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CHAPTER 3: SOLUTION MANUAL

3.1 (Cone Decomposition Theorem)

Let C be a nonempty closed convex cone in ™ and let « be a vector in R". Show
that:

(a) & is the projection of z on C' if and only if

A *

zeC, (x—2)% =0, r—zeC”.

(b) The following two statements are equivalent:
(i) z1 and z2 are the projections of z on C' and C*, respectively.

(ii) z =21 + x2 with 1 € C, 22 € C*, and ziz2 = 0.

Solution: (a) Let & be the projection of z on C, which exists and is unique since
C is closed and convex. By the Projection Theorem (Prop. 2.2.1), we have

(z—2)(y—2) <0, VyeC.

Since C' is a cone, we have (1/2)z € C and 2% € C, and by taking y = (1/2)&
and y = 272 in the preceding relation, it follows that

(z—2)2=0.
By combining the preceding two relations, we obtain
("L’ii),ygoa Vy€C7

implying that © — & € C*.
Conversely, if 2 € C, (z —2)'2 =0, and © — & € C*, then it follows that

(z—2)(y—2)<0, VyeC,

and by the Projection Theorem, & is the projection of z on C.

(b) Suppose that property (i) holds, i.e., 1 and z2 are the projections of z on C
and C*, respectively. Then, by part (a), we have

x1 € C, (x —x1) 1 =0, x—1x1 €C".
Let y = ¢ — x1, so that the preceding relation can equivalently be written as
r—yeC=(C")", Yla-y =0 yel"
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By using part (a), we conclude that y is the projection of  on C*. Since by the
Projection Theorem, the projection of a vector on a closed convex set is unique,
it follows that y = x2. Thus, we have x = 1 + z2 and in view of the preceding
two relations, we also have z1 € C, zo2 € C*, and {72 = 0. Hence, property (ii)
holds.

Conversely, suppose that property (ii) holds, i.e., ¢ = 1 + 22 with 21 € C,
22 € C*, and z{x2 = 0. Then, evidently the relations

r1 € C, (x —x1) 1 =0, r—x1 €CT,

z2 € C, (z — 22) 2 = 0, z—x2€C

are satisfied, so that by part (a), 1 and z2 are the projections of z on C' and
C*, respectively. Hence, property (i) holds.

3.2

Let C be a nonempty closed convex cone in R" and let a be a vector in R". Show
that for any positive scalars 8 and -, we have

max a'w<rv if and only if aeC*+{:ﬂ| [|z]] S’y/ﬁ}.
lzl|<B, z€C

(This may be viewed as an “approximate” version of the Polar Cone Theorem.)
Solution: If a € C* + {x [ x|l < 7/5}, then
a=a+a with ae€C” and |a] <v/B.

Since C is a closed convex cone, by the Polar Cone Theorem (Prop. 3.1.1), we
have (C*)* = C, implying that for all z in C' with ||z| < 8,

a'r <0 and @z <|al-||=| < 7.

Hence,
dr=(a+a)z<n, Vzel with |z| <6,

thus implying that
max a'z <.
lzll<B, zeC
Conversely, assume that o’z < v for all z € C with ||z|]| < 8. Let @ and @
be the projections of a on C* and C, respectively. By the Cone Decomposition
Theorem (cf. Exercise 3.1), we have a = a +a with a € C*, @ € C, and @’a = 0.
Since a’z < v for all z € C with ||z|| < B and @ € C, we obtain

o PR
o B = @+ @) B = Al <,

implying that ||a]| < /8, and showing that a € C* + {x | z]] < fy/ﬁ}.



3.3

Let C be a nonempty cone in R". Show that
i
Lo+ = (aff(C)) 7,

dim(C) + dim(Lex) = n,
dim(C”) + dim (Leonv(cy) < dim(C™) + dim (Leyconv(cy) ) = n,

where Lx denotes the lineality space of a convex set X.

Solution: Note that aff(C) is a subspace of R™ because C' is a cone in . We
first show that N
Lo+ = (aff(C)) ™.

Let y € Lox. Then, by the definition of the lineality space (see Chapter 1), both
vectors y and —y belong to the recession cone Rg+. Since 0 € C™, it follows that
0+ y and 0 — y belong to C*. Therefore,

y'z <0, (—y)x <0, VzeC,
implying that
y'z =0, VzeC. (3.1)

Let the dimension of the subspace aff (C') be m. By Prop. 1.4.1, there exist vectors
Z0,Z1,. .., Tm in ri(C) such that 1 — xo, ..., Tm — xo span aff (C'). Thus, for any
z € aff (C), there exist scalars f31,. .., Bm such that

z = Zﬂl(m — :Ij’o).
i=1

By using this relation and Eq. (3.1), for any z € aff(C), we obtain

m

Yz = Z,@iy'(wi —x0) =0,

=1

implying that y € (aff(C))l. Hence, Lox C (aff(C))J'.
Conversely, let y € (aff(C’))L, so that in particular, we have

yax=0, (—y)x =0, Vaedl.

Therefore, 04+ ay € C* and 0+ a(—y) € C* for all & > 0, and since C* is a closed
convex set, by the Recession Cone Theorem(b) [Prop. 1.5.1(b)], it follows that y
and —y belong to the recession cone Ro+. Hence, y belongs to the lineality space

of C*, showing that (af'f(C))L C Le+ and completing the proof of the equality
1
Lo+ = (aff(C)) ™.



By definition, we have dim(C) = dim(aff(C)) and since Lox = (aff(C))L,
we have dim(L¢g+) = dim((aff(C))L). This implies that

dim(C) + dim(Lg+) = n.

By replacing C with C* in the preceding relation, and by using the Polar
Cone Theorem (Prop. 3.1.1), we obtain

dim(C") + dim(Lc=)+ ) = dim(C") + dim (Leiieonv(c))) = -

Furthermore, since
Lconv(C) C Lcl(conv(C))7

it follows that

dlm(C*) + dim(LCO“V(C)) < dim(C*) + dim (Lcl(conv(c))) =n.

3.4 (Polar Cone Operations)

Show the following:

(a) For any nonempty cones C; C R™, i =1,...,m, we have

(Cix -+ xCp) =Cf{ X xCh,.

(b) For any collection of nonempty cones {C; | i € I}, we have
(UierCi)™ = NicsCF.

(c¢) For any two nonempty cones C; and C3, we have

(Cl +CQ)* = Cik N C;

(d) For any two nonempty closed convex cones C; and Cs, we have
(CiNC)* =cl(CT +C3).

Furthermore, if ri(C1) Nri(C2) # &, then the cone C7 + C3 is closed and
the closure operation in the preceding relation can be omitted.

(e) Consider the following cones in R?
Ci = {(w1,22,3) | 21 + 23 < 23, 3 <0},
CQ = {(1‘1,$2,I3) | To = —1‘3}.
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Verify that ri(Ch)Nri(C2) = &, (1,1,1) € (C1NC2)*, and (1,1,1) ¢ CT+C3,
thus showing that the closure operation in the relation of part (d) may not
be omitted when ri(C1) Nri(C2) = @.

Solution: (a) It suffices to consider the case where m = 2. Let (y1,y2) €
(C1 x C2)*. Then, we have (y1,y2) (z1,z2) < 0 for all (z1,22) € C1 x Cs, or
equivalently

yi:cl +y/2$2 <0, Y x1 ECl, Y zo € Cs.

Since C> is a cone, 0 belongs to its closure, so by letting 2 — 0 in the preceding
relation, we obtain yjz1 < 0 for all z; € C4, showing that y; € Cf. Similarly, we
obtain y2 € C5, and therefore (y1,y2) € C7 x C3, implying that (C1 x C2)* C
Ci x C5.

Conversely, let y1 € C{ and y2 € C5. Then, we have

(y1,y2) (z1,22) = yio1 + ysze <0, Vo, €Cy, V€ Cy,

implying that (y1,y2) € (C1 x C2)*, and showing that C7 x C5 C (C1 x C2)™.

(b) A vector y belongs to the polar cone of U;c;C; if and only if y'z < 0 for all
x € C; and all ¢ € I, which is equivalent to having y € C; for every i € I. Hence,
y belongs to (UZ'E[CQ) if and only if y belongs to N;erCy.

(c) Let y € (C1 + C2)", so that
y'(xl +x2) <0, Vx € Ch, Y xo € Ch. (3.2)

Since the zero vector is in the closures of Ci and Cs, by letting 2 — 0 with
z2 € C3 in Eq. (3.2), we obtain

y'x1 <0, V€ Ch,
and similarly, by letting 1 — 0 with z1 € C1 in Eq. (3.2), we obtain
y'xe <0, YV x2 € Ch.

Thus, y € C7 N C5, showing that (C1 + C2)" C CT NC5.
Conversely, let y € CT N C3. Then, we have

y'z1 <0, V1 € Ch,
y'ze <0, V2 € Co,
implying that
y/(a:l +$2) <0, Y 1 eC’l, Y zo € Cs.

Hence y € (C1 4+ C2)*, showing that CY N C5 C (Cy + Ca)™.

(d) Since C and C are closed convex cones, by the Polar Cone Theorem (Prop.
3.1.1) and by part (b), it follows that

CiNCy=(CI)" N(C3)" = (CT +C3)™.
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By taking the polars and by using the Polar Cone Theorem, we obtain
(CinCy)" = ((Cf + O;*)*)* = cl(conv(Cf + C;))
The cone CT + C3 is convex, so that
(C1NC2)* =cl(C] +C3).

Suppose now that ri(C1) Nri(C2) # . We will show that C7 + C5 is
closed by using Exercise 1.43. According to this exercise, if for any nonempty
closed convex sets C'; and C's in R", the equality y1 + y2 = 0 with y1 € R51 and
Y2 € R52 implies that y1 and y» belong to the lineality spaces of C; and Ca,
respectively, then the vector sum Cy + Cs is closed.

Let y1 + y2 = 0 with y1 € RC{ and y2 € RC;. Because C7 and C3 are
closed convex cones, we have Rcf = Cf and ch = (5, so that y; € C] and

y2 € C5. The lineality space of a cone is the set of vectors y such that y and
—1y belong to the cone, so that in view of the preceding discussion, to show that
CT + C5 is closed, it suffices to prove that —y; € C} and —y2 € C5.

Since y1 = —y2 and y; € C7, it follows that

yax > 0, VaxeC, (3.3)
and because y2 € C5, we have
yor < 0, Vx e Cy,
which combined with the preceding relation yields
yax =0, Ve CinNnCs. (3.4)

In view of the fact ri(C1) Nri(C2) # &, and Egs. (3.3) and (3.4), it follows that
the linear function g5z attains its minimum over the convex set C; at a point in
the relative interior of C, implying that ysz = 0 for all z € Cy (cf. Prop. 1.4.2).
Therefore, y2 € C7 and since y2 = —y1, we have —y; € C7. By exchanging the
roles of y1 and y2 in the preceding analysis, we similarly show that —y» € C3,
completing the proof.

(e) By drawing the cones C;1 and Cs, it can be seen that ri(C1) Nri(C2) = @ and

CinCsy = {(1:1,952,1’3) | 21 =0, 22 = —x3, z3 < 0}7

Cr ={(W1,y2,93) | i +v3 <3, ys >0},
C; = {(2:1,22,2’3) | z1 = 07 Z2 = 23}.
Clearly, 1 + 22 +x3 = 0 for all z € C; N Co, implying that (1,1,1) € (C1 NCs)™.
Suppose that (1,1,1) € Cf + C3, so that (1,1,1) = (y1,y2,y3) + (21, 22, 23) for
some (y1,y2,y3) € CT and (z1,22,23) € C3, implying that y1 = 1, y2 = 1 — 22,
ys = 1 — 2z for some z2 € RN. However, this point does not belong to C7,

which is a contradiction. Therefore, (1,1,1) is not in Cy + C5. Hence, when
ri(C1) Nri(C2) = O, the relation

(01 n Cz)* = CT + C;

may fail.



