

Partial Solutions Manual

Parallel and Distributed Computation:
Numerical Methods

Dimitri P. Bertsekas and John N. Tsitsiklis

Massachusetts Institute of Technology

WWW site for book information and orders

http://world.std.com/˜athenasc/

Athena Scientific, Belmont, Massachusetts

Chapter 1

CHAPTER 1

SECTION 1.2

1.2.1:

The inequality T� ⌥ log n in the statement of Prop. 2.1 is replaced by the inequality T� ⌥ log
B
n,

where log
B

stands for the base B logarithm. The proof is similar with the proof of Prop. 2.1. We

show by induction on k, that tj ⌥ log
B
k for every node j depending on k inputs, and for every

schedule. The claim is clearly true if k = 1. Assume that the claim is true for every k smaller than

some k0 and consider a node j that depends on k0 + 1 inputs. Since j has at most B predecessors,

it has a predecessor . that depends on at least ⌫(k0 + 1)/B⇠ inputs. Then, using the induction

hypothesis,

tj ⌥ t. + 1 ⌥ log
B

✏
k0 + 1

B

⇣
+ 1 ⌥ log

B

↵
k0 + 1

B

�
+ 1 = log

B
(k0 + 1),

which completes the induction.

1.2.2:

Here we need to assume that a particular algorithm has been fixed and that T
⌅(n) is its serial

execution time. We assume that a fraction f of the algorithm is inherently serial. This part

requires fT ⌅(n) time no matter how many processors we try to use. The remaining fraction, which

is 1 � f , needs at least (1 � f)T ⌅(n)/p time, when p processors are available. Thus, Tp(n) ⌥
�
f + (1� f)/p

⇥
T
⌅(n), which yields

Sp(n) =
T
⌅(n)

Tp(n)
⌃ 1

f + (1� f)/p
⌃ 1

f

.

1.2.3:

(a) The main idea here is to divide and conquer. We start by considering the case where n is a

power of 2. If n = 1, there is nothing to be done and the problem is solved in zero time using

1

Chapter 1

zero processors. Assume that have already constructed a parallel algorithm that solves the prefix

problem for some n which is a power of 2, in time T (n) using p(n) processors. We now construct

an algorithm that solves the same problem when n is replaced by 2n. We use the already available

algorithm to compute all of the quantities
+

k

i=1 ai, k = 1, 2, . . . , n, and
+

k

i=n+1 ai, k = n+ 1, . . . ,2n.

This amounts to solving two prefix problems, each one involving n numbers. This can be done in

parallel, in time T (n) using 2p(n) processors. We then multiply each one of the numbers
+

k

i=n+1 ai,

k = n + 1, . . . , 2n, by
+

n

i=1 ai, and this completes the desired computation. This last stage can be

performed in a single stage, using n processors.

The above described recursive definition provides us with a prefix algorithm for every value of n

which is a power of 2. Its time and processor requirements are given by

T (2n) = T (n) + 1,

p(2n) = max

1
2p(n), n

2
.

Using the facts T (1) = 0 and p(1) = 0, an easy inductive argument shows that T (n) = log n and

p(n) = n/2.

The case where n is not a power of 2 cannot be any harder than the case where n is replaced by

the larger number 2⌫log n⇠. Since the latter number is a power of 2, we obtain

T (n) ⌃ T

2⌫log n⇠

⌦
= log

2⌫log n⇠

⌦
= ⌫log n⇠,

and

p(n) ⌃ p

2⌫log n⇠

⌦
= 2⌫log n⇠�1

< 2logn = n.

(b) The algorithm is identical with part (a) except that each scalar multiplication is replaced by a

multiplication of two m⇤m matrices. Each such multiplication can be performed in time O(logm)

using O(m3) processors, as opposed to unit time with one processor. Thus, the time of the algorithm

is O(logm · log n), using O(nm3) processors.

(c) The solution of the di⌅erence equation x(t+ 1) = A(t)x(t) + u(t) is given by

x(n) =

/ n�1-

j=0

A(j)

0
x(0) +

n�1,

i=0

/ n�1-

j=i+1

A(j)

0
u(i).

We use the algorithm of part (b) to compute the matrix products
+

n�1
j=i A(j), for i = 0, 1, . . . , n� 1.

This takes O(logm · log n) time. We then multiply each such product with the corresponding vector

u(i) or x(0) [this can be done in parallel, in O(logm) time], and then add the results [this can be

done in parallel in O(log n) time]. We conclude that the overall time is O(logm · log n)+O(logm)+

O(log n) = O(logm · log n).

2

Chapter 1

1.2.4:

We represent k in the form

k =

�log k�,

i=0

bi2i,

where each bi belongs to the set {0, 1}. (In particular, the coe⌥cients bi are the entries in the binary

representation of k.) Then,

A
k =

�log k�-

i=0

A
b
i
2i
. (1)

We compute the matrices A2
, A

4
, . . . , A

2�logk�
by successive squaring, and then carry out the matrix

multiplications in Eq. (1). It is seen that this algorithm consists of at most 2�log k� successive matrix

multiplications and the total parallel time is O(logn · log k), using O(n3) processors.

1.2.5:

(a) Notice that �
x(t+ 1)

x(t)

�
=

�
a(t) b(t)

1 0

��
x(t)

x(t� 1)

�
.

We define

A(t) =

�
a(t) b(t)

1 0

�
,

to obtain �
x(n)

x(n� 1)

�

= A(n� 1)A(n� 2) · · ·A(1)A(0)

�
x(0)

x(�1)

�

. (1)

This reduces the problem to the evaluation of the product of n matrices of dimensions 2⇤ 2, which

can be done in O(log n) time, using O(n) processors [cf. Exercise 1.2.3(b)].

(b) Similarly with Eq. (1), we have

�
x(n)

x(n� 1)

�
= D

�
x(1)

x(0)

�
, (2)

where D = A(n� 1)A(n� 2) · · ·A(1). This is a linear system of two equations in the four variables

x(0), x(1), x(n � 1), x(n). Furthermore, the coe⌥cients of these equations can be computed in

O(log n) time as in part (a). We fix the values of x(0) and x(n� 1) as prescribed, and we solve for

the remaining two variables using Cramer’s rule (which takes only a constant number of arithmetic

operations). This would be the end of the solution, except for the possibility that the system of

equations being solved is singular (in which case Cramer’s rule breaks down), and we must ensure

that this is not the case. If the system is singular, then either there exists no solution for x(1)

and x(n), or there exist several solutions. The first case is excluded because we have assumed

3

Chapter 1

the existence of a sequence x(0), . . . , x(n) compatible with the boundary conditions on x(0) and

x(n � 1), and the values of x(1), x(n) corresponding to that sequence must also satisfy Eq. (2).

Suppose now that Eq. (2) has two distinct solutions
�
x

1(1), x1(n)
⇥

and
�
x

2(1), x2(n)
⇥
. Consider the

original di⌅erence equation, with the two di⌅erent initial conditions
�
x(0), x1(1)

⇥
and

�
x(0), x2(1)

⇥
.

By solving the di⌅erence equation we obtain two di⌅erent sequences, both of which satisfy Eq. (2)

and both of which have the prescribed values of x(0) and x(n� 1). This contradicts the uniqueness

assumption in the statement of the problem and concludes the proof.

1.2.6:

We first compute x
2
, x

3
, . . . , x

n�1
, x

n, and then form the inner product of the vectors

(1, x, x2
, . . . , x

n) and (a0, a1, . . . , an). The first stage is no harder than the prefix problem of Ex-

ercise 1.2.3(a). (Using the notation of Exercise 1.2.3, we are dealing with the special case where

ai = x for each i.) Thus, the first stage can be performed in O(log n) time. The inner product

evaluation in the second stage can also be done in O(logn) time. (A better algorithm can be found

in [MuP73]).

1.2.7:

(a) Notice that the graph in part (a) of the figure is a subgraph of the dependency graph of Fig.

1.2.12. In this subgraph, every two nodes are neighbors and, therefore, di⌅erent colors have to be

assigned to them. Thus, four colors are necessary.

(b) See part (b) of the figure.

(c) Assign to each processor a di⌅erent “column” of the graph. Note: The result of part (c) would

not be correct if the graph had more than four rows.

SECTION 1.3

1.3.1:

Let kA and kB be as in the hint. Then, based on the rules of the protocol, the pair (kA, kB) changes

periodically as shown in the figure. (To show that this figure is correct, one must argue that at

state (1, 1), A cannot receive a 0, at state (1, 0), which would move the state to (0, 1), B cannot

4

Chapter 1

Figure For Exercise 1.2.7.

receive a 1, etc.). B stores a packet numbered 0 when the state changes from (1, 1) to (1, 0), and

stores a packet numbered 1 when the state changes from (0, 0) to (0, 1). Thus, B alternates between

storing a packet numbered 0 and a packet numbered 1. It follows that packets are received in order.

Furthermore each packet is received only once, because upon reception of a 0 following a 1, B will

discard all subsequent 0’s and will only accept the first subsequent 1 (a similar argument holds also

with the roles of 0 and 1 reversed). Finally, each packet will eventually be received by B, that is, the

system cannot stop at some state (assuming an infinite packet supply at A). To see this, note that

at state (1, 1), A keeps transmitting packet 0 (after a timeout of �) up to the time A receices a 0

from B. Therefore, B will eventually receive one of these 0’s switching the state to (1, 0). Similarly,

at state (1,0), B keeps transmitting 0’s in response to the received 0’s, so eventually one of these 0’s

will be received by A, switching the state to (0, 0), and the process will be repeated with the roles

of 0 and 1 reversed.

1.3.2:

(a) We claim that the following algorithm completes a multinode broadcast in p� 1 time units.

At the first time unit, each node sends its packet to all its neighbors. At every time unit after

the first, each processor i considers each of its incident links (i, j). If i has received a packet that

it has neither sent already to j, nor it has yet received from j, then i sends such a packet on link

(i, j). If i does not have such a packet, it sends nothing on (i, j).

For each link (i, j), let T (i, j) be the set of nodes whose unique simple walk to i on the tree passes

through j, and let n(i, j) be the number of nodes in the set T (i, j). We claim that in the preceding

algorithm, each node i receives from each neighbor j a packet from one of the nodes of T (i, j) at

5

Chapter 1

Figure For Exercise 1.3.1. State transition diagram for the stop-and-

wait protocol.

each of the time units 1, 2, . . . , n(i, j), and as a result, the multinode broadcast is completed in

max(i,j) n(i, j) = p� 1 time units.

We prove our claim by induction. It is true for all links (i, j) with n(i, j) = 1, since all nodes

receive the packets of their neighbors at the first time unit. Assuming that the claim is true for all

links (i, j) with n(i, j) = k, we will show that the claim is true for all (i, j) with n(i, j) = k + 1.

Indeed let (i, j) be such that n(i, j) = k + 1 and let j1, j2, . . . , jm be the neighbors of j other than i.

Then we have

T (i, j) = (i, j) ◆
�
◆m
v=1T (j, jv)

⇥

and therefore

n(i, j) = 1 +

m,

v=1

n(j, jv).

Node i receives from j the packet of j at the first time unit. By the induction hypothesis, j has

received at least t packets by the end of t time units, where t = 1, 2, . . . ,
*

m

v=1 n(j, jv). Therefore, j

has a packet to send to i from some node in ◆m
v=1T (j, jv) T (i, j) at each time unit t = 2,3, . . . , 1+

*
m

v=1 n(i, jv). By the rules of the algorithm, i receives such a packet from j at each of these time

units, and the induction proof is complete.

(b) Let T1 and T2 be the subtrees rooted at the two neighbors of the root node. In a total exchange,

all of the ⇥(p2) packets originating at nodes of T1 and destined for nodes of T2 must be transmitted

by the root node. Therefore any total exchange algorithm requires ⇤(p2) time. We can also perform

a total exchange by carrying out p successive multinode broadcasts requiring p(p � 1) time units

as per part (a). Therefore an optimal total exchange requires ⇥(p2) time units. [The alternative

algorithm, based on the mapping of a unidirectional ring on the binary balanced tree (cf. Fig. 1.3.29)

6

Chapter 1

is somewhat slower, but also achieves the optimal order of time for a total exchange.]

1.3.3:

Let (00 · · · 0) be the identity of node A and (10 · · · 0) be the identity of node B. The identity of an

adjacent node of A, say C, has an identity with one unity bit, say the ith from the left, and all other

bits zero. If i = 1, then C = B and node A is the only node in SB that is a neighbor of C. If i > 1,

then the node with bits 1 and i unity is the only node in SB that is a neighbor of C.

1.3.4:

(a) Consider a particular direction for traversing the cycle. The identity of each successive node of

the cycle di⌅ers from the one of its predecessor node by a single bit, so going from one node to the

next on the cycle corresponds to reversing a single bit. After traversing the cycle once, ending up at

the starting node, each bit must have been reversed an even number of times. Therefore, the total

number of bit reversals, which is the number of nodes in the cycle, is even.

(b) For p even, the ring can be mapped into a 2⇤ 2d�1 mesh, which in turn can be mapped into a

d-cube. If p is odd and a mapping of the p-node ring into the d-cube existed, we would have a cycle

on the d-cube with an odd number of nodes contradicting part (a).

1.3.5:

See the figure.

Figure Solution of Exercise 1.3.5.

7

Chapter 1

1.3.6:

Follow the given hint. In the first phase, each node (x1, x2, . . . , xd) sends to each node of the form

(x1, y2, . . . , yd) the p1/d packets destined for nodes (y1, y2, . . . , yd), where y1 ranges over 1,2, . . . , p1/d.

This involves p1/d total exchanges in (d � 1)-dimensional meshes with p
(d�1)/d nodes each. By the

induction hypothesis, each of these total exchanges takes time O
�
(p(d�1)/d)d/(d�1)

⇥
= O(p), for a total

of p1/d
O(p) = O

�
p

(d+1)/d
⇥

time. At the end of phase one, each node (x1, x2, . . . , xd) has p(d�1)/d
p

1/d

packets, which must be distributed to the p1/d nodes obtained by fixing x2, x3, . . . , xd, that is, nodes

(y1, x2, . . . , xd) where y1 = 1, 2, . . . , p1/d. This can be done with p
(d�1)/d total exchanges within one-

dimensional arrays with p
1/d nodes. Each total exchange takes O

�
(p1/d)2

⇥
time (by the results of

Section 1.3.4), for a total of p(d�1)/d
O

�
p

2/d
⇥

= O

�
p

(d+1)/d
⇥

time.

1.3.7:

See the hint.

1.3.8:

Without loss of generality, assume that the two node identities di⌅er in the rightmost bit. Let C1 (or

C2) be the (d � 1)-cubes of nodes whose identities have zero (or one, respectively) as the rightmost

bit. Consider the following algorithm: at the first time unit, each node starts an optimal single

node broadcast of its own packet within its own (d � 1)-cube (either C1 or C2), and also sends its

own packet to the other node. At the second time unit, each node starts an optimal single node

broadcast of the other node’s packet within its own (d� 1)-cube (and using the same tree as for the

first single node broadcast). The single node broadcasts takes d � 1 time units each, and can be

pipelined because they start one time unit apart and they use the same tree. Therefore the second

single node broadcast is completed at time d, at which time the two-node broadcast is accomplished.

1.3.9:

(a) Consider the algorithm of the hint, where each node receiving a packet not destined for itself,

transmits the packet at the next time unit on the next link of the path to the packet’s destination.

This algorithm accomplishes the single node scatter in p�1 time units. There is no faster algorithm

for single node scatter, since s has p� 1 packets to transmit, and can transmit at most one per time

unit.

8

Chapter 1

(b) Consider the algorithm of the hint, where each node receiving a packet not destined for itself,

transmits the packet at the next time unit on the next link of the path to the packet’s destination.

Then s starts transmitting its last packet to the subtree Ti at time Ni � 1, and all nodes receive

their packet at time Ni. (To see the latter, note that all packets destined for the nodes of Ti

that are k links away from s are sent before time Ni � k, and each of these packets completes its

journey in exactly k time units.) Therefore all packets are received at their respective destinations

in max{N1, N2, . . . , Nr} time units.

(c) We will assume without loss of generality that s = (00 · · ·0) in what follows. To construct a

spanning tree T with the desired properties, let us consider the equivalence classes Rkn introduced

in Section 1.3.4 in connection with the multinode broadcast problem. As in Section 1.3.4, we order

the classes as

(00 · · ·0)R11R21 · · ·R2n2
· · ·Rk1 · · ·Rkn

k
· · ·R(d�2)1 · · ·R(d�2)n

d�2
R(d�1)1(11 · · · 1)

and we consider the numbers n(t) and m(t) for each identity t, but for the moment, we leave the

choice of the first element in each class Rkn unspecified. We denote by mkn the number m(t) of the

first element t of Rkn and we note that this number depends only on Rkn and not on the choice of

the first element within Rkn.

We say that class R(k�1)n� is compatible with class Rkn if R(k�1)n� has d elements (node identities)

and there exist identities t� � R(k�1)n� and t � Rkn such that t� is obtained from t by changing some

unity bit of t to a zero. Since the elements of R(k�1)n� and Rkn are obtained by left shifting the bits

of t� and t, respectively, it is seen that for every element x� of R(k�1)n� there is an element x of Rkn

such that x� is obtained from x by changing one of its unity bits to a zero. The reverse is also true,

namely that for every element x of Rkn there is an element x� of R(k�1)n� such that x is obtained

from x
� by changing one of its zero bits to unity. An important fact for the subsequent spanning tree

construction is that for every class Rkn with 2 ⌃ k ⌃ d� 1, there exists a compatible class R(k�1)n� .

Such a class can be obtained as follows: take any identity t � Rkn whose rightmost bit is a one and

its leftmost bit is a zero. Let � be a string of consecutive zeros with maximal number of bits and

let t� be the identity obtained from t by changing to zero the unity bit immediately to the right of

�. [For example, if t = (0010011) then t
� = (0010001) or t� = (0000011), and if t = (0010001) then

t
� = (0010000).] Then the equivalence class of t� is compatible with Rkn because it has d elements

[t� ✏= (00 · · · 0) and t
� contains a unique substring of consecutive zeros with maximal number of bits,

so it cannot be replicated by left rotation of less than d bits].

