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6.3.1 (www)

(a) Let u* be a dual optimal solution. Similar to the proof of Prop. 6.3.1, we obtain

It = 2 <l = o2 = 25 (q = q(k)) + (5211112

a*—a(p®)

where ¢* = g(u*). Since sk = gk e have
2
¢ —q(p*)
Im“4—uﬂ2ﬁmﬁ—uﬂ2—£—mﬁp—L 1)
Therefore
[kt = e[| < lpk = p=]l, VY,

implying that {g*} is bounded.
(b) Let C be a positive constant such that ||g¥|| < C for all k. Then from Eq. (1) it follows that

(q* — q(p*))*

gkt — > + o2

< |lpk = |2, V.

By summing these inequalities over all k, we obtain
LS k))2 0 _ *||2
Gz (@ = au))” < [|u0 = p[2,
k=0

so that
lim q(uh) = ¢*. (2)

k—oo
Since {p*} is bounded, there exist a vector fi and a subsequence {p*}rex C {u*} converging to

i€ M (set M is closed). By using the upper-semicontinuity of g, we have

limsup q(u*) < q(f1) < g%,
k—oo, ke

which in view of Eq. (2) implies that ¢(i) = ¢*. Thus every limit point of {u*} is optimal.
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Section 6.3

Now we show that {u*} actually converges. Let M* denote the set of all dual optimal
solutions. Note that M* is convex (by concavity of ¢) and closed (by upper-semicontinuity of g).
Suppose that {p*} has two distinct limit points, say i € M* and i € M*. As seen in (a), for any
w* € M=, the sequence {||u¥ — p*||} decreases monotonically, and therefore it converges. Hence

it = #]] = || — p*|| for all p* € M*, implying that fi = .

(¢) Let ¢ be real-valued and concave over the entire space R". According to Prop. B.24 of

Appendix B, since {p#} is bounded, the set Ug>00q(1*) is bounded, and so is {g*}.

6.3.2 (www)

(a) Let ¢ be an underestimate of ¢* such that ¢(u*) < ¢ < ¢*. Consider the function g(u) =
min{q(,u),(j}. Note that ¢ is concave and that max,enm ¢(p) = ¢. The proposed method is
obtained by applying the method described in Exercise 6.3.1 to the problem max,ca g(pt). The
algorithm will either stop at some iteration k for which g(u*) = § [i.e., g(u*) > §] or generate a
sequence {p#} such that g(u*) = q(uF) < ¢ for all k. According to the results of Exercise 6.3.1,
the sequence {u*} is bounded. Furthermore, provided that {g¥} is bounded, the sequence {u*}
converges to some point & such that g(@) = ¢. Since ¢(fn) > g(f), we have g(@) > q.

(b) Let ¢ be an overestimate of ¢*, and let L be a constant such that ||¢g¥|| < L for all k. Then

for any N > 0, we have

N N -
k Ell — q_Q(ﬂk)
k=0 k=0 9

1 N
>+ (a—aluh)
k=0
1 X
> Ekzzo(q_q )
(N+1)(q—q%)

= L 5
where the last inequality follows from the fact that ¢(u*) < ¢* for all k. Since ¢ > ¢*, by taking

limit as N — oo in the expression above, we obtain the desired result.

6.3.3 (www)

(a) To obtain a contradiction, suppose that liminfj_, o \/E(q* - q(uk)) > 0. Then there is an
¢ > 0 and large enough & such that Vk(q* — g(u*)) > € for all k > k. Therefore

2 _ €2 .
(¢* —q(u¥))” > —, VEk=>k,
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implying that

which contradicts the relation

> (g* — a(pk ? < o0

k=0

shown in solution of Exercise 6.3.1.

(b) As seen in Exercise 6.3.1, we have for all dual optimal solutions p* and all k

(q* — q(pk))”

||/Lk+1_u*‘|2§||uk_:u*”2_ ||gk|\2

This relation and the inequality q(p*) — q(p*) > al|pu* — p¥|| yield for all k&

a?||ph — p|[?

‘|uk+1iu*|‘2§”ﬂkiu*||27 ||ng2 )

from which, by using supj.> [|g*|| < b, we obtain
ot = el = (1 5 )l e

and the desired relation follows.

6.3.4 (www)

Assume that w¥ is not an ascent direction. Then
gF wk = ¢/ (p; wk) < 0. (1)

Since wk is the projection of the zero vector on the set conv{gl,...,g*=1}, by Prop. B.11 of

Appendix B, we have
(9 —wh)wh >0,  Vgeconvigl,...,g"1}.

