all
i = 1, . . . , n. Furthermore, because A is invertible and unimodular, we have either
det(A) = 1 or det(A) = −1, implying that the vector x̂ has integer components.
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3.23 (Unimodularity II)

Let A be an m× n matrix.

(a) Show that A is totally unimodular if and only if its transpose A′ is totally
unimodular.

(b) Show that A is totally unimodular if and only if every subset J of {1, . . . , n}
can be partitioned into two subsets J1 and J2 such that∣∣∣∣∣∣

∑
j∈J1

aij −
∑
j∈J2

aij

∣∣∣∣∣∣ ≤ 1, ∀ i = 1, . . . ,m.

Solution: (a) The proof is straightforward from the definition of the totally
unimodular matrix and the fact that B is a submatrix of A if and only if B′ is a
submatrix of A′.

(b) Suppose that A is totally unimodular. Let J be a subset of {1, . . . , n}. Define
z by zj = 1 if j ∈ J , and zj = 0 otherwise. Also let w = Az, ci = di = 1

2
wi if

wi is even, and ci = 1
2
(wi − 1) and di = 1

2
(wi + 1) if wi is odd. Consider the

polyhedral set
P = {x | c ≤ Ax ≤ d, 0 ≤ x ≤ z},

and note that P 6= Ø because 1
2
z ∈ P . Since A is totally unimodular, the

polyhedron P has integer extreme points. Let x̂ ∈ P be one of them. Because
0 ≤ x̂ ≤ z and x̂ has integer components, it follows that x̂j = 0 for j 6∈ J and
x̂j ∈ {0, 1} for j ∈ J . Therefore, zj − 2x̂j = ±1 for j ∈ J . Define J1 = {j ∈ J |
zj − 2x̂j = 1} and J2 = {j ∈ J | zj − 2x̂j = −1}. We have∑

j∈J1

aij −
∑
j∈J2

aij =
∑
j∈J

aij(zj − 2x̂j)

=

n∑
j=1

aij(zj − 2x̂j)

= [Az]i − 2[Ax̂]i

= wi − 2[Ax̂]i,

where [Ax]i denotes the ith component of the vector Ax. If wi is even, then since
ci ≤ [Ax̂]i ≤ di and ci = di = 1

2
wi, it follows that [Ax̂]i = wi, so that

wi − 2[Ax̂]i = 0, when wi is even.

If wi is odd, then since ci ≤ [Ax̂]i ≤ di, ci = 1
2
(wi − 1), and di = 1

2
(wi + 1), it

follows that
1

2
(wi − 1) ≤ [Ax̂]i ≤

1

2
(wi + 1),

implying that
−1 ≤ wi − 2[Ax̂]i ≤ 1.
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Because wi − 2[Ax̂]i is integer, we conclude that

wi − 2[Ax̂]i ∈ {−1, 0, 1}, when wi is odd.

Therefore, ∣∣∣∣∣∣
∑
j∈J1

aij −
∑
j∈J2

aij

∣∣∣∣∣∣ ≤ 1, ∀ i = 1, . . . ,m. (3.16)

Suppose now that the matrix A is such that any J ⊂ {1, . . . , n} can be
partitioned into two subsets so that Eq. (3.16) holds. We prove that A is totally
unimodular, by showing that each of its square submatrices is unimodular, i.e.,
the determinant of every square submatrix of A is -1, 0, or 1. We use induction
on the size of the square submatrices of A.

To start the induction, note that for J ⊂ {1, . . . , n} with J consisting of a
single element, from Eq. (3.16) we obtain aij ∈ {−1, 0, 1} for all i and j. Assume
now that the determinant of every (k − 1) × (k − 1) submatrix of A is -1, 0, or
1. Let B be a k× k submatrix of A. If det(B) = 0, then we are done, so assume
that B is invertible. Our objective is to prove that | detB| = 1. By Cramer’s

rule and the induction hypothesis, we have B−1 = B∗
det(B)

, where b∗ij ∈ {−1, 0, 1}.
By the definition of B∗, we have Bb∗1 = det(B)e1, where b∗1 is the first column of
B∗ and e1 = (1, 0, . . . 0)′.

Let J = {j | b∗j1 6= 0} and note that J 6= Ø since B is invertible. Let

J1 = {j ∈ J | b∗j1 = 1} and J2 = {j ∈ J | j 6∈ J1}. Then, since [Bb∗1]i = 0 for
i = 2, . . . , k, we have

[Bb∗1]i =

k∑
j=1

bijb
∗
j1 =

∑
j∈J1

bij −
∑
j∈J2

bij = 0, ∀ i = 2, . . . , k.