3.5 (Linear Transformations and Polar Cones)

Let C be a nonempty cone in R", K be a nonempty closed convex cone in ™,
and A be a linear transformation from R" to R"*. Show that

(AC) = (A)".cr, (AT K) = c(AK).

Show also that if ri(K) N R(A) # &, then the cone A’K™ is closed and (A’)™*
and the closure operation in the above relation can be omitted.

Solution: We have y € (AC)* if and only if ¥’ Az < 0 for all z € C, which is
equivalent to (A'y)’'x < 0 for all z € C. This is in turn equivalent to A’y € C*.
Hence, y € (AC)* if and only if y € (A’)™" - C*, showing that

(AC)* = (A" C™. (3.5)
We next show that for a closed convex cone K C ™, we have
(A K) = c(A'K").

Let y € (A_1 - K)* and to arrive at a contradiction, assume that y & cl(A'K™).
By the Strict Separation Theorem (Prop. 2.4.3), the closed convex cone cl(A'K™)
and the vector y can be strictly separated, i.e., there exist a vector a € " and
a scalar b such that

adz <b<ady, Vz € cl(A'K™).

If ¢’z > 0 for some = € cl(A’K*), then since cl(A’K™*) is a cone, we would
have Az € cl(A’K*) for all A > 0, implying that a’'(Az) — oo when A\ — oo,
which contradicts the preceding relation. Thus, we must have o’z < 0 for all
x € cl(A'K™), and since 0 € cl(A’K™), it follows that

sup dz=0<b<ady. (3.6)
zeCl(A'K*)

Therefore, a € (cl(A’K*))*, and since (CI(A’K*))* C (A'K*)*, it follows that
a € (A'K*)*. In view of Eq. (3.5) and the Polar Cone Theorem (Prop. 3.1.1), we
have

(A/K*)* _ A—l(K*)* — A71 . K,

implying that a € A= - K. Because y € (A_1 »K)*, it follows that y'a < 0,
contradicting Eq. (3.6). Hence, we must have y € cl(A’K*), showing that

(A7 K)" Ca(A'K).

To show the reverse inclusion, let y € A’K* and assume, to arrive at a con-
tradiction, that y ¢ (A™" - K)*. By the Strict Separation Theorem (Prop. 2.4.3),
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the closed convex cone (A*1 -K)* and the vector y can be strictly separated, i.e.,
there exist a vector @ € R™ and a scalar b such that

adr<b<ay, Vre (A K)".
Similar to the preceding analysis, since (A™* - K)* is a cone, it can be seen that

sup adz=0<b<ay, (3.7)
ze(A—L1.K)*

implying that @ € ((fr1 -K)*) *. Since K is a closed convex cone and A is a linear
(and therefore continuous) transformation, the set A~!-K is a closed convex cone.
Furthermore, by the Polar Cone Theorem, we have that ((fr1 K)*) "= ALK,
Therefore, @ € A™!- K, implying that Ag € K. Since y € A’K*, we have y = A'v
for some v € K*, and it follows that

ya=(Av)a=vAa <0,

1

contradicting Eq. (3.7). Hence, we must have y € (A7 - K)*, implying that

AK*c (A" K)".
Taking the closure of both sides of this relation, we obtain
Ad(A'K*) c (A" K),

completing the proof.

Suppose that ri(K*) N R(A) # . We will show that the cone A'K* is
closed by using Exercise 1.42. According to this exercise, if Rg+ N N(A') is a
subspace of the lineality space L of K™, then

A(A'K*) = AK*,

Thus, it suffices to verify that Rg+ N N(A’) is a subspace of Ly+. Indeed, we
will show that Rg+ N N(A") = L+ N N(A").
Let y € K* N N(A"). Because y € K*, we obtain

(=y)'z >0, VzeK. (3.8)
For y € N(A’), we have —y € N(A’) and since N(A') = R(A)*, it follows that
(—y)'z=0, YV z € R(A). (3.9)

In view of the relation ri(K) N R(A) # (@, and Egs. (3.8) and (3.9), the linear
function (—y)’z attains its minimum over the convex set K at a point in the
relative interior of K, implying that (—y)'xz = 0 for all z € K (cf. Prop. 1.4.2).
Hence (—y) € K*, so that y € Ly+ and because y € N(A’), we see that y €
Ly+«NN(A’). The reverse inclusion follows directly from the relation Ly« C R+,
thus completing the proof.



3.6 (Pointed Cones and Bases)

Let C be a closed convex cone in R". We say that C is a pointed cone if CN(—C') =
{0}. A convex set D C R" is said to be a base for C'if C' = cone(D) and 0 & cl(D).
Show that the following properties are equivalent:

(a) C is a pointed cone.
(b cl(C* *) =R".

C =R".

(
(d) C* has nonempty interior.

)
) ©
)
(e) There exist a nonzero vector & € R" and a positive scalar ¢ such that
&'z > d||z|| for all x € C.

(f) C has a bounded base.

Hint: Use Exercise 3.4 to show the implications (a) = (b) = (c¢) = (d) = (e)
= (f) = (a).

Solution: (a) = (b) Since C' is a pointed cone, C' N (—C') = {0}, so that
(Cn(-0))" =%r".
On the other hand, by Exercise 3.4, it follows that
(Cn(=0))" =a(Cc - C7),

which when combined with the preceding relation yields cl(C* — C*) = R".

(b) = (c) Since C'is a closed convex cone, by the polar cone operations of Exercise
3.4, it follows that

(CN(-0)) =cl(C" —C) =R".

By taking the polars and using the Polar Cone Theorem (Prop. 3.1.1), we obtain

((Cﬂ(fc))*)* —Cn(=C) = {0}. (3.10)

Now, to arrive at a contradiction assume that there is a vector & € R" such that
% ¢ C* — C*. Then, by the Separating Hyperplane Theorem (Prop. 2.4.2), there
exists a nonzero vector a € R™ such that

a's>adx, VeeC" —C".
If a’x > 0 for some x € C* — C*, then since C* — C* is a cone, the right hand-side
of the preceding relation can be arbitrarily large, a contradiction. Thus, we have
a'z <0 for all z € C* — C*, implying that a € (C* — C*)*. By the polar cone
operations of Exercise 3.4(b) and the Polar Cone Theorem, it follows that

(C* = C*) = (C*)" N (=C™)* = CN(=0).
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Thus, a € C N (—C) with a # 0, contradicting Eq. (3.10). Hence, we must have
Cr—Cr=x"

(c) = (d) Because C* C aff(C*) and —C* C aff(C*), we have C* —C* C aff(C™)
and since C* — C* = R", it follows that aff(C*) = R", showing that C* has
nonempty interior.

(d) = (e) Let v be a vector in the interior of C*. Then, there exists a positive

scalar 0 such that the vector v 4 5”73"‘ isin C* for all y € " with y # 0, i.e.,

(1}—1—5||z|>ac§07 VeeC, VyeR" y#0.

By taking y = z, it follows that

/
(U—F(S”z”)mg(), Veel, ¢#0,

implying that
o'z + 6|z <0, Vzel, z#0.

Clearly, this relation holds for z = 0, so that
v'e < 3|z, Vzedl.
Multiplying the preceding relation with —1 and letting & = —v, we obtain

'z > §||x, VaeC.

(e) = (f) Let
D:{yeC’|§c/y:1}.

Then, D is a closed convex set since it is the intersection of the closed convex
cone C and the closed convex set {y | 'y = 1}. Obviously, 0 € D. Thus, to show
that D is a base for C, it remains to prove that C' = cone(D). Take any z € C.
If z = 0, then x € cone(D) and we are done, so assume that x # 0. We have by
hypothesis

&'z > 6||z|| > 0, VeeC, z#0,

so we may define § = . Clearly, § € D and = = (i'z)y with 'z > 0,
showing that « € cone(D) and that C' C cone(D). Since D C C, the inclusion
cone(D) C C'is obvious. Thus, C' = cone(D) and D is a base for C'. Furthermore,
for every y in D, since y is also in C, we have

1=2a"y > 4lyll,

showing that D is bounded and completing the proof.

(f) = (a) Since C has a bounded base, C' = cone(D) for some bounded convex
set D with 0 & cl(D). To arrive at a contradiction, we assume that the cone C' is
not pointed, so that there exists a nonzero vector d € C'N(—C), implying that d
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and —d are in C. Let {\x} be a sequence of positive scalars. Since A\xd € C for
all k and D is a base for C, there exist a sequence {py} of positive scalars and a
sequence {yx} of vectors in D such that

)\kd = HEYk, Vv k.

Therefore, y,, = %d € D for all k£ and because D is bounded, the sequence {yk}
has a subsequence converging to some y € cl(D). Without loss of generality, we
may assume that y, — y, which in view of y,, = 2—’;d for all k, implies that y = ad
and ad € cl(D) for some «a > 0. Furthermore, by the definition of base, we have
0 & cl(D), so that @ > 0. Similar to the preceding, by replacing d with —d, we
can show that a(—d) € cl(D) for some positive scalar &. Therefore, ad € cl(D)
and &(—d) € cl(D) with o > 0 and @ > 0. Since D is convex, its closure cl(D)
is also convex, implying that 0 € cl(D), contradicting the definition of a base.
Hence, the cone C must be pointed.

3.7

Show that a closed convex cone is polyhedral if and only if its polar cone is
polyhedral.

Solution: Let the closed convex cone C be polyhedral, and of the form
C:{m\a;xSQ j:l,...,r}7
for some vectors a; in R". By Farkas’ Lemma [Prop. 3.2.1(b)], we have
C = cone({al, . ,aT}),

so the polar cone of a polyhedral cone is finitely generated. Conversely, using the
Polar Cone Theorem, we have

cone({al,...,ar})* = {x | ajz <0, j= 1,...,r},

so the polar of a finitely generated cone is polyhedral. Thus, a closed convex cone
is polyhedral if and only if its polar cone is finitely generated. By the Minkowski-
Weyl Theorem [Prop. 3.2.1(c)], a cone is finitely generated if and only if it is
polyhedral. Therefore, a closed convex cone is polyhedral if and only if its polar
cone is polyhedral.

3.8

Let P be a polyhedral set in R", with a Minkowski-Weyl Representation

P:{m‘x:Zujvj—i—y, Z,ujzl, ui >0, j=1,...,m, yeC},
j=1 j=1
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where v1, ..., v, are some vectors in "™ and C is a finitely generated cone in R"
(cf. Prop. 3.2.2). Show that:

(a) The recession cone of P is equal to C.

(b) Each extreme point of P is equal to some vector v; that cannot be repre-
sented as a convex combination of the remaining vectors v;, j # 4.

Solution: (a) We first show that C is a subset of Rp, the recession cone of P.
Let y € C, and choose any a > 0 and = € P of the form z = Z;n:1 1iv;. Since
C'is a cone, ay € C, so that x + ay € P for all a > 0. It follows that § € Rp.
Hence C C Rp.

Conversely, to show that Rp C C, let § € Rp and take any x € P. Then
xz+ky e Pforall k>1. Since P =V + C, where V = conv({vl,...,vm}), it
follows that

x—&—k@:vk—l—yk, Vk>1,

with v* € V and y* € C for all k > 1. Because V is compact, the sequence

{’Uk} has a limit point v € V', and without loss of generality, we may assume that
v® — v. Then

Jim [k — 'l = lim [ =zl = |lv - 2],
— 00 k—oo
implying that

lim |7 — (1/k)y"|| = 0.

k—oo

Therefore, the sequence {(l/k)yk} converges to . Since y* € C for all k > 1,

the sequence {(1/k)yk} is in C, and by the closedness of C, it follows that 7 € C.
Hence, Rp C C.