Therefore gi'w* > ||w*||2 for all i = 1,...,k — 1. Since wk is a subgradient of ¢ at x4 and  is not
an optimal point, we must have ||wk|| > [|g*|| > 0, where g* is a subgradient of ¢ at y that has

minimum norm. Hence
gi'wk > |g*|| > 0, Vi=1,...,k—1. (2)

Suppose that the process does not terminate in a finite number of steps. Let {wk, gk} be a

sequence generated by the algorithm. Since {wk} C dq(u), {g*} C dq(r) and Aq(p) is compact,
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there must exist subgradients w,§ € dq(p) and subsequences {wk}rek, {gF}kex of {wk} and

{g*}, respectively, such that

li k= d li k=g.

hoooek A0 hooomexd 9 (3)
From Egs. (1) and (3) we have /&0 < 0. On the other hand, by considering Eq. (2) for i < k
and i € K, taking the limit as k — oo, and using Eq. (3), we obtain ¢/ > 0 - a contradiction.

Therefore the process has to terminate in a finite number of steps.

6.3.5 (www)

(a) We have
g € 0cq(p) ifand only if q(pu+sd) < q(p)+sg’'d+e, Vs>0, deRr.

Hence

g € 0q(p) <= sup alp + Sd); aln) — € <g'd, VdeR. (1)
5>0

It follows that deq(p) is the intersection of the closed subspaces
{g q(p +sd) —q(p) — ¢

sup <gd }
as d ranges over R7. Hence J.q(p) is closed and convex. To show that O.q(u) is also bounded,

>0 S

suppose to arrive at a contradiction that there is a sequence {g¥} C 9eq(p) with ||g¥|| — oco. Let

dk = — 9: . Then, from Eq. (1), we have

IE]
(1 +sd) —q(p) —€

q
sup
s>0

< —llgkll,  Vs>0,
so that for s = 1 we obtain
q(p+ d¥) — —oc.

This is a contradiction since ¢ is concave and hence continuous, so it is bounded on any bounded

set. Thus deq(p) is bounded.

Figure for Exercise 6.3.5.
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To show that d.q(p) is nonempty and satisfies

d) — _
supq(ﬂJrs) a(k) €~ inf g'd, VdeRr,

>0 s 9€0eq(p)

we argue similar to the proof of Prop. B.24(b). Consider the subset of Rr+1
Ci= {(§7V> | §< Q(l/)}7
and the half-line

Co={(&v) [§=q(n) +etasup q(“+3d)s—q(u) —c
s>

aV:M+adaaZO}7

(see the figure). These sets are nonempty and convex. They are also disjoint, since we have for

all (&,v) € Oy

£ =q(p)+etasup alptsd) =g —e q(u)+€+aqw+ad) —q(p) —¢

= d = .
SUp . " q(p+ad) = q(v)

Hence there exists a hyperplane separating them, i.e., a (y,w) # (0,0) such that

d) — _
W«E—&-w’VZ’y(q(u)—i—e—i—asupq(u—’—s) a(r) 6)+w’(u—|—ad), Va>0, veRr, £<q).

s>0 S
(2)

We cannot have v > 0, since then the left-hand side above could be made arbitrarily small by

choosing ¢ to be sufficiently small. Also, if v = 0, Eq. (2) implies that w = 0, contradicting the
fact that (v, w) # (0,0). Therefore, v < 0 and after dividing Eq. (2) by -, we obtain

(1) i) < alurerasup WD =IO (B) 0 vazo, vew, €<,

s>0
3)
Taking the limit above as £ — ¢(v) and setting o = 0, we obtain
w i
o) <ot (<2) o e
Hence —% belongs to 0eq(p). Also by taking v = p in Eq. (3), and by letting £ — ¢(v) and by

dividing with «, we obtain

_g’d<g+supq(u+sd)—q(u)—e

Y o 5>0 S

Since a can be chosen as large as desired, we see that

Vi . —
%< sup q(u+sd) —q(p) —¢
Y 5>0 S

Combining this relation with Eq. (1), we obtain

d) — _
min ¢'d = sup q(p+ sd) — q(p) 6.
9€0eq(p) s>0 s
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(b) By definition, 0 € 0cq(y) if and only if g(fr) < g(u) + € for all i € R, which is equivalent to
SUPpegr q(i1) — e < q(p).

(c¢) Assume that a direction d is such that

inf d'g>0, 1
9€Beq(p) g W

while sup,~ g+ sd) < g(u) + €. Then g(p + sd) — q(p) < € for all s > 0, or equivalently

q(p+sd) —q(p) — €

<0, Y s>0.

