Corrections for the book NONLINEAR PROGRAMMING: 3RD EDITION, Athena Scientific, 2016, by Dimitri P. Bertsekas

Last updated: 29/10/2022
p. 15 (5 and 9) change $\nabla_{x a}^{2} f$ to $\nabla_{a x}^{2} f$
p. $97(-3)$ change $\delta \in(0, \bar{\delta}]$ to $\delta>0$
p. 196 (14) "in the case" is repeated twice.
p. $216(-4)$ Add $+\nabla_{u u}^{2} L(\phi(u), u, p(u))^{\prime}$ at the end of Eq. (2.193).
p. 418 (-4) Rewrite the last sentence as follows:

The optimal solution is $x^{*}=(0,0)$, and again it can be seen that there is no Lagrange multiplier λ^{*} such that

$$
\left(\nabla f\left(x^{*}\right)+\lambda^{*} \nabla h\left(x^{*}\right)\right)^{\prime}\left(x-x^{*}\right)=x_{1}+\lambda^{*} x_{2} \geq 0, \quad \forall x \in X
$$

Here, condition (2) of Prop. 4.3.18 is satisfied, but condition (1), is violated.
p. 456 (-7) The first equation of the proof of Prop. 5.1.4 is flawed. Replace the first 7 lines of the proof with the following:

Proof: Let $\lambda_{\bar{X}, \bar{\epsilon}}$ and $\lambda_{\bar{X}, \epsilon}$ correspond to ($\bar{x}, \bar{\epsilon}$) and (\bar{x}, ϵ) via Eq. (5.7), so that from Eqs. (5.5)-(5.6), we have

$$
q(\bar{x}, \bar{\epsilon})=\frac{\bar{X}\left(c-\lambda_{\bar{X}, \bar{\epsilon}}\right)}{\bar{\epsilon}}-e, \quad q(\bar{x}, \epsilon)=\frac{\bar{X}\left(c-\lambda_{\bar{X}, \epsilon}\right)}{\epsilon}-e .
$$

Denoting $\theta=\delta n^{-1 / 2}$ and using the minimization property of the second equation in p. 455 , we have

$$
\begin{aligned}
\|q(\bar{x}, \bar{\epsilon})\| & \leq\left\|\frac{\bar{X}\left(c-\lambda_{\bar{X}, \epsilon}\right)}{\bar{\epsilon}}-e\right\| \\
& =\left\|\frac{\bar{X}\left(c-\lambda_{\bar{X}, \epsilon}\right)}{(1-\theta) \epsilon}-e\right\| \\
& =\frac{1}{1-\theta}\left\|\frac{\bar{X}\left(c-\lambda_{\bar{X}, \epsilon}\right)}{\epsilon}-(1-\theta) e\right\| \\
& \leq \frac{1}{1-\theta}\left(\left\|\frac{\bar{X}\left(c-\lambda_{\bar{X}, \epsilon}\right)}{\epsilon}-e\right\|+\theta\|e\|\right) \\
& =\frac{1}{1-\theta}(\|q(\bar{x}, \epsilon)\|+\theta\|e\|) \\
& =\frac{1}{1-\theta}\left(\|q(\bar{x}, \epsilon)\|+\theta n^{1 / 2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{1-\theta}\left(\|q(x, \epsilon)\|^{2}+\delta\right) \\
& \leq \frac{\gamma^{2}+\delta}{1-\theta}
\end{aligned}
$$

p. 698 (5) change [EcB72] to [EcB92]
p. 707 (12) change 7.4 .2 to 7.4 .1