Thus, the cardinality of the set J is even, so that for any partition (J̃1, J̃2) of J ,
it follows that

∑
j∈J̃1

bij −
∑

j∈J̃2
bij is even for all i = 2, . . . , k. By assumption,

there is a partition (J1, J2) of J such that∣∣∣∣∣∣
∑
j∈J1

bij −
∑
j∈J2

bij

∣∣∣∣∣∣ ≤ 1 ∀ i = 1, . . . , k, (3.17)

implying that ∑
j∈J1

bij −
∑
j∈J2

bij = 0, ∀ i = 2, . . . , k. (3.18)

Consider now the value α =

∣∣∣∑j∈J1
b1j −

∑
j∈J2

b1j

∣∣∣, for which in view

of Eq. (3.17), we have either α = 0 or α = 1. Define y ∈ <k by yi = 1 for
i ∈ J1, yi = −1 for i ∈ J2, and yi = 0 otherwise. Then, we have

∣∣[By]1
∣∣ = α

and by Eq. (3.18), [By]i = 0 for all i = 2, . . . , k. If α = 0, then By = 0 and
since B is invertible, it follows that y = 0, implying that J = Ø, which is a
contradiction. Hence, we must have α = 1 so that By = ±e1. Without loss of
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generality assume that By = e1 (if By = −e1, we can replace y by −y). Then,
since Bb∗1 = det(B)e1, we see that B

(
b∗1−det(B)y

)
= 0 and since B is invertible,

we must have b∗1 = det(B)y. Because y and b∗1 are vectors with components -1,
0, or 1, it follows that b∗1 = ±y and

∣∣det(B)
∣∣ = 1, completing the induction and

showing that A is totally unimodular.

3.24 (Unimodularity III)

Show that a matrix A is totally unimodular if one of the following holds:

(a) The entries of A are -1, 0, or 1, and there are exactly one 1 and exactly
one -1 in each of its columns.

(b) The entries of A are 0 or 1, and in each of its columns, the entries that are
equal to 1 appear consecutively.

Solution: (a) We show that the determinant of any square submatrix of A is -1,
0, or 1. We prove this by induction on the size of the square submatrices of A.
In particular, the 1× 1 submatrices of A are the entries of A, which are -1, 0, or
1. Suppose that the determinant of each (k − 1)× (k − 1) submatrix of A is -1,
0, or 1, and consider a k × k submatrix B of A. If B has a zero column, then
det(B) = 0 and we are done. If B has a column with a single nonzero component
(1 or -1), then by expanding its determinant along that column and by using the
induction hypothesis, we see that det(B) = 1 or det(B) = −1. Finally, if each
column of B has exactly two nonzero components (one 1 and one -1), the sum of
its rows is zero, so that B is singular and det(B) = 0, completing the proof and
showing that A is totally unimodular.

(b) The proof is based on induction as in part (a). The 1 × 1 submatrices of A
are the entries of A, which are 0 or 1. Suppose now that the determinant of each
(k−1)×(k−1) submatrix of A is -1, 0, or 1, and consider a k×k submatrix B of A.
Since in each column of A, the entries that are equal to 1 appear consecutively, the
same is true for the matrix B. Take the first column b1 of B. If b1 = 0, then B is
singular and det(B) = 0. If b1 has a single nonzero component, then by expanding
the determinant of B along b1 and by using the induction hypothesis, we see
that det(B) = 1 or det(B) = −1. Finally, let b1 have more than one nonzero
component (its nonzero entries are 1 and appear consecutively). Let l and p be
rows of B such that bi1 = 0 for all i < l and i > p, and bi1 = 1 for all l ≤ i ≤ p.
By multiplying the lth row of B with (-1) and by adding it to the l+1st, l+2nd,
. . ., kth row of B, we obtain a matrix B such that det(B) = det(B) and the first
column b1 of B has a single nonzero component. Furthermore, the determinant
of every square submatrix of B is -1, 0, or 1 (this follows from the fact that the
determinant of a square matrix is unaffected by adding a scalar multiple of a
row of the matrix to some of its other rows, and from the induction hypothesis).
Since b1 has a single nonzero component, by expanding the determinant of B
along b1, it follows that det(B) = 1 or det(B) = −1, implying that det(B) = 1 or
det(B) = −1, completing the induction and showing that A is totally unimodular.

3.25 (Unimodularity IV)
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Let A be a matrix with entries -1, 0, or 1, and exactly two nonzero entries in
each of its columns. Show that A is totally unimodular if and only if the rows of
A can be divided into two subsets such that for each column the following hold:
if the two nonzero entries in the column have the same sign, their rows are in
different subsets, and if they have the opposite sign, their rows are in the same
subset.

Solution: If A is totally unimodular, then by Exercise 3.23(a), its transpose A′

is also totally unimodular, and by Exercise 3.23(b), the set I = {1, . . . ,m} can
be partitioned into two subsets I1 and I2 such that∣∣∣∣∣∣

∑
i∈I1

aij −
∑
i∈I2

aij

∣∣∣∣∣∣ ≤ 1, ∀ j = 1, . . . , n.

Since aij ∈ {−1, 0, 1} and exactly two of a1j , . . . , amj are nonzero for each j, it
follows that ∑

i∈I1

aij −
∑
i∈I2

aij = 0, ∀ j = 1, . . . , n.

Take any j ∈ {1, . . . , n}, and let l and p be such that aij = 0 for all i 6= l and
i 6= p, so that in view of the preceding relation and the fact aij ∈ {−1, 0, 1}, we
see that: if alj = −apj , then both l and p are in the same subset (I1 or I2); if
alj = apj , then l and p are not in the same subset.