Consequently, using part (a), we have

inf  drg = sup L5 —alw) — €
9€0eq(p) s>0 s

<0.

which contradicts Eq. (1).

(d) The vector g, € Deq(p) such that [|g,|| = minges, q¢u) |1gl| is the projection of the zero vector
on the convex and compact set Jeq(p). If 0 & Oeq(n), we have ||g.|| > 0. By Prop. B.11 of
Appendix B, we have

(9—9u)'9. >0, Y gedeq(p).

Hence

9'9u > |lgull?> >0, V g € deq(p).
(e) Let g1 be some e-subgradient of q. For k = 2,3,..., let wF be the vector of minimum norm
in the convex hull of g,..., gk—1,

wk = ar min .
8 ool lgll

If wk = 0, stop; we have 0 € Deq(p), s0 supzexr q(f1) — € < g(u). Otherwise, by search along the
line {p + swk | s > 0}, determine whether there exists a scalar § such that q(u + swk) > g(u) —e.
If such a § can be found, stop and go to the next iteration with p replaced by p + swk (the dual
value has been improved by at least €). Otherwise let gk be an element of d.q(p) such that

/ .
gF'wk = min g'wk.
9€9eq(n)

From part (a), we see that g&'w* < 0. By replicating the proof of Exercise 6.3.4, we see that this
process will terminate in a finite number of steps with either an improvement of the dual value

by at least €, or by confirmation that sup;cgpr q(n) — e < q(p), so that p is an e-optimal solution.
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(f) For the case of constrained maximization redefine the e-subdifferential at a vector € M to

be the set
{91aw) <qp)+g W —p) +e YveM}

Generalization of part (a): 0 € Jeq(p) if and only if sup, ¢y, q(v) — € < g(p).

Generalization of part (b): If a feasible direction d at p is such that infgc s, 4(,) d’g > 0, then

sup  q(p+sd) > q(p) +e
s>0,u+sdeM

Parts (¢) and (d) are unchanged.

The proofs are similar to those given above.

6.3.6 (www)

Let p* be an optimal point and ¢* = ¢(u*) be the optimal value. By induction, we will show that
(pr — pkydh > (pe — pk)'gh, Yk (1)

We have d9 = g0 and Eq. (1) holds for K = 0. Assuming Eq. (1) holds for k, we will prove it for
k + 1. Since dk+1 = gk+1 4 Bkdk we have

(r — kL) dhtl = (px — k1) gkl o Bk (px — k1) gk

2
= (* — pkt1)y ghtl 4 Bk (px — pkYidk 4 Bk(pk — pkt1)/dk, @
* k
By the concavity of g, the fact gk € 9q(u*), and the stepsize definition sk < %(H“Q), we obtain
(14— 1hYgh > 0* — a(ub) > M2 ®)

The inductive hypothesis together with Eq. (3) implies that
(1 — byt > a2

Substituting this estimate in Eq. (2) yields
( — kL) dhtl > (px — k1) ghtl 4 Blgk||dk||2 4 Bk (puk — pkt1) dk
= (u* — pk+1)/gh+1 4 Bk(skdk 4 pk — pk+1)/dk
> (pr = phtt)ghtt,
where the last inequality follows from the properties of projection and the definition of the

method. Hence Eq. (1) holds for all k.
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Next we show that
|[[phtt — px|| < |[|pk —p*]], VY k. (4)

Note that Eq. (3) implies that
(221012 < st (" — kgt < 254" — by %)
We have
bt = a2 < [t st — e

<l = ]2 = 25 — gy s+ ()2 2

< ||k = px[|? = 28k (ux — pk)'db + 25k (p — pk)' gk

= |lph — |2 = 2sF(u* — pk)'(d¥F — g*)

< [Jpk = pr]2,
where the first inequality follows from the nonexpansiveness property of the projection, and the

second and the last inequalities follow from Eqs. (5) and (1), respectively. Thus Eq. (4) holds.
From the definitions of d* and 8% we have
[|d¥[[2 = [g*[|? = [lg* + BFdE =] — ||g¥[]?
= (BF)2||dk—1]|2 + 23k gk’ qk—1
!
gk drk—1
— Bk||dk-1)12 ( gk 22222
gl (4 200
= (2 — ) Bkgt di-1

<0

and therefore ||d*|| < ||g¥||, which combined with Eq. (1) implies that

(e — pr)rdt _ (pr — pk)'gk

> . Yk
||a*]] [lg* |l

6.3.12 (www)

As in the proof of Prop. 6.3.1, we have
ikt = ]2 < [k = ] |2 = 285 6K (1 — p¥) + (s5)2[[g%]12, YV pe M,

* k
where sk = %ﬁé’" and gk € 0eq(p*). From this relation and the definition of the e-

subgradient we obtain

[[phtt — pl[2 < [|pk = p|> = 255 (q(p) — q(uF) — €) + (s%)2[|gF]]2, VY pe M.