(b) Any point in P has the form v + y with v € conv({vl, e ,vm}) and y € C,
or equivalently

1 1
U+y:§1}+§(”+29)7

with v and v 4 2y being two distinct points in P if y # 0. Therefore, none of the
points v + y, with v € conv ({vl, . ,vm}) and y € C, is an extreme point of P
if y # 0. Hence, an extreme point of P must be in the set {v1,...,vm}. Since
by definition, an extreme point of P is not a convex combination of points in P,
an extreme point of P must be equal to some v; that cannot be expressed as a
convex combination of the remaining vectors v;, j # i.

3.9 (Polyhedral Cones and Sets under Linear Transformations)

(a) Show that the image and the inverse image of a polyhedral cone under a
linear transformation are polyhedral cones.

(b) Show that the image and the inverse image of a polyhedral set under a
linear transformation are polyhedral sets.
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Solution: (a) Let A be an m x n matrix and let C' be a polyhedral cone in £".
By the Minkowski-Weyl Theorem [Prop. 3.2.1(c)], C is finitely generated, so that

C= {x \ T= pag, py >0, 1:1,...,r},
j=1
for some vectors ai,...,ar in ®". The image of C under A is given by
AC:{y|y:A£U, {EEC}: {y ‘ y:Z:U’jAaja Hj >0, j:17"'ar}7
j=1

showing that AC is a finitely generated cone in R™. By the Minkowski-Weyl
Theorem, the cone AC is polyhedral.
Let now K be a polyhedral cone in ™ given by

K={y|djy<0,j=1,...,r},
for some vectors di,...,d, in ®™. Then, the inverse image of K under A is

A" K ={z| Az € K}
:{m\d;Axgo, jzl,...,r}
:{x\(A'dj)/a:go, j:l,..‘,r},

showing that A~! - K is a polyhedral cone in R".
(b) Let P be a polyhedral set in R" with Minkowski-Weyl Representation

P—{m‘x—Zujvj—i—% Z,uj:L wi >0, 5=1,...,m, yGC},
j=1 j=1

where v1, ..., v, are some vectors in R™ and C is a finitely generated cone in R"
(cf. Prop. 3.2.2). The image of P under A is given by

AP ={z|z= Az, z € P}

z{z z:Z,ujAvj—i—Ay, Zﬂjzl, wj >0, 5=1,...,m, AyeAC},

j=1 j=1

By setting Av; = w; and Ay = u, we obtain

AP—{Z Z:ijw]-+u, Z,ujzl, w; >0, j=1,...,m, UGAC}
j=1 j=1

= conv({wl, ey wm}) + AC,

where w1, ..., wn € ™. By part (a), the cone AC is polyhedral, implying by the
Minkowski-Weyl Theorem [Prop. 3.2.1(c)] that AC is finitely generated. Hence,
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the set AP has a Minkowski-Weyl representation and therefore, it is polyhedral
(cf. Prop. 3.2.2).
Let also @ be a polyhedral set in R™ given by

Q: {y|d;y§b]7 ]: 17"'7T}7
for some vectors di,...,d, in R™. Then, the inverse image of Q under A is

AT Q={z]|AzeQ}
={a|djAx <b;, j=1,...,r}
={a|(Ad)z<b;, j=1,...,r},

showing that A™! - Q is a polyhedral set in R".

3.10

Show the following:

(a) For polyhedral cones C; C R™, ¢ = 1,...,m, the Cartesian product C; X
-+« X O, is a polyhedral cone.

(b) For polyhedral cones C; C R, i = 1...,m, the intersection N{~,C; and
the vector sum E:”:l C}; are polyhedral cones.

(c) For polyhedral sets P; C R™, i = 1,...,m, the Cartesian product P X
-+ X Pp, is a polyhedral set.

(d) For polyhedral sets P; C "™, ¢ = 1...,m, the intersection N;~; P; and the
vector sum 27;1 P; are polyhedral sets.

Hint: In part (b) and in part (d), for the case of the vector sum, use Exercise
3.9.

Solution: It suffices to show the assertions for m = 2.

(a) Let C1 and C> be polyhedral cones in "1 and R"2, respectively, given by
C1 = {.Tl c R™M |62-$1 SO, j= 1,...,7“1}7

02:{1‘26§Rn2 |C~L;'1:2§0, jZl,...,T’Q},

where @1, ...,Gr, and as,...,ar, are some vectors in "1 and N2, respectively.
Define
a]:(a]’0)7 V]:17"'7T17

ajz(O,dj), Vi=ri+1,...,7r1+r2.
We have (z1,z2) € C1 x Cs if and only if

ajz1 <0, Vi=1,...,r,
@jze <0, Vi=rm+1,...,r +re,
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or equivalently
a;’(Ith)SO, Vi=1,...,r1+r2.

Therefore,
Ci xCy = {xe RrLtN2 |a;x§0, j=1,...,7m1 +r2},

showing that C; x Cs is a polyhedral cone in R™1772,

(b) Let C1 and C2 be polyhedral cones in R®". Then, straightforwardly from the
definition of a polyhedral cone, it follows that the cone C1 N C> is polyhedral.

By part (a), the Cartesian product C; x C» is a polyhedral cone in R"*™.
Under the linear transformation A that maps (z1,z2) € R into z1 + 22 €
R"™, the image A - (C1 x C?) is the set C1 + C2, which is a polyhedral cone by
Exercise 3.9(a).

(c) Let P and P» be polyhedral sets in ™! and R"2, respectively, given by
Pr={z e R" |Gz <bj, j=1,...,m},

n ~1! 7 .
Py = {:cg e N2 | ajze < by, j :1,...,7’2},
where @1, ...,Gr, and as,...,ar, are some vectors in "1 and N"2, respectively,
and b; and b; are some scalars. By defining

aj = (@;,0), bj = bj, Vi=1,...,r,

aj:(O,aj), bj:Ej7 Vj=T1+1,...77‘1+T2,

similar to the proof of part (a), we see that
Pix Pp={z e R |afw <b;, j=1,...,m1 + 12},

showing that Py x P» is a polyhedral set in 71772,

(d) Let P1 and P» be polyhedral sets in ®". Then, using the definition of a
polyhedral set, it follows that the set Py N Ps is polyhedral.

By part (c), the set P; x P, is polyhedral. Furthermore, under the linear
transformation A that maps (z1,z2) € R™™ into =1 + 22 € R, the image
A - (Py X P») is the set P; + P», which is polyhedral by Exercise 3.9(b).

3.11

Show that if P is a polyhedral set in R™ containing the origin, then cone(P) is a
polyhedral cone. Give an example showing that if P does not contain the origin,
then cone(P) may not be a polyhedral cone.

Solution: We give two proofs. The first is based on the Minkowski-Weyl Rep-

resentation of a polyhedral set P (cf. Prop. 3.2.2), while the second is based on
a representation of P by a system of linear inequalities.

16



Let P be a polyhedral set with Minkowski-Weyl representation

P—{w‘w—Zujvj+y, Zujzl, pi =20, 5=1,...,m, yeC},
j=1 j=1

where v1, ..., v, are some vectors in ™ and C is a finitely generated cone in R".
Let C be given by

C:{y’yzz)\iai, Ai >0, i:L...,r},

i=1

where a1, ..., a, are some vectors in ", so that

P—{m ‘ m:Zujvj—i—Z)\iai, Zuj:]., n; >0, Vi3, X\ >0, VZ}
j=1 i=1 j=1

We claim that

cone(P) = cone({vl, e Um, G, ..., ar}).
Since P C cone({vl, R S S DI ar})7 it follows that
cone(P) C cone({vl, ey Um, G, . aT})A
Conversely, let y € cone({vl7 ey Um, G,y ,ar}). Then, we have
j=1 i=1

with zz; > 0 and X > 0foralliand j. Ifz; = 0forall j, theny = 22:1 Nia; € C,
and since C' = Rp (cf. Exercise 3.8), it follows that y € Rp. Because the origin
belongs to P and y € Rp, we have 0 + y € P, implying that y € P, and
consequently y € cone(P). If fr; > 0 for some j, then by setting 7 = Z;’;l ;s
pj = p;/p for all j, and A; = i /T for all i, we obtain

y=n (Z,ujvj + Z/\iaz) ;
j=1 i=1

where &t > 0, p; > 0 with Z;":l u; = 1, and A; > 0. Therefore y = T with
T € P and 1 > 0, implying that y € cone(P) and showing that

cone({vl, ey Um, A1, . ,,ar}) C cone(P).
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We now give an alternative proof using the representation of P by a system
of linear inequalities. Let P be given by

P:{x\a;mgbj, j:l,...,r},

where a1,...,a, are vectors in " and by,...,b, are scalars. Since P contains
the origin, it follows that b; > 0 for all j. Define the index set J as follows
J={jlb; =0}

We consider separately the two cases where J # Jand J = @. If J # O,
then we will show that

cone(P) = {:v |ajz <0, j€ J}.
To see this, note that since P C {x |ajx <0, je J}7 we have
cone(P) C {:v |ajz <0, j€ J}.

Conversely, let T € {m |afe <0, j€ J}. We will show that T € cone(P).
If £ € P, then T € cone(P) and we are done, so assume that T ¢ P, implying
that the set

J={j¢J|dT>0b;} (3.11)
is nonempty. By the definition of J, we have b; > 0 for all j & J, so let
. b
fo = min ——,
jeJ lljl'

and note that 0 < p < 1. We have
aj(uT) <0,  Vje
aj(uz) <b;,  Vjeld.
For j ¢ JUJ and aZ < 0 < bj, since pu > 0, we still have a}(uz) < 0 < b;. For
j&JUJand 0 < ajz < by, since p < 1, we have 0 < a}(uz) < b;. Therefore,
uT € P, implying that T = %(,uf) € cone(P). It follows that
{x |ajz <0, j€ J} C cone(P),

and hence, cone(P) = {a: |z <0, je J}.

If J = @, then we will show that cone(P) = R". To see this, take any
T € R". If T € P, then clearly T € cone(P), so assume that T ¢ P, implying that
the set J as defined in Eq. (3.11) is nonempty. Note that b; > 0 for all j, since
J is empty. The rest of the proof is similar to the preceding case.

As an example, where cone(P) is not polyhedral when P does not contain
the origin, consider the polyhedral set P C R? given by

P = {(3)1,332) | T 2 0, T2 — 1}.
Then, we have
cone(P) = {(ach:cz) | 1 >0, z2 > 0} U {(ml,xg) | x1 =0,22 > O}7

which is not closed and therefore not polyhedral.
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3.12 (Properties of Polyhedral Functions)

Show the following:

(a) The sum of two polyhedral functions fi and f2, such that dom(fi) N
dom(f2) # @, is a polyhedral function.

(b) If A is a matrix and g is a polyhedral function such that dom(g) contains a
point in the range of A, the function f given by f(z) = g(Ax) is polyhedral.

Solution: (a) Let f1 and f2 be polyhedral functions such that dom( f1)Ndom(f2) #
@. By Prop. 3.2.3, dom(f1) and dom(f2) are polyhedral sets in R", and

f1(1’):max{a'1$+b1,...,a;n1:+bm}, YV z € dom(f1),

fa(z) :max{dlla:JrBl,...,E;nx +5m}, YV z € dom(f2),

where a; and a; are vectors in R", and b; and b; are scalars. The domain of
f1+ f2 coincides with dom( f1)Ndom( f2), which is polyhedral by Exercise 3.10(d).
Furthermore, we have for all € dom(f1 + f2),

fi(z) + foz) = max{allw—i— bi,..., G +bm} —l—maX{E’lx—l—Bl, R —&—EW}

! —/ 7
= max {aix+bi+aj:v+bj}
1<i<m, 1<j<m

max 7{(ai +a;) z + (b +5j)}.

1<i<m, 1<j<m

Therefore, by Prop. 3.2.3, the function fi + f is polyhedral.