Suppose now that the rows of A can be divided into two subsets such
that for each column the following property holds: if the two nonzero entries in
the column have the same sign, they are in different subsets, and if they have
the opposite sign, they are in the same subset. By multiplying all the rows in
one of the subsets by −1, we obtain the matrix A with entries aij ∈ {−1, 0, 1},
and exactly one 1 and exactly one -1 in each of its columns. Therefore, by
Exercise 3.24(a), A is totally unimodular, so that every square submatrix of A
has determinant -1, 0, or 1. Since the determinant of a square submatrix of A
and the determinant of the corresponding submatrix of A differ only in sign, it
follows that every square submatrix of A has determinant -1, 0, or 1, showing
that A is totally unimodular.

3.26 (Gordan’s Theorem of the Alternative [Gor73])

Let a1, . . . , ar be vectors in <n.

(a) Show that exactly one of the following two conditions holds:

(i) There exists a vector x ∈ <n such that

a′1x < 0, . . . , a′rx < 0.

(ii) There exists a vector µ ∈ <r such that µ 6= 0, µ ≥ 0, and

µ1a1 + · · ·+ µrar = 0.
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(b) Show that an equivalent statement of part (a) is the following: a polyhedral
cone has nonempty interior if and only if its polar cone does not contain
a line, i.e., a set of the form {x + αz | α ∈ <}, where x lies in the polar
cone and z is a nonzero vector. (Note: This statement is a special case of
Exercise 3.3.)

Solution: (a) Assume that there exist x̂ ∈ <n and µ ∈ <r such that both
conditions (i) and (ii) hold, i.e.,

a′j x̂ < 0, ∀ j = 1, . . . , r, (3.19)

µ 6= 0, µ ≥ 0,

r∑
j=1

µjaj = 0. (3.20)

By premultiplying Eq. (3.19) with µj ≥ 0 and summing the obtained inequalities
over j, we have

r∑
j=1

µja
′
j x̂ < 0.

On the other hand, from Eq. (3.20), we obtain

r∑
j=1

µja
′
j x̂ = 0,

which is a contradiction. Hence, both conditions (i) and (ii) cannot hold simul-
taneously.

The proof will be complete if we show that the conditions (i) and (ii) cannot
fail to hold simultaneously. Assume that condition (i) fails to hold, and consider
the sets given by

C1 =
{
w ∈ <r | a′jx ≤ wj , j = 1, . . . , r, x ∈ <n

}
,

C2 = {ξ ∈ <r | ξj < 0, j = 1, . . . , r}.

It can be seen that both C1 and C2 are convex. Furthermore, because the condi-
tion (i) does not hold, C1 and C2 are disjoint sets. Therefore, by the Separating
Hyperplane Theorem (Prop. 2.4.2), C1 and C2 can be separated, i.e., there exists
a nonzero vector µ ∈ <r such that

µ′w ≥ µ′ξ, ∀ w ∈ C1, ∀ ξ ∈ C2,

implying that
inf
w∈C1

µ′w ≥ µ′ξ, ∀ ξ ∈ C2.

Since each component ξj of ξ ∈ C2 can be any negative scalar, for the preceding
relation to hold, µj must be nonnegative for all j. Furthermore, by letting ξ → 0,
in the preceding relation, it follows that

inf
w∈C1

µ′w ≥ 0,
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implying that
µ1w1 + · · ·+ µrwr ≥ 0, ∀ w ∈ C1.

By setting wj = a′jx for all j, we obtain

(µ1a1 + · · ·+ µrar)
′x ≥ 0, ∀ x ∈ <n,

and because this relation holds for all x ∈ <n, we must have

µ1a1 + · · ·+ µrar = 0.

Hence, the condition (ii) holds, showing that the conditions (i) and (ii) cannot
fail to hold simultaneously.

Alternative proof : We will show the equivalent statement of part (b), i.e., that
a polyhedral cone contains an interior point if and only if the polar C∗ does not
contain a line. This is a special case of Exercise 3.2 (the dimension of C plus the
dimension of the lineality space of C∗ is n), as well as Exercise 3.6(d), but we
will give an independent proof.

Let
C =

{
x | a′jx ≤ 0, j = 1, . . . , r

}
,

where aj 6= 0 for all j. Assume that C contains an interior point, and to arrive
at a contradiction, assume that C∗ contains a line. Then there exists a d 6= 0
such that d and −d belong to C∗, i.e., d′x ≤ 0 and −d′x ≤ 0 for all x ∈ C, so
that d′x = 0 for all x ∈ C. Thus for the interior point x ∈ C, we have d′x = 0,
and since d ∈ C∗ and d =

∑r

j=1
µjaj for some µj ≥ 0, we have

r∑
j=1

µja
′
jx = 0.

This is a contradiction, since x is an interior point of C, and we have a′jx < 0 for
all j.

Conversely, assume that C∗ does not contain a line. Then by Prop. 3.3.1(b),
C∗ has an extreme point, and since the origin is the only possible extreme point
of a cone, it follows that the origin is an extreme point of C∗, which is the cone
generated by {a1, . . . , ar}. Therefore 0 /∈ conv

(
{a1, . . . , ar}

)
, and there exists

a hyperplane that strictly separates the origin from conv
(
{a1, . . . , ar}

)
. Thus,

there exists a vector x such that y′x < 0 for all y ∈ conv
(
{a1, . . . , ar}

)
, so in

particular,
a′jx < 0, ∀ j = 1, . . . , r,

and x is an interior point of C.