8
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Let p* be an optimal solution. Substituting the expression for s* and taking p = p* in the above
inequality, we have
q(p) — q(p
ik = e <l = e~ LD g -
Thus, if q(p*) — q(u*) — 2¢ > 0, we obtain

[[phtt — px|| < ||pk — pr|].

6.3.13 (www)

(a) Similar to Exercise 6.3.12, we can show that
[kt — g2 < ||k = pl[2 = 25 (q(n) — q(uF) — €*) + (sF)2lg*|2, Y peM, Yk
By rearranging terms, we can rewrite the above inequality as
258 (a(0) () = e = oG ) 1+t =l < k=l Y M Y ()

Suppose that limsup,_, ., ¢(#*) < sup,ep (i) — ¢, ie., there is a scalar § > 0 and a

nonnegative integer ko such that

q(p¥) < sup q(u) —e =46, YV k= ko.
peM

Choose a point i € M such that

W) <a(@) —c— 8 Vk> ko 2)
By setting 1 = i in Eq. (1) and combining it with Eq. (2), we obtain

1

2at (46— ek = ZoHIgHE )+l — IR < k=l Y k2 ko
Since €k — € and s*||g¥||2 — 0, we can assume that ko is large enough so that
1 0
e+5—ek—§sk||gk|\225, Y k> ko.

Therefore we have

kG4 [k — 2 < [k - A2,V k> o,

Summation of the above inequalities gives

N

§ ) sk [[pN L — p[2 < [|pko — |2,
k=kg
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Letting N — oo in the relation above yields Z,;“;ko sk < 0o, which is a contradiction. Therefore
we must have that

limsup g(p*) > sup g(p) —e. (3)
k—oo pneM

On the other hand, since g(p*) < sup,,¢ ) g(p) for all k, we have

lim sup g(p*) < sup q(p),
k—o0 neM

which combined with Eq. (3) yields the desired result.

(b) By rearranging the terms and setting e = 0 in Eq. (1), we obtain
25% (q(n) — q(uk)) + ||kt — pl|2 < (lpk — pl2 + (sK)2]lgk][2, ¥V pe M, k. (4)

Assume, to arrive at a contradiction, that limsupy,_, . q(p*) < sup,en g(1). Then, by the same
reasoning as in part (a), it can be seen that there is a point i € M such that Eq. (2) is valid

with € = 0. This together with Eq. (4), where u = fi, implies that
2806 + [|pht — B2 < [k — Al? + (s%)2[lg¥[I?, YV k> ko

Summation of these inequalities over k for ko < k < N gives

N N
20 ) sk [N — A2 < [[uko — Al|2+ > (sR)2][gk|)2, ¥ N > k.
k=kg k=kg
Therefore
N e’}
20 ) sk < luko — @l|2 4 ) (s%)2]|gk[[2 <00, ¥ N > k.
k=kq k=kq

By letting N — oo in the above relation, we obtain Z;iko sk < oo, which is a contradiction.
Hence

limsup g(uk) = sup q(u).
k—o0 pneM

Let p* be an optimal point. By setting p = p* in Eq. (4) and summing the obtained

inequalities for n < k < N, we have

N N

2% sk (q(ue) = q(pk)) + [N+ = o |2 < lum = pe][2 4 ) (55216512 Y <k <N,
k=n k=n

where n < N are some positive integers. Let n be fixed and let N — oo in the last inequality.
Then
o0
limsup |[pN+1— pe|[2 < || — pe][2 4 (s9)?]lg*][?, Y m>0. ()

N—oo k—n,

10
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Hence {p*} is bounded. Let {z*i} € {u*} be a subsequence such that

lim g(u*7) = limsup g(u*) = sup q(p) = q(u*).
J—0o0 k—oo pneM

Without loss of generality, we may assume that {7} converges to some point . The set M is

closed, so that i € M. By the upper semicontinuity of ¢, we have

limsup q(1"7) < q(f1).