The spanning tree T with the desired properties is constructed sequentially by adding links

incident to elements of the classes Rkn as follows (see the figure):

Initially T contains no links. We choose arbitrarily the first element of class R11 and we add

9

Chapter 1

Figure For Exercise 1.3.9(c). Spanning tree construction for optimal

single node scatter for d = 3 and d = 4, assuming transmission along all

incident links of a node is allowed.

to T the links connecting (00 · · ·0) with all the elements of R11. We then consider each class

Rkn (2 ⌃ k ⌃ d � 1) one-by-one in the order indicated above, and we find a compatible class

R(k�1)n� and the element t� � R(k�1)n� such that m(t�) = mkn (this is possible because R(k�1)n� has

d elements). We then choose as first element of Rkn an element t such that t� is obtained from t

by changing one of its unity bits to a zero. Since R(k�1)n� has d elements and Rkn has at most d

elements, it can be seen that, for any x in Rkn, we have m(x�) = m(x), where x� is the element of

R(k�1)n� obtained by shifting t
� to the left by the same amount as needed to obtain x by shifting

t to the left. Moreover x� can be obtained from x by changing some unity bit of x to a zero. We

add to T the links (x�, x), for all x � Rkn (with x
� defined as above for each x). After exhausting

the classes Rkn, 2 ⌃ k ⌃ d� 1, we finally add to T the link
�
x, (11 · · · 1)

⇥
, where x is the element

of R(d�1)1 with m(x) = m(11 · · · 1).

The construction of T is such that each node x ✏= (00 · · ·0) is in the subtree T
m(x). Since there are

at most ⌫(2d�1)/d⇠ nodes x having the same value of m(x), each subtree contains at most ⌫(2d�1)/d⇠

nodes. Furthermore, the number of links on the path of T connecting any node and (00 · · · 0) is the

corresponding Hamming distance. Hence, T is also a shortest path tree from (00 · · ·0), as desired.

10

Chapter 1

1.3.10:

(a) See the hint.

(b) See the hint. (To obtain the equality

d,

k=1

k

↵
d

k

�
= d2d�1

write (x+ 1)d =
*

d

k=0

�
d

k

⇥
x
k , di⌅erentiate with respect to x, and set x = 1.)

(c) Let Td be the optimal total exchange time for the d-cube, assuming transmission along at most

one incident link for each node. We have T1 = 1. Phases one and three take time Td, while phase

two takes time 2d. By carrying out these phases sequentially we obtain Td+1 = 2Td + 2d, and it

follows that Td = d2d�1.

1.3.11:

For the lower bounds see the hint. For a single node broadcast upper bound, use the tree of Fig.

1.3.16 (this is essentially the same method as the one described in the hint). For a multinode

broadcast, use the imbedding of a ring into the hypercube.

1.3.12:

We prove that Sk has the characterization stated in the hint by induction. We have S1 = {�1, 0,1}.

If Sk�1 is the set of all integers in [�(2k�1 � 1), (2k�1 + 1)], then Sk is the set 2Sk�1 + {�1, 0,1},

which is the set of all integers in [�(2k � 1), (2k + 1)].

Using the characterization of the hint, an integer m � [1,2d � 1] can be represented as

m = u(d� 1) + 2u(d� 2) + 22
u(d � 3) + · · · + 2d�1

u(0),

where u(k) � {�1,0, 1}. Thus a generalized vector shift of size m can be accomplished by successive

shifts on the level k subrings for all k such that u(d � 1 � k) ✏= 0, where the shift is forward or

backward depending on whether u(d � 1� k) is equal to 1 or -1, respectively.

1.3.14:

(Due to George D. Stamoulis.) We will show that the order of time taken by an optimal algorithm

is ⇥(d) for single node broadcast, ⇥(d2d) for multinode broadcast, and ⇥(d22d) for a total exchange.

11

Chapter 1

By using any shortest path spanning tree, the single node broadcast may be accomplished in D

time units [where D is the diameter of the cube-connected cycles (or CCC for short) graph]. Because

of symmetry, D equals the maximum over all nodes (j, x1 . . . xd) of the (minimum) distance between

nodes (1, 0 . . . 0) and (j, x1 . . . xd). If x1 = · · · = xd = 0, then the two nodes are in the same ring,

which implies that their (minimum) distance is at most ⌫ d�1
2
⇠. Furthermore, we consider a node

(j, x1 . . . xd) such that xi1 = · · · = xin = 1 (where 1 ⌃ n ⌃ d and i1 < · · · < in) and the remaining

xi’s equal 0. This node is accessible from node (1, 0 . . . 0) through the following path:

(1, 0 . . . 0)⌦ · · · ⌦ (i1,0 . . . 0)
1-st bit-flip⌦ (i1, 0 . . .010 . . . 0)⌦ · · ·⌦

⌦ (i2,0 . . . 010 . . . 0)
2-nd bit-flip⌦ (i2, 0 . . . 010 . . .010 . . . 0)⌦ · · ·⌦ (in, x1 . . . xd) ⌦ · · ·⌦ (j, x1 . . . xd) . (1)

All parts of this path that consist of links of the same ring are assumed to have the minimum possible

length. The path presented in (1) consists of L links, where

L =

n,

k=1

�
min{ik � ik�1, d � ik + ik�1} + 1

⇥
+ min{|in � j|, d� |in � j|} , (2)

with i0
def
=1 (recall the formula for the (minimum) distance between two nodes in a d-ring). It follows

from (2) that

L ⌃
n,

k=1

�
ik � ik�1 + 1

⇥
+ min{|in � j|, d � |in � j|} = in + n� 1 + min{|in � j|, d � |in � j|} . (3)

Using the inequalities in ⌃ d, n ⌃ d and min{|in�j|, d�|in�j|} ⌃ ⌫ d�1
2
⇠, we obtain L ⌃ 2d�1+⌫ d�1

2
⇠.

Combining this with the fact that any node in the same ring as (1, 0 . . . 0) is at a distance of at most

⌫d�1
2
⇠ from it, we have D ⌃ 2d � 1 + ⌫ d�1

2
⇠ (note that, for establishing this inequality, it was not

necessary to deal exclusively with shortest paths; depending on the destination node, the path

presented in (1) may or may not be a shortest one). Furthermore, in the case where the destination

node is (⌫ d�1
2
⇠ + 1,1 . . . 1), it is straightforward that the path in (1) attains the minimum possible

length. Since in this case the path has length 2d� 1 + ⌫ d�1
2
⇠, we conclude that D = 2d� 1 + ⌫ d�1

2
⇠,

which is ⇥(d).

A spanning tree (possibly, not of the shortest path type) that may be used for the optimal execu-

tion of a single node broadcast by node (1,0 . . . 0) (without loss of generality) may be constructed as

follows: First, consider the subgraph consisting of the CCC links that correspond to the unbalanced

spanning tree of the d-cube, the one rooted at node (0 . . . 0) (*). Moreover, for each of the 2d rings,

append to this subgraph d � 1 of the ring’s links. The link to be excluded is chosen in such a way

(*) This is the spanning tree in which bit-flips are performed in an increasing bit-index order (see also Fig.

1.3.16 of [BeT89]).

12

Chapter 1

that each node of the ring is at a distance of at most ⌫ d�1
2
⇠ from this node (of the ring) which is the

end node of the “hypercube-tree” link incoming to the ring (i.e., this “hypercube-tree” link that is

pointing from the root to the ring). It is straightforward to check that this construction leads to a

spanning tree, with each node being accessible from the root through the path in (1).

We now consider the multinode broadcast case. During the multinode broadcast, each node

receives d2d � 1 packets. Since the number of incident links to any node is 3, we have

d2d � 1

3
⌃ TMNB ,

where TMNB is the optimal time for the multinode broadacst. Therefore, TMNB is ⇤(d2d). In what

follows, we present a multinode broadcast algorithm which requires ⇥(d2d) time.

First, we observe that, for any k ⌃ d, k groups of d packets that are stored in di⌅erent nodes of

a d-ring may be broadcasted among the ring’s nodes in at most d⌫d�1
2
⇠ time units (recall that the

optimal time for the multinode broadcast in a d-ring is ⌫ d�1
2
⇠).

The algorithm is as follows:

First, 2d multinode broadcasts take place (in parallel) within each of the rings. This takes ⌫ d�1
2
⇠

time units. Now we introduce the term “super-node” to denote each of the 2d rings. After the

first phase of the algorithm, the situation may alternatively be visualized as follows: we have 2d

“super-nodes” (connected in a hypercube), with each of them broadcasting d packets to the others.

This may be accomplished under the following rules:

A) Every “super-node” uses the same paths as in the optimal multinode broadcast in the d-cube,

and transmits packets in groups of d.

B) Following d successive time units of transmissions in the “hypercube” links, the groups of

packets just received in a “super-node” are broadcasted among its d nodes. This takes d⌫ d�1
2
⇠

time units. During this time interval no transmissions take place in the “hypercube” links; such

transmissions resume immediately after this interval.

The algorithm presented above requires time T = ⌫ d�1
2
⇠ + (d + d⌫ d�1

2
⇠)⌫ 2d�1

d
⇠ (actually, this

algorithm may be further parallelized by simultaneously performing “hypercube” transmissions and

transmissions within the rings). Thus, T is ⇥(d2d). Since TMNB ⌃ T , we conclude that TMNB is

O(d2d). This, together with the fact that TMNB is ⇤(d2d), implies that TMNB is ⇥(d2d).

We now consider the case of a total exchange. Let S0 (S1) be the set of nodes (m, j) such that

the first bit of j is 0 (1, respectively). We have |S0| = |S1| = d2d�1. Moreover, there are N = 2d�1

links connecting nodes of S0 with nodes of S1. Thus, we obtain

TEX ⌥
|S0||S1|
2d�1

= d
22d�1

,

13

Chapter 1

where TEX is the time required by the optimal total exchange algorithm. Therefore, TEX is ⇤(d22d).

In what follows, we present an algorithm which requires time ⇥(d22d).

First, we briefly present a total exchange algorithm for the d-cube [SaS85]. We denote as kth

dimension the set of links of type k (a type k link is a link between two nodes the identities of which

di⌅er in the kth bit). A total exchange may be accomplished in d successive phases, as follows: during

the ith phase each packet that must cross the ith dimension (due to the fact that the identity of its

destination node di⌅ers from that of its origin node in the ith bit) takes this step. It may be proved

by induction that just before the ith phase each node has 2d packets in its bu⌅er, for i = 1, . . . , d;

these packets are originating from 2i�1 di⌅erent nodes (including the node considered), with each of

these nodes contributing 2d�i+1 packets (*). Each phase lasts for 2d�1 time units; this follows from

the fact that exactly half of the packets that are stored in a node just before the ith phase have

to flip the ith bit (in order to reach their destinations). Therefore, under this algorithm, the total

exchange is performed in time d2d�1. In the case where each node transmits to each of the other

nodes exactly d packets (instead of one, which is the case usually considered) a modified version of

the previous algorithm may be used. Indeed, d instances of the above total exchange algorithm may

be executed in parallel. Each node labels its packets arbitrarily, with the permissible label values

being 1, . . . , d; any two packets originating from the same node are assigned di⌅erent labels. Packets

labelled 1 follow the same paths as in the above total exchange algorithm. Packets labelled 2 take

part in another total exchange, which is performed similarly as in the above algorithm; the only

di⌅erence is that these packets cross dimensions in the order 2,3, . . . , d, 1 (that is, during the ith

phase these packets may only cross the (i mod d+ 1)st dimension). Similarly, during the ith phase,

packets labelled m may only cross the ((i+m� 2) mod d + 1)st dimension. It follows that, during

each of the d phases, packets of di⌅erent labels cross links of di⌅erent dimensions. Therefore, no

conflicts occur, which implies that the total exchange involving d packets per ordered pair of nodes

may be accomplished in d2d�1 time units under the previous algorithm (in fact, this is the minimum

time for this task). This algorithm may be modified so that it may be used for a total exchange in

the CCC, with the time required being ⇥(d22d).

Each “super-node” sends d2 packets to each of the other “super-nodes”. All packets originating

from nodes (m, j) are labelled m, for m = 1, . . . , d. First, we have d successive phases. Each packet

that is destined for some node in the same ring as its origin is not transmitted during these phases.

In particular, during the ith phase, packets labelled m may only cross the ((i+m� 2) mod d+1)th

dimension of the “hypercube” links; following the necessary “hypercube” transmissions, each packet

takes exactly one clockwise step in the ring where it resides (that is, it changes its current ring-index

(*) For convenience, we assume that each node stores a null packet that is destined for itself.

14

Chapter 1

from m
⌅ to (m⌅ mod d+1)), in order to be ready to cross the corresponding “hypercube” dimension

of the next phase, if necessary (note that these steps are taken in the dth phase, even though it is the

last one). Each of these d phases may be accomplished in d2d�1 + d(2d � 1) time units. By the end

of the dth phase, node (m, j) has received all packets originating from all nodes (m, j�) with j ✏= j
�

and destined for all nodes (m�
, j), with m

� = 1, . . . , d (i.e., destined for all nodes in the same ring

as node (m, j)). Recalling that nodes within the same ring also send packets to each other, we see

that it remains to perform a total exchange within each ring, involving 2d packets per ordered pair

of nodes. Since the optimal total exchange in a d-ring takes time 1
2
� d

2
�(� d

2
�+ 1), the total exchanges

within the rings may be accomplished (in parallel) in time 2d�1�d
2
�(�d

2
� + 1). Therefore, the above

algorithm for a total exchange in the CCC requires time T = 3d22d�1 � d
2 + 2d�1� d

2
�(� d

2
� + 1),

which is ⇥(d22d�1) (in fact, this algorithm may be further parallelized by simultaneously performing

“hypercube” transmissions and transmissions within the rings). Since TEX ⌃ T , it follows that TEX

is O(d22d). Recalling that TEX is ⇤(d22d), we conclude that TEX is ⇥(d22d).

1.3.16:

Consider the following algorithm for transposing B, that is, move each bij from processor (i, j) to

processor (j, i): for all j = 1, 2, . . . , n, do in parallel a single node gather along the column (linear

array) of n processors (1, j), (2, j), . . ., (n, j) to collect bij , i = 1, . . . , n, at processor (j, j). This

is done in n � 1 time units by the linear array results. Then for all j = 1, . . . , n, do in parallel a

single node scatter along the row (linear array) of n processors (j,1), (j, 2), . . ., (j, n) to deliver bij,

i = 1, . . . , n, at processor (j, i). This is done again in n� 1 time units by the linear array results.

Thus the matrix transposition can be accomplished in 2(n�1) time units. Now to form the product

AB
�, we can transpose B in 2(n� 1) time units as just described, and we can then use the matrix

multiplication algorithm of Fig. 1.3.27, which requires O(n) time. The total time is O(n) as required.

1.3.17:

Follow the hint. Note that each of the transfers indicated in Fig. 1.3.34(b) takes 2 time units, so the

total time for the transposition is 4 log n.

1.3.18:

(a) For each k, the processors (i, j, k), i, j = 1, 2, . . . , n, form a hypercube of n2 processors, so the

algorithm of Exercise 3.17 can be used to transpose A within each of these hypercubes in parallel in

4 log n time units.

15

Chapter 1

(b) For all (i, j), the processors (i, j, j) hold initially aij and can broadcast it in parallel on the

hypercube of n nodes (i, k, j), k = 1, . . . , n in log n time units.

1.3.19:

Using a spanning tree of diameter r rooted at the node, the transmission of the mth packet starts

at time (m� 1)(w + 1/m) and its broadcast is completed after time equal to r link transmissions.

Therefore the required time is

T (m) = (m� 1 + r)(w + 1/m).

We have that T (m) is convex for m > 0 and its first derivative is

dT (m)

dm

= w +
1

m

� m� 1 + r

m
2

= w � r � 1

m
2
.

It follows that dT (m)/dm = 0 for m =
3

(r � 1)/w. If w > r�1, then m = 1 is optimal. Otherwise,

one of the two values ⇡4
r � 1

w

⇢
,

⌫4
r � 1

w

⇠

is optimal.

1.3.20:

(a) Let ci be the ith column of C. An iteration can be divided in four phases: in the first phase

processor i forms the product cixi, which takes m time units. In the second phase, the sum
*

n

i=1 cixi

is accumulated at a special processor. If pipelining is not used (cf. Problem 3.19), this takes (d +

1)m log n time in a hypercube and (d + 1)m(n� 1) time in a linear array. If pipelining is used and

overhead is negligible, this takes (d+ 1)(m+ log n) time in a hypercube and (d+1)(m+n� 1) time

in a linear array. In the third phase, the sum
*

n

i=1 cixi is broadcast from the special processor to all

other processors. If pipelining is not used, this takes dm log n time in a hypercube and dm(n� 1)

time in a linear array. If pipelining is used and overhead is negligible, this takes d(m+ log n) time

in a hypercube and d(m+ n� 1) time in a linear array. Finally in the fourth phase, each processor

i has to form the inner product c�
i

 *
n

j=1 cjxj

⌦
and add bi to form the ith coordinate of C �Cx+ b.

this takes m+ 1 time units. The total time is

2m+ 1 + (2d + 1)m log n in a hypercube with no pipelining

2m+ 1 + (2d + 1)m(n� 1) in a linear array with no pipelining

16

Chapter 1

2m+ 1 + (2d + 1)(m+ log n) in a hypercube with pipelining

2m+ 1 + (2d + 1)(m+ n� 1) in a linear array with pipelining.

(b) Let pi be the ith row of C �C. processor i must form the inner product p�
i
x (n time units), add

bi, and broadcast the result to all other processors. The total time is

n+ 1 + d

✏
n� 1

log n

⇣
in a hypercube

n+ 1 + d(n� 1) in a linear array.

(c) If m << n and a hypercube is used, the implementation of part (a) is superior. Otherwise the

implementation of part (b) is superior.

1.3.21:

Each processor i computes the ith coordinate [Ax]i by forming the inner product of the ith row

of A and x using O(r) arithmetic operations. Then, each processor i broadcasts [Ax]i to all other

processors. This is a multinide broadcast requiring O(n/ log n) time units, so the total time is

O

�
max(n/ log n, r)

⇥
.

If processor i stores instead the ith column of A and xi, it can compute the products of xi with

the nonzero entries of the ith column in no more than r time units. The processors i can then

accumulate the n terms of [Ax]i by a multinode accumulation in n/ log n time units.