(b) Let C be a polyhedral cone given by

C =
{
x | a′jx ≤ 0, j = 1, . . . , r

}
,

where aj 6= 0 for all j. The interior of C is given by

int(C) =
{
x | a′jx < 0, j = 1, . . . , r

}
,

37



so that C has nonempty interior if and only if the condition (i) of part (a) holds.
By Farkas’ Lemma [Prop. 3.2.1(b)], the polar cone of C is given by

C∗ =

{
x

∣∣∣ x =

r∑
j=1

µjaj , µj ≥ 0, j = 1, . . . , r

}
.

We now show that C∗ contains a line if and only if there is a µ ∈ <r such that
µ 6= 0, µ ≥ 0, and

∑r

j=1
µjaj = 0 [condition (ii) of part (a) holds]. Suppose that

C∗ contains a line, i.e., a set of the form {x + αz | α ∈ <}, where x ∈ C∗ and
z is a nonzero vector. Since C∗ is a closed convex cone, by the Recession Cone
Theorem (Prop. 1.5.1), it follows that z and −z belong to RC∗ . This, implies
that 0 + z = z ∈ C∗ and 0 − z = −z ∈ C∗, and therefore z and −z can be
represented as

z =

r∑
j=1

µjaj , ∀ j, µj ≥ 0, µj 6= 0 for some j,

−z =

r∑
j=1

µjaj , ∀ j, µj ≥ 0, µj 6= 0 for some j.

Thus,
∑r

j=1
(µj + µj)aj = 0, where (µj + µj) ≥ 0 for all j and (µj + µj) 6= 0 for

at least one j, showing that the condition (ii) of part (a) holds.
Conversely, suppose that

∑r

j=1
µjaj = 0 with µj ≥ 0 for all j and µj 6= 0

for some j. Assume without loss of generality that µ1 > 0, so that

−a1 =
∑
j 6=1

µj
µ1
aj ,

with µj/µ1 ≥ 0 for all j, which implies that −a1 ∈ C∗. Since a1 ∈ C∗, −a1 ∈ C∗,
and a1 6= 0, it follows that C∗ contains a line, completing the proof.

3.27 (Linear System Alternatives)

Let a1, . . . , ar be vectors in <n and let b1, . . . br be scalars. Show that exactly
one of the following two conditions holds:

(i) There exists a vector x ∈ <n such that

a′1x ≤ b1, . . . , a′rx ≤ br.

(ii) There exists a vector µ ∈ <r such that µ ≥ 0 and

µ1a1 + · · ·+ µrar = 0, µ1b1 + · · ·+ µrbr < 0.

Solution: Assume that there exist x̂ ∈ <n and µ ∈ <r such that both conditions
(i) and (ii) hold, i.e.,

a′j x̂ ≤ bj , ∀ j = 1, . . . , r, (3.21)
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µ ≥ 0,

r∑
j=1

µjaj = 0,

r∑
j=1

µjbj < 0. (3.22)

By premultiplying Eq. (3.21) with µj ≥ 0 and summing the obtained inequalities
over j, we have

r∑
j=1

µja
′
j x̂ ≤

r∑
j=1

µjbj .

On the other hand, by using Eq. (3.22), we obtain

r∑
j=1

µja
′
j x̂ = 0 >

r∑
j=1

µjbj ,

which is a contradiction. Hence, both conditions (i) and (ii) cannot hold simul-
taneously.

The proof will be complete if we show that conditions (i) and (ii) cannot
fail to hold simultaneously. Assume that condition (i) fails to hold, and consider
the sets given by

P1 = {ξ ∈ <r | ξj ≤ 0, j = 1, . . . , r},
P2 =

{
w ∈ <r | a′jx− bj = wj , j = 1, . . . , r, x ∈ <n

}
.

Clearly, P1 is a polyhedral set. For the set P2, we have

P2 = {w ∈ <r | Ax− b = w, x ∈ <n} = R(A)− b,

where A is the matrix with rows a′j and b is the vector with components bj .
Thus, P2 is an affine set and is therefore polyhedral. Furthermore, because the
condition (i) does not hold, P1 and P2 are disjoint polyhedral sets, and they
can be strictly separated [Prop. 2.4.3 under condition (5)]. Hence, there exists a
vector µ ∈ <r such that

sup
ξ∈P1

µ′ξ < inf
w∈P2

µ′w.

Since each component ξj of ξ ∈ P1 can be any negative scalar, for the preceding
relation to hold, µj must be nonnegative for all j. Furthermore, since 0 ∈ P1, it
follows that

0 < inf
w∈P2

µ′w,

implying that
0 < µ1w1 + · · ·+ µrwr, ∀ w ∈ P2.

By setting wj = a′jx− bj for all j, we obtain

µ1b1 + · · ·+ µrbr < (µ1a1 + · · ·+ µrar)
′x, ∀ x ∈ <n.

Since this relation holds for all x ∈ <n, we must have

µ1a1 + · · ·+ µrar = 0,

implying that
µ1b1 + · · ·+ µrbr < 0.