Jj—o00
Since limsup; . q(p*7) = lim;j o0 q(u*7) = q(u*), the relation above implies q(i) = q(p*).

Thus /i is optimal. Then Eq. (5) is valid with p* = i and n = k; for some j, i.e.,

oo
limsup [+ — 2 < [[% — a2+ 3 (s9)2]lg¥ ]2
N—o0 k=k;

By letting j — oo and taking into account that lim; .. <||ukﬂ' — B2+ Z:o:nj (sk)2||gk\|2) =0

(since the boundedness of {u*} implies boundedness of {g¥}), we obtain
lim sup |[pN+1 — ff| = 0,
N—o0

which implies that ub — fi.

6.3.14 (www)

(a) Let u* be an optimal point and let € > 0 be given. If gk = 0 for some k, then q(u*) = q(u*)
and one may take i = p*. If gk # 0 for all k, then by the nonexpansiveness of the projection
operation, we have
2

g*

= H'uk 7:“’*”2 +O{2 - 2a(lu* 7‘lek)/‘|gk||,

Note that the term (u* — k)’ g*/||g*|| represents the distance from p* to the supporting hyper-

agk
oen M
g% |

*

ot = el < s + VE ()

plane Hy, = {u | g*'(uk — p) = 0}. Define Ly = {u € M | q(u) = q(*)}. Since ¢ is concave
and real valued over the entire space, it is continuous over R”. Therefore Ly is closed, and the

distance

k= min ||p — p*
Pl = min e = p]|
from p* to Lg is well defined. Also the set Li and the vector p* lie on the same side of the
hyperplane Hy. Hence every line segment joining p* with a point of Hy, passes through Ly, and

therefore
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Using this inequality in Eq. (1), we obtain
[kt — pr[ |2 < |k = p*[|? + a2 = 2apk, VY k.
In order to arrive at a contradiction, suppose that p¥ > $(1 +¢) for all k. Then
|[phtt — g2 < |k — ][ — e, V.
By summing these inequalities, we have
it = pr[[? < f[u0 — p*[|? —e(k + Do,V &,

and by letting k — oo, we obtain a contradiction. Therefore there must exist a k and a i € Lj

such that
a(l+e)

5 P :FILIEHLHEIIM*M | =1z — pll,

as desired.

(b) Let p* € M*. Assume that pu* ¢ M* for all k. Then similar to the proof in (a) we have
L A e ©)

Let a > 0 be fixed and let ¢* = g(u*). Consider the set {ux € M | q(u) > ¢* — a} and its
boundary I'¢«_,. By assumption, the set M* is compact, so that I'gx_, is compact. Furthermore

M+*NTy_q = (). Hence we have

a) = min —v|| > 0.
pla) = o min =]

Since a* — 0, one can find N, such that o* < p(a) for all k > N,,. If ¢(u*) < ¢* — a, then
p¥ > p(a) and from Eq. (1) we have
ittt = px[[2 < [[pk = p|]? = pla)a®, ¥V k> Ny 3)

Since Y, a* = oo, there must exist N, > N,(,) such that ¢(uNe) > ¢* — a. Define

d(a) = dnax min [[ — |

Let k > Ng. If g(uNa) > ¢* — a, then ming«ca= ||p* — p*|] < d(a) and since
1 — el < [t + b/ lgHl] = el < ik — o] + o,
we obtain
i [l = ] < da) + o ()

12
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On the other hand, if ¢(u*) < ¢* — a then from Eq. (3) we have

i k41 x| < i k— *l]. 5
nin | pril = min flpk — | (5)

Combining Egs. (4) and (5), we obtain

i k— x| <d k. Vk>N,.
ﬂ,{glﬁ*\lu pell < d(a) + max of, a

Since d(a) — 0 as a — 0, for any § > 0 there exists as such that d(as) < 6/2. Also, one can find
an index Ny such that q(u™Ns) > ¢* — as and o* < §/2 for all k > Nj. Therefore

in_||pk—p[| <6, V>N,
Jmin fluk — ] < 5

showing that

li i k— p*|| = 0.
Jim #%*Hu |

By continuity of ¢, we have limy_.o g(¢F) = ¢*, which completes the proof.

6.3.15 (www)

Assumption (i) guarantees that the function () = Y7 ¢i(1) is concave and has bounded level
sets. Thus, the level sets of ¢ are compact, and hence the optimal solution set M* is nonempty

and compact.

The proof of part (a) is tricky and is based on the assumptions (i) and (ii). The proof of
part (b) combines the ideas of incremental gradient method analysis of Section 1.5, together with

the line of proof of Exercise 6.3.14.