1.3.22:

For any two node identities t and z, we denote by t ⇧ z the node identity obtained by performing

modulo 2 addition of the jth bit of t and z for j = 1,2, . . . , log p. We also denote by ek the node

identity with all bits equal to zero except for the kth bit from the left, which is a one. Let si(k) be

the value held at processor i at the end of the kth stage and let si(0) = ai. The algorithm can be

expressed as

si(k) = si(k � 1) + si⇧k(k � 1), ⌘ k = 1,2, . . . , log p. (⌅)

Let Nk be the set of node identities whose log p� k rightmost bits are zero, e.g.,

N1 = {(00 · · ·00), (00 · · · 01)}, N2 = {(00 · · · 000), (00 · · · 001), (00 · · · 010), (00 · · · 011)},

etc. Note that Nlog p is the set of all node identities. Then we can prove by induction that

si(k) =
,

n�N
k

ai⇧n, ⌘ i, k. (⌅⌅)

17

Chapter 1

Indeed, using Eq. (⌅) for k = 1 and the fact si(0) = ai, we see that Eq. (⌅⌅) holds for k = 1. Assume

that Eq. (⌅⌅) holds up to some k. We have, using Eqs. (⌅) and (⌅⌅),

si(k + 1) =
,

n�N
k

ain +
,

n�N
k

a(i⇧e
k+1)⇧n =

,

n�N
k+1

ai⇧n,

so Eq. (⌅⌅) holds with k replaced by k + 1. Applying Eq. (⌅⌅) with k = log p, we obtain the desired

result.

1.3.23:

(a) The jth coordinate of C �Cx is
n,

i=1

cijri,

where ri is the ith coordinate of Cx,

ri =

n,

j=1

cijxj.

Consider the following algorithm: the ith row processors (i, j), j = 1, . . . , n, all obtain ri in log n time

using the algorithm of Exercise 3.22. Then the jth column processors (i, j), i = 1, . . . , n, calculate

cijri and obtain the sum
*

n

i=1 cijri in log n time units using the algorithm of Exercise 3.22. In the

end this algorithm yields the jth coordinate of C �Cx at the jth column processors (i, j), i = 1, . . . , n.

(b) The algorithm of part (a) calculates a product of the form C
�
CC

�
C · · ·C �Cx in 2m log p time

units, where m is the number of terms C �C involved in the product, and stores the jth coordinate of

the result at the jth column processors (i, j), i = 1, . . . , n. Also, the algorithm of part (a) calculates a

product of the form CC
�
CC

�
C · · ·C �Cx in (1+2m) log p time units, where m is the number of terms

C
�
C involved in the product, and stores the jth coordinate of the result at the ith row processors

(i, j), j = 1, . . . , n. Combining these facts we see that if C is symmetric, Ck
x is calculated in k log p

time units, with the ith coordinate of the product stored in the ith column processors or the ith row

processors depending on whether k is even or odd.

1.3.24:

From the definition of the single node accumulation problem, we see that the packets of all nodes

can be collected at a root node as a composite packet by combining them along a single node

accumulation tree. The composite packet can then be broadcast from the root to all nodes, which

is a single node broadcast.

18

Chapter 1

SECTION 1.4

1.4.1:

We first consider the case of global synchronization. The time needed for each phase is equal to

the maximum delay of the messages transmitted during that phase. Each processor is assumed to

transmit d messages at each phase, for a total of nd messages. Thus, the expected time of each

phase is equal to the expectation of the maximum of nd independent, exponentially distributed,

random variables with mean 1. According to Prop. D.1 of Appendix D, the latter expectation is

approximately equal to ln(nd) which leads to the estimate G(k) = ⇥
�
k log(nd)

⇥
.

We now consider local synchronization. As in Subsection 1.4.1, we form the directed acyclic graph

G = (N,A) (cf. Fig. 1.4.3) with nodes N = {(t, i) | t = 1, . . . , k + 1; i = 1, . . . , n} and arcs of the

form
�
(t, i), (t + 1, j)

⇥
for each pair (i, j) of processors such that processor i sends a message to

processor j (i.e., j � Pi). We associate with each such arc in G a “length” which is equal to the

delay of the message sent by processor i to processor j at time t. For any positive path p in this

graph, we let Mp be its length, and we let M = Mp, where the maximum is taken over all paths. As

discussed in Subsection 1.4.1, we have L(k) = M .

We now construct a particular path p that will lead to a lower bound on E[L(k)]. We first

choose some i, j, such that the length of the arc
�
(1, i), (2, j)

⇥
is largest among all pairs (i, j) with

j � Pi. We take this to be our first arc. Its length is the maximum of nd independent exponential

random variables and its expected length is ⇥
�
log(nd)

⇥
= ⇤(logn). We then proceed as follows.

Given a current node, we choose an outgoing arc whose length is largest, until we reach a node with

no outgoing arcs. The length of the arc chosen at each stage is the maximum of d independent

exponential random variables and, therefore, its expected length is ⇥(log d). There are k � 1 arcs

that are chosen in this way (since G has depth k). Thus, the expected length of the path we have

constructed is ⇤(log n) + ⇥(k log d).

We now derive an upper bound on M . Let us fix a positive path p. Its length p is equal to the

sum of k independent exponential random variables with mean 1, and Prop. D.2 in Appendix D

applies. In particular, we see that there exist positive constants � and C such that

Pr(Mp ⌥ kc) ⌃ e
��kc = 2�⇥kc, ⌘k ⌥ 1, ⌘c ⌥ C,

where ⇥ > 0 is chosen so that e�� = 2�⇥. The total number of paths is ndk . (We have a choice of

the initial node and at each subsequent step we can choose one out of d outgoing arcs.) Thus, the

19

Chapter 1

probability that some path p has length larger than kc is bounded by

Pr(M ⌥ kc) ⌃ nd
k2�⇥kc = 2logn+k logd�⇥kc

, ⌘k ⌥ 1, ⌘c ⌥ C.

Let

D = max

⌘
⌫C⇠,

✏
log n+ k log d

k⇥

⇣✓
.

We then have,

E[L(k)] = E[M] ⌃ Dk +

�,

c=D

Pr
�
M � [ck, (c+ 1)k]

⇥
· (c+ 1)k

⌃ Dk +

�,

c=D

Pr
�
M ⌥ ck

⇥
· (c+ 1)k

⌃ Dk +

�,

c=D

2log n+k log d�⇥Dk�⇥(c�D)k(c+ 1)k

⌃ Dk + k

�,

c=D

2�⇥(c�D)(c + 1)

= Dk + k

�,

c=0

2�⇥c(c+D + 1)

= Dk +
k(D + 1)

1� 2�⇥
+ k

�,

c=0

2�⇥cc

= O(kD) = O(log n+ k log d).

1.4.2:

The synchronous algorithm has the form

x1[(k + 1)(1 +D)] = ax1[k(1 +D)] + bx2[k(1 +D)], k = 0, 1, . . . ,

x2[(k + 1)(1 +D)] = bx1[k(1 +D)] + ax2[k(1 +D)], k = 0, 1, . . . ,

and we have

|xi[k(1 +D)]| ⌃ C(|a| + |b|)k, i = 1, 2, k = 0,1, . . .

Therefore

|xi(t)| ⌃ C(|a| + |b|)t/(1+D) = C�
t

S
,

where

�S = (|a| + |b|)1/(1+D)
. (⌅)

For the asynchronous algorithm (since D < 1) we have

x1(t+ 1) = ax1(t) + bx2(t� 1),

20

Chapter 1

x2(t+ 1) = bx1(t� 1) + ax2(t),

so by the results of Example 4.1,

|xi(t)| ⌃ C�
t

A
,

where �A is the unique positive solution of

|a| + |b|
�

= �.

It can be seen (using the fact b ✏= 0) that �A > |a| + |b|, while from (⌅) it is seen that by making D

su⌥ciently small, �S can be made arbitrarily close to |a| + |b|.

1.4.3:

Let

C = max
⇧
|x1(0)|, |x2(0)|

⌃
.

For i = 1, 2, we will prove the stronger relation

|xi(t � k)| ⌃ C�
t

S
, ⌘ t = n(D + 1), n = 1,2, . . . , k = 0,1, . . . , D,

or equivalently

|xi
�
n(D + 1) � k

⇥
| ⌃ C(|a| + |b|)n, ⌘ k = 0, 1, . . . , D. (⌅)

We use induction on n. For n = 1, this relation has the form

|xi(D + 1� k)| ⌃ C(|a| + |b|), ⌘ k = 0, 1, . . . , D, (⌅⌅)

and can be proved by backward induction on k. Indeed for k = D we have, (since it is assumed that

xi(t) = xi(0) for t ⌃ 0),

|x1(1)| = |ax1(0) + bx2(�D)| ⌃ |a||x1(0)| + |b||x2(�D)| ⌃ C(|a| + |b|),

and similarly

|x2(1)| ⌃ C(|a| + |b|).

Assuming that for m ⌃ D � 1 we have

|xi(m)| ⌃ C(|a| + |b|),

we obtain using the fact |a| + |b| < 1,

|x1(m+ 1)| = |ax1(m) + bx2(�D)|

⌃ |a||x1(m)| + |b||x2(�D)| ⌃ |a|C(|a| + |b|) + |b|C ⌃ C(|a| + |b|),

21

Chapter 1

and similarly

|x2(m+ 1)| ⌃ C(|a| + |b|).

Thus, the induction proof of (⌅⌅) is complete.

Assume now that (⌅) holds for some n. We will show that

|xi
�
(n+ 1)(D + 1)� k

⇥
| ⌃ C(|a| + |b|)n+1

, ⌘ k = 0,1, . . . , D. (⌅ ⌅ ⌅)

Again we use backward induction on k. We have for k = D, using (⌅),

|x1

�
n(D + 1) + 1

⇥
| = |ax1

�
n(D + 1)

⇥
+ bx2

�
n(D + 1)�D

⇥
|

⌃ |a|C(|a| + |b|)n + |b|(|a| + |b|)n ⌃ C(|a| + |b|)n+1
,

and similarly

|x2

�
n(D + 1) + 1

⇥
| ⌃ C(|a| + |b|)n+1

.

Assuming that for m ⌃ D � 1 we have

|xi
�
n(D + 1) +m

⇥
| ⌃ C(|a| + |b|),

we obtain using the fact |a| + |b| < 1,

|x1

�
n(D + 1) +m+ 1

⇥
| = |ax1

�
n(D + 1) +m

⇥
+ bx2

�
n(D + 1)�D

⇥
|

⌃ |a||x1

�
n(D + 1) +m

⇥
| + |b||x2

�
n(D + 1)�D

⇥
|

⌃ |a|C(|a| + |b|)n+1 + |b|C(|a| + |b|)n ⌃ C(|a| + |b|)n+1
,

and similarly

|x2

�
n(D + 1) +m+ 1

⇥
| ⌃ C(|a| + |b|)n+1

.

Thus, the induction proof of (⌅ ⌅ ⌅) and also of (⌅) is complete.

22

Chapter 2

CHAPTER 2

SECTION 2.1

2.1.1:

Let us define k = n/p. Consider the following scheme. Each processor i receives the values of

x1, . . . , x(i�1)k from processor (i � 1) and forwards them in the same order to processor i + 1. As

soon as x(i�1)k is received, processor i is able to compute the values of x(i�1)k+1, . . . , xik which are

subsequently transmitted to processor i+1. Let ti denote the time that processor i starts transmitting

to processor i+1. We have ti+1 = ti +1. This is because if x1 is received by processor i at time ti, it

is received one time unit later by i+1. Assuming t1 = 0, we obtain tp�1 = p�2. Processor p receives

n� k messages. Thus, all information is received by processor p (and the algorithm terminates) at

time tp�1 +n� k and therefore T (n, p) = p� 2 + n� n/p. [Notice that T (n, 2) = n/2, as expected.]

2.1.2:

In our original version of odd–even reduction, at the completion of the first stage of the algorithm,

processors 2, 4, . . . , �n/2� have the coe⌥cients of a reduced system of equations, satisfied by the

variables x2, x4, . . . , x⌫n/2⇠. However, we could at the same time eliminate the even variables and

have processors 1, 3, . . . obtain a reduced system for the odd–indexed variables x1, x3, From then

on, we are dealing with two independent tridiagonal systems with roughly half as many variables.

Proceeding similarly, after O(log n) stages we have n independent equations, each one involving a

di⌅erent variable and the algorithm can terminate as soon as these variables are evaluated. See the

figure for the case n = 8 and compare it with Fig. 2.1.3 in the text.

2.1.3:

Each processor is assigned ⇥(log n) variables and does the work of ⇥(log n) processors in the original

23

Chapter 2

Figure For Exercise 2.1.2.

algorithm. In fact, this is exactly the case covered by Prop. 2.4 of Section 1.2. We have p =

O(n/ log n) = O(T1/T�), which implies that Tp = O(T�) = O(log n).

SECTION 2.2

2.2.1:

If the maximum is zero, then all entries C
(i�1)

ji
with j ⌥ i are zero. Thus, the lower left submatrix

D of C(i�1), consisting of rows i, i+1, . . . , n and columns i, i+ 1, . . . , n has a zero column. It follows

that D is singular and its determinant is zero. The determinant of C(i�1) is easily seen to be equal to

C
(i�1)

11 · · ·C(i�1)

i�1,i�1det(D) and is also zero. Thus, C(i�1) is singular. It is easily seen that the matrices

M
(j) used for eliminating variables, as well as the permutation matrices P

ij are nonsingular. It

follows that the original matrix A must have been singular.

24

Chapter 2

2.2.2:

Each phase of the algorithm proceeds as in the figure. We now specify the timing of each message

transmission so that the total execution time is O(n). We assume that the time needed for a message

transmission together with the computations performed by a processor at any given stage is no more

than one unit. We refer to the communications and computations needed for computing C
(i) from

C
(i�1) (illustrated in the figure) as the ith phase. Notice that during the ith phase, each processor

(j, k) with j ⌥ i and k ⌥ i sends exactly one message to its neighbors (j + 1, k) (if j < n) and

(j, k + 1) (if k < n). We let processor (j, k) send both of these messages at time i + j + k (see the

figure).

Figure For Exercise 2.2.2. The times at which the messages of the

ith stage are transmitted.

Consider stages i and i
�, with i ✏= i

�. Processor (j, k) sends the messages corresponding to these

two di⌅erent stages at times i+j+k and i�+j+k, respectively. These times are di⌅erent since i ✏= i
�.

Therefore, there is no conflict between the di⌅erent stages, as far as link availability is concerned.

Furthermore, within the ith stage, the messages transmitted to processor (j, k) are sent at time

25

Chapter 2

i + j + k � 1 and processor (j, k) is able to transmit the required messages at time i + j + k, as

specified. (This should be clear from the figure.)

We finally need to verify that the values C
(i�1)

jk
computed during the (i� 1)st stage are available

at processor (j, k) at the needed time for the ith stage. In particular, we must check that C
(i�1)

jk
is

available at processor (j, k) at time i + j + k. We argue by induction on i. Assuming that the first

i � 1 stages progress correctly, the messages of stage (i � 1) are received by processor (i, j) at time

i+ j + k� 1 < i+ j+ k. This shows that the data needed for stage i are available at the right time,

and the induction is complete.

The timing of this implementation is equal to the largest possible value of i + j + k, which is

3n = O(n).

2.2.3:

(a) Suppose that some processor in the mesh obtains the value of the maximum within n
1/3 time

units. This means that the value obtained by that processor can only depend on the computations

of processors within n
1/3 time distance. There are only O(n2/3) such processors. Since the maximum

of n numbers depends on all of the n numbers, ⇤(n) elementary computations are needed. Since

these are performed by O(n2/3) processors, some processor must have spent ⇤(n1/3) time units.

(b) Each one of the first ⌫n/2⇠ stages of Gaussian elimination with row pivoting involves the com-

putation of the maximum of ⇤(n) numbers. Each such computation takes time ⇤(n1/3), according

to part (a), and furthermore, these computations have to be performed consecutively, for a total of

⇤(n4/3) time.

2.2.4:

This can be done in several ways. One method, not necessarily the most economical, does not

involve any interleaving of successive elimination stages. We imbed an n ⇤ n mesh into an O(n2)–

node hypercube, using a reflected Gray code (see Subsection 1.3.4). At the beginning of the ith

stage, the (j, k)th processor knows the value of C
(i�1)

jk
. The algorithm proceeds as follows.

1. Processors (i, i),, (n, i) perform a single node accumulation to obtain the value i⌅ of i for

which |C(i�1)

ji
|, j ⌥ i is maximized. The value of i⌅ together with the maximal value C

(i�1)

i
⌅
i

is then

broadcast back to these processors. [This takes O(logn) time].

2. Upon determination of i⌅, the processors in rows i and i
⌅ exchange their data. Since the

exchange of di⌅erent data involves distinct “columns” of the hypercube, these exchanges can be

done simultaneously. Since the diameter of the hypercube is O(logn), the exchange also takes

26

Chapter 2

O(log n) time.

Let us denote by D the matrix C
(i�1) after it is subjected to the row interchange. Notice that

Dii = C
(i�1)

i
⌅
i

and the value of Dii has already been made available to the processors in the ith column.

3. Processor (i, k), for each k > i, broadcasts Dik to all processors in the kth column [O(log n)

time].

4. Each processor (j, i), with j > i, computes the ratio Dji/Dii and broadcasts it along the jth

row [O(logn) time].

5. Each processor (j, k), with j > i, k ⌥ i, computes DikDji/Dii to obtain the value of C
(i)

jk
.

2.2.5:

It is not hard to see that it is su⌥cient to verify that

�
c s

s �c

�� �
c s

s �c

�
= I.

By construction, c2 + s
2 = 1 and the result follows.

2.2.6:

Let us replace the schedule of Fig. 2.2.2 by the following one that needs only 12 parallel stages:

�

""""""""""""""""

⌅

3 ⌅

2 5 ⌅

2 4 7 ⌅

1 3 6 8 ⌅

1 3 5 7 9 ⌅

1 2 4 6 8 11 ⌅

1 2 3 5 7 10 12 ⌅

�

################!