(b) Since g : R™ — (—o00, 0] is a polyhedral function, by Prop. 3.2.3, dom(g) is
a polyhedral set in R™ and g is given by

9(y) :max{ally'f'blyuwa{my‘f'bm}, V y € dom(g),
for some vectors a; in ™ and scalars b;. The domain of f can be expressed as
dom(f) = {x | f(z) < oo} = {a: | g(Az) < oo} = {x | Az € dom(g)}.
Thus, dom(f) is the inverse image of the polyhedral set dom(g) under the linear
transformation A. By the assumption that dom(g) contains a point in the range

of A, it follows that dom(f) is nonempty, while by Exercise 3.9(b), the set dom(f)
is polyhedral. Furthermore, for all € dom(f), we have

f(z) = g(Ax)
= max{a’lA:r +b1,..., an Az + bm}
= max{(A'al)'x +b1,...,(Aawn)z + bm}.

Thus, by Prop. 3.2.3, it follows that the function f is polyhedral.
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3.13 (Partial Minimization of Polyhedral Functions)

Let F : R +— (—o00, 0] be a polyhedral function. Show that the function f
obtained by the partial minimization

f(z) = inf F(z,z), zeR”,

zeR™M

has a polyhedral epigraph, and is therefore polyhedral under the additional as-
sumption f(z) > —oo for all € R™. Hint: Use the following relation, shown at
the end of Section 2.3:

P(epi(F)) Cepi(f) C cl(P(epi(F))),
where P(-) denotes projection on the space of (z,w), i.e., P(x, z,w) = (z,w).
Solution: As shown at the end of Section 2.3, we have
P(epi(F)) C epi(f) C cl(P(epi(F))).
Since the function F' is polyhedral, its epigraph
epi(F) = {(:r,z,w) | F(z,2) <w, (z,w) € dom(F)}

is a polyhedral set in R %!, The set P(epi(F)) is the image of the polyhedral
set epi(F') under the linear transformation P, and therefore, by Exercise 3.9(b),
the set P(epi(F )) is polyhedral. Furthermore, a polyhedral set is always closed,
and hence

P(epi(F)) = cl(P(epi(F))).
The preceding two relations yield
epi(f) = P(epi(F)),

implying that the function f is polyhedral.

3.14 (Existence of Minima of Polyhedral Functions)

Let P be a polyhedral set in ®", and let f : R™ — (—o0, 00| be a polyhedral
function such that P N dom(f) # . Show that the set of minima of f over P
is nonempty if and only if infycp f(z) is finite. Hint: Use Prop. 3.2.3 to replace
the problem of minimizing f over P with an equivalent linear program.

Solution: If the set of minima of f over P is nonempty, then evidently inf,cp f(z)
must be finite.

Conversely, suppose that infzep f(x) is finite. Since f is a polyhedral
function, by Prop. 3.2.3, we have

f(x):max{allx—l—bh...,a;nx—i—bm}, Y z € dom(f),
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where dom(f) is a polyhedral set. Therefore,

inf f(z) = Fla) =

inf max{a'lx—kbl,...,a:nx—o—bm}.
TEP zePNdom(f)

inf
zePNdom(f)

Let P = PNdom(f) and note that P is nonempty by assumption. Since P is the
intersection of the polyhedral sets P and dom(f), the set P is polyhedral. The
problem

minimize max{a'lm +b1,...,amx+ bm}

subject to = € P
is equivalent to the following linear program
minimize y
subject to a;-:chbj <y, j=1,....m, x€P, yeR

By introducing the variable z = (z,y) € R""!, the vector ¢ = (0,...,0,1) €
R+ and the set

P= {(x,y) |ase+b; <y, j=1,....,m, v € P, ye?R},
we see that the original problem is equivalent to
minimize ¢z
subject to z € 15,

where P is polyhedral (P # @ since P # ). Furthermore, because inf,cp f(z)
is finite, it follows that inf ¢’z is also finite. Thus, by Prop. 2.3.4 of Chapter
2, the set Z* of minimizers of ¢z over Pis nonempty, and the nonempty set
{w | z = (z,y), z € Z*} is the set of minimizers of f over P.

3.15 (Existence of Solutions of Quadratic Nonconvex Programs
[FrW56])

We use induction on the dimension of the set X. Suppose that the dimension
of X is 0. Then, X consists of a single point, which is the global minimum of f
over X.

Assume that, for some | < n, f attains its minimum over every set X of
dimension less than or equal to [ that is specified by linear inequality constraints,
and is such that f is bounded over X. Let X be of the form

X:{x|a;m§bj,j:1,...,r},

have dimension [ + 1, and be such that f is bounded over X. We will show that
f attains its minimum over X.

If X is a bounded polyhedral set, f attains a minimum over X by Weier-
strass’ Theorem. We thus assume that X is unbounded. Using the the Minkowski-
Weyl representation, we can write X as

X={zlz=v+ay, veV, yeC, a>0},
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where V' is the convex hull of finitely many vectors and C is the intersection of a
finitely generated cone with the surface of the unit sphere {z | ||z| = 1}. Then,
for any x € X and y € C, the vector z+ ay belongs to X for every positive scalar
a and

fl@+ay) = f(z) + a(cd +2'Q)y + o’y Qy.

In view of the assumption that f is bounded over X, this implies that y'Qy > 0
for all y € C.

If ¥'Qy > 0 for all y € C, then, since C and V are compact, there exist
some & > 0 and v > 0 such that y'Qy > § for all y € C, and (¢’ +v'Q)y > —~ for
allv e V and y € C. It follows that for allv € V, y € C, and o > /6, we have

fw+ay)=fv) + ald +v'Q)y + o’y Qy
(v) + a(— + ad)

/
f)
which implies that

inf = inf .
:cng f(x) zE(\l/n+aC) f(iU)
0<a<d

Since the minimization in the right hand side is over a compact set, it follows
from Weierstrass’ Theorem and the preceding relation that the minimum of f
over X is attained.

Next, assume that there exists some 3§ € C such that 3’Qy = 0. From
Exercise 3.8, it follows that 7 belongs to the recession cone of X, denoted by Rx.
If 7 is in the lineality space of X, denoted by Lx, the vector z + ay belongs to
X for every x € X and every scalar «, and we have

f@+ap) = f(z) + a(d +2'Q)7.
This relation together with the boundedness of f over X implies that
(c+2'Q)y =0, Ve X. (3.12)

Let S = {~y | v € R} be the subspace generated by 7 and consider the following
decomposition of X:
X=5S+(Xnsh,

(cf. Prop. 1.5.4). Then, we can write any x € X as x = z+af for some z € XNS™+
and some scalar «, and it follows from Eq. (3.12) that f(x) = f(z), which implies
that

nf f(2) Ieé(nrst f(z).
It can be seen that the dimension of set X N S+ is smaller than the dimension
of set X. To see this, note that St contains the subspace parallel to the affine
hull of X N S+. Therefore, § does not belong to the subspace parallel to the
affine hull of X N S*. On the other hand, 7 belongs to the subspace parallel to
the affine hull of X, hence showing that the dimension of set X N S* is smaller
than the dimension of set X. Since X N St C X, f is bounded over X N S+,
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so by using the induction hypothesis, it follows that f attains its minimum over
X N St, which, in view of the preceding relation, is also the minimum of f over
X.

Finally, assume that ¥ is not in Lx, i.e., ¥ € Rx, but =y ¢ Rx. The
recession cone of X is of the form

Rx ={y|djy<0, j=1,...,r}.
Since ¥ € Rx, we have
ajy <0, Vi=1,...,7
and since —y ¢ Rx, the index set
J={il a7 <0}

is nonempty.
Let {xr} be a minimizing sequence, i.e.,

flak) = f7,

where f* = infg ;nx f(z). Suppose that for each k, we start at z, and move
along —7y as far as possible without leaving the set X, up to the point where we
encounter the vector

Tp = Tk — PrY,

where [ is the nonnegative scalar given by

i
. ;TR — b;
Br = min -
jeJ aly

Since ¥ € Rx and f is bounded over X, we have (¢’ + 2'Q)y > 0 for all z € X,

which implies that
f@k) < flxn), v k. (3.13)

By construction of the sequence {Zy }, it follows that there exists some jo € J such
that aj Tr = bj, for all k in an infinite index set K C {0,1,...}. By reordering
the linear inequalities if necessary, we can assume that jo = 1, i.e.,

a\ Ty = by, VEkek.
To apply the induction hypothesis, consider the set
X ={z|diz = b, a;-mgb]-, j=2,...,1},
and note that {Zy}x C X. The dimension of X is smaller than the dimension
of X. To see this, note that the set {z | ajz = b1icontains X, so that a; is
orthogonal to the subspace S that is parallel to aff(X). Since aiy < 0, it follows

that 7 ¢ Ss. On the other hand, 3 belongs to Sx, the subspace that is parallel
to aff (X), since for all k, we have z, € X and zx — By € X.

23



Since X C X, f is also bounded overg, so it follows from the induction
hypothesis that f attains its minimum over X at some z*. Because {Tx}x C X,
and using also Eq. (3.13), we have

f@) < f@) < f(zn), VEeEK.
Since f(zr) — f*, we obtain

f@) < lm  flzs) =[7,

T k—oo, kEK

and since £* € X C X, this implies that f attains the minimum over X at z*,
concluding the proof.

3.16
Let P be a polyhedral set in R" of the form
P= {x|a;z§bj,j:1,...,r},
where a; are some vectors in " and b; are some scalars. Show that P has an
extreme point if and only if the set of vectors {a; | j = 1,...,r} contains a subset

of n linearly independent vectors.

Solution: Assume that P has an extreme point, say v. Then, by Prop. 3.3.3(a),
the set

Av:{aj|a;-v:bj, jE{l,...,r}}

contains n linearly independent vectors, so the set of vectors {a; | j = 1,...,r}
contains a subset of n linearly independent vectors.
Assume now that the set {a; | j = 1,...,r} contains a subset of n linearly

independent vectors. Suppose, to obtain a contradiction, that P does not have
any extreme points. Then, by Prop. 3.3.1, P contains a line

L={z+M|rxeR)},

where z € P and d € R" is a nonzero vector. Since L C P, it follows that a;-d =0
for all j = 1,...,r. Since d # 0, this implies that the set {a1,...,a,} cannot
contain a subset of n linearly independent vectors, a contradiction.

3.17

Let C be a nonempty convex subset of R, and let A be an m X n matrix with
linearly independent columns. Show that a vector z € C is an extreme point of
C if and only if Az is an extreme point of the image AC. Show by example that
if the columns of A are linearly dependent, then Az can be an extreme point of
AC, for some non-extreme point x of C.
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Solution: Suppose that z is not an extreme point of C. Then x = azi1+(1—a)z2
for some x1,x2 € C with 1 # z and z2 # =z, and a scalar « € (0, 1), so that
Az = aAz1 4 (1 — a)Azz. Since the columns of A are linearly independent, we
have Ay; = Ay, if and only if y1 = y2. Therefore, Az1 # Az and Azs # Az,
implying that Ax is a convex combination of two distinct points in AC), i.e., Az
is not an extreme point of AC.

Suppose now that Az is not an extreme point of AC', so that Az = aAx1 +
(1 — o)Az for some z1,z2 € C with Az1 # Az and Azs # Az, and a scalar
a € (0,1). Then, A(:v —az; — (1 - a)xg) = 0 and since the columns of A are
linearly independent, it follows that © = ax1 — (1 — a)z2. Furthermore, because
Az # Az and Az # Az, we must have z1 # x and x2 # x, implying that z is
not an extreme point of C.

As an example showing that if the columns of A are linearly dependent,
then Az can be an extreme point of AC, for some non-extreme point z of C,
consider the 1 x 2 matrix A = [1 0], whose columns are linearly dependent. The
polyhedral set C given by

C= {(ml,xz) |21 >0, 0 <2 < 1}
has two extreme points, (0,0) and (0,1). Its image AC C R is given by
AC: {l‘l | X1 2 0},

whose unique extreme point is 1 = 0. The point z = (0,1/2) € C is not an
extreme point of C, while its image Az = 0 is an extreme point of AC. Actually,
all the points in C' on the line segment connecting (0,0) and (0,1), except for
(0,0) and (0,1), are non-extreme points of C' that are mapped under A into the
extreme point 0 of AC.