Hence, the condition (ii) holds, showing that the conditions (i) and (ii) cannot
fail to hold simultaneously.
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3.28 (Convex System Alternatives [FGH57])

Let fi : C 7→ (−∞,∞], i = 1, . . . , r, be convex functions, where C is a nonempty
convex subset of <n such that ri(C) ⊂ dom(fi) for all i. Show that exactly one
of the following two conditions holds:

(i) There exists a vector x ∈ C such that

f1(x) < 0, . . . , fr(x) < 0.

(ii) There exists a vector µ ∈ <r such that µ 6= 0, µ ≥ 0, and

µ1f1(x) + · · ·+ µrfr(x) ≥ 0, ∀ x ∈ C.

Solution: Assume that there exist x̂ ∈ C and µ ∈ <r such that both conditions
(i) and (ii) hold, i.e.,

fj(x̂) < 0, ∀ j = 1, . . . , r, (3.23)

µ 6= 0, µ ≥ 0,

r∑
j=1

µjfj(x̂) ≥ 0. (3.24)

By premultiplying Eq. (3.23) with µj ≥ 0 and summing the obtained inequalities
over j, we obtain, using the fact µ 6= 0,

r∑
j=1

µjfj(x̂) < 0,

contradicting the last relation in Eq. (3.24). Hence, both conditions (i) and (ii)
cannot hold simultaneously.

The proof will be complete if we show that conditions (i) and (ii) cannot
fail to hold simultaneously. Assume that condition (i) fails to hold, and consider
the sets given by

P = {ξ ∈ <r | ξj ≤ 0, j = 1, . . . , r},

C1 =
{
w ∈ <r | fj(x) < wj , j = 1, . . . , r, x ∈ C

}
.

The set P is polyhedral, while C1 is convex by the convexity of C and fj for all j.
Furthermore, since condition (i) does not hold, P and C1 are disjoint, implying
that ri(C1) ∩ P = Ø. By the Polyhedral Proper Separation Theorem (cf. Prop.
3.5.1), the polyhedral set P and convex set C1 can be properly separated by a
hyperplane that does not contain C1, i.e., there exists a vector µ ∈ <r such that

sup
ξ∈P

µ′ξ ≤ inf
w∈C1

µ′w, inf
w∈C1

µ′w < sup
w∈C1

µ′w.

Since each component ξj of ξ ∈ P can be any negative scalar, the first relation
implies that µj ≥ 0 for all j, while the second relation implies that µ 6= 0.
Furthermore, since µ′ξ ≤ 0 for all ξ ∈ P and 0 ∈ P , it follows that

sup
ξ∈P

µ′ξ = 0 ≤ inf
w∈C1

µ′w,
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implying that
0 ≤ µ1w1 + · · ·+ µrwr, ∀ w ∈ C1.

By letting wj → fj(x) for all j, we obtain

0 ≤ µ1f1(x) + · · ·+ µrfr(x), ∀ x ∈ C ∩ dom(f1) ∩ · · · ∩ dom(fr).

Thus, the convex function

f = µ1f1 + · · ·+ µrfr

is finite and nonnegative over the convex set

C̃ = C ∩ dom(f1) ∩ · · · ∩ dom(fr).

By Exercise 1.27, the function f is nonnegative over cl
(
C̃
)
. Given that ri(C) ⊂

dom(fi) for all i, we have ri(C) ⊂ C̃, and therefore

C ⊂ cl
(
ri(C)

)
⊂ cl

(
C̃
)
.

Hence, f is nonnegative over C and condition (ii) holds, showing that the condi-
tions (i) and (ii) cannot fail to hold simultaneously.

3.29 (Convex-Affine System Alternatives)

Let fi : C 7→ (−∞,∞], i = 1, . . . , r, be convex functions, where C is a convex
set in <n such that ri(C) ⊂ dom(fi) for all i = 1, . . . , r. Let fi : C 7→ <,
i = r + 1, . . . , r, be affine functions such that the system

fr+1(x) ≤ 0, . . . , fr(x) ≤ 0

has a solution x ∈ ri(C). Show that exactly one of the following two conditions
holds:

(i) There exists a vector x ∈ C such that

f1(x) < 0, . . . , fr(x) < 0, fr+1(x) ≤ 0, . . . , fr(x) ≤ 0.

(ii) There exists a vector µ ∈ <r such that not all µ1, . . . , µr are zero, µ ≥ 0,
and

µ1f1(x) + · · ·+ µrfr(x) ≥ 0, ∀ x ∈ C.

Solution: Assume that there exist x̂ ∈ C and µ ∈ <r such that both conditions
(i) and (ii) hold, i.e.,

fj(x̂) < 0, ∀ j = 1, . . . , r, fj(x̂) ≤ 0, ∀ j = r + 1, . . . , r, (3.25)

(µ1, . . . , µr) 6= 0, µ ≥ 0,

r∑
j=1

µjfj(x̂) ≥ 0. (3.26)
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By premultiplying Eq. (3.25) with µj ≥ 0 and by summing the obtained inequal-
ities over j, since not all µ1, . . . , µr are zero, we obtain

r∑
j=1

µjfj(x̂) < 0,

contradicting the last relation in Eq. (3.26). Hence, both conditions (i) and (ii)
cannot hold simultaneously.