As in Fig. 2.2.2, the (i, j)th entry in this diagram is the stage T (i, j) at which the corresponding entry

is annihilated. Recall that the (i, j)th entry is annihilated by a Givens rotation operating on rows

i and S(i, j). The following diagram indicates one possible choice of the rows S(i, j) corresponding

27

Chapter 2

to each entry (i, j). �

""""""""""""""""

⌅

1 ⌅

1 2 ⌅

2 3 3 ⌅

1 3 4 4 ⌅

2 4 5 5 5 ⌅

3 5 6 6 6 6 ⌅

4 6 7 7 7 7 7 ⌅

�

################!

Notice that any two entries (i, j) and (k, .) that are annihilated at the same stage satisfy S(i, j) ✏=

S(k, .), as required.

SECTION 2.3

2.3.1:

We partition A by letting

A =

�
A11 A12

A12 A22

�
,

where A11 has dimensions ⌫n/2⇠ ⇤ ⌫n/2⇠. Consider the equation

�
I X

0 I

��
A11 A12

A
�
12 A22

��
I 0

X
�

I

�
=

�
B1 0

0 B2

�
.

Carrying out the matrix multiplications on the left, we obtain

�
A11 +XA

�
12 + A12X

� +XA22X
�

A12 +XA22

A
�
12 + A22X

�
A22

�

=

�
B1 0

0 B2

�

. (1)

We choose X so that A12+XA22 = 0. Because of the symmetry of A22, we also have A�12+A22X
� = 0.

Then, Eq. (1) is satisfied with B1 = XA22X
� + A12X

� +XA
�
12 + A11 and B2 = A22. Notice that B1

and B2 are also symmetric positive definite and the same procedure can be repeated on each one of

them.

After O(log n) such stages we have obtained matrices Y1, Y2, . . . , Yk, with k = O(logn), for which

Yk · · · Y2Y1AY
�
1Y

�
2 · · · Y �

k
= D, (2)

28

Chapter 2

where D is a diagonal matrix. Let L = Y
�
1 · · · Y �

k
. Each Yi is upper triangular, so L is lower triangular.

Notice that each Yi is invertible because its diagonal entries are equal to 1. Then, L�1 exists and

is also lower triangular. Thus, Eq. (2) can be rewritten as A = (L�)�1
DL

�1, which is of the desired

form. Since A is assumed positive definite (and therefore nonsingular), it is also seen that D is

nonsingular.

The algorithm involves a matrix inversion at each step [solving the system XA22 +A12 = 0, which

takes O(log2
n) time] and a few matrix multiplications. At the end of the algorithm, the matrices

Y1, . . . , Yk must be multiplied and inverted [O(log3
n) time]. Thus the total timing of the algorithm

is O(log3
n).

Finally, to verify that the algorithm is well–defined, we need to check that the equation XA22 +

A12 = 0 has a solution. It is su⌥cient to show that the matrix A22 is invertible. To see that this is

the case, suppose the contrary. Then, ther would exist a nonzero vector y of dimension n� ⌫n/2⇠

such that y�A22y = 0. We could then extend y to an n–dimensional vector x by appending ⌫n/2⇠

zeroes. Then, x�Ax = 0, contradicting the positive definiteness of A.

SECTION 2.6

2.6.1:

Without loss of generality we assume that the vector b in Eq. (6.5) is zero. If I �M is singular then

there exists a fixed point x ✏= 0 of the iterative algorithm (6.5). For any one of the algorithms of

Section 2.4, this implies that Ax = 0 which contradicts the invertibility of A.

2.6.2:

Let � � (0, 1/3) and

A =

�

"

1� � �� ��

�� 1� � ��

�� �� 1� �

�

#! .

Let M = (1 � ⇧)A, where ⇧ is a positive scalar such that (1 + �)(1 � ⇧) > 1. Notice that |M |e =

(1� ⇧)(1 + �)e, where e is the vector (1, 1, 1). Therefore, �(|M |) ⌥ (1� ⇧)(1 + �) > 1. This shows

that ⌧M⌧w� > 1 for any positive vector w.

29

Chapter 2

We now show that �(M) < 1. We represent A in the form A = I �N , where N is a matrix with

all entries equal to �. The eigenvalues of N are easily seen to be 0, 0, and 3�. Thus, the eigenvalues

of A are 1, 1, and 1� 3�. It follows that the eigenvalues of M are 1� ⇧, 1� ⇧ and (1� ⇧)(1� 3�),

all of them smaller than 1 in magnitude. This shows that �(M) < 1.

2.6.3:

(a) Let e be the vector with all entries equal to one. Since M is irreducible, each one of its rows

has a nonzero entry. Thus Me > 0. We have r(e) = sup{� | [Me]i ⌥ �, ⌘i} = mini[Me]i > 0, and

 ⌥ r(e) > 0.

(b) For any positive scalar c, we have {� | Mx ⌥ �x} = {� | cMx ⌥ c�x}, which implies that

r(x) = r(cx). It follows that

sup{r(x) | x � X} = sup

⌘
r

↵
x*
n

i=1 xi

� ⌥⌥⌥ x � X

✓
= sup{r(x) | x � S}.

(c) Since M is irreducible, we have (I +M)n�1
> 0 (Prop. 6.3). If x � S then x ⌥ 0 and x ✏= 0, from

which it follows that (I +M)n�1
x > 0.

(d) By definition, sup{r(x) | x � Q} ⌃ sup{r(x) | x � X} = . For the reverse inequality,

let x � S. The definition of r(x) yields Mx ⌥ r(x)x. We multiply both sides by (I + M)n�1

to obtain M(I + M)n�1
x ⌥ r(x)(I + M)n�1

x. The definition of r
�
(I + M)n�1

x

⇥
implies that

r

�
(I +M)n�1

x

⇥
⌥ r(x). Taking the supremum over all x � S, we obtain

sup{r(x) | x � Q} = sup
⇧
r

�
(I +M)n�1

x

⇥
| x � S

⌃
⌥ sup{r(x) | x � S} = ,

where the last step uses the result of part (b).

(e) We have r(x) = sup{� | � ⌃ [Mx]i/xi, ⌘i such that xi ✏= 0}. Thus, r(x) = mini
⇧
[Mx]i/xi | xi ✏=

0
⌃
. For x � Q and for all i, we have xi > 0, and it follows that on the set Q, r(x) is given by

r(x) = mini [Mx]i/xi, which is a continuous function.

(f) The function r

�
(I + M)n�1

x

⇥
, is continuous on the set S. This is because, for x � S, we have

(I+M)n�1
x � Q and r(x) is continuous on Q. The set S is closed and bounded and (by Weierstrass’

theorem) there exists some y � S such that

r

�
(I +M)n�1

y

⇥
= sup

x�S
r

�
(I +M)n�1

x

⇥
.

Let w = (I +M)n�1
y. Then,

r(w) = sup
x�S

r

�
(I +M)n�1

x

⇥
= sup

x�Q
r(x) = .

30

Chapter 2

(g) Let z = Mw� w. Since r(w) = , we have Mw ⌥ w and z ⌥ 0. If z ✏= 0, then (I+M)n�1
z > 0

which shows that M(I +M)n�1
w > (I +M)n�1

w. This implies that r
�
(I +M)n�1

w

⇥
> , which

contradicts the definition of .

2.6.4:

(a) See Prop. 2.2 in Section 3.2.

(b) Assume, without loss of generality, that b = 0. In particular, x⌅ = 0. Consider an update of the

ith coordinate of x. The update formula for the SOR algorithm [cf. Eq. (4.8)] can be written as

xi := xi �
⇤

aii

(a�
i
x),

where a�
i
is the ith row of x. Then, the value of F (x) = 1

2
x
�
Ax after the update is given by

1

2
x
�
Ax� x

�
ai

⇤

aii

(a�
i
x) +

1

2

⇤
2

a
2
ii

aii(a
�
i
x)

2
=

1

2
x
�
Ax � (a�

i
x)

2

aii

�
⇤ � 1

2
⇤

2
⇥
.

If ⇤ < 0 or if ⇤ > 2, we see that the value of F does not decrease. Thus, F
�
x(t)

⇥
⌥ F

�
x(0)

⇥
, for all

t. If we start with some x(0) ✏= 0, then F

�
x(t)

⇥
⌥ F

�
x(0)

⇥
> 0 and x(t) does not converge to zero.

2.6.5:

See Prop. 2.1 in Section 3.2.

SECTION 2.7

2.7.1:

Let

P () =
2

(a+ b) 1 · · · k

a+ b

2
�

⌦
(1 �) · · · (k �)

Note that P is a polynomial of degree k + 1 and its zeroth order term is equal to 1 or �1. This

polynomial vanishes at the eigenvalues 1, . . . , k of A. Thus, using Eq. (7.11),

F

�
x(k + 1)

⇥
⌃ max

k+1⌃i⌃n

�
P (i)

⇥2
F

�
x(0)

⇥
. (1)

31

Chapter 2

For k + 1 ⌃ i ⌃ n, we have i � [a, b]. Thus,
⌥⌥(a + b)/2 � i

⌥⌥ ⌃ (b � a)/2. Furthermore, for every

 � [a, b], we have ⌥⌥⌥⌥
(1 �) · · · (k �)

 1 · · · k

⌥⌥⌥⌥ ⌃ 1,

because 1, . . . , k > b ⌥ . Thus, for k + 1 ⌃ i ⌃ n, we have |P (i)| ⌃ (b � a)/(a + b) which, in

conjunction with Eq. (1) yields the desired result.

2.7.2:

According to the discussion in Subsection 2.7.3, the bounds of Eqs. (7.11) and (7.12) are applica-

ble, provided that we consider the eigenvalues of H1/2
AH

1/2, where H is the preconditioning matrix.

In our case,

H
1/2
AH

1/2 = I +M
�1/2

 k,

i=1

viv
�
i

⌦
M
�1/2

The rank of the matrix
*

k

i=1 viv
�
i
is at most k, and therefore n� k of its eigenvalues are zero. The

remaining k of its eigenvalues are nonnegative. Thus, n � k of the eigenvalues of H1/2
AH

1/2 are

equal to 1, and the remaining are no smaller than one. Thus, its eigenvalues take at most k + 1

distinct values and, according to the discussion in the end of Subsection 2.7.2, the conjugate gradient

method terminates after at most k + 1 steps.

2.7.3:

The computation per processor at any given iteration is ⇥(N/p). The communication needed for

the inner product evaluation is proportional to the diameter of the network, that is ⇥(p1/2). We

thus wish to minimize ⇥(N/p) + ⇥(p1/2) with respect to p, which yields p = N
2/3.

2.7.4:

Suppose that the algorithm has not terminated after k stages, that is, x(k) ✏= 0. Since A is

nonsingular, we obtain g(k) ✏= 0. We use Eq. (7.4) to obtain

s(k)�g(k) = �g(k)�g(k) +

k�1,

i=0

cis(i)�g(k) = �g(k)�g(k) < 0,

32

Chapter 2

where the second equality follows from Prop. 7.1(b). This implies that



⇤

F

�
x(k) + ⇤s(k)

⇥⌥⌥
⇤=0

= s(k)�g(k) < 0

and shows that when ⇤ is positive and very small, we have F

�
x(k) + ⇤s(k)

⇥
< F

�
x(k)

⇥
. Since

x(k + 1) minimizes F
�
x(k) + ⇤s(k)

⇥
over all ⇤ > 0, we conclude that F

�
x(k + 1)

⇥
< F

�
x(k)

⇥
.

SECTION 2.8

2.8.1:

(a) We first express the algorithm in a more convenient form. Let dt = ⌧Ax(t)⌧. Then, x(t + 1) =

Ax(t)/dt which shows that x(t) = A
t
x(0)/(d0 · · · dt�1). For any t > 0, we have ⌧x(t)⌧ = 1 which

implies that d0 · · · dt�1 = ⌧At
x(0)⌧. We conclude that

x(t) =
A
t
x(0)

⌧At
x(0)⌧

. (1)

The eigenvectors x
1
, . . . , x

n are linearly independent, they span ✓n, and there exist scalars

c1, . . . , cn such that x(0) =
*

n

i=1 cix
i. Furthermore, since x(0) does not belong to the span of

x
2
, . . . , x

n, we must have c1 ✏= 0. Notice that A
t
x(0) =

*
n

i=1 ci
t

i
x
i. Equivalently, At

x(0)/ t1 =
*

n

i=1 ci(
t

i
/

t

1)x
i and since | i| < | 1| (for i ✏= 1), we obtain limt⌦�A

t
x(0)/ t1 = c1x

1. We then see

that limt⌦� ⌧At
x(0)⌧/ t1 = ⌧c1x1⌧ ✏= 0. We finally use Eq. (1) to obtain

lim
t⌦�

x(t) =
c1x

1

⌧c1x1⌧ .

This vector is a scalar multiple of the eigenvector x1 and therefore satisfies Ax = 1x.

(b) We use the norm defined by ⌧↵⌧ =
*

n

i=1|↵i|. Then, iteration (8.3) can be written as

↵(t+ 1)� = P
�
↵(t)� =

P
�
↵(t)�

⌧P �↵(t)�⌧ .

The last equality follows because if ↵(0) ⌥ 0 and
*

n

i=1 ↵i(0) = 1, then ⌧↵(t)⌧ =
*

n

i=1 ↵i(t) = 1 for

all t ⌥ 0.

2.8.2:

(a) Since P is irreducible, �P/(1 � �) is also irreducible. Thus
�
I + �

1��P
⇥
n�1

> 0. Equivalently,

Q
n�1

> 0 which shows that Q is primitive.

33

Chapter 2

(b) We notice that a vector ↵ satisfies ↵P = ↵ if and only if ↵Q = ↵. By Prop. 8.3, there exists a

unique positive vector (up to multiplication by a positive scalar) such that ↵⌅Q = ↵
⌅. It follows that

there is a unique vector (up to multiplication by a scalar) such that ↵⌅P = ↵
⌅. Such a vector ↵⌅ can

be computed by fixing some � � (0, 1) and using the iteration ↵ := �↵ + �↵/(1 � �)↵P = �Q.

2.8.3:

Since C is irreducible, there exists a unique positive row vector ↵̃ � ✓n�n1 whose entries sum to one

and such that ↵̃C = ↵̃. Consider the vector ↵⌅ = [0, ↵̃] � ✓n. Then ↵
⌅
P = ↵

⌅ which establishes

an existence result. We now prove uniqueness. Consider a row vector ↵ = [↵̂, ↵̄] ⌥ 0 in ✓n with

↵̂ � ✓n1 , ↵̄ � ✓n�n1 , such that ↵P = ↵. Then ↵̂A = ↵̂. We proceed as in the proof of Prop. 8.4, to see

that there exists some T ⌥ 1 such that
*

n1
j=1[A

T]ij < 1, for each i ⌃ n1. Thus, �(AT) ⌃ ⌧AT⌧� < 1

and we conclude that �(A) < 1. This implies that 1 is not an eigenvalue of A and, therefore, ↵̂ = 0.

Thus, ↵̄C = ↵̄ and if the entries of ↵̄ are normalized to sum to 1, we must have ↵̄ = ↵̃ which proves

the uniqueness of ↵⌅.

2.8.4

Since P is irreducible, for every j and k, there exists some tjk such that [P t
jk]jk > 0,

Let T = 2maxj,ktjk . For any . and m, we have

[P T].m ⌥ [P t
.i].i[PT�t

.i
�t

im]ii[P t
im]im > 0,

which proves that P is primitive.

SECTION 2.9

2.9.1:

(a) If D is a matrix of su⌥ciently small norm, then

f(X +D) = A� (X +D)�1

= A�
�
X(I +X

�1
D)
⇥�1

= A� (I +X
�1
D)�1

X
�1

= A�
�
I �X

�1
D+X

�1
DX

�1
D � · · ·

⇥
X
�1

= A�X
�1 +X

�1
DX

�1 + h(X,D).

34

Chapter 2

(b) We want A�X
�1 +X

�1
DX

�1 = 0. Equivalently, XAX �X +D = 0, or D = X �XAX.

(c) We have X := X +D = 2X �XAX.

2.9.2:

Let 1 < · · · < n be the eigenvalues of A�A. The inequalities ⌧A⌧2
2 ⌃ ⌧A⌧� · ⌧A⌧1 ⌃ n⌧A⌧2

2

[Props. A.25(e) and A.13(f) in Appendix A] yield n ⌃ ⌧A⌧� · ⌧A⌧1 ⌃ n n. Thus, the eigenvalues

of I � A
�
A/(⌧A⌧� · ⌧A⌧1) are bounded below by 1 � (n/ n) = 0 and above by 1 � 1/(n n) =

1� 1/
�
n�

2(A)
⇥
.

2.9.3:

Since A is symmetric, we have ⌧A⌧� = ⌧A⌧1. Thus, n ⌃ ⌧A⌧2
� ⌃ n n. Proceeding as in Exercise

9.2, the eigenvalues of I � A/||A||� are bounded below by zero and above by 1 �
�
 1/(n n)

⇥1/2
=

1� 1/
�
n

1/2
�(A)

⇥
.

2.9.4:

We have [I �B0A]ij = �aij/aii for j ✏= i, and [I �B0A]ii = 0. Thus, ⌧I �B0A⌧� =
*

j ✏=i |aij/aii| ⌃

1� 1/nc.

35

Chapter 3

CHAPTER 3

SECTION 3.1

3.1.1:

Let X = ✓ � {0} and T (x) = x/2.

3.1.2:

(a) Let X = {(x1, x2) | x1 ⌥ 0, x2 ⌥ 0} and

T (x1, x2) =

�
min{x1, x2/2}

x2/2

�
.

Here x⌅ = (0, 0) is the unique fixed point of T . Also,

⌧T (x1, x2)⌧� ⌃
x2

2
⌃ 1

2
⌧x⌧�.

Furthermore, T is continuous and, therefore, it satisfies the assumptions of Prop. 1.8. Now, by

definition, R1(x) =
⇧
y1 ⌥ 0 | y1 = min{y1, x2/2}

⌃
and therefore R1(x) = {y1 | 0 ⌃ y ⌃ x2/2}, which

contains infinitely many elements.