(a) Let pu* € M* be an arbitrary optimal solution. By the nonexpansiveness property of the

projection, we have
a2 < (1 kg a2 < [y |2 2k (e ) 4 (aR)2C2, i .
Since gik' (u* — i=1Lk) > q;(p*) — q;(i—1*) for each i, we obtain

m
It = 2 < [t = o2 = 208 30 (@) — @i (i 1) +mlab)2C2, (1)
i=1
for all K > 0 and p* € M*. Let & be an upper bound for o, and let igp be an index such that

the level sets of ¢;, are bounded. Define

m
m
* — a , :_AC2+ >‘k7*>07
q gé;ﬂ(u) a=a ;:1% q

13
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and

L(a, p*) ={v e M | qiy(v) = qig(n*) — a}.

Under assumption (i) the level set L(a, p*) is nonempty and compact for any p* € M*.
Note that for any k either g¢;,(¢0—1k) < gi(u*) —a or g, (io—1k) > g (u*) —a. Suppose
that the former is the case. Since ¢;(¢*~1F) < ¢, we have

m

i=1 iig

By combining this relation with Eq. (1), we obtain
[l tt = px[[2 < [[pF — || — aFmC2(& — k) < ||ph — p*]]?,
where the last inequality follows from 0 < a* < &. Therefore
[kt — || < [|pF — p*||  whenever gi,(¢pio—1F) < i (p*) — a. (2)

If gi, (ypio—1:k) > @i, (u*) — a, then the subiterate ¢io—1k belongs to the level set L(a, u*).
Therefore [[1pio~1k — yi*|| < diam(L(a, p*)), where diam(-) denotes the diameter of a set. Since

the subgradients g%* are bounded, it follows that
k1 — g < (|1 — oL 4 [[io=1k — pu*|| < GmC + diam(L(a, 1*))-
Thus
541 — ]| < GmC + diam(L{a, 1)) whenever gy (10-1%) > g (i) —a.  (3)
From Egs. (2) and (3), we have
|k — || < max{amC + diam(L(a, p*)), ||p® —p*||} YV k>0,

which completes the proof.

(b) Here we argue similar to the proof of Exercise 6.3.14(b). Since the stepsize is bounded, the

sequence of the iterates {u*} is also bounded as seen in part (a). Let

_ ik
G =max{ . max{llll | € 2041}

14
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Note that _
ik — pk]| <k Y~ Cy, Vi k. (4)
j=1
From Eq. (1) we have
[kt — x| |2 < || — o[> — 20 <Q(M*) —q(u) + > (qs(u) — qz-(z/ﬂ"lv’“))> +m(ak)2C?
i=1

< ik = g2 = 205 (q(a*) = q(u) + 205 37 Cil|pi=16 = k|| + mak)2C
=2

m i—1 m
< [k — p#||2 = 20k (q(p7) — q(uh)) + (ak)2 [ 2D C Y 0+ > 2
i=2 j=1 i=1

m 2
= ||k — p*| 2 — 2% (q(p*) — q(uF)) + (k)2 <Z Cf) :

where the next-to-last inequality follows from Eq. (4), and we are using the facts C' < C; and

qi(Y=1F) — qi(pF) < gi(pi=1* — pk) for all g; € Ogi(u*). Therefore
bt — [ |2 < |k — p*]|2 — 20k (q(p*) — (%)) + (ak)2C2, ¥V p e M*, VE>0, (5)

where C = >, Ci. Let a > 0 and ko such that ok < a/C? for all k > ko. If q(u*) < q(u*) —a

for some k > ko, then from Eq. (5) we have
It — 2 < [l — o2 — (20— 0¥ C2),

and therefore

(dist(pk+1, M*))2 < (dist(p*, M*))2 — aak. (6)

Note that this relation cannot hold for all k& > ko, for otherwise the condition ZE‘LO ak = oo will
be violated. Hence, there is an integer k1 > ko for which ¢(uk1) > g(p*) — a. This means that
the point pF1 belongs to the level set Lo, = {un € M | (1) > q(p*) — a}, which is compact, so
that

dist(ukr, M*) < max dist(p, M*) < 0.
peLq

Denote

d(a) = max dist(u, M*).
() = max dist(u, M)

Since ||kt — p*|| < ||[uk1 — p*|] + o*1C, we have that dist(uk1+1, M*) < d(a) + o*1C. Hence
for k > k1 we have

dist(pht1, M*) < d(pk, M*) if q(u*) < ¢* —a,

15
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[cf. Eq. (6)] and
dist(pk+1, M*) < d(a) + o*C if q(u*) > ¢* — a.