3.18

Show by example that the set of extreme points of a nonempty compact set need
not be closed. Hint: Consider a line segment C7 = {(ml,mg,xg) | 21 = 0,22 =
0,-1<z3< 1} and a circular disk Cy = {(xl,xg,xg) | (#1 —1)*+23 <1, 23 =
O}, and verify that the set conv(Cy U C2) is compact, while its set of extreme
points is not closed.

Solution: For the sets C1 and C2 as given in this exercise, the set C; U Cs is
compact, and its convex hull is also compact by Prop. 1.3.2 of Chapter 1. The set
of extreme points of conv(Cy U C2) is not closed, since it consists of the two end
points of the line segment C41, namely (0,0, —1) and (0,0,1), and all the points
z = (w1, w2, v3) such that

x #0, (x1—1)2+x§:1, z3 = 0.
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3.19

Show that a nonempty compact convex set is polyhedral if and only if it has a
finite number of extreme points. Give an example showing that the assertion
fails if compactness of the set is replaced by the weaker assumption that the set
is closed and does not contain a line.

Solution: By Prop. 3.3.2, a polyhedral set has a finite number of extreme
points. Conversely, let P be a compact convex set having a finite number of
extreme points {vi,...,vm}. By the Krein-Milman Theorem (Prop. 3.3.1), a
compact convex set is equal to the convex hull of its extreme points, so that
P= conv({vl, e ,vm}), which is a polyhedral set by the Minkowski-Weyl Rep-
resentation Theorem (Prop. 3.2.2).

As an example showing that the assertion fails if compactness of the set
is replaced by a weaker assumption that the set is closed and contains no lines,
consider the set D C R given by

D = {(:chxz,:rg) | 22422 < 1, 3 = 1}.

Let C' = cone(D). It can seen that C is not a polyhedral set. On the other hand,
C is closed, convex, does not contain a line, and has a unique extreme point at
the origin.

[For a more formal argument, note that if C' were polyhedral, then the set

D:Cﬂ{(xl,xz,mg) | T3 — 1}

would also be polyhedral by Exercise 3.10(d), since both C' and {(1'1,1'2,I3) |

T3 = l} are polyhedral sets. Thus, by Prop. 3.2.2, it would follow that D has a
finite number of extreme points. But this is a contradiction because the set of
extreme points of D coincides with {(xl,xg,xg) | 2?4+ 23 =1, a3 = 1}, which
contains an infinite number of points. Thus, C is not a polyhedral cone, and
therefore not a polyhedral set, while C is closed, convex, does not contain a line,
and has a unique extreme point at the origin.]

3.20 (Faces)

Let P be a polyhedral set. For any hyperplane H that passes through a boundary
point of P and contains P in one of its halfspaces, we say that the set ' = PN H
is a face of P. Show the following:

(a) Each face is a polyhedral set.

(b) Each extreme point of P, viewed as a singleton set, is a face.

(c¢) If P is not an affine set, there is a face of P whose dimension is dim(P) — 1.
(d) The number of distinct faces of P is finite.

Solution: (a) Let P be a polyhedral set in ®", and let F' = PN H be a face of
P, where H is a hyperplane passing through some boundary point Z of P and
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containing P in one of its halfspaces. Then H is given by H = {z | o’z = a'T}
for some nonzero vector a € R". By replacing a’z = a/Z with two inequalities
a'z < a'Z and —a’x < —a'T, we see that H is a polyhedral set in R". Since the
intersection of two nondisjoint polyhedral sets is a polyhedral set [cf. Exercise
3.10(d)], the set F' = P N H is polyhedral.

(b) Let P be given by
P:{m\a;xgbj, jzl,‘..m},

for some vectors a; € R"™ and scalars b;. Let v be an extreme point of P, and
without loss of generality assume that the first n inequalities define v, i.e., the
first n of the vectors a; are linearly independent and such that

a;-v:bj, Vi=1,...,n

[cf. Prop. 3.3.3(a)]. Define the vector a € R", the scalar b, and the hyperplane
H as follows

a:%Zaj’ b:%zbj, H:{x\a'x:b}
j=1

Then, we have
/
av=yb,

so that H passes through v. Moreover, for every x € P, we have a;»a: < b; for
all j, implying that a’x < b for all x € P. Thus, H contains P in one of its
halfspaces.

We will next prove that PN H = {v}. We start by showing that for every
v € PN H, we must have

ajv =b;, Vi=1,...,n. (3.14)
To arrive at a contradiction, assume that a}i < b; for some v € PN H and j €
{1,...,n}. Without loss of generality, we can assume that the strict inequality
holds for 7 = 1, so that

aiv < by, a;v < by, Vi=2,...,n.

By multiplying each of the above inequalities with 1/n and by summing the
obtained inequalities, we obtain

1 n 1 n
Y —
— a;v < — b;
n E j n E s
j=1 j=1

implying that a’v < b, which contradicts the fact that v € H. Hence, Eq. (3.14)
holds, and since the vectors ai,...,a, are linearly independent, it follows that
v = v, showing that PN H = {v}.
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As discussed in Section 3.3, every extreme point of P is a relative boundary
point of P. Since every relative boundary point of P is also a boundary point of
P, it follows that every extreme point of P is a boundary point of P. Thus, v is
a boundary point of P, and as shown earlier, H passes through v and contains P
in one of its halfspaces. By definition, it follows that PN H = {v} is a face of P.

(c) Since P is not an affine set, it cannot consist of a single point, so we must
have dim(P) > 0. Let P be given by

P:{x\a;xgbj, j:1,...7r},

for some vectors a; € R™ and scalars b;. Also, let A be the matrix with rows a
and b be the vector with components b;, so that

P={z| Az <b}.

An inequality ajx < b; of the system Az < b is redundant if it is implied by the
remaining inequalities in the system. If the system Az < b has no redundant
inequalities, we say that the system is nonredundant. An inequality a;x < b; of
the system Ax < b is an implicit equality if ajx = b; for all = satisfying Az < b.

By removing the redundant inequalities if necessary, we may assume that
the system Az < b defining P is nonredundant. Since P is not an affine set,
there exists an inequality agom < bj, that is not an implicit equality of the
system Az < b. Consider the set

F = {xe P a}oxzbjo}.
Note that F # (J, since otherwise a;O:p < bj, would be a redundant inequality
of the system Ax < b, contradicting our earlier assumption that the system is
nonredundant. Note also that every point of F' is a boundary point of P. Thus, F'
is the intersection of P and the hyperplane {x | a}ox = bjo} that passes through
a boundary point of P and contains P in one of its halfspaces, i.e., F' is a face

of P. Since a}ox < bj, is not an implicit equality of the system Az < b, the
dimension of F'is dim(P) — 1.

(d) Let P be a polyhedral set given by
P= {:v | ajz < by, j:l,“wr},
with a; € R" and b; € R, or equivalently
P ={z| Az < b},

where A is an r X n matrix and b € R". We will show that F' is a face of P if and
only if F' is nonempty and

F={zeP|ajz=0b; je ]},

where J C {1,...,r}. From this it will follow that the number of distinct faces
of P is finite.
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By removing the redundant inequalities if necessary, we may assume that
the system Az < b defining P is nonredundant. Let F' be a face of P, so that
F = PN H, where H is a hyperplane that passes through a boundary point of P
and contains P in one of its halfspaces. Let H = {:c | dz = ci} for a nonzero
vector ¢ € R™ and a boundary point T of P, so that

F:{x€P|c'x:cE}

and
dz < cw, VzelP.

These relations imply that the set of points x such that Az < b and 'z < cx
coincides with P, and since the system Ax < b is nonredundant, it follows that
'z < ¢T is a redundant inequality of the system Az < b and ¢’z < ¢Z. Therefore,
the inequality ¢’z < T is implied by the inequalities of Az < b, so that there
exists some pu € R with u > 0 such that

s s
T b = /=
Hiaj = ¢ M0 = CT.
Jj=1 Jj=1

Let J = {j | u; > 0}. Then, for every x € P, we have

de=cF Zuja;xzz,ujbj < dz=bj, jEJ, (3.15)
jeJ jed

implying that B , ‘
Ff{xeP\ajxfbj,]GJ}.

Conversely, let F' be a nonempty set given by
F={zeP|ajz=0b;,j€ ]},
for some J C {1,...,r}. Define
c= Z aj, 8= ij.
jeJ jeJ
Then, we have

{xEP|a;~x=bj,jeJ}:{xeP|c'x:B},

[cf. Eq. (3.15) where p; = 1 for all j € J]. Let H = {:r | z = ﬂ}, so that in
view of the preceding relation, we have that F' = P N H. Since every point of F'
is a boundary point of P, it follows that H passes through a boundary point of
P. Furthermore, for every x € P, we have ajx < b; for all j € J, implying that
'z < 3 for every x € P. Thus, H contains P in one of its halfspaces. Hence, F’
is a face.
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3.21 (Isomorphic Polyhedral Sets)

Let P and @ be polyhedral sets in " and 1™, respectively. We say that P and
Q are isomorphic if there exist affine functions f: P — @ and g : @ — P such
that

z=g(f(z)), VzeP, y=f(9w), YyeQ.

(a) Show that if P and @ are isomorphic, then their extreme points are in
one-to-one correspondence.

(b) Let A be an r x n matrix and b be a vector in R", and let
P={zeR"|Ax <b, z >0},

Q:{(m,z)G%"+T|Aaz+z:b, x>0, 220}.

Show that P and @ are isomorphic.

Solution: (a) Let P and @ be isomorhic polyhedral sets, and let f : P — Q and
g : @ — P be affine functions such that

z=g(f(z)), VzeP, y=1r(9(w), YyeQ.

Assume that z* is an extreme point of P and let y* = f(z*). We will show that
y* is an extreme point of Q). Since z* is an extreme point of P, by Exercise
3.20(b), it is also a face of P, and therefore, there exists a vector ¢ € R" such
that

dx < cx”, VeeP x#ax.

For any y € Q with y # y*, we have

flow) =y #y" = f(a"),

implying that
9(y) #9(y") =2, with g(y) € P.

Hence,
dgly) <dgly"), VyeQ,y#y".

Let the affine function g be given by g(y) = By + d for some n X m matrix B
and vector d € R". Then, we have

d(By+d)<d(By +d), VyeQ,y#vy,

implying that
(B'e)y<(B'e)y", VyeQ, y#y"

If y* were not an extreme point of @, then we would have y* = ay1 + (1 — a)y2
for some distinct points y1,y2 € Q, y1 #y*, y2 # y*, and « € (0,1), so that

(B'e)'y" = a(B'e)'y1 + (1 — a)(B'e)'y2 < (B'e)'y",
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which is a contradiction. Hence, y* is an extreme point of Q.
Conversely, if y* is an extreme point of @, then by using a symmetrical
argument, we can show that x* is an extreme point of P.

(b) For the sets
P={zeR"| Az <b, z >0},

Q= {(1‘72) ERT | Az +z=0b, >0, 220},
let f and g be given by
f(x) = (x,b— Azx), Ve P,

g(z,z) =z, Y (z,2) € Q.

Evidently, f and g are affine functions. Furthermore, clearly
f(z) € Q, g(f(:r)):x, VzeP,

g(z,z) € P, f(g(m,z)) =z, Y (z,2) € Q.

Hence, P and @ are isomorphic.

3.22 (Unimodularity I)

Let A be an n x n invertible matrix with integer entries. Show that A is uni-
modular if and only if the solution of the system Ax = b has integer components
for every vector b € R" with integer components. Hint: To prove that A is
unimodular when the given property holds, use the system Ax = u;, where u; is
the ith unit vector, to show that A~' has integer components, and then use the
equality det(A) - det(A™") = 1. To prove the converse, use Cramer’s rule.