(b) Let X = {0,1, 2} ⇤ {0, 3}, which is closed, nonempty but not convex. Let T2(x) = 3, for all x

and T1(x1, 3) = 2, T1(0, 0) = 1, T1(1,0) = 0, T1(2, 0) = 1. Here, x⌅ = (2, 3) is the unique fixed point

of T . We have T (x) � x
⌅ = 0, if x2 = 3. If x2 = 0, then ⌧x� x

⌅⌧� = 3 and

⌧T (0, 0)� x
⌅⌧� =

�����

�
1

3

�
�
�

2

3

������
�

= 1 <
3

4

�����

�
0

0

�
� x

⌅

�����
�

,

⌧T (1, 0)� x
⌅⌧� =

�����

�
0

3

�
�
�

2

3

������
�

= 2 <
3

4

�����

�
1

0

�
� x

⌅

�����
�

,

36

Chapter 3

⌧T (2, 0)� x
⌅⌧� =

�����

�
1

3

�
�
�

2

3

������
�

= 1 <
3

4

�����

�
2

0

�
� x

⌅

�����
�

.

Thus, T has the property ⌧T (x) � x
⌅⌧� <

3
4
⌧x � x

⌅⌧ for all x. Furthermore, T is continuous.

Nevertheless, if x2 = 0, there is no solution to the equation x1 = T1(x1, 0) and the set R1(x1,0) is

empty for every x1 � {0, 1,2}.

(c) Let X = ✓2. For x � {0,1, 2} ⇤ {0, 3}, let T be the same as in part (b). For any other x, let

T (x) = x
⌅ = (2, 3). Clearly, T is a pseudocontraction but it is not continuous. If x2 = 0, then the

following hold. If x1 ✏� {0, 1, 2}, then T1(x1, 0) = 2 ✏= x1. Also, T1(0, 0) = 1, T (1,0) = 0, T1(2, 0) = 1,

and there is no x1 satisfying x1 = T1(x1,0), which shows that the set R1(x1, 0) is empty for every

x1.

3.1.3:

We will apply Prop. 1.10, with Gi = 1 for each i, and with ⌧ · ⌧ being the weighted maximum norm

⌧ · ⌧w�. We thus have ⌧xi⌧i = |xi|/wi. Notice that, for any a � ✓,

⌧a⌧ij = max
x✏=0

⌧ax⌧i
⌧x⌧j =

|ax|/wi

|x|/wj

= |a|wj

wi

.

Let ⇤ satisfy 0 < ⇤ < 1/K. Then,

⌥⌥1� ⇤

�
�ifi(x)

⇥⌥⌥+ ⇤

,

j ✏=i
|�jfi(x)| · wj

wi

= 1� ⇤

�ifi(x) �

,

j ✏=i
|�jfi(x)|

wj

wi

⌦
⌃ 1� ⇤⇥

wi

.

Therefore, condition (1.14) of Prop. 1.10 is satisfied with � = maxi
�
1� ⇤⇥/wi

⇥
< 1.

3.1.4:

(a) Let T
k : ✓n ⇣⌦ ✓n be defined by T

1(x) = T (x) and T
k(x) = T

�
T
k�1(x)

⇥
, k > 1. Since

T (y⌅) ⌥ y
⌅, an easy inductive argument shows that Tk(y⌅) ⌥ T

k�1(y⌅) for all k > 1. In particular,

the sequence {T k(y⌅)} is nondecreasing. Similarly, the sequence {T k(z⌅)} is nonincreasing. Using

the monotonicity of T we have

y
⌅ ⌃ T

k(y⌅) ⌃ T
k(z⌅) ⌃ z

⌅
, ⌘k.

This shows that the sequence {T k(y⌅)} is bounded above and, therefore, it converges to some x̂ � H.

Since T is continuous,

T (x̂) = T

lim
k⌦�

T
k(y⌅)

⌦
= lim

k⌦�
T
k+1(y⌅) = x̂,

37

Chapter 3

and, since x⌅ is the unique fixed point of T , we conclude that x̂ = x
⌅. In particular, x⌅ � H. The

proof that T k(z⌅) converges to x⌅ is identical.

(b) We have y⌅ ⌃ x(0) ⌃ z
⌅ and, using the monotonicity of T , we obtain T k(y⌅) ⌃ T

k

�
x(0)

⇥
⌃ T (z⌅),

for all k. Thus, the sequence
⇧
T
k

�
x(0)

⇥⌃
lies between two sequences converging to x

⌅ and must

converge to x⌅ as well.

(c) Let T̂1 : ✓n ⌦ ✓n be defined as in Eq. (1.22). The mapping S : ✓n ⌦ ✓n corresponding to

one iteration of the Gauss-Seidel algorithm based on T is equal to the composition of T̂1, T̂2, . . . , T̂n.

Since T is monotone, each T̂1 is also monotone and the same conclusion obtains for S. Furthermore,

each T̂1 maps H into H and the same must be true for S. In particular, S(y⌅) ⌥ y
⌅ and a similar

argument yields S(z⌅) ⌃ z
⌅. The mapping S is clearly continuous and has x⌅ as its unique fixed

point. Convergence of the Gauss-Seidel algorithm follows by applying the result of part (b) to the

mapping S.

(d) Since the mapping T̂i is monotone, the sequence {xi(t)} is either nonincreasing or nondecreasing,

depending on whether xi(1) ⌃ xi(0) or xi(1) ⌥ xi(0), respectively. Furthermore, y⌅ ⌃ T̂i(x) ⌃ z
⌅, for

every x in H, and this shows that xi(t) is bounded between y
⌅
i

and z
⌅
i
. Thus, the sequence {xi(t)}

is monotone and bounded and must converge.

(e) We define (T̂i)k as the composition of k copies of T̂i. If y ⌃ z, then (T̂i)k(y) ⌃ (T̂i)k(z) for all k,

because T̂i is monotone and, taking the limit, we obtain Qi(y) ⌃ Qi(z). Thus Q is monotone. For

an example where Q is discontinuous, let

y
⌅ = (0, 0), z

⌅ = (1, 1)

and

T1(x1, x2) =
x1

2
(1 + x2), T2(x1, x2) = 0.

The mapping T is clearly monotone. It is also continuous and has a unique fixed point x⌅ = (0, 0).

Notice that T̂1(x1, 1) = x1 for every x1 � [0, 1], and this shows thatQ1(x1, 1) = x1 for every x1 � [0,1].

On the other hand, for every x2 � [0, 1) we have (T̂i)k(x1, x2) = x1

�
(1 + x2)/2

⇥
k

, which converges to

zero. Thus, Q1(x1, x2) = 0, if x2 � [0, 1), and the mapping Q1 is discontinuous at (x1, 1), for every

x1 ✏= 0.

(f) It can be seen that Q(y⌅) ⌥ y
⌅ and Q(z⌅) ⌃ z

⌅. However, the result does not follow from parts

(b) and (c) of this exercise because Q is not necessarily continuous. We shall show that Q has the

following property: if x ⌃ T (x) then T (x) ⌃ Q(x). Indeed, if x ⌃ T (x) then xi ⌃ Ti(x) = [T̂i(x)]i and

by the monotonicity of T̂i, we have xi ⌃ [(T̂i)k(x)]i for all k. Taking the limit, as k ⌦�, we obtain

xi ⌃ Qi(x). We now use induction to show T
k(y⌅) ⌃ Q

k(y⌅). For k = 1 we have y⌅ ⌃ T (y⌅) which

implies that T (y⌅) ⌃ Q(y⌅). Assume that T
k�1(y⌅) ⌃ Q

k�1(y⌅). Since T
k�1(y⌅) ⌃ T

�
T
k�1(y⌅)

⇥

38

Chapter 3

we obtain T
k(y⌅) = T

�
T
k�1(y⌅)

⇥
⌃ Q

�
T
k�1(y⌅)

⇥
⌃ Q

�
Q
k�1(y⌅)

⇥
= Q

k(y⌅), which completes the

induction. An identical argument proves that Q
k(z⌅) ⌃ T

k(z⌅), for all k. Thus the sequence

{Qk(z⌅)} lies between two sequences converging to x⌅ and must also converge to x⌅. The same result

obtains for any x(0) � H because the monotonicity of Q implies that Qk(y⌅) ⌃ Q
k

�
x(0)

⇥
⌃ Q

k(z⌅).

Let P : ✓n ⇣⌦ ✓n be the mapping corresponding to the Gauss-Seidel algorithm based on Q. By

repeating the argument in part (c) of this exercise, we can show that P is monotone and that if

x ⌃ Q(x) then Q(x) ⌃ P (x). We then repeat the argument in the preceding paragraph to see that

Q
k(y⌅) ⌃ P

k(y⌅) ⌃ P
k

�
x(0)

⇥
⌃ P

k(z⌅) ⌃ Q
k(z⌅), from which convergence of Pk

�
x(0)

⇥
to x⌅ follows.

SECTION 3.2

3.2.1:

(a) Given a bounded set A, let r = sup{⌧x⌧2 | x � A} and B = {x | ⌧x⌧2 ⌃ r}. Let K =

max{⌧�2
F (x)⌧2 | x � B}, which is finite because a continuous function on a compact set is bounded.

For any x, y � A we have

�F (x) ��F (y) =

. 1

0

�2

F (tx+ (1� t)y)

⌦
(x� y)dt.

Notice that tx+ (1� t)y � B, for all t � [0,1]. It follows that

⌧�F (x) � F (y)⌧2 ⌃ K⌧x� y⌧2,

as desired.

(b) The key idea is to show that x(t) stays in a bounded set and to use a step size ⇤ determined by

the constant K corresponding to this bounded set. Given the initial vector x(0), let A =
⇧
x | F (x) ⌃

F

�
x(0)

⇥⌃
and R = max{⌧x⌧2 | x � A}. Let a = max{⌧�F (x)⌧2 | x � A} and B = {x | ⌧x⌧2 ⌃

R+2a}. Using condition (i), there exists some constant K such that ⌧�F (x)��F (y)⌧2 ⌃ K⌧x�y⌧2,

for all x, y � B. Let us choose a step size ⇤ satisfying 0 < ⇤ < 1 and ⇤ < 2K2 min{1, 1/K}. Let

⇥ = ⇤(K2�K⇤/2) which is positive by our choice of ⇤. We will, show by induction on t, that, with

such a choice of step size, we have x(t) � A and

F

�
x(t+ 1)

⇥
⌃ F

�
x(t)

⇥
� ⇥⌧s(t)⌧2

2, (1)

for all t ⌥ 0.

39

Chapter 3

To start the induction, we notice that x(0) � A, by the definition of A. Suppose that x(t) � A.

Inequality (2.12) in the text yields

K2⌧s(t)⌧2
2 ⌃

⌥⌥
s(t)��F

�
x(t)

⇥⌥⌥ ⌃ ⌧s(t)⌧2 ·
���F

�
x(t)

⇥��
2
.

Thus, ⌧s(t)⌧2 ⌃
���F

�
x(t)

⇥��
2
/K2 ⌃ a/K2. Hence, ⌧x(t) + ⇤s(t)⌧2 ⌃ ⌧x(t)⌧2 + ⇤a/K2 ⌃ R + 2a,

which shows that x(t) + ⇤s(t) � B. In order to prove Eq. (1), we now proceed as in the proof of

Prop. 2.1. A di⌥culty arises because Prop. A.32 is used there, which assumes that the inequality

⌧�F (x)��F (y)⌧2 ⌃ K⌧x� y⌧2 holds for all x, y, whereas in this exercise this inequality holds only

for x, y � B. We thus essentially repeat the proof of Prop. A.32, to obtain

F

�
x(t+ 1)

⇥
= F

�
x(t) + ⇤s(t)

⇥

=

. 1

0

⇤s(t)��F
�
x(t) + �⇤s(t)

⇥
d�

⌃ ⇤s(t)��F
�
x(t)

⇥
+

⌥⌥⌥⌥

. 1

0

⇤s(t)�

�F

�
x(t) + ⇤�s(t)

⇥
��F

�
x(t)

⇥⌦
d�

⌥⌥⌥⌥

⌃ ⇤s(t)��F
�
x(t)

⇥
+ ⇤

2⌧s(t)⌧2
2

. 1

0

K� d�

= ⇤s(t)��F
�
x(t)

⇥
+
K⇤

2

2
⌧s(t)⌧2

2.

(2)

We have used here the inequality

���F
�
x(t) + ⇤�s(t)

⇥
��F

�
x(t)

⇥��
2
⌃ ⇤K�⌧s(t)⌧2,

which holds because of our definition of K and because x(t) � A B, x(t)+⇤s(t) � B and (because

of the convexity of B) x(t) + ⇤�s(t) � B, for � � [0, 1].

Inequality (1) now follows from Eq. (2) as in the proof of Prop. 2.1. In particular F
�
x(t + 1)

⇥
⌃

F

�
x(t)

⇥
⌃ F

�
x(0)

⇥
and x(t+ 1) � A. This completes the induction. The remainder of the proof is

the same as in Prop. 2.1.

3.2.2:

Let F : ✓2 ⌦ ✓ be the function defined by

F (x) = max

1
(x1 � 1)2 + (x2 + 1)2

, (x1 + 1)2 + (x2 � 1)2

2
.

Such an F is the maximum of two strictly convex functions and is therefore itself strictly convex.

The function F is minimized at (x1, x2) = (0, 0). To see this, notice that F (x1, x2) = F (�x1,�x2)

40

Chapter 3

and, F (0, 0) ⌃
�
F (x1, x2) + F (�x1,�x2)

⇥
/2 = F (x1, x2). On the other hand, the point x⌅ = (1, 1)

is a fixed point of the nonlinear Jacobi algorithm. To see this, notice that

F (1, 1) = 4 ⌃ max{(x1 � 1)2 + 4, (x1 + 1)2} = F (x1,1), ⌘x1,

F (1, 1) = 4 ⌃ max{(1 + x2)2
, 4 + (x2 � 1)2} = F (1, x2). ⌘x2.

In particular, the nonlinear Jacobi or the nonlinear Gauss-Seidel algorithm, initialized at (1, 1) do

not converge to the minimizing point (0, 0).

3.2.3:

We have �F (x) � �F (y) = (Ax � b) � (Ay � b) = A(x � y). Thus, ⌧�F (x) � �F (y)⌧2 ⌃

⌧A⌧2 · ⌧x� y⌧2. Since A is symmetric positive definite, ⌧A⌧2 is equal to the largest eigenvalue of A

(Prop. A.24 in Appendix A), which yields the desired result.

As far as the convergence of the scaled gradient iteration is concerned, we notice that the iteration

can be written in the form x(t+ 1) = (I � ⇤M
�1
A)x(t) + ⇤M

�1
b. If the method converges, then it

converges to some x⌅ satisfying x
⌅ = (I � ⇤M

�1
A)x⌅ + ⇤M

�1
b. Equivalently, M�1

Ax
⌅ = M

�1
b, or

x
⌅ = A

�1
b. To show that the method converges, it is su⌥cient to establish that �

�
I � ⇤M

�1
A

⇥
< 1,

which we do next.

Let C, D be two square matrices of the same dimensions. If is an eigenvalue of CD, then there

exists a nonzero vector x such that CDx = x. This implies that DC(Dx) = (Dx). Thus, Dx is

an eigenvector of DC with eigenvalue . We conclude that CD and DC have the same eigenvalues,

and �(DC) = �(CD). We apply this result to M�1
A to obtain �

�
M
�1
A

⇥
= �

�
M
�1/2

AM
�1/2). This

shows that �
�
I�⇤M

�1
A

⇥
= �

�
I�⇤M�1/2

AM
�1/2

⇥
. Notice that M�1/2

AM
1/2 is symmetric positive

definite and therefore its eigenvalues lie in the interval (0, K̄], where K̄ is the largest eigenvalue. Thus

the eigenvalues of I � ⇤M
�1/2

AM
�1/2 lie between 1� ⇤K̄ and 1, the value 1 itself being excluded.

If ⇤ � (0,2/K̄), then |1 � ⇤K̄| < 1, which shows that the eigenvalues of I � ⇤M
�1/2

AM
�1/2 lie in

the interval (�1, 1) and proves the desired result.

SECTION 3.3

41

Chapter 3

3.3.1:

(a) If y � X and (y�x)�z = 0 for every z � X, then (y�x)�y = 0. Therefore, (y�x)�(y�z) = 0 for all

z � X, and Prop. 3.2(b) shows that y = [x]+ = f(x). Conversely, if y = [x]+ then (w�y)�(x�y) ⌃ 0

for all w � X. Given any z � X, let w = y + z, which belongs to X because y � X and X is a

subspace. Then, z�(x � y) ⌃ 0. Similarly, by letting w = y � z, we obtain �z�(x � y) ⌃ 0. These

two inequalities together imply that z�(y � x) = 0.

(b) In view of part (a), it is su⌥cient to show that

(af(x) + bf(y)� ax� by)�z = 0, ⌘z � X. (1)

Using part (a), we have (f(x)�x)�z = 0 and (f(y)�y)�z = 0, for all z � X , and by combining these

two equalities we obtain Eq. (1).

(c)

(i) Let x � X. Since (x� x)�z = 0 for all z � X, part (a) shows that Px = x.

(ii) For any x � ✓n, we have Px � X and, by part (i), P (Px) = Px. Since this is true for all

x � ✓n, the equality P
2 = P follows.

(iii) Using part (a) and the property Px � X, we see that the vectors Px and x�Px are orthogonal.

The result then follows from the Pythagorean theorem.

(iv) Let x, y � ✓n. We have

y
�
Px = (Py)�Px+ (y � Py)�Px = (Py)�Px.

[The second equality follows from part (a) and the fact Px � X.] Similarly,

y
�
P
�
x = x

�
Py = (Px)�(Py) = (Py)�(Px).

We conclude that y�Px = y
�
P
�
x, for all x, y � ✓n. Let y = (Px�P �x) to obtain ⌧Px�P �x⌧2

2 = 0,

for all x � ✓n. Therefore, Px = P
�
x for all x � ✓n, which implies that P = P

�.

3.3.2:

(a) It is su⌥cient to show that the function (x� y)�M(t)(x� y) is a strictly convex function of y,

when y is restricted to X. The result will then follow by the same argument that was used in the

proof of Prop. 3.2(a). We have (x � y)�M(t)(x � y) = x
�
M(t)x + y

�
M(t)y � 2x�M(t)y. The term

x
�
M(t)x is independent of y, the term 2x�M(t)y is linear in y (hence convex), and it is su⌥cient to

show that y�M(t)y is strictly convex. Indeed, for any y and z belonging to X, we have

(y + z)�

2
M(t)

(y + z)

2
=

1

2
y
�
M(t)y +

1

2
z
�
M(t)z � (y � z)�

2
M(t)

(y � z)

2

42

Chapter 3

⌃ 1

2
y
�
M(t)y +

1

2
z
�
M(t)z � 1

4
�⌧y � z⌧2

2,

and strict convexity follows.