Combining these relations, we obtain

dist(pk, M*) < d(a) + C_'kniz}vxak, YV k> k.
ZNR1

Note, using Eq. (6), that the set of indices {k | g(u*) > g(u*) — a} is unbounded for any
choice of a > 0. Since lim,—0d(a) = 0, given any € > 0, there is 6 > 0 such that for 0 < a < ¢
we have d(a) < €/2. Let the index ks be such that g(u*s) > q(u*) — a and of < €/(2C) for all
k > ks. Then dist(uk, M*) < e for all k > ks, i.e. limg_ oo dist(u*, M*) = 0. The continuity of ¢
implies that

1 k) — *) —
Hm g(pk) = q(pr) ggjq(u)

(¢) By dropping the term 2a*(q(pu*) —q(p*)) in Eq. (5) and by summing the obtained inequalities
over k for n < k < N, we have

N
[N+ — ]2 < flm — |2+ C2 3 (k)2 Vot e M¥, YN, n<N.  (7)

k=n
Since {u*} is bounded, there exist 4 and {4*} C {u*k} such that lim;_o ¥ = fi. The set
M is closed, so that i € M. As seen in part (b), we have limy_.o g(u*) = ¢*, and therefore
limj oo g(u*) = ¢*. Hence fi € M*. By setting u* = i and n = k; in Eq. (7), where j is

arbitrary, we obtain

N
N+ = P2 < Ik = A2 +C 3 (ak)2, YN > k.
k=k;
By letting first N — oo and then j — oo, we have
o0
limsup [N+ — ]2 <t (It = ]2+ 02 Y (@h)? | =0,
N=oo e K=k,

and therefore limy_. o ||u¥ — fi|| = 0.

6.3.16 (www)

The proof combines the arguments of the proofs of Exercise 6.3.1 and 6.3.15(b). Similar to the
proof of Exercise 6.3.15(a), we have for any pu* € M*

It = el [2 < s = g2 = 200 3 (qs() = (= 14)) +m(ak)2C2, Vg € Mo, Yk (1)
i=1

16
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Note also that .
Hwi}k_ukngakzcj’ Vi, k. (2)

j=1
From Eq. (1) we have [as in the proof of Exercise 6.3.15(b)]

[kt — pr][2 < [|uk — p*[? - 20k <q* —q(pk) + " (ailpk) - qz'(z/}“”“))> +m(ak)2C?
=1

< [l — ]2 = 20%(g* — (1)) + 20k 3 Cl[9r=16 — | 4+ m(ak)2C?
=2

m 1—1 m
< Ik — |2 = 200 (g — g(ub)) + (k)2 [ 23> O+ Y C2
i—2 =1 i=1

m 2
= ||k — |2 = 20 (q(p*) — q(p*)) + (ak)? (Z Cf) ;
i=1
where the next-to-last inequality follows from Eq. (2). Therefore
[kt = p[|2 < [|ub = ] |2 = 20k (q* — q(pF)) + (ak)2C2, ¥ p* € M*, YV k> 0.

Assume that pk ¢ M* for all k. By substituting the expression for a* in the above relation, we

obtain

2
7 — (")
||M’”1—M*H2§HM’“—M*HQ—W(Q—W)% -
3

* kY)2

Sl =l =2 =) g

Therefore

gttt = ]| < [l = ]l (4)
and the sequence {u*} is bounded. Next we will show that every limit point of {u*} belongs to
M=*. Let {u*i} C {i*} and let 7 be such that lim;_ |[#*/ — fi|| = 0. Since the set M is closed,
we have i € M. Suppose that ¢(fn) < ¢*, i.e., i ¢ M*. Since ¢ is continuous, we can find a scalar

6 > 0 and an index jo such that
q(phi) <q* =6, Y j=jo.

This, combined with Eqgs. (3) and (4), implies that

2*11.52 . - y 27“52
WEZAI <o — 2 = (41— o) WO

which is a contradiction. Hence i € M*. Note that the sequence of norms {||u* — p*||} is strictly

|[pFadt — ]2 < ||phs — px||2 —

decreasing for any p* € M*, so for any p* it converges to ||z — p*||. Finally, to show that {u*}
has a unique limit point, note that if i € M* and i € M* are limit points of the sequence {u*},
we would have ||z — p*|| = || — p*|| for all p* € M*, which is possible only if i = f. This

completes the proof.