Solution: Suppose that the system Ax = b has integer components for every
vector b € R™ with integer components. Since A is invertible, it follows that the
vector A7'b has integer components for every b € R" with integer components.
Fori=1,...,n, let e; be the vector with ith component equal to 1 and all other
components equal to 0. Then, for b = e;, the vectors A le;, i = 1,...,n, have
integer components, implying that the columns of A™' are vectors with integer
components, so that A~! has integer entries. Therefore, det(A™1Y) is integer,
and since det(A) is also integer and det(A) - det(A™') = 1, it follows that either
det(A) =1 or det(A) = —1, showing that A is unimodular.

Suppose now that A is unimodular. Take any vector b € R" with integer
components, and for each ¢ € {1,...,n}, let A; be the matrix obtained from A
by replacing the ith column of A with b. Then, according to Cramer’s rule, the
components of the solution Z of the system Az = b are given by

R det(Ai) .

xlidet(A)’ t=1,...,n.
Since each matrix A; has integer entries, it follows that det(A;) is integer for all
i =1,...,n. Furthermore, because A is invertible and unimodular, we have either
det(A) =1 or det(A) = —1, implying that the vector & has integer components.
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3.23 (Unimodularity IT)

Let A be an m X n matrix.

(a) Show that A is totally unimodular if and only if its transpose A’ is totally
unimodular.

(b) Show that A is totally unimodular if and only if every subset J of {1,...,n}
can be partitioned into two subsets J1 and J2 such that

Zaij—Zaij Sl, Vz:l,,m

jedy j€Jg

Solution: (a) The proof is straightforward from the definition of the totally
unimodular matrix and the fact that B is a submatrix of A if and only if B’ is a
submatrix of A’.

(b) Suppose that A is totally unimodular. Let J be a subset of {1,...,n}. Define
zby z; =1if j € J, and z; = 0 otherwise. Also let w = Az, ¢; = d; = %wi if
w; is even, and ¢; = %(wl — 1) and d; = %(wZ + 1) if w; is odd. Consider the
polyhedral set

P={z|c<Azx <d, 0<z <z},

and note that P # (J because %z € P. Since A is totally unimodular, the
polyhedron P has integer extreme points. Let & € P be one of them. Because
0 < 2 < z and 7 has integer components, it follows that ; = 0 for j ¢ J and
z; € {0,1} for j € J. Therefore, z; — 22; = 1 for j € J. Define J; = {j € J |
zj —2%; =1} and Jo = {j € J | z; — 2&; = —1}. We have

> ai— > a =Y ai(z - 2i;)
jeJy j€do jeJ

n

aij(z; — 225)

-

= w; — Q[A@]i,

where [Az]; denotes the ith component of the vector Az. If w; is even, then since
¢ <[AZ]; < d; and ¢; =d; = %wi, it follows that [AZ]; = w;, so that

w; — 2[AZ]; =0, when w; is even.

If w; is odd, then since ¢; < [AZ]; < ds, ¢ = %(wl —1), and d; = %(wl + 1), it
follows that 1 1
i(wi - 1) < [AZAE]»L < §(wl -+ 1),
implying that
—1 S w; — Q[Ai']z S 1.
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Because w; — 2[AZ]; is integer, we conclude that
w; — 2[Az]; € {-1,0,1}, when w; is odd.

Therefore,

Aij — Qij < 1, V= 17. s, (316)
IBLIEDY

JjeJ1 j€Jo

Suppose now that the matrix A is such that any J C {1,...,n} can be
partitioned into two subsets so that Eq. (3.16) holds. We prove that A is totally
unimodular, by showing that each of its square submatrices is unimodular, i.e.,
the determinant of every square submatrix of A is -1, 0, or 1. We use induction
on the size of the square submatrices of A.

To start the induction, note that for J C {1,...,n} with J consisting of a
single element, from Eq. (3.16) we obtain a;; € {—1,0,1} for all i and j. Assume
now that the determinant of every (k — 1) x (k — 1) submatrix of A is -1, 0, or
1. Let B be a k x k submatrix of A. If det(B) = 0, then we are done, so assume
that B is invertible. Our objective is to prove that |det B| = 1. By Cramer’s
rule and the induction hypothesis, we have B~! = %:B), where bj; € {—1,0,1}.
By the definition of B*, we have Bb] = det(B)e1, where b7 is the first column of
B* and e; = (1,0,...0)’.

Let J = {j | bj; # 0} and note that J # (J since B is invertible. Let
Ji={j€J|by=1}and Jo ={j € J|j & J1}. Then, since [Bb;]; = 0 for
it =2,...,k, we have

k
[Bbi]iZZbijb%:ZbijfzbijZO, Vi=2,...,k.
j=1

j€T JE€Ty

Thus, the cardinality of the set J is even, so that for any partition (:]1, :]2) of J,
it follows that Zje—]l bij — Zjefb bij is even for all i = 2,..., k. By assumption,
there is a partition (Ji, J2) of J such that

D b= biy| <1 Vi=1,.. .k (3.17)

jedy JEJ2

implying that

> b=y by=0, Yi=2.. .k (3.18)

JjeJ jE€Jo

Consider now the value a = ‘Zje.ll b1 — Zj€J2 b1j|, for which in view

of Eq. (3.17), we have either « = 0 or @ = 1. Define y € ®* by y; = 1 for
i€ Ji,ys = —1 for i € Js, and y; = 0 otherwise. Then, we have }[Byh| =«
and by Eq. (3.18), [By]; = 0 for all ¢ = 2,...,k. If a = 0, then By = 0 and
since B is invertible, it follows that y = 0, implying that J = ¢J, which is a
contradiction. Hence, we must have o = 1 so that By = fe;. Without loss of
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generality assume that By = e; (if By = —e1, we can replace y by —y). Then,
since Bb] = det(B)e1, we see that B(b’{ — det(B)y) = 0 and since B is invertible,
we must have by = det(B)y. Because y and b] are vectors with components -1,
0, or 1, it follows that b] = £y and |det(B)| = 1, completing the induction and
showing that A is totally unimodular.

3.24 (Unimodularity ITT)

Show that a matrix A is totally unimodular if one of the following holds:

(a) The entries of A are -1, 0, or 1, and there are exactly one 1 and exactly
one -1 in each of its columns.

(b) The entries of A are 0 or 1, and in each of its columns, the entries that are
equal to 1 appear consecutively.

Solution: (a) We show that the determinant of any square submatrix of A is -1,
0, or 1. We prove this by induction on the size of the square submatrices of A.
In particular, the 1 x 1 submatrices of A are the entries of A, which are -1, 0, or
1. Suppose that the determinant of each (k — 1) x (k — 1) submatrix of A is -1,
0, or 1, and consider a k X k submatrix B of A. If B has a zero column, then
det(B) = 0 and we are done. If B has a column with a single nonzero component
(1 or -1), then by expanding its determinant along that column and by using the
induction hypothesis, we see that det(B) = 1 or det(B) = —1. Finally, if each
column of B has exactly two nonzero components (one 1 and one -1), the sum of
its rows is zero, so that B is singular and det(B) = 0, completing the proof and
showing that A is totally unimodular.

(b) The proof is based on induction as in part (a). The 1 x 1 submatrices of A
are the entries of A, which are 0 or 1. Suppose now that the determinant of each
(k—1)x(k—1) submatrix of Ais-1, 0, or 1, and consider a k x k submatrix B of A.
Since in each column of A, the entries that are equal to 1 appear consecutively, the
same is true for the matrix B. Take the first column by of B. If by = 0, then B is
singular and det(B) = 0. If b; has a single nonzero component, then by expanding
the determinant of B along b; and by using the induction hypothesis, we see
that det(B) = 1 or det(B) = —1. Finally, let b1 have more than one nonzero
component (its nonzero entries are 1 and appear consecutively). Let [ and p be
rows of B such that b;; =0 for all i <l and i > p, and b;; =1 for all I <i < p.
By multiplying the lth row of B with (-1) and by adding it to the [ + 1st, [+ 2nd,
..., kth row of B, we obtain a matrix B such that det(B) = det(B) and the first
column b; of B has a single nonzero component. Furthermore, the determinant
of every square submatrix of B is -1, 0, or 1 (this follows from the fact that the
determinant of a square matrix is unaffected by adding a scalar multiple of a
row of the matrix to some of its other rows, and from the induction hypothesis).
Since b; has a single nonzero component, by expanding the determinant of B
along b1, it follows that det(B) = 1 or det(B) = —1, implying that det(B) =1 or
det(B) = —1, completing the induction and showing that A is totally unimodular.

3.25 (Unimodularity IV)
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Let A be a matrix with entries -1, 0, or 1, and exactly two nonzero entries in
each of its columns. Show that A is totally unimodular if and only if the rows of
A can be divided into two subsets such that for each column the following hold:
if the two nonzero entries in the column have the same sign, their rows are in
different subsets, and if they have the opposite sign, their rows are in the same
subset.

Solution: If A is totally unimodular, then by Exercise 3.23(a), its transpose A’

is also totally unimodular, and by Exercise 3.23(b), the set I = {1,...,m} can
be partitioned into two subsets I; and I2 such that

Zaij—Zaij Sl, Vj:L...,’I’L.

i€l i€ly
Since a;; € {—1,0,1} and exactly two of aij,...,am; are nonzero for each j, it
follows that

Zaij—Zaij:O, ijl,...,n.

i€l icly

Take any j € {1,...,n}, and let [ and p be such that a;; = 0 for all ¢ # [ and
i # p, so that in view of the preceding relation and the fact a;; € {—1,0,1}, we
see that: if a;; = —ap;, then both [ and p are in the same subset (I1 or I2); if
aij = apj, then [ and p are not in the same subset.

Suppose now that the rows of A can be divided into two subsets such
that for each column the following property holds: if the two nonzero entries in
the column have the same sign, they are in different subsets, and if they have
the opposite sign, they are in the same subset. By multiplying all the rows in
one of the subsets by —1, we obtain the matrix A with entries @;; € {—1,0,1},
and exactly one 1 and exactly one -1 in each of its columns. Therefore, by
Exercise 3.24(a), A is totally unimodular, so that every square submatrix of A
has determinant -1, 0, or 1. Since the determinant of a square submatrix of A
and the determinant of the corresponding submatrix of A differ only in sign, it
follows that every square submatrix of A has determinant -1, 0, or 1, showing
that A is totally unimodular.

3.26 (Gordan’s Theorem of the Alternative [Gor73])

Let ai,...,a, be vectors in R".
(a) Show that exactly one of the following two conditions holds:

(i) There exists a vector € R™ such that

ayz <0,...,a.x <0.

(ii) There exists a vector p € R” such that p # 0, u > 0, and
piar + -+ prar = 0.
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(b) Show that an equivalent statement of part (a) is the following: a polyhedral
cone has nonempty interior if and only if its polar cone does not contain
a line, i.e., a set of the form {z + az | « € R}, where z lies in the polar
cone and z is a nonzero vector. (Note: This statement is a special case of
Exercise 3.3.)

Solution: (a) Assume that there exist & € R" and p € R" such that both
conditions (i) and (ii) hold, i.e.,

a;d < 0, Vi=1,...,7 (3.19)
pAO, p=0, > pa;=0. (3.20)
j=1

By premultiplying Eq. (3.19) with x; > 0 and summing the obtained inequalities

over j, we have
T
!l A
E pia;z < 0.
j=1

On the other hand, from Eq. (3.20), we obtain

r
2 : /S

Hija; T = 07
j=1

which is a contradiction. Hence, both conditions (i) and (ii) cannot hold simul-
taneously.

The proof will be complete if we show that the conditions (i) and (ii) cannot
fail to hold simultaneously. Assume that condition (i) fails to hold, and consider
the sets given by

C1:{w€§]%r|a;m§wj, j=1,...,m xe?)?"},

Co={,eR & <0, j=1,...,r}.