(b) Let f(z) = (x�z)�M(t)(x�z). Notice that �f(z) = 2M(t)(z�x). Using Prop. 3.1, a necessary

and su⌥cient condition for z to minimize f over the set X is

2(y � z)�M(t)(z � x) = (y � z)��f(z) ⌥ 0

for all y � X.

(c) Let x, y be elements of ✓n. From part (b), we have

�
z � [x]+

t

⇥�
M(t)

�
x� [x]+

t

⇥
⌃ 0, ⌘z � X.

Since [y]+
t
� X, we obtain

�
[y]+

t
� [x]+

t

⇥�
M(t)

�
x� [x]+

t

⇥
⌃ 0.

Similarly,
�
[x]+

t
� [y]+

t

⇥�
M(t)

�
y � [y]+

t

⇥
⌃ 0.

Adding these two inequalities and rearranging, we obtain

�
[y]+

t
� [x]+

t

⇥�
M(t)

�
[y]+

t
� [x]+

t

⇥
⌃
�
[y]+

t
� [x]+

t

⇥�
M(t)(y � x). (1)

The left hand side of Eq. (1) is bounded below by �⌧[y]+
t
� [x]+

t
⌧2

2 [cf. Eq. (3.9) in the text]. The

right hand side of Eq. (1) is bounded above by B⌧[y]+
t
� [x]+

t
⌧2 · ⌧y � x⌧2, where B is a bound on

⌧M(t)⌧2. We conclude that
��[y]t

t
� [x]t

t

��
2
⌃ B

�

��
y � x

��
2
.

(d) We use the norm ⌧x⌧t =
�
x
�
M(t)x

⇥ 1
2 . Then Eq. (1) and the Schwartz inequality [Prop. A.28(e)

in Appendix A] yield
��[y]+

t
� [x]+

t

��2

t

⌃
��[y]+

t
� [x]+

t

��
t

·
��
x� y

��
t

,

from which the result follows.

(e) Let

ft(x, y) =
1

2⇤
(y � x)�M(t)(y � x) + (y � x)��F (x).

The gradient �2ft of ft with respect to y is

�2ft(x, y) =
1

⇤

M(t)(y � x) +�F (x).

43

Chapter 3

We have Tt(x) = x if and only if the minimum of ft, with respect to y, is attained at y = x; that is,

if and only if

0 ⌃ (z � x)��2ft(x, x) = (z � x)��F (x), ⌘z � X.

[We have used here Prop. 3.1 and the convexity of ft as a function of y that was proved in part (a)].

The result follows from Prop. 3.1.

(f) We proceed as in part (c). In particular, the optimality conditions for the optimization problem

defining Tt(x) and Tt(y) yield

0 ⌃
�
Tt(y)� Tt(x)

⇥��2ft

�
x, Tt(x)

⇥
=
�
Tt(y) � Tt(x)

⇥� 1

⇤

M(t)
�
Tt(x)� x

⇥
+�F (x)

⌦
,

0 ⌃
�
Tt(x) � Tt(y)

⇥��2ft

�
y, Tt(y)

⇥
=
�
Tt(x)� Tt(y)

⇥� 1

⇤

M(t)
�
Tt(y)� y

⇥
+�F (y)

⌦
.

Adding these two inequalities and rearranging we obtain

1

⇤

�
Tt(y)�Tt(x)

⇥�
M(t)

�
Tt(y)� Tt(x)

⇥

⌃ 1

⇤

�
Tt(y) � Tt(x)

⇥�
M(t)(y � x) +

�
Tt(y)� Tt(x)

⇥���F (x) ��F (y)
⇥

⌃
��
Tt(y)� Tt(x)

��
2

 1

⇤

B⌧y � x⌧2 +K⌧x� y⌧2

⌦
.

(2)

(We have used here Assumption 3.1.) The left–hand side of Eq. (2) is bounded below by

(�/⇤)⌧Tt(y)� Tt(x)⌧2
2. Therefore,

�

⇤

���Tt(y) � Tt(x)

���
2
⌃

B

⇤

+K

⌦��
y � x

��
2
.

(g) Let x � X. Using the optimality conditions for the problem of Eq. (3.8), we have

0 ⌃

x� Tt(x)

⌦� 1

⇤

M(t)(Tt(x)� x) +�F (x)

⌦

⌃ ��
⇤

���Tt(x)� x

���
2

2
+
�
x� Tt(x)

⇥��F (x).

[We have used here Eq. (3.9).] Thus,

(Tt(x)� x)��F (x) ⌃ ��
⇤

��
Tt(x) � x

��2

2
.

We then use Prop. A.32 and proceed as in the proof of part (a) of Prop. 3.3.

(h) We have

0 ⌃
�
y � Tt

�
x(t)

⇥⇥�
M(t)

�
Tt

�
x(t)

⇥
� x(t)

⇥
+⇤�F

�
x(t)

⇥⌦
, ⌘y � X. (3)

Let x⌅ be a limit point of the sequence x(t). Consider a sequence {tk} such that {x(tk)} converges

to x
⌅. Notice that F is bounded below and part (g) implies that

��
Tt

�
x(t)

⇥
� x(t)

��
2

converges to

zero. In particular, Tt
k

�
x(tk)

⇥
converges to x

⌅ as well. Since the set of matrices {M(t) | t ⌥ 0} is

bounded, the term
�
y � Tt

�
x(t)

⇥⇥
M(t)

�
Tt

�
x(t)

⇥
� x(t)

⇥
converges to zero, for every y � X. Thus,

taking the limit in Eq. (3) along the sequence {tk}, we obtain 0 ⌃ (y � x
⌅)��F (x⌅) for all y � X,

which concludes the proof.

44

Chapter 3

SECTION 3.4

3.4.1:

(a) We will use Prop. 3.4 once we establish the Lipschitz condition (3.4). This condition is written

⌧�F (x) ��F (y)⌧ ⌃ K⌧x� y⌧

or equivalently,

⌧P (x� y)⌧ ⌃ K⌧x� y⌧,

and is satisfied if K is the maximum eigenvalue of P (see Prop. A.24). The result now follows from

Prop. 3.4.

(b) The sum of the diagonal elements of P is equal to the sum of the eigenvalues of P . Since these

eigenvalues are all nonnegative, we have that the sum of the diagonal elements of P is an upper

bound for K.

(c) We use the transformation of variables y(t) = M
1/2
x(t). Let

H(y) = F (M�1/2
y) =

1

2
y
�
P̄ y + r

�
M
�1/2

y,

where P̄ = M
�1/2

PM
�1/2, and note that P̄ has ones along its main diagonal. The problem

minx⌥0 F (x) is equivalent to miny⌥0 H(y). The gradient projection method for the latter problem is

given by

y(t+ 1) =
⇤
y(t) � ⇤�H

�
y(t)

⇥⌅+
(⌅)

or

M
1/2
x(t+ 1) =

⇤
M

1/2
x(t)� ⇤M

�1/2�F
�
M
�1/2

y(t)
⇥⌅+

or

x(t+ 1) =
⇤
x(t)� ⇤M

�1�F
�
x(t)

⇥⌅+
, (⌅⌅)

which is the linearized Jacobi method for the problem minx⌥0 F (x). By parts (a) and (b), the

iteration (⌅) converges for ⇤ < 2/T , where T is the sum of diagonal elements of P̄ , which is equal

to n. Therefore, iteration (⌅⌅) also converges for ⇤ < 2/n.

45

Chapter 3

3.4.2:

For parts (a)-(d), see the hints. To show part (e), note that we have for all x⌅ � X
⌅,

F

�
(x(t+ 1)

⇥
⌃ F

�
x(t+ 1)

⇥
+

1

2c(t)
⌧x(t + 1) � x(t)⌧2

2 ⌃ F (x⌅) +
1

2c(t)
⌧x⌅ � x(t)⌧2

2.

By minimizing over x⌅ � X
⌅, we obtain

F

�
x(t+ 1)

⇥
⌃ F

⌅ +
1

2c(t)
�

�
x(t);X⌅

⇥2
,

which is the first relation to be proved. From the hypothesis we also have for x(t + 1) within ⌅ of

X
⌅,

F
⌅ + ⇥

�
�(x(t + 1);X⌅)

⇥
� ⌃ F

�
x(t + 1)

⇥
.

The last two relations yield

⇥

�
�(x(t+ 1);X⌅)

⇥
� ⌃ 1

2c(t)
�

�
x(t);X⌅

⇥2

and
�

�
x(t+ 1);X⌅

⇥

�

�
x(t);X⌅

⇥2/� ⌃ 1
�
2c(t)⇥

⇥1/� .

Since lim inft⌦� c(t) > 0, the desired result follows.

3.4.3:

Follow the hint.

3.4.4:

As in Prop. 4.1(c), it is assumed here that X⌅ is nonempty. Let us define

x̄(t) = arg min
x�X

⇧
F (x) +

1

2c
⌧x� x(t)⌧2

2

⌃
. (⌅)

Then the algorithm can be written as

x(t+ 1) = x̄(t) +
�
x(t)� x̄(t)

⇥↵
1� ⇤(t)

c

�
. (⌅⌅)

We have, using (⌅) and (⌅⌅),

F

�
x̄(t+ 1)

⇥
+

1

2c
⌧x̄(t+ 1)� x(t + 1)⌧2

2

⌃ F

�
x̄(t)

⇥
+

1

2c
⌧x̄(t) � x(t+ 1)⌧2

2

= F

�
x̄(t)

⇥
+

1

2c

↵
1� ⇤(t)

c

�2

⌧x̄(t)� x(t)⌧2
2

= F

�
x̄(t)

⇥
+

1

2c
⌧x̄(t) � x(t)⌧2

2 �
1�

�
1� ⇤(t)

c

⇥2

2c
⌧x̄(t) � x(t)⌧2

2.

46

Chapter 3

By adding this relation over t = 0,1, . . . , k we obtain

min
x�X

F (x) ⌃ F

�
x̄(k + 1)

⇥
+

1

2c
⌧x̄(k + 1) � x(k + 1)⌧2

2

⌃ F

�
x̄(0)

⇥
+

1

2c
⌧x̄(0)� x(0)⌧2

2 �
k,

t=0

1�
�
1� ⇤(t)

c

⇥2

2c
⌧x̄(t)� x(t)⌧2

2,

and by taking the limit as k ⌦�,

� >

�,

t=0

1�
�
1� ⇤(t)

c

⇥2

2c
⌧x̄(t)� x(t)⌧2

2 ⌥
k,

t=0

1�
�
1� ⌅

c

⇥2

2c
⌧x̄(t)� x(t)⌧2

2.

It follows that x(t)� x̄(t)⌦ 0.

Proceeding now as in the proof of Prop. 4.1(c) [cf. the argument following Eq. (4.39)], we obtain

that every limit point of {x̄(t)}t�T and also of {x(t)}t�T is an optimal solution. This proof also works

when c depends on t as long as the sequence {c(t)} is monotonically nondecreasing.

3.4.5:

Replace the inequality constraints with equality constraints as indicated, apply the method of mul-

tipliers for equality constraints, and perform the minimizations of the Augmented Lagrangian

F (x) +

r,

j=1

pj(t)(a
�
j
x� tj + wj) +

c(t)

2

r,

j=1

(a�
j
x� tj + wj)2

over (x,w) in two stages. In the first stage, the minimization is carried out over wj ⌥ 0, j = 1, . . . , r,

holding x fixed. The minimum is attained for

wj = max
⇧
0,�

⇤
pj/c(t) + a

�
j
x� tj

⌅⌃

and upon substitution of wj in the above Augmented Lagrangian, we obtain the modified Augmented

Lagrangian given in the exercise. In the second stage the minimization of the modified Augmented

Lagrangian is done with respect to x, yielding the iteration of the exercise.

3.4.6:

For every x
⌅ � C1 ◆ · · · ◆ Cm, we have [since x⌅ � Ci and xi(t) is the projection of x(t) on Ci and

Prop. 3.2(b) applies]
�
xi(t) � x(t)

⇥��
xi(t) � x

⌅
⇥
⌃ 0,

from which we obtain

⌧xi(t)� x(t)⌧2
2 + ⌧xi(t)� x

⌅⌧2
2 ⌃ ⌧x(t) � x

⌅⌧2
2.

47

Chapter 3

It follows that

⌧xi(t) � x
⌅⌧2 ⌃ ⌧x(t)� x

⌅⌧2.

Therefore

⌧x(t+ 1)� x
⌅⌧2 =

�����
1

m

m,

i=1

xi(t)� x
⌅

�����
2

⌃ 1

m

m,

i=1

⌧xi(t) � x
⌅⌧2 ⌃ ⌧x(t)� x

⌅⌧2. (⌅)

It follows that {x(t)} is bounded and has at least one limit point. By the analysis of Example 4.3,

all of its limit points must belong to the intersection C1 ◆ · · · ◆ Cm. Suppose there were two limit

points, say x
⌅ and x̄

⌅. Then by taking limit in (⌅) over a subsequence tending to x̄
⌅ and by using

also the fact that
⇧
⌧x(t)� x

⌅⌧2

⌃
is monotonically nonincreasing, we obtain

⌧x̄⌅ � x
⌅⌧2 ⌃ ⌧x(t)� x

⌅⌧2, ⌘ t.

By taking limit in the above relation over a subsequence tending to x
⌅, we obtain ⌧x̄⌅ � x

⌅⌧2 ⌃ 0.

Therefore x̄⌅ = x
⌅ and the limit point of {x(t)} is unique.

3.4.7:

Consider the cost function

1

2

m,

i=1

 i⌧xi � x⌧2
2

in place of the one used in Example 4.3. Then iteration (4.59) remains unchanged, while iteration

(4.58) must take the form x(t + 1) =
*

m

i=1 ixi(t). The analysis of Example 4.3 and Exercise 4.6

applies with no essential changes to the modified iteration.

48

Chapter 4

CHAPTER 4

SECTION 4.1

4.1.1:

Since x0
j

= � for j ✏= 0, we have using Lemma 1.1,

x
n

i
= w

n

i1, x
n�1
i

= w
n�1
i1 .

The condition x
n

i
< x

n�1
i

implies that there exists a path of n arcs from i to 1 that is shorter than all

paths of less than n arcs. This path must contain a negative cycle. Conversely, we have xk
i
⌃ x

k�1
i

for all k and i, so if the condition x
n

i
< x

n�1
i

does not hold for any i, we must have xn
�

i
= x

n

i
for all i

and n
� ⌥ n. By Lemma 1.1, a negative cycle cannot exist.

4.1.2:

(a) The Gauss-Seidel method is

x
k+1
i

= min

�
min

j�A(i),j<i

�
aij + x

k+1
j

⇥
, min
j�A(i),j>i

�
aij + x

k

j

⇥�
, i = 2, 3, . . . , n.

Let J(x) and G(x) be the Jacobi and Gauss-Seidel relaxation mappings, and note that J and G are

monotone, that is, J(x�) ⌃ J(x) and G(x�) ⌃ G(x) if x� ⌃ x. Furthermore we have

G(x) ⌃ J(x), if J(x) ⌃ x.

To see this, note that if J(x) ⌃ x, we have

G2(x) = J2(x) ⌃ x2

G3(x) = min

��
a32 +G2(x)

⇥
, min
j�A(i),j>3

(aij + xj)

�

⌃ min

�
(a32 + x2) , min

j�A(i),j>3
(aij + xj)

�
= J3(x),

49

Chapter 4

and a similar argument shows that Gi(x) ⌃ Ji(x) for all i. An analogous argument also shows that

J(x) ⌃ G(x), if x ⌃ J(x).

Let u be the vector with all coordinates equal to 1 except for u1 = 0. For any ⇤ > 0 it is seen that

we have for all i ✏= 0,

Ji(x⌅ + ⇤u) = min

�
ai1, min

j�A(i),j ✏=1
(aij + x

⌅
j
+ ⇤)

�
⌃ min

j�A(i)
(aij + x

⌅
j
) + ⇤ = Ji(x⌅) + ⇤ = x

⌅
i
+ ⇤,

and similarly, Ji(x⌅ � ⇤u) ⌥ x
⌅
i
� ⇤. Therefore,

x
⌅ � ⇤u ⌃ J(x⌅ � ⇤u) ⌃ x

⌅ ⌃ J(x⌅ + ⇤u) ⌃ x
⌅ + ⇤u,

and from this relation it follows that

J
k(x⌅ � ⇤u) ⌃ G

k(x⌅ � ⇤u) ⌃ x
⌅ ⌃ G

k(x⌅ � ⇤u) ⌃ J
k(x⌅ + ⇤u), ⌘k,

where Jk (or Gk) denote the composition of J (or G, respectively) with itself k times. It follows that

G
k(x⌅ � ⇤u)⌦ x

⌅
, G

k(x⌅ + ⇤u)⌦ x
⌅
.

For any initial condition x
0 with x

0
1 = 0, we can take ⇤ su⌥ciently large so that

x
⌅ � ⇤u ⌃ x

0 ⌃ x
⌅ + ⇤u,

and therefore

G
k(x⌅ � ⇤u) ⌃ G

k(x0) ⌃ G
k(x⌅ + ⇤u),

from which we obtain G
k(x0)⌦ x

⌅.

(b) The preceding argument shows also that the bounds Gk(x⌅ �⇤u) and Gk(x⌅+⇤u) for the Gauss-

Seidel method are tighter than the bounds Jk(x⌅ � ⇤u) and J
k(x⌅ + ⇤u) for the Jacobi method.

(c) Define

S1 = {i | 1 � A(i)}

Sk+1 = {i | there exists j � Sk such that j � A(i)}.

Consider the node relaxation order S1, S2, . . . for the Gauss-Seidel method, with the node order

within each set Sk unspecified. It can be seen by induction on k that at the first iteration of the

Gauss-Seidel method we obtain the shortest distances.

4.1.3:

(a) Every node of a given cycle is the start node of one arc and the end node of another arc.