The proof will be complete if we show that conditions (i) and (ii) cannot
fail to hold simultaneously. Assume that condition (i) fails to hold, and consider
the sets given by

P = {ξ ∈ <r | ξj ≤ 0, j = 1, . . . , r},

C1 =
{
w ∈ <r | fj(x) < wj , j = 1, . . . , r, fj(x) = wj , j = r + 1, . . . , r, x ∈ C

}
.

The set P is polyhedral, and it can be seen that C1 is convex, since C and
f1, . . . , fr are convex, and fr+1, . . . , fr are affine. Furthermore, since the con-
dition (i) does not hold, P and C1 are disjoint, implying that ri(C1) ∩ P = Ø.
Therefore, by the Polyhedral Proper Separation Theorem (cf. Prop. 3.5.1), the
polyhedral set P and convex set C1 can be properly separated by a hyperplane
that does not contain C1, i.e., there exists a vector µ ∈ <r such that

sup
ξ∈P

µ′ξ ≤ inf
w∈C1

µ′w, inf
w∈C1

µ′w < sup
w∈C1

µ′w. (3.27)

Since each component ξj of ξ ∈ P can be any negative scalar, the first relation
implies that µj ≥ 0 for all j. Therefore, µ′ξ ≤ 0 for all ξ ∈ P and since 0 ∈ P , it
follows that

sup
ξ∈P

µ′ξ = 0 ≤ inf
w∈C1

µ′w.

This implies that

0 ≤ µ1w1 + · · ·+ µrwr, ∀ w ∈ C1,

and by letting wj → fj(x) for j = 1, . . . , r, we have

0 ≤ µ1f1(x) + · · ·+ µrfr(x), ∀ x ∈ C ∩ dom(f1) ∩ · · · ∩ dom(fr).

Thus, the convex function

f = µ1f1 + · · ·+ µrfr

is finite and nonnegative over the convex set

C = C ∩ dom(f1) ∩ · · · ∩ dom(fr).

By Exercise 1.27, f is nonnegative over cl
(
C
)
. Given that ri(C) ⊂ dom(fi) for

all i = 1, . . . , r, we have ri(C) ⊂ C, and therefore

C ⊂ cl
(
ri(C)

)
⊂ cl

(
C
)
.

42



Hence, f is nonnegative over C.
We now show that not all µ1, . . . , µr are zero. To arrive at a contradiction,

suppose that all µ1, . . . , µr are zero, so that

0 ≤ µr+1fr+1(x) + · · ·+ µrfr(x), ∀ x ∈ C.

Since the system
fr+1(x) ≤ 0, . . . , fr(x) ≤ 0,

has a solution x ∈ ri(C), it follows that

µr+1fr+1(x) + · · ·+ µrfr(x) = 0,

so that

inf
x∈C

{
µr+1fr+1(x) + · · ·+ µrfr(x)

}
= µr+1fr+1(x) + · · ·+ µrfr(x) = 0,

with x ∈ ri(C). Thus, the affine function µr+1fr+1 + · · · + µrfr attains its
minimum value over C at a point in the relative interior of C. Hence, by Prop.
1.4.2 of Chapter 1, the function µr+1fr+1 + · · ·+ µrfr is constant over C, i.e.,

µr+1fr+1(x) + · · ·+ µrfr(x) = 0, ∀ x ∈ C.

Furthermore, we have µj = 0 for all j = 1, . . . , r, while by the definition of C1, we
have fj(x) = wj for j = r+ 1, . . . , r, which combined with the preceding relation
yields

µ1w1 + · · ·+ µrwr = 0, ∀ w ∈ C1,

implying that
inf
w∈C1

µ′w = sup
w∈C1

µ′w.

This contradicts the second relation in (3.27). Hence, not all µ1, . . . , µr are zero,
showing that the condition (ii) holds, and proving that the conditions (i) and (ii)
cannot fail to hold simultaneously.

3.30 (Elementary Vectors [Roc69])

Given a vector z = (z1, . . . , zn) in <n, the support of z is the set of indices
{j | zj 6= 0}. We say that a nonzero vector z of a subspace S of <n is elementary
if there is no vector z 6= 0 in S that has smaller support than z, i.e., for all
nonzero z ∈ S, {j | zj 6= 0} is not a strict subset of {j | zj 6= 0}. Show that:

(a) Two elementary vectors with the same support are scalar multiples of each
other.

(b) For every nonzero vector y, there exists an elementary vector with support
contained in the support of y.

(c) (Conformal Realization Theorem) We say that a vector x is in harmony
with a vector z if

xjzj ≥ 0, ∀ j = 1, . . . , n.
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Show that every nonzero vector x of a subspace S can be written in the
form

x = z1 + . . .+ zm,

where z1, . . . , zm are elementary vectors of S, and each of them is in har-
mony with x and has support contained in the support of x. Note: Among
other subjects, this result finds significant application in network optimiza-
tion algorithms (see Rockafellar [Roc69] and Bertsekas [Ber98]).

Solution: (a) If two elementary vectors z and z had the same support, the vector
z − γz would be nonzero and have smaller support than z and z for a suitable
scalar γ. If z and z are not scalar multiples of each other, then z−γz 6= 0, which
contradicts the definition of an elementary vector.

(b) We note that either y is elementary or else there exists a nonzero vector z
with support strictly contained in the support of y. Repeating this argument for
at most n− 1 times, we must obtain an elementary vector.