It can be seen that both C; and C3 are convex. Furthermore, because the condi-
tion (i) does not hold, C1 and C> are disjoint sets. Therefore, by the Separating
Hyperplane Theorem (Prop. 2.4.2), C1 and C> can be separated, i.e., there exists
a nonzero vector u € R” such that

ww > '€, Ywe C, V€ e Oy,

implying that
inf p'w > ', vVEeCs.
welCq
Since each component &; of £ € C2 can be any negative scalar, for the preceding
relation to hold, p; must be nonnegative for all j. Furthermore, by letting £ — 0,
in the preceding relation, it follows that

inf p'w>0
wEClu =
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implying that
piwi + -+ prwr >0, Vwe Ch.

By setting w; = ajx for all j, we obtain
(urar + -+ pray) 'z >0, VaxeR",
and because this relation holds for all x € R™, we must have
piar + - -+ pray = 0.

Hence, the condition (ii) holds, showing that the conditions (i) and (ii) cannot
fail to hold simultaneously.

Alternative proof: We will show the equivalent statement of part (b), i.e., that
a polyhedral cone contains an interior point if and only if the polar C* does not
contain a line. This is a special case of Exercise 3.2 (the dimension of C plus the
dimension of the lineality space of C* is n), as well as Exercise 3.6(d), but we
will give an independent proof.
Let
C= {:c|a;~m§0,j:1,“.7r},

where a; # 0 for all j. Assume that C contains an interior point, and to arrive
at a contradiction, assume that C* contains a line. Then there exists a d # 0
such that d and —d belong to C*, i.e., dz < 0 and —d’'z < 0 for all x € C, so
that d’z = 0 for all z € C. Thus for the interior point Z € C, we have d'T = 0,
and since d € C* and d = 22:1 pjaj for some p; > 0, we have

™
Z uja;ﬁ =0.
j=1

This is a contradiction, since Z is an interior point of C, and we have a ;% < 0 for
all 7.

Conversely, assume that C* does not contain a line. Then by Prop. 3.3.1(b),
C™ has an extreme point, and since the origin is the only possible extreme point
of a cone, it follows that the origin is an extreme point of C*, which is the cone
generated by {ai,...,a,}. Therefore 0 ¢ conv ({al, .. .,a,n})7 and there exists

a hyperplane that strictly separates the origin from conv({al, e ,ar}). Thus,

there exists a vector x such that y'z < 0 for all y € conv({al, e ,ar}), S0 in
particular,
a;x<0, Vi=1,...,m

and z is an interior point of C.

(b) Let C be a polyhedral cone given by
C= {m|a;m§0,j:1,...7r},
where a; # 0 for all j. The interior of C is given by
int(C) = {x | ajz <0, j= 1,.,.,7"},
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so that C has nonempty interior if and only if the condition (i) of part (a) holds.
By Farkas’ Lemma [Prop. 3.2.1(b)], the polar cone of C is given by

C*:{x‘xZZujaj,ujZO, j:l,...,r}.

Jj=1

We now show that C* contains a line if and only if there is a p € R” such that
uw#0, u>0, and Z;Zl wja; = 0 [condition (ii) of part (a) holds]. Suppose that
C™ contains a line, i.e., a set of the form {x + az | @ € R}, where z € C* and
z is a nonzero vector. Since C* is a closed convex cone, by the Recession Cone
Theorem (Prop. 1.5.1), it follows that z and —z belong to Rc+. This, implies
that 0+ 2 = z € C* and 0 — z = —z € C”, and therefore z and —z can be
represented as

Z:Z:U'jaja vV, pi 20, ,uj;zéOforsomej,
=1

T
—z= Zﬁjaj, v j, m; 20, m; # 0 for some j.
j=1

Thus, " (u; +fi;)a; = 0, where (u; +7;) > 0 for all j and (u; +7;) # 0 for
at least one j, showing that the condition (ii) of part (a) holds.

Conversely, suppose that 22:1 pija; = 0 with p; > 0 for all j and p; #0
for some j. Assume without loss of generality that p; > 0, so that

Hj
—a1 = a;,
— M1
J#L

with p;/p1 > 0 for all j, which implies that —a; € C*. Since a1 € C*, —a1 € C”,

and a1 # 0, it follows that C* contains a line, completing the proof.

3.27 (Linear System Alternatives)

Let ai,...,a, be vectors in R" and let b1,...b, be scalars. Show that exactly
one of the following two conditions holds:

(i) There exists a vector z € R™ such that

/ !
arx < bi,...,a.x < by

(ii) There exists a vector p € R" such that p > 0 and
piar + -+ prar =0, p1br 4 -+ prbe < 0.
Solution: Assume that there exist & € ®" and p € R" such that both conditions

(i) and (ii) hold, i.e.,
a;d < by, Vi=1,...,r (3.21)



p=0, Zujaj =0, Zujbj <0. (3:22)
j=1 j=1

By premultiplying Eq. (3.21) with p; > 0 and summing the obtained inequalities

over j, we have
T e
!l A
E pja; T < E tsb;-
j=1 j=1

On the other hand, by using Eq. (3.22), we obtain

Zﬂja;jc =0> Zp‘jij
i=1 i=1

which is a contradiction. Hence, both conditions (i) and (ii) cannot hold simul-
taneously.

The proof will be complete if we show that conditions (i) and (ii) cannot
fail to hold simultaneously. Assume that condition (i) fails to hold, and consider
the sets given by

P ={(eR & <0, j=1,...,r}

P = {we%“a}m—ly =w;, j=1,...,7 xeﬂ?n}.
Clearly, P; is a polyhedral set. For the set P>, we have
P={weR |Az—b=w, z € R"} = R(A) — b,

where A is the matrix with rows a} and b is the vector with components b;.
Thus, P» is an affine set and is therefore polyhedral. Furthermore, because the
condition (i) does not hold, P, and P, are disjoint polyhedral sets, and they
can be strictly separated [Prop. 2.4.3 under condition (5)]. Hence, there exists a
vector p € R" such that

sup '€ < inf p'w.

1332 we Py
Since each component §; of £ € Py can be any negative scalar, for the preceding
relation to hold, p; must be nonnegative for all j. Furthermore, since 0 € Py, it
follows that

0 < inf 4
wepy !
implying that
0<prwr + -+ prws, YVwe Ps.

By setting w; = a;-ac — b; for all j, we obtain
piby + -+ pebe < (uiar + -+ prar)'z, Vo e R
Since this relation holds for all x € R", we must have
piar + -+ prar =0,

implying that
piby 4 -+ prby < 0.

Hence, the condition (ii) holds, showing that the conditions (i) and (ii) cannot
fail to hold simultaneously.
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3.28 (Convex System Alternatives [FGH57])

Let f; : C— (—o00,00],i=1,...,r, be convex functions, where C' is a nonempty
convex subset of ™ such that ri(C) C dom(f;) for all i. Show that exactly one
of the following two conditions holds:

(i) There exists a vector z € C such that

fi(z) <0,..., fr(z) <O.

(ii) There exists a vector p € R" such that p # 0, u > 0, and

mfi(z) +-+prfr(z) 20,  Vazel.

Solution: Assume that there exist & € C' and p € R" such that both conditions
(i) and (ii) hold, i.e.,
fi@) <0, Vi=1,...m (3.23)

pAEO p=0, > pif(@) >0, (3.24)
j=1

By premultiplying Eq. (3.23) with p; > 0 and summing the obtained inequalities
over j, we obtain, using the fact p # 0,

D mifi(@) <o,
j=1

contradicting the last relation in Eq. (3.24). Hence, both conditions (i) and (ii)
cannot hold simultaneously.

The proof will be complete if we show that conditions (i) and (ii) cannot
fail to hold simultaneously. Assume that condition (i) fails to hold, and consider
the sets given by

P={¢ec® [&<0,j=1,...r}

Clz{wES‘ET\fj(x)<wj, j=1,...,m :I’EC}.

The set P is polyhedral, while C is convex by the convexity of C' and f; for all j.
Furthermore, since condition (i) does not hold, P and C; are disjoint, implying
that ri(C1) N P = @. By the Polyhedral Proper Separation Theorem (cf. Prop.
3.5.1), the polyhedral set P and convex set Cy can be properly separated by a
hyperplane that does not contain C1, i.e., there exists a vector u € R" such that

sup '€ < inf p'w, inf p'w< sup pw.
£epr wely wely weCq

Since each component &; of £ € P can be any negative scalar, the first relation
implies that p; > 0 for all j, while the second relation implies that p # 0.
Furthermore, since p’é < 0 for all £ € P and 0 € P, it follows that

supp'§ =0 < inf y'w,
w 1

£epP
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implying that
0 < ppwr + -+ + prwnr, Vwe (.

By letting w; — f;(z) for all j, we obtain
0 < pifi(x) 4+ urfr(x), Ve Cndom(fi)N---Ndom(fr).
Thus, the convex function
f=mfi+- - +ufr
is finite and nonnegative over the convex set
C =Cndom(fi)N---Ndom(f).

By Exercise 1.27, the function f is nonnegative over cl(é’). Given that ri(C) C
dom(f;) for all 4, we have ri(C') C C, and therefore

C c d(ri(C)) ca(C).

Hence, f is nonnegative over C' and condition (ii) holds, showing that the condi-
tions (i) and (ii) cannot fail to hold simultaneously.

3.29 (Convex-Affine System Alternatives)

Let f; : C — (—o0,00], 4 = 1,...,T, be convex functions, where C is a convex
set in R™ such that ri(C) C dom(f;) for all ¢ = 1,...,7. Let fi : C — R,
i=7+1,...,r, be affine functions such that the system

frpr(x) <0,..., fr(x) <0

has a solution Z € ri(C'). Show that exactly one of the following two conditions
holds:

(i) There exists a vector z € C such that

f1($)<0,...,f?($)<0, f?+1($)§0,-~,f¢-(1’)§0.

(ii) There exists a vector u € R" such that not all u1,. .., uF are zero, pu > 0,
and
pmfi(z) +-+pefr(z) 20,  Vazel.

Solution: Assume that there exist £ € C' and p € R" such that both conditions
(i) and (ii) hold, i.e.,

fi(®) <0, Vji=1,...,7, fi() <0, Vi=7+1,...,m (3.25)
(1, i) £0, >0, > i fi() > 0. (3.26)
Jj=1
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By premultiplying Eq. (3.25) with p; > 0 and by summing the obtained inequal-
ities over j, since not all 1, ..., u7 are zero, we obtain

Z wifi (&) <0,
j=1

contradicting the last relation in Eq. (3.26). Hence, both conditions (i) and (ii)
cannot hold simultaneously.

The proof will be complete if we show that conditions (i) and (ii) cannot
fail to hold simultaneously. Assume that condition (i) fails to hold, and consider
the sets given by

P={{eR |§<0,j=1,...,r},
Cr = {we?RT | filx) <wj, 5=1,...,7, fi(x)=w;, j=7+1,...,7, :cGC}.

The set P is polyhedral, and it can be seen that C) is convex, since C' and
fi,..., fr are convex, and f711,..., fr are affine. Furthermore, since the con-
dition (i) does not hold, P and C are disjoint, implying that ri(Ch) N P = (.
Therefore, by the Polyhedral Proper Separation Theorem (cf. Prop. 3.5.1), the
polyhedral set P and convex set C1 can be properly separated by a hyperplane
that does not contain C1, i.e., there exists a vector u € " such that

sup p'€ < inf p'w, inf p'w< sup p'w. (3.27)
cep weCy welCy wel]

Since each component &; of £ € P can be any negative scalar, the first relation
implies that p; > 0 for all j. Therefore, u'¢ < 0 for all £ € P and since 0 € P, it
follows that

supp'é =0< inf p'w.

cepP wely
This implies that

0 < pwi + -+ + prwy, Ywe Ch,
and by letting w; — f;(z) for j =1,...,7, we have
0<paifi(z)+--+ prfr(z), Vx € CNdom(fi)N---Ndom(f).
Thus, the convex function
f:N1f1+"'+Nrfr

is finite and nonnegative over the convex set

C =Cndom(fi)N---Ndom(fs).