Therefore, as the sum of a�
ij

along a cycle is formed, the quantity pm is added and subtracted once

for every node m of the cycle. Thus the sum of a�
ij

along a cycle is equal to the sum of aij .

50

Chapter 4

(b) Each path from i to 1 has length with respect to aij equal to its length with respect to a
�
ij

plus

pi � p1. This is verified by adding a
�
ij

along the arcs (i, j) of the path and proves the desired result.

4.1.4:

(a) We have for all i ✏= 1

x̃i = min
j

(ãij + x̃j) = min
j

(aij + x̃j),

so the Bellman-Ford algorithm terminates in a single iteration.

(b) For any i /� ◆kNk, let p be any shortest path with respect to arc lengths ãij . Let dp be the length

of p with respect to arc lengths aij. We have

x
⌅
i
⌃ dp,

where x⌅
i

is the shortest distance of i with respect to arc lengths aij , while we also have

dp ⌃ x̃i,

since the length of any arc of the path p is not increased when changing from arc lengths ãij to aij.

Thus, we obtain x
⌅
i
⌃ x̃i = x

0
i

for all i /� ◆kNk . Since we have x0
i

= � for all i � ◆kNk, it follows

that x⌅ ⌃ x
0. The result follows from Prop. 1.1(c).

4.1.5:

Each node has at most four incident arcs, so the computation time per iteration and node is O(1).

Since there are k2 nodes assigned to each processor, the (parallel) computation time per iteration is

O(k2). At the end of an iteration each processor must communicate to each neighbor processor the

shortest distance estimates of the k nodes that are connected to a node assigned to the neighbor

processor. Thus the communication time per iteration is O(k). For k large enough the communi-

cation time is negligible relative to the computation time, particularly if packets contain the values

of shortest distance estimates of many nodes to reduce the overhead penalty. Thus, for su⌥ciently

large k, the attainable speedup is essentially equal to the number m2 of processors, regardless of the

value of m.

4.1.6:

Each processor (i, j) needs to know x
k

i(k+1)
and x

k

(k+1)j
to compute xk+1

ij
in O(1) time. Therefore, the

processors (k + 1, m) of the (k + 1)st row must broadcast to their column hypercubes [processors

51

Chapter 4

(i, m), i = 1, . . . , n] the value xk
(k+1)m

. This requires n single node broadcasts, which can be done in

parallel in log n time. Also the processors (m, k+1) in the (k+1)st column must broadcast to their

row hypercubes [processors (m, j), j = 1, . . . , n] the value xk
m(k+1)

. This requires log n time also.

4.1.7:

Hint: Let tk
ij

be the time that the calculation of xk
ij

is completed (with t
0
ij

= 0). Show that for k ⌥ 0

and i ✏= j,

t
k+1
ij

= 1 +

$
''&

''%

max{tk
ij
, t
k

i(k+1)
+ |j � k � 1|, tk

(k+1)j
+ |i� k � 1|}, if i ✏= k + 1, j ✏= k + 1,

max{tk
ij
, t
k

i(k+1)
}, if j = k + 1,

max{tk
ij
, t
k

(k+1)j
}, if i = k + 1.

Use this equation to verify that for i ✏= j, we have

t
1
ij

=

�
1 + max{|i� 1|, |j � 1|}, if i ✏= 1, j ✏= 1

1, otherwise,

and that for k ⌥ 1

t
k+1
ij

= 3k � 1 +

$
'&

'%

max{|i � k| + |j � k � 1|, |j � k| + |i � k � 1|}, if i ✏= k + 1, j ✏= k + 1,

|i� k|, if j = k + 1,

|j � k|, if i = k + 1.

4.1.8:

(a) Suppose every i to j walk contains an arc with weight greater or equal to aij. Consider an MST

and the (unique) walk from i to j on the MST. If this walk does not consist of just arc (i, j), then

replace an arc of this walk with weight greater or equal to aij with arc (i, j), thereby obtaining an

MST.

Conversely suppose to obtain a contradiction, that (i, j) belongs to an MST and that there exists

a walk W from i to j with all arcs having weight smaller than aij . We remove (i, j) from the MST

obtaining two subtrees Ti and Tj containing i and j, respectively. The walk W must contain an arc

that connects a node of Ti to a node of Tj . Adding that arc to the two subtrees Ti and Tj creates a

spanning tree with smaller weight than that of the original, which is a contradiction.

(b) Walks from i to j that use nodes 1 through k+ 1 are of two types: 1) walks that use only nodes

1 through k or 2) walks that go from i to k + 1 using nodes 1 through k and then from k + 1 to j

using nodes 1 through k. The minimum critical weight of walks of type 1) is xk
ij
, while the critical

weight over walks of type 2) is max
⇧
x
k

i(k+1)
, x

k

(k+1)j

⌃
. The characterization of xk

ij
given in the exercise

follows.

52

Chapter 4

(c) See the hint.

4.1.9:

(a) An easy induction shows that the ijth element of Bk is a one if and only if there is a directed

path from i to j with exactly k arcs. We now note that (I + B)k = I + B + B
2 + · · · + B

k, which

in view of the preceding observation implies that the ijth element of (I +B)k is a one if and only if

there is a directed path from i to j with k arcs or less.

(b) In view of the characterization of (a), we have that (I + B)k stops changing when k becomes

larger than maxi,j dij, where dij is the shortest distance from i to j when all arc lengths are equal to

one. The ijth element of the final matrix B
⌅ is a one if and only if either i = j or else there exists

a directed path from i to j.

(c) For i ✏= j, let

x
1
ij

=

�
1, if (i, j) is an arc,

0, otherwise,

and for k ⌥ 1,

x
k+1
ij

=
�
x
k

ij

⇥
OR

↵�
x
i(k+1)

⇥
AND

�
x(k+1)j

⇥�
.

Then the ijth element of B⌅ is a one if i = j and is xn
ij

if i ✏= j.

4.1.10:

(a) By construction of the algorithm, for all i, di is at all times either � or the length of some path

from s to i. Because the arc lengths are all nonnegative, the number of distinct lengths of paths

from s to i is finite, and since di decreases monotonically, it follows that di converges finitely. This

means that the set M̃ in Step 1 will be empty after some iteration, implying that the algorithm

terminates finitely.

To show that upon termination d1 equals the shortest distance d⌅ from s to 1, let

(s, i1), (i1, i2), . . . , (im, 1)

be a shortest path. Then each path (s, i1), (i1, i2), . . . , (ik�1, ik) is a shortest path from s to ik for

all k = 1, 2, . . . ,m. If at termination d1 is larger than d
⌅, the same will be true throughout the

algorithm and therefore d1 � hi
k

will be larger than the length of the path

(s, i1), (i1, i2), . . . , (ik�1, ik)

53

Chapter 4

for all k = 1,2, . . . , m throughout the algorithm. It follows that node im will never enter the set L

with dim
equal to the shortest distance from s to ik, since in this case d1 would be set to d

⌅ at the

next iteration. Similarly, this means that node im�1 will never enter the set L with dj
m�1

equal to

the shortest distance from s to im�1. Proceeding backwards, we conclude that i1 never enters the

set L with di1 equal to the shortest distance from s to i1 (= asi1), which is a contradiction because

di1 is set to asi1 at the first iteration.

(b) Similar to (a).

(c) To obtain the shortest path upon termination, give to node j the label ”i” each time dj is

decreased in Step 1. A shortest path is then obtained by tracing labels backwards starting from the

destination.

SECTION 4.2

4.2.1:

Define

⇥ = min
i

ci, ⇥̄ = max
i

ci.

The cost vector x⌅ associated with P , c, and � can be written as

x
⌅ = c+

�,

t=1

a
t
P
t
c,

from which

c+
�⇥

1� �

e ⌃ x
⌅ ⌃ c+

�⇥̄

1� �

.

Using the definition of ⇥ and ⇥̄, we can strengthen this relation as follows

⇥

1� �

e ⌃ c +
�⇥

1� �

e ⌃ x
⌅ ⌃ c+

�⇥̄

1� �

⌃ ⇥̄

1� �

. (⌅)

We now consider the equation x
⌅ = c + �Px

⌅ and we subtract from it the given equation x̄ =

c+ �Px. We obtain

x
⌅ � x = (x̄� x) + �P (x⌅ � x).

It follows that (x⌅ � x) is the unique solution of the equation y = (x̄� x) + �Py, i.e., it is the cost

vector associated with P , (x̄� x), and �. Therefore, Eq. (⌅) applies with c replaced by (x̄� x) and

x
⌅ replaced by (x⌅ � x). We thus obtain

⇤

1� �

e ⌃ (x̄� x) +
�⇤

1� �

e ⌃ x
⌅ � x ⌃ (x̄� x) +

�⇤̄

1� �

⌃ ⇤̄

1� �

,

54

Chapter 4

where

⇤ = min
i

(x̄i � xi), ⇤̄ = max
i

(x̄i � xi).

4.2.2:

Let ci = 1 if i ✏= 1, c1 = 0, and � = 1. With these identifications, ti is the cost x⌅
i

associated with

the state costs ci, while the given system of equations coincides with the equation x = c + �Px.

Therefore the times ti are the unique solution of this system.

SECTION 4.3

4.3.1:

(a) By applying the mapping Tµ on both sides of the given equation

Tµ(x⌅) ⌃ T (x⌅) + ⇧e,

by using the monotonicity property of Tµ (cf. Prop. 3.1), and by using also the fact T (x⌅) = x
⌅ we

obtain

T
2
µ(x⌅) ⌃ Tµ

�
T (x⌅)

⇥
+ �⇧e = Tµ(x⌅) + �⇧e ⌃ T (x⌅) + ⇧e+ �⇧e = x

⌅ + ⇧e + �⇧e.

Applying the same process to this equation, we obtain

T
3
µ(x⌅) ⌃ Tµ(x⌅) + �(e+ �⇧e) ⌃ T (x⌅) + ⇧e + �⇧e + �

2
⇧e = x

⌅ + ⇧e + �⇧e + �
2
⇧e,

and by proceeding similarly,

T
t

µ(x⌅) ⌃ x
⌅ + ⇧

◆
t�1,

k=0

�
i


e, ⌘ t ⌥ 1.

Taking limit as t⌦�, we obtain

x(µ) ⌃ x
⌅ +

⇧

1� �

e.

(b) Using the relations |xi�x⌅i | ⌃ ⇧ for all i, and Tµ(x) = T (x), and applying the monotone mappings

T and Tµ, we have

Tµ(x⌅) ⌃ Tµ(x) + �⇧e,

55

Chapter 4

Tµ(x) = T (x) ⌃ T (x⌅) + �⇧e.

Adding these two inequalities, we obtain

Tµ(x⌅) ⌃ T (x⌅) + 2�⇧e,

and the result follows by using part (a).

4.3.2:

Since {µ, µ, . . .} is improper, there exists a state i such that [P t(µ)]
i1 = 0, for all t. Thus with

probability one, after a finite number of transitions, the states generated by the system starting

from i form a sequence of cycles. Since every cycle has positive cost, the total cost is infinite for

almost every sample path of the system starting from state i.

4.3.3:

See the abbreviated proof given in the text.

4.3.4:

See the hint.

4.3.5:

Applying repeatedly the monotone mapping T to the inequality x ⌃ T (x) we obtain

x ⌃ T (x) ⌃ T
2(x) ⌃ · · · ⌃ T

t(x) ⌃ · · ·

and by taking the limit as t ⌦ � we obtain x ⌃ x
⌅. The constraint of the linear program can

be written as T (x) ⌥ x and is satisfied by x
⌅. Furthermore, every feasible solution x of the linear

program satisfies x⌅ ⌥ x (by what has been proved already), so ⇥x
⌅ ⌥ ⇥x. It follows that x⌅ solves

the linear program. A similar argument applies for the case � = 1 under the Undiscounted Cost

Assumption 3.2.

4.3.6:

The constraints of the linear program can be written as

C
i1
k
x1 + · · · + C

in

k
xn ⌃ d

i

k
, i = 1, . . . n, k = 1, . . . , m,

56

Chapter 4

and can be put into the form of the constraints of the linear program of Exercise 3.5, which have

the form
�
1� �pii(u)

⇥
xi �

,

j ✏=i
�pij(u)xj ⌃ ci(u).

In particular, identifying u with k, and ci(u) with d
i

k
, we are led to define pij(k), i, j = 1, . . . n,

k = 1, . . . ,m, by the equations

1� �pii(k) =
1� �*
n

t=1C
it

k

C
ii

k
, (⌅)

��pij(k) =
1� �*
n

t=1C
it

k

C
ij

k
, ⌘ j ✏= i, (⌅⌅)

where � is a scalar to be determined. It is seen that, with these definitions, the linear problem

is converted into a dynamic programming problem (cf. Exercise 3.5), provided that � � [0, 1), and

pij(k) are legitimate probabilities, that is, they are nonnegative and they add to one [
*

n

j=1 pij(k) = 1

for all i and k]. The latter property is clearly satisfied from the definition of pij(k) [add the relations

(⌅) and (⌅⌅)]. Furthermore, we have pij(k) ⌥ 0 for j ✏= i, since the o⌅-diagonal elements of Ck are

nonpositive, and
*

n

t=1C
it

k
> 0 by the diagonal dominance property of Ck . Finally, to ensure that

pii(k) ⌥ 0, we must have

0 ⌃ pii(k) =
1

�

�
1� (1� �)Cii

k*
n

t=1C
it

k

�

or equivalently,

(1 � �)Cii

k*
n

t=1C
it

k

⌃ 1,

or equivalently,

�
n,

t✏=i
C
it

k
⌃ �C

ii

k
, ⌘ i, k.

This relation is satisfied if

� = max
i,k

�

�
*

n

t✏=i C
it

k

C
ii

k

�

.

By the diagonal dominance property of Ck , we have � � [0, 1).

4.3.7:

Since T is monotone, continuous, and has a unique fixed point, the conclusions of Exercise 1.4 in

Section 3.1 apply.

4.3.8:

(a) Clearly all stationary policies are proper. The cost of a policy {µ, µ, . . .} with µ(x2) = u satisfies

x2(µ) = �u+ (1� u
⇥)x2(µ), from which x2(µ) = �u1�⇥ . Therefore µ yields finite cost.

57

Chapter 4

(b) If ⇥ > 1, then by choosing a policy {µ, µ, . . .} with µ(x2) su⌥ciently close to zero, we can attain

arbitrarily small cost [cf. part (a)]. Therefore we have x⌅2 = ��, but no stationary policy can be

optimal, since all stationary policies have finite cost. Assume now that ⇥ = 2. One can prove by

induction that
�-

k=1

↵
1� ⇤

2

k
2

�
⌥ 1� ⇤

2

�,

k=1

1

k
2

= 1� 3⇤2

2
> 0.

Using this relation, the cost of the nonstationary policy with uk = ⇤/(k + 1) can be estimated as

�
/
(1� ⇤

2)⇤ + (1 � ⇤
2)

↵
1� ⇤

2

4

�
⇤

2
+ (1� ⇤

2)

↵
1� ⇤

2

4

�↵
1� ⇤

2

9

�
⇤

3
+ · · ·

0

⌃ �
�-

k=1

↵
1� ⇤

2

k
2

�
⇤ +

⇤

2
+
⇤

3
+ · · ·

⌦
= ��,

so this policy is optimal.

(c) We first show that x⌅2 = �1. Since the cost of the stationary policy that applies u = �1 at state

2 is �1, it follows that x⌅2 ⌃ �1. Assume to obtain a contradiction, that x⌅2 < �1. When ⇥ < 1,

the cost of any policy is at least as large as the cost of the policy when ⇥ = 1 (greater probability

of moving from state 2 to the absorbing state for the same cost). Therefore we must have x⌅2 < �1

when ⇥ = 1. For any policy that applies uk � (0, 1] at time k when at state 2, the cost starting at

state 2 is

�
⇤
u0 + u1(1 � u0) + u2(1 � u1)(1� u0) + · · ·

⌅
.

Since x⌅2 < �1 and uk � (0,1], there must exist a policy and a positive integer k such that

u0 + u1(1 � u0) + u2(1 � u1)(1� u0) + · · · + uk(1� uk�1)(1� uk�2) · · · (1� u0) > 1. (⌅)

On the other hand we have, since uk � (0, 1], we have

u0 + u1(1� u0) + u2(1 � u1)(1� u0) + · · · + uk(1 � uk�1)(1� uk�2) · · · (1� u0)

⌃ u0 + u1(1� u0) + u2(1 � u1)(1� u0) + · · · + (1� uk�1)(1� uk�2) · · · (1� u0)

= u0 + u1(1� u0) + u2(1 � u1)(1� u0) + · · · + (1� uk�2)(1� uk�3) · · · (1� u0)

= . . . = u0 + u1(1� u0) + (1 � u1)(1� u0) = 1,

contradicting Eq. (⌅). Therefore x⌅2 = �1.

Suppose now that x1 = 0 and x2 > 0. Then we have

⇤
T (x)

⌅
2

= x2 + inf
u�(0,1]

⇤
�u� u

⇥
x2

⌅
.

The infimum is attained for u = 1 and we have
⇤
T (x)

⌅
2

= �1. If x2 � [�1, 0], then the function

�u� u
⇥
x2 is concave as a function of u and the infimum over u � (0, 1] either is attained by u = 1

or is approached by u = 0. Therefore we have

⇤
T (x)

⌅
2

= x2 + min
⇤
0,�(1 + x2)

⌅
= x2 � (1 + x2) = �1.

58

Chapter 4

Thus, if x2 ⌥ �1, the infimum is attained for u = 1 and we have T (x) = x
⌅. On the other hand, if

x2 < �1, then the infimum in the preceding calculation is approached by u = 0 and we get x = T (x).

59

Chapter 5

CHAPTER 5

SECTION 5.1

5.1.1:

Using the conservation of flow constraint, the cost of the transformed problem, for every feasible

flow vector f , is written as

,

(i,j)�A

(aij + pj � pi)fij =
,

(i,j)�A

aijfij +
,

i�N
pi

⌧

(
,

{j|(j,i)�A}

fji �
,

{j|(i,j)�A}

fij

�

)

=
,

(i,j)�A

aijfij +
,

i�N
pisi.