17
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6.3.17 (www)

For the separable problem
n
minimize Z fi(xs)
i=1

n
subject to Zgij(xi)SO, j=1,...,m o <z <GBy i=1,...,n,

i=1

where f; : R — R, g;; : ® — R are convex functions, the dual function is

q(p) = min S fi(w) + > g6 (i)
j=1

— a;<z;<p;
=1

Let (z, 1) satisfy e-complementary slackness as defined in the problem statement, and let ¢(Z)

be the r-dimensional vector with jth component Y . ¢;(Z;). We will show that
q(p) <q(p) +e+9(@)(p—p),  VpeR,

where

€= EZ(ﬁi - Oéi).
i=1

Indeed, we have for any p € "

() <34 fil®@) + D 1igi (%)

= Z fi(®i) + Zﬂjgij(fi) + Z(Mj — fij) Zgz‘j(fi) (1)

=D @)+ > Aygi(Ti) p + (@) (1 — )

i=1 j=1

For all ¢ and all z; € [as, ], we have from the properties of directional derivatives and the

convexity of the function f;(xz;) + Z;Zl figij(x:),

filwa) + > Rgis(wi) > fu@) + > Bigig (Ta) + vilwa), (2)
j=1 Jj=1
where
d:'_(l‘l —jfi) if z; = oy,
'yi(xi) = dz_ (331 - J_L‘Z) if z; = 0, (3)

max{d;(xi — :EZ) d+(xi — fz)} if o <33 < B,

[t

18
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and
T T
di = f7 (@) + > i (@), df = £1(@)+ > nigh@)
j=1 j=1
are the left and right derivatives of f; + Z;Zl i1jgi; at ;. Using the e-complementary slackness

definition, we have

7€§dz—»i_ if T; = oy,
di <e it =0,
—e<d; <df <e if <z <p

Using the above relations in Eq. (3), we see that
vi(wi) > —e(Bi — ).

so Eq. (2) yields
filws) + > gis (i) = fu@) + Y iy (To) — €(Bi — ), Vi, V@i € [, Bi).

j=1 j=1
By minimizing over z; € [, §;] and adding over i, and using the definition of the dual function

q(), we obtain

s n

i=1 j=1 i=1

which combined with Eq. (1), yields the desired relation

q(p) < q(p) + €+ g(@) (1 — ).

6.3.18 (www)

For any € M, let us denote
d(p, M*) = mi — -
(1, M*) i, e — px |
We first show that for all k£, we have

(d(uh 1, M#))* < (d(pik, M7))° — —2Sk<”7_ &

¢ - al) HRE AR (1)
Indeed, using the definition of p*+1, the nonexpansive property of projection, the subgradient
inequality, and the assumptions ||r¥|| < 8 and ||g¥|| < §, we have for all u* € M*,
(A1, M))" < [kt — g2

— ||k — = + sk (g* +rk)||2

< ik — o2 25855 4 PRY Gk — i)+ (sR)2]gh + ]2

<k = |2+ 28k g (b — ) 4 280k [k — ]| 4 (%)2 (g + k)2

< k= o2 = 258 (g — (b)) + 25k Bllk — e + (54125 + B2
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If we let p* be the projection of p* on M*, and use the assumption
* —q(pF) <~ min — L,
g —q(p )*%*ew [l — |l

we obtain the desired relation (1).

Consider the case of a constant stepsize,
sk =g, VEkE=0,1,...

and to arrive at a contradiction, assume that for some nonnegative integer k& and some € > 0, we

have
) 2 _
HJqu*—q(uk), Vk>k (2)
Applying Eq. (1) with sk = s, we obtain
(a4, 09)* < (aes, 20))° = 2O (g — g ) 425+ )2

which combined with Eq. (2), yields

(A1, M) < (due, Me))? — 220 =F) (SW +8)?

7y

or

(d(MkJrl’M*))Q < (d<uk7M*))2 _2(y=h) €, Yk >k

v

Since v > 3, this relation cannot hold for infinitely many k, thereby arriving at a contradiction.

The proof that lim sup,_, . ¢(u*) = ¢* is similar. To arrive at a contradiction, we assume

that for some nonnegative integer k£ and some ¢ > 0, we have
6<q*_q(:u’k)7 szkv

and we apply Eq. (1) to obtain

_2sf(v = h)

(d(ur+1, M*)* < (d(uk, M))* s

e+ (s)2(6 + B)2, Vk>k.

Since sk — 0 and .-, s¥ = oo, this is a contradiction.
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