(c) We first show that every nonzero vector y ∈ S has the property that there
exists an elementary vector of S that is in harmony with y and has support that
is contained in the support of y.

We show this by induction on the number of nonzero components of y. Let
Vk be the subset of nonzero vectors in S that have k or less nonzero components,
and let k be the smallest k for which Vk is nonempty. Then, by part (b), every
vector y ∈ V

k
must be elementary, so it has the desired property. Assume that all

vectors in Vk have the desired property for some k ≥ k. We let y be a vector in
Vk+1 and we show that it also has the desired property. Let z be an elementary
vector whose support is contained in the support of y. By using the negative of
z if necessary, we can assume that yjzj > 0 for at least one index j. Then there
exists a largest value of γ, call it γ, such that

yj − γzj ≥ 0, ∀ j with yj > 0,

yj − γzj ≤ 0, ∀ j with yj < 0.

The vector y−γz is in harmony with y and has support that is strictly contained
in the support of y. Thus either y − γz = 0, in which case the elementary
vector z is in harmony with y and has support equal to the support of y, or else
y − γz is nonzero. In the latter case, we have y − γz ∈ Vk, and by the induction
hypothesis, there exists an elementary vector z that is in harmony with y − γz
and has support that is contained in the support of y − γz. The vector z is also
in harmony with y and has support that is contained in the support of y. The
induction is complete.

Consider now the given nonzero vector x ∈ S, and choose any elementary
vector z1 of S that is in harmony with x and has support that is contained in
the support of x (such a vector exists by the property just shown). By using the
negative of z1 if necessary, we can assume that xjz

1
j > 0 for at least one index j.

Let γ be the largest value of γ such that

xj − γz1j ≥ 0, ∀ j with xj > 0,

xj − γz1j ≤ 0, ∀ j with xj < 0.
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The vector x− z1, where
z1 = γ z1,

is in harmony with x and has support that is strictly contained in the support of
x. There are two cases: (1) x = z1, in which case we are done, or (2) x 6= z1, in
which case we replace x by x−z1 and we repeat the process. Eventually, after m
steps where m ≤ n (since each step reduces the number of nonzero components
by at least one), we will end up with the desired decomposition x = z1 + · · ·+zm.

3.31 (Combinatorial Separation Theorem [Cam68], [Roc69])

Let S be a subspace of <n. Consider a set B that is a Cartesian product of n
nonempty intervals, and is such that B ∩ S⊥ = Ø (by an interval, we mean a
convex set of scalars, which may be open, closed, or neither open nor closed.)
Show that there exists an elementary vector z of S (cf. Exercise 3.30) such that

t′z < 0, ∀ t ∈ B,

i.e., a hyperplane that separates B and S⊥, and does not contain any point of B.
Note: There are two points here: (1) The set B need not be closed, as required
for application of the Strict Separation Theorem (cf. Prop. 2.4.3), and (2) the
hyperplane normal can be one of the elementary vectors of S (not just any vector
of S). For application of this result in duality theory for network optimization
and monotropic programming, see Rockafellar [Roc84] and Bertsekas [Ber98].

Solution: For simplicity, assume that B is the Cartesian product of bounded
open intervals, so that B has the form

B = {t | bj < tj < bj , j = 1, . . . , n},

where bj and bj are some scalars. The proof is easily modified for the case where
B has a different form.

Since B∩S⊥ = Ø, there exists a hyperplane that separates B and S⊥. The
normal of this hyperplane is a nonero vector d ∈ S such that

t′d ≤ 0, ∀ t ∈ B.

Since B is open, this inequality implies that actually

t′d < 0, ∀ t ∈ B.

Equivalently, we have∑
{j|dj>0}

(bj − ε)dj +
∑

{j|dj<0}

(bj + ε)dj < 0, (3.28)

for all ε > 0 such that bj + ε < bj − ε. Let

d = z1 + · · ·+ zm,
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be a decomposition of d, where z1, . . . , zm are elementary vectors of S that are
in harmony with d, and have supports that are contained in the support of d [cf.
part (c) of the Exercise 3.30]. Then the condition (3.28) is equivalently written
as

0 >
∑

{j|dj>0}

(bj − ε)dj +
∑

{j|dj<0}

(bj + ε)dj

=
∑

{j|dj>0}

(bj − ε)

(
m∑
i=1

zij

)
+

∑
{j|dj<0}

(bj + ε)

(
m∑
i=1

zij

)

=

m∑
i=1

 ∑
{j|zi

j
>0}

(bj − ε)zij +
∑

{j|zi
j
<0}

(bj + ε)zij

 ,

where the last equality holds because the vectors zi are in harmony with d and
their supports are contained in the support of d. From the preceding relation,
we see that for at least one elementary vector zi, we must have

0 >
∑

{j|zi
j
>0}

(bj − ε)zij +
∑

{j|zi
j
<0}

(bj + ε)zij ,

for all ε > 0 that are sufficiently small and are such that bj + ε < bj − ε, or
equivalently

0 > t′zi, ∀ t ∈ B.