5.1.2:

Assume f is optimal and let Y be a directed cycle such that

⌅ = min
⇧
min{cij � fij | (i, j) � Y +},min{fij � bij | (i, j) � Y

�}
⌃
> 0.

Let y be the circulation defined by

yij =

$
'&

'%

⌅, if (i, j) � Y
+,

�⌅, if (i, j) � Y
�,

0, otherwise.

Then f + y is feasible and its cost must be no less than the cost of f , that is,

,

(i,j)�A

aij(fij + yij) ⌥
,

(i,j)�A

aijfij ,

or
,

(i,j)�Y +

aij⌅ �
,

(i,j)�Y �
aij⌅ ⌥ 0.

60

Chapter 5

By dividing with ⌅, we obtain the desired condition

,

(i,j)�Y +

aij �
,

(i,j)�Y �
aij ⌥ 0. (⌅)

[The preceding argument amounts to using Prop. 3.1 in Section 3.3 (cf. the given hint).]

Conversely, if the desired condition (⌅) holds, and f is not optimal, the argument of the proof of

Proposition 3.1 in Section 5.3 [cf. Eq. (3.4)] leads to a contradiction.

5.1.3:

(a) The assignment problem with B > 1 is equivalent to the following problem with no upper bounds

on the variables

maximize
,

(i,j)�A

�aijfij

subject to

,

{j|(i,j)�A}

fij = 1, ⌘ i = 1, . . . , n,

,

{i|(i,j)�A}

fij = 1, ⌘ j = 1, . . . , n,

0 ⌃ fij , ⌘ (i, j) � A.

A dual problem is (cf. problems (AP) and (DAP) in Appendix C)

minimize �
n,

i=1

ri +

n,

j=1

pj

subject to aij + pj ⌥ ri, ⌘ (i, j) � A,

which can be expressed in the desired format

maximize

n,

i=1

ri �
n,

j=1

pj

subject to aij + pj ⌥ ri, ⌘ (i, j) � A.

(b) Consider the assignment problem with sources i and sinks i� formulated in the hint. Its dual

problem is

maximize

|N |,

i=1

pi �
|N |,

i=1

p
�
i

subject to aij + p
�
j
⌥ pi, ⌘ (i, j) � A, p

�
i
⌥ pi, ⌘ i � N,

where p�
i

denotes the price of i�. Let S be the feasible assignment that assigns each source i with

sink i
�. Assume that each positive cycle in problem (LNF) has nonnegative arc cost sum. Then

61

Chapter 5

for the assignment S, all cycles of the assignment problem satisfy the condition of Exercise 1.2 (cf.

the figure). Therefore from Exercise 1.2, S is optimal, which shows that there exists a dual optimal

solution {(pi, p�i) | i = 1, . . . , n} for which pi = p
�
i
. Therefore from the first constraint of the dual

problem, we obtain

aij + pj ⌥ pi, ⌘ (i, j) � A,

which implies that all arcs (i, j) � A are inactive or balanced.

Figure For Exercise 5.1.3. Cycles of problem (LNF) and correspond-

ing cycles of the assignment problem formulated in part (b).

5.1.4:

It is seen that an optimal flow vector f of the enlarged network problem yields an optimal flow vector

of the original problem (LNF), if and only if it satisfies fwv = (1/2)
*

i�N |si|. We will show that

under the given condition on awv, an optimal flow vector f of the enlarged network problem satisfies

fwv = (1/2)
*

i�N |si|. Indeed, suppose to arrive at a contradiction, that f is an optimal flow vector

of the enlarged network problem and fwv <
1
2

*
i�N |si|. Then, there must exist an augmenting path

P starting at v and ending at w, since problem (LNF) is feasible (see Section 5.2 for the definition

of an augmenting path). Since f is optimal for the enlarged network problem, there is a set of

prices pi, i � N , and pv , pw, satisfying complementary slackness together with f . By adding the

62

Chapter 5

complementary slackness condition along the cycle formed by P and arc (w, v), we obtain

0 ⌃ awv +
,

(i,j)�P+

aij �
,

(i,j)�P�
aij < �L+

,

(i,j)�P+

aij �
,

(i,j)�P�
aij.

This contradicts the definition L = maxp Lp.

5.1.5:

Replace the kth arc with start node i and end node j with a node (ijk) and two arcs
�
i, (ijk)

⇥
and

�
(ijk), j

⇥
with arc flow bounds and arc cost coe⌥cient equal to the ones of the original arc.

5.1.6:

See the hint.

5.1.7:

Assign Lagrange multipliers ri(t) and pj(t) to the conservation of flow equations corresponding to

the ith source and jth sink, respectively, and consider the Augmented Lagrangian

,

(i,j)

[aij � ri(t) � pj(t)]

m,

i=1

ri(t) +

n,

j=1

pj(t) +
c(t)

2

�
m,

i=1

�
�i �

,

j

fij

⇥2
+

n,

j=1

�
⇥j �

,

i

fij

⇥2
�
.

The first method of multipliers of Example 4.5 in Subsection 3.4.4 consists of the Gauss-Seidel

method for minimizing the Augmented Lagrangian. Minimization with respect to a single arc flow

variable fij , while keeping all all other arc flows fixed, is carried out by setting the first derivative

of the Augmented Lagrangian with respect to fij to zero, that is,

aij � ri(t)� pj(t)� c(t)
�
�i �

,

j

fij

⇥
� c(t)

�
⇥j �

,

i

fij

⇥
= 0,

solving with respect to fij , which after a little calculation yields

fij := fij +
1

2c(t)

�
ri(t) + pj(t)� aij + c(t)(yi + wj)

⇥
,

and finally projecting the result on the flow range [0, cij]. This is precisely the iteration given in the

exercise.

5.1.8:

The Augmented Lagrangian is the same as in Exercise 1.7. Application of iteration (4.75) of Sub-

section 3.4.4 verifies the desired equivalence.

63

Chapter 5

SECTION 5.2

5.2.1:

Let ptn and p
0
n be the prices of a node n at time t and at time 0. Consider a node i with positive

surplus at time t. We claim that there exists a path (i, i1, i2, . . . , ik, j) from i to some negative

surplus node j consisting of forward arcs that are balanced or inactive, and backward arcs that are

balanced or active, i.e.

p
t

i
⌃ p

t

i1
+ aii1

p
t

i1
⌃ p

t

i2
+ ai1i2

. . . (⌅)

p
t

i
k

⌃ p
t

j
+ ai

k
j.

Such a path can be constructed by using the following algorithm in which initially we have L = {i}.

Step 1: If there exists an arc (k, j) [or arc (j, k)] such that k � L, j /� L, and (k, j) is balanced or

inactive [or (j, k) is balanced and active, respectively], set L := {j} ◆ L and give the label “k” to j.

Go to Step 2.

Step 2: If gj < 0, construct the desired path by tracing labels backwards from j to i, and terminate

the algorithm. Otherwise go to Step 1.

The algorithm will terminate, that is, it will always find a node j in Step 1, because otherwise there

would exist a set L with
*

k/�L gk > 0 and all outgoing (or incoming) of L are active (or inactive,

respectively). This would imply that

0 <
,

k /�L

gk =
,

k /�L

sk �
,

{(k,j)|k�L,j /�L}

ckj +
,

{(j,k)|k�L,j /�L}

bjk,

which contradicts the feasibility of the problem.

By adding the relations (*) and by taking into account the fact pt
j

= p
0
j

(since j has negative

surplus at time t it cannot have experienced any price rise up to time t according to the rules of the

algorithm), we obtain

p
t

i
⌃ p

0
j
+ Length of path (i, i1, . . . , ik, j).

It follows that

p
t

i
� p

0
i
⌃ p

0
j
� p

0
i
+ Length of path (i, i1, . . . , ik, j) ⌃ max

j�S
pj �min

i�N
pi + L.

64

Chapter 5

SECTION 5.3

5.3.10:

We group each set of variables {fij | j � O(i)} as a subvector that is constrained in the set

Pi = {fij | fij ⌥ 0, ⌘ j � O(i),
,

j�O(i)

fij = �i}

and we write the transportation problem as

min
,

(i,j)�A

aijfij

fij = zij, ⌘ (i, j) � A
,

i�I(j)

zij = ⇥j , ⌘ j = 1, . . . , n

{fij | j � O(i)} � Pi, ⌘ i = 1, . . . , m.

We now apply the procedure for separable problems given in Example 4.4 of Subsection 3.4.4 and

its alternating direction method counterpart.

SECTION 5.4

5.4.5:

(a) Even though ⇧ = 1 is the value used in the scaling algorithm, we will initially argue in terms of

a general ⇧, specializing to the case ⇧ = 1 only when needed. Let f 0 be the complete assignment

resulting from the previous subproblem, and let f be the current assignment. Consider the flow

vector w = f
0 � f . The elements of w take the values +1, �1, or 0. For each person node i that is

unassigned under f , there is a path P (i) of alternating +1 (forward) and �1 (backward) arcs in w

that terminates at an object node j(i) that is also unassigned under f . We claim that for any pair

i1, i2 of unassigned persons, the paths P (i1) and P (i2) are node-disjoint. To see this, note that the

forward arcs of these paths correspond to assignment under f 0 and lack of assignment under f , while

65

Chapter 5

the backward arcs correspond to lack of assignment under f 0 and assignment under f . Therefore, if

k were the first node shared by P (i1) and P (i2) that would mean that either k was assigned twice

under f 0, if k were an object node, or that k is assigned twice under f , if k is a person node.

Using the definition of ↵i, it is seen that for the forward arcs (i, j) in P (i) we have ↵i + pj ⌥ aij,

while for the backward arcs we have, by ⇧-CS, ↵i + pj ⌃ aij + ⇧. Alternately subtracting and adding

these conditions along P (i), we obtain

�↵i � p
j(i) ⌃ �

,

(k,j)�P(i)

akjwkj + ⇧B(i),

where B(i) is the number of backward arcs in P (i). Since after scaling by a factor of two the arc

costs and prices from the previous subproblem, f 0 and p
0 satisfy 3⇧-CS, we similarly obtain

↵
0
i
+ p

0
j(i)
⌃

,

(k,j)�P(i)

akjwkj + 3⇧F (i),

where F (i) is the number of forward arcs in P (i). Since p
j(i) = p

0
j(i)

, by combining these two

equations, it follows that

↵
0
i
� ↵i ⌃ 4⇧|P (i)|,

where |P (i)| is the number of nodes in P (i). Summing over the set of all unassigned persons I ,

,

i�I

�
↵

0
i
� ↵i

⇥
⌃ 3⇧

,

i�I
|P (i)|.

Since the paths P (i) are all node-disjoint and the total number of nodes is 2n, we obtain the desired

relation
,

i�I

�
↵

0
i
� ↵i

⇥
⌃ 6⇧n.

(b) The implementation is similar to the O(n|A|) implementation of the auction algorithm, except

that each time a person node performs an iteration, it saves the current value of ↵0
i
� ↵i in a special

variable, say Ri. The algorithm also maintains a set S of person nodes i that are unassigned and

satisfy Ri ⌃ (6n)1/2
⇧. Every time an assignment (i, j) is broken, we examine Ri and insert i into S if

Ri ⌃ (6n)1/2
⇧. A person node is removed from S each time it bids. At the start of the subproblem,

S contains all unassigned persons. Since there is no danger of inserting a node i into S that is

already contained in S, the set insertion/deletion operations can be implemented in O(1) time by

any number of simple strategies. Thus the work of locating suitable nodes for which to bid is O(1)

per bid. By using a strategy similar to that of the O(n|A|) implementation of the auction algorithm,

one can insure that the work performed at person i between successive drops in ↵i is only O
�
deg(i)

⇥

and that each drop is by at least ⇧, where deg(i) is the degree of node i. Therefore, at most (6n)1/2+1

66

Chapter 5

iterations are performed at each person node i, and the total work is O(n1/2|A|). (The “+1” comes in

because Ri is an underestimate of ↵0
i
� ↵i, so one iteration at i might begin when ↵

0
i
�↵i > (6n)1/2

⇧.

In such iterations, no bid need be placed once ↵0
i
� ↵i has been computed and discovered to be too

high.) At termination, we have

,

i�I

�
↵

0
i
� ↵i

⇥
⌥ (6n)1/2

⇧|I |,

where I is the set of unassigned persons, and |I | is the number of nodes in I. In view of part (a), it

follows that |I | ⌃ (6n)1/2.

(c) Within each scaling subproblem, we first run the modified auction algorithm of part (b), which

takes O
�
n

1/2|A|
⇥

time. We then repeatedly apply algorithm X until the assignment is complete.

Since no more than (6n)1/2 unassigned persons can remain after the modified auction ends, algorithm

X is used O

�
n

1/2
⇥

times, for a total of O
�
n

1/2|A|
⇥

work. Thus, each subproblem takes O
�
n

1/2|A|
⇥

time for a total time of O
�
n

1/2|A| log(nC)
⇥
.

SECTION 5.5

5.5.1:

(a) The Lagrangian function is

L(x, p) =

n,

j=1

fj(xj) +

m,

i=1

pi

�
si �

n,

j=1

aijxj

⇥

and the dual functional is

q(p) =

n,

j=1

min
b
j
⌃x

j
⌃c

j

{fj(xj) � (

m,

i=1

aijpi)xj} +

m,

i=1

pisi.

(b) The partial derivatives of the dual function are

q(p)

pi

= si �
n,

j=1

aijxj(p),

where xj(p) are the unique scalars attaining the minimum in the above definition of the dual func-

tional. The relaxation method is highly parallelizable if the dependency graph defined by the matrix

A is sparse.

67

Chapter 5

(c) Here the Lagrangian function is

L(x, p) = f(x) +

m,

i=1

pi

�
si �

n,

j=1

aijxj

⇥

and the dual functional is

q(p) = min
b
j
⌃x

j
⌃c

j

{f(x) �
n,

j=1

(

m,

i=1

aijpi)xj} +

m,

i=1

pisi.

Again the relaxation method is highly parallelizable if the dependency graph defined by the matrix

A is sparse.

5.5.2:

Follow the hint and the proof of Prop. 3.1 in Section 5.3.

5.5.4:

Consider the optimal network flow problem of the hint. Clearly the primal optimal solution is the

zero flow, and from the complementary slackness conditions, we obtain that an optimal price vector

satisfies pi � pj = 0 for all arcs (i, j). Since the graph is connected, it follows that all optimal

price vectors have equal coordinates. Therefore it will be su⌥cient to show that the iteration of the

exercise can be viewed as a relaxation method for which Prop. 5.2(d) applies. Let p(t) be the price

vector after t iterations. The corresponding surplus at node i [cf. Eqs. (5.15) and (5.16)] is given by

gi

�
p(t)

⇥
=

,

j�A(i)

aji

⇤
pj(t) � pi(t)

⌅
�
,

j�A(i)

aij

⇤
pi(t) � pj(t)

⌅
, (⌅)

where A(i) is the set of neighbor nodes of i. Using the fact aij = aji and
*

j�A(i) aij = 1, we obtain

gi

�
p(t)

⇥
= �2pi(t) + 2

,

j�A(i)

aijpj(t).

A relaxation method for which Prop. 5.2(d) applies, selects at iteration t + 1 node i and leaves pj

unchanged for j ✏= i, and sets pi to a value pi(t+1) so that gi
�
p(t+1)

⇥
= ⌅igi

�
p(t)

⇥
, where ⌅i � [0, 1).

Using Eq. (⌅), this condition is written as

�2pi(t+ 1) + 2
,

j�A(i)

aijpj(t) = ⌅i

�
�2pi(t) + 2

,

j�A(i)

aijpj(t)
⇥
,

or equivalently

pi(t+ 1) = ⌅ipi(t) + (1 � ⌅i)
,

j�A(i)

aijpj(t),

68

Chapter 5

which is the iteration given in the exercise.

5.5.5:

The condition a
�
ij
⌃ pi � pj ⌃ a

+
ij

is the complementary slackness condition for f = 0 and p in

connection with the problem

minimize
,

(i,j)�A

max{a�
ij
fij , a

+
ij
fij}

subject to
,

{j|(i,j)�A}

fij =
,

{j|(j,i)�A}

fji, ⌘ i � N,

� 1 ⌃ fij ⌃ 1, ⌘ (i, j) � A.

We have that f = 0 is a primal optimal solution if and only if the condition of Exercise 5.5.2 holds,

and when this condition is applied to the preceding problem, it is equivalent to the condition (5.33)

of the exercise.

5.5.6:

See the hint.

5.5.7:

(a) Clearly ⇤ij > 0, since to increase fij (decrease fji), we must increase pi. If ⇤ij = � for all (i, j)

with fij < cij and ⇤ji = � for all (j, i) with fji > bji, we must have for all ⇤ ⌥ 0

fij(⇤) � fij <

µ

ni

gi(p), ⌘ (i, j) with fij < cij ,

fji � fji(⇤) <
µ

ni

gi(p), ⌘ (j, i) with fji > bji.

Adding and taking into account the fact fij(⇤) = fij if fij = cij and fji(⇤) = fji if fji = bji, we

obtain

�gi(p+ ⇤ei) + gi(p) < µgi(p), ⌘ ⇤ ⌥ 0,

0 < (1� µ)gi(p) < gi(p+ ⇤ei), ⌘ ⇤ ⌥ 0,

which contradicts feasibility of the primal problem. Therefore, ⇤̄ > 0.

We have

0 ⌃ fij(⇤̄)� fij ⌃
1

ni

gi(p), ⌘ (i, j) with fij < cij,

0 ⌃ fji � fji(⇤̄) ⌃ 1

ni

gi(p), ⌘ (j, i) with fji > bji,

69

Chapter 5

and for an arc (i, j) (or (j, i)) for which ⇤ij = ⇤̄ (or ⇤ji = ⇤̄) we have

µ

ni

gi(p) ⌃ fij(⇤̄)� fij .

Therefore, we have

µ

ni

gi(p) ⌃ �gi(p̄) + gi(p) ⌃ gi(p).

Hence

0 ⌃ gi(p̄) ⌃
↵

1� µ

ni

�
gi(p).

70

Chapter 6

CHAPTER 6

SECTION 6.2

6.2.1:

The synchronous convergence condition in Assumption 2.1 should be modified to read: “There exists

a sequence {sk} with s0 = 0 and sk ⌦�, such that

f(x, t) � X(k + 1), ⌘ k, x � X(k), t ⌥