By Exercise 1.27, f is nonnegative over cl (6) Given that ri(C) C dom(f;) for
alli=1,...,7, we have ri(C) C C, and therefore

CcC cl(ri(C)) C cl(é).
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Hence, f is nonnegative over C.
We now show that not all ui, ..., ur are zero. To arrive at a contradiction,
suppose that all p1, ..., u7 are zero, so that

0 < prpifrpa(z) + -+ pr fr(2), Vazel.
Since the system

frr(z) <0,..., fr(z) <0,
has a solution T € ri(C), it follows that

Mrp1 frp1 (T) + -+ pr fr(T) = 0,

so that
igfc{ﬂ?ﬂf?ﬂ(w) oot pefr(@) ) = prga e (B) 4+ pe fr(T) =0,

with T € ri(C). Thus, the affine function pzyqfrir + -+ + prfr attains its
minimum value over C' at a point in the relative interior of C'. Hence, by Prop.
1.4.2 of Chapter 1, the function pzyq fry1 + -+ + pr fr is constant over C, i.e.,

g1 frpa () + -+ pr fr(z) = 0, Vzed.

Furthermore, we have p; = 0 for all j = 1,...,7, while by the definition of C1, we
have fj(z) = w; for j =7+1,...,r, which combined with the preceding relation
yields

prwr + -+ prwy =0, Ywe Ch,

implying that
inf p'w= sup p'w.
weCy weCy
This contradicts the second relation in (3.27). Hence, not all p1, ..., ur are zero,
showing that the condition (ii) holds, and proving that the conditions (i) and (ii)
cannot fail to hold simultaneously.

3.30 (Elementary Vectors [Roc69])

Given a vector z = (z1,...,2n) in R", the support of z is the set of indices
{j | zj #0}. We say that a nonzero vector z of a subspace S of R" is elementary
if there is no vector Z # 0 in S that has smaller support than z, i.e., for all
nonzero z € S, {j | Z; # 0} is not a strict subset of {j | z; # 0}. Show that:

(a) Two elementary vectors with the same support are scalar multiples of each
other.

(b) For every nonzero vector y, there exists an elementary vector with support
contained in the support of y.

(¢) (Conformal Realization Theorem) We say that a vector x is in harmony
with a vector z if
zjz; > 0, Vi=1,...,n.
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Show that every nonzero vector x of a subspace S can be written in the
form
z=z'4... 42",

where z!,...,2™ are elementary vectors of S, and each of them is in har-

mony with « and has support contained in the support of . Note: Among
other subjects, this result finds significant application in network optimiza-
tion algorithms (see Rockafellar [Roc69] and Bertsekas [Ber98]).

Solution: (a) If two elementary vectors z and Z had the same support, the vector
z — vz would be nonzero and have smaller support than z and Z for a suitable
scalar . If z and Z are not scalar multiples of each other, then z —~vZ # 0, which
contradicts the definition of an elementary vector.

(b) We note that either y is elementary or else there exists a nonzero vector zZ
with support strictly contained in the support of y. Repeating this argument for
at most n — 1 times, we must obtain an elementary vector.

(c) We first show that every nonzero vector y € S has the property that there
exists an elementary vector of S that is in harmony with y and has support that
is contained in the support of y.

We show this by induction on the number of nonzero components of y. Let
Vi be the subset of nonzero vectors in S that have k or less nonzero components,
and let k be the smallest k& for which V4 is nonempty. Then, by part (b), every
vector y € Vi must be elementary, so it has the desired property. Assume that all
vectors in Vj have the desired property for some k > k. We let y be a vector in
Vi+1 and we show that it also has the desired property. Let z be an elementary
vector whose support is contained in the support of y. By using the negative of
z if necessary, we can assume that y;z; > 0 for at least one index j. Then there
exists a largest value of ~, call it 7, such that

y; — 7% 2 0, v j with y; > 0,

y; — vz <0, vV 7 with y; < 0.

The vector y — 7z is in harmony with y and has support that is strictly contained
in the support of y. Thus either y — 7z = 0, in which case the elementary
vector z is in harmony with y and has support equal to the support of y, or else
y — 7z is nonzero. In the latter case, we have y — 5z € Vi, and by the induction
hypothesis, there exists an elementary vector Z that is in harmony with y — 7z
and has support that is contained in the support of y —%z. The vector Z is also
in harmony with y and has support that is contained in the support of y. The
induction is complete.

Consider now the given nonzero vector x € S, and choose any elementary
vector Z! of S that is in harmony with = and has support that is contained in
the support of = (such a vector exists by the property just shown). By using the
negative of Z' if necessary, we can assume that a:jf} > 0 for at least one index j.
Let 7 be the largest value of v such that

xj—’yf;z(), V j with ; > 0,
z; —~z; <0, Y § with z; < 0.
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The vector  — z', where

=77,
is in harmony with x and has support that is strictly contained in the support of
x. There are two cases: (1) = z', in which case we are done, or (2) = # 2!, in
which case we replace by = — 2! and we repeat the process. Eventually, after m

steps where m < n (since each step reduces the number of nonzero components
by at least one), we will end up with the desired decomposition z = z* +- - - 4+2™.

3.31 (Combinatorial Separation Theorem [Cam68], [Roc69])

Let S be a subspace of R". Consider a set B that is a Cartesian product of n
nonempty intervals, and is such that BN St = @ (by an interval, we mean a
convex set of scalars, which may be open, closed, or neither open nor closed.)
Show that there exists an elementary vector z of S (cf. Exercise 3.30) such that

t'z <0, VteB,

i.e., a hyperplane that separates B and S+, and does not contain any point of B.
Note: There are two points here: (1) The set B need not be closed, as required
for application of the Strict Separation Theorem (cf. Prop. 2.4.3), and (2) the
hyperplane normal can be one of the elementary vectors of S (not just any vector
of S). For application of this result in duality theory for network optimization
and monotropic programming, see Rockafellar [Roc84] and Bertsekas [Ber98].

Solution: For simplicity, assume that B is the Cartesian product of bounded
open intervals, so that B has the form

B:{t|b] <t] <EJ7]:177TL}7
where b, and b; are some scalars. The proof is easily modified for the case where
B has a different form.
Since BNS+ = O, there exists a hyperplane that separates B and S*. The
normal of this hyperplane is a nonero vector d € S such that
t'd<0, VteB.
Since B is open, this inequality implies that actually

t'd <0, VteB.

Equivalently, we have

S obi-adi+ > (b +ed; <0, (3.28)

{3ld;>0} {jld; <0}

for all € > 0 such that b, + € < b; —e. Let



be a decomposition of d, where z',...,2™ are elementary vectors of S that are
in harmony with d, and have supports that are contained in the support of d [cf.
part (c) of the Exercise 3.30]. Then the condition (3.28) is equivalently written

0> Y Bi—adi+ Y. (b +e)d;

{ild;>0} {ild; <0}
S (z) S 40 (z)
{jld;>0} i=1 {jld;j<0} i=1

m

= dYoobi—an+ Y. b+ea5 |,

=1\ Ul=g>0} {il=f <o}

where the last equality holds because the vectors z° are in harmony with d and
their supports are contained in the support of d. From the preceding relation,
we see that for at least one elementary vector z*, we must have

0> Y Bi-a95+ > b+,
{31zt >0} {il=t <0}

for all € > 0 that are sufficiently small and are such that b, + € < b; — ¢, or
equivalently _
0>tz Y teB.

3.32 (Tucker’s Complementarity Theorem)

(a) Let S be a subspace of #". Show that there exist disjoint index sets I and
T with TUT = {1,...,n}, and vectors € S and y € S* such that

xz; >0, Viel, z; =0, Viel,

yi=0, Viel, yi >0, Viel.

Furthermore, the index sets I and I with this property are unique. In
addition, we have

z; =0, Viel, VYaxcS withaz>0,

yi =0, Viel, VyESlWithyZO.
Hint: Use a hyperplane separation argument based on Exercise 3.31.

(b) Let A be an m x n matrix and let b be a vector in R". Assume that the
set ' ={z | Az =0b, > 0} is nonempty. Apply part (a) to the subspace

S:{(av,w)|A:c—bw:O7 zeR”, wE?R},
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and show that there exist disjoint index sets I and I with TUT = {1,...,n},
and vectors € F and z € R such that b’z = 0 and

xz; >0, Viel, z; =0, Viel,

yi=0, Viel, yi >0, Viel,

where y = A’2. Note: A special choice of A and b yields an important
result, which relates optimal primal and dual solutions in linear program-
ming: the Goldman-Tucker Complementarity Theorem (see the exercises
of Chapter 6).

Solution: (a) Fix an index k and consider the following two assertions:
(1) There exists a vector € S with x; > 0 for all ¢, and zx > 0.
(2) There exists a vector y € S+ with y; > 0 for all 4, and yx > 0.

We claim that one and only one of the two assertions holds. Clearly, assertions
(1) and (2) cannot hold simultaneously, since then we would have 'y > 0, while
z € S and y € St. We will show that they cannot fail simultaneously. Indeed, if
(1) does not hold, the Cartesian product B = I}, B; of the intervals

B — (0,00) ifi=k,
"1 [0,00) ifi#k,

does not intersect the subspace S, so by the result of Exercise 3.31, there exists
a vector z of S* such that 2’z < 0 for all z € B. For this to hold, we must have
z € B* or equivalently z < 0, while by choosing z = (0,...,0,1,0,...,0) € B,
with the 1 in the kth position, the inequality 'z < 0 yields 2 < 0. Thus
assertion (2) holds with y = —z. Similarly, we show that if (2) does not hold,
then (1) must hold.

Let now I be the set of indices k such that (1) holds, and for each k € I,
let z(k) be a vector in S such that z(k) > 0 and zx(k) > 0 (note that we do not
exclude the possibility that one of the sets I and I is empty). Let I be the set of
indices such that (2) holds, and for each k € T, let y(k) be a vector in S* such
that y(k) > 0 and yx(k) > 0. From what has already been shown, I and I are
disjoint, I UT = {1,...,n}, and the vectors

z=> ak), y=Y ylk),

kel kel
satisfy B
x; >0, Viel, z; =0, Viel,
yi=0, Viel, yi >0, Viel.
The uniqueness of I and I follows from their construction and the preceding
arguments. In particular, if for some k € I, there existed a vector z € S with
z > 0 and z, > 0, then since for the vector y(k) of S we have y(k) > 0

and yi(k) > 0, assertions (a) and (b) must hold simultaneously, which is a
contradiction.
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The last assertion follows from the fact that for each k, exactly one of the
assertions (1) and (2) holds.

(b) Consider the subspace
S = {(x,w) | Az —bw =0, z € R", w€§R}.

Its orthogonal complement is the range of the transpose of the matrix [A — b],
so it has the form
St ={(A'2,-Vz) | zeR"}.

By applying the result of part (a) to the subspace S, we obtain a partition of the
index set {1,...,n 4+ 1} into two subsets. There are two possible cases:

(1) The index n + 1 belongs to the first subset.

(2) The index n + 1 belongs to the second subset.

In case (2), the two subsets are of the form I and TU{n+1} with JUI = {1,...,n},
and by the last assertion of part (a), we have w = 0 for all (z,w) such that
x>0, w >0 and Az — bw = 0. This, however, contradicts the fact that the
set F = {x | Az = b, x > 0} is nonempty. Therefore, case (1) holds, i.e., the
index n + 1 belongs to the first index subset. In particular, we have that there
exist disjoint index sets I and T with TUT = {1,...,n}, and vectors (z,w) with
Az —bw =0, and z € R™ such that

w > 0, bz =0,

z; >0, Viel, =0, Viel,
yi=0, Viel, yi >0, ViET,

where y = A’z. By dividing (x, w) with w if needed, we may assume that w = 1
so that Ax — b = 0, and the result follows.
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