3.32 (Tucker’s Complementarity Theorem)

(a) Let S be a subspace of <n. Show that there exist disjoint index sets I and
I with I ∪ I = {1, . . . , n}, and vectors x ∈ S and y ∈ S⊥ such that

xi > 0, ∀ i ∈ I, xi = 0, ∀ i ∈ I,

yi = 0, ∀ i ∈ I, yi > 0, ∀ i ∈ I.

Furthermore, the index sets I and I with this property are unique. In
addition, we have

xi = 0, ∀ i ∈ I, ∀ x ∈ S with x ≥ 0,

yi = 0, ∀ i ∈ I, ∀ y ∈ S⊥ with y ≥ 0.

Hint : Use a hyperplane separation argument based on Exercise 3.31.

(b) Let A be an m × n matrix and let b be a vector in <n. Assume that the
set F = {x | Ax = b, x ≥ 0} is nonempty. Apply part (a) to the subspace

S =
{

(x,w) | Ax− bw = 0, x ∈ <n, w ∈ <
}
,
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and show that there exist disjoint index sets I and I with I∪I = {1, . . . , n},
and vectors x ∈ F and z ∈ <m such that b′z = 0 and

xi > 0, ∀ i ∈ I, xi = 0, ∀ i ∈ I,

yi = 0, ∀ i ∈ I, yi > 0, ∀ i ∈ I,

where y = A′z. Note: A special choice of A and b yields an important
result, which relates optimal primal and dual solutions in linear program-
ming: the Goldman-Tucker Complementarity Theorem (see the exercises
of Chapter 6).

Solution: (a) Fix an index k and consider the following two assertions:

(1) There exists a vector x ∈ S with xi ≥ 0 for all i, and xk > 0.

(2) There exists a vector y ∈ S⊥ with yi ≥ 0 for all i, and yk > 0.

We claim that one and only one of the two assertions holds. Clearly, assertions
(1) and (2) cannot hold simultaneously, since then we would have x′y > 0, while
x ∈ S and y ∈ S⊥. We will show that they cannot fail simultaneously. Indeed, if
(1) does not hold, the Cartesian product B = Πn

i=1Bi of the intervals

Bi =

{
(0,∞) if i = k,
[0,∞) if i 6= k,

does not intersect the subspace S, so by the result of Exercise 3.31, there exists
a vector z of S⊥ such that x′z < 0 for all x ∈ B. For this to hold, we must have
z ∈ B∗ or equivalently z ≤ 0, while by choosing x = (0, . . . , 0, 1, 0, . . . , 0) ∈ B,
with the 1 in the kth position, the inequality x′z < 0 yields zk < 0. Thus
assertion (2) holds with y = −z. Similarly, we show that if (2) does not hold,
then (1) must hold.

Let now I be the set of indices k such that (1) holds, and for each k ∈ I,
let x(k) be a vector in S such that x(k) ≥ 0 and xk(k) > 0 (note that we do not
exclude the possibility that one of the sets I and I is empty). Let I be the set of
indices such that (2) holds, and for each k ∈ I, let y(k) be a vector in S⊥ such
that y(k) ≥ 0 and yk(k) > 0. From what has already been shown, I and I are
disjoint, I ∪ I = {1, . . . , n}, and the vectors

x =
∑
k∈I

x(k), y =
∑
k∈I

y(k),

satisfy
xi > 0, ∀ i ∈ I, xi = 0, ∀ i ∈ I,

yi = 0, ∀ i ∈ I, yi > 0, ∀ i ∈ I.

The uniqueness of I and I follows from their construction and the preceding
arguments. In particular, if for some k ∈ I, there existed a vector x ∈ S with
x ≥ 0 and xk > 0, then since for the vector y(k) of S⊥ we have y(k) ≥ 0
and yk(k) > 0, assertions (a) and (b) must hold simultaneously, which is a
contradiction.
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The last assertion follows from the fact that for each k, exactly one of the
assertions (1) and (2) holds.

(b) Consider the subspace

S =
{

(x,w) | Ax− bw = 0, x ∈ <n, w ∈ <
}
.

Its orthogonal complement is the range of the transpose of the matrix [A − b],
so it has the form

S⊥ =
{

(A′z,−b′z) | z ∈ <m
}
.

By applying the result of part (a) to the subspace S, we obtain a partition of the
index set {1, . . . , n+ 1} into two subsets. There are two possible cases:

(1) The index n+ 1 belongs to the first subset.

(2) The index n+ 1 belongs to the second subset.

In case (2), the two subsets are of the form I and I∪{n+1} with I∪I = {1, . . . , n},
and by the last assertion of part (a), we have w = 0 for all (x,w) such that
x ≥ 0, w ≥ 0 and Ax − bw = 0. This, however, contradicts the fact that the
set F = {x | Ax = b, x ≥ 0} is nonempty. Therefore, case (1) holds, i.e., the
index n + 1 belongs to the first index subset. In particular, we have that there
exist disjoint index sets I and I with I ∪ I = {1, . . . , n}, and vectors (x,w) with
Ax− bw = 0, and z ∈ <m such that

w > 0, b′z = 0,

xi > 0, ∀ i ∈ I, xi = 0, ∀ i ∈ I,

yi = 0, ∀ i ∈ I, yi > 0, ∀ i ∈ I,

where y = A′z. By dividing (x,w) with w if needed, we may assume that w = 1
so that Ax− b = 0, and the result follows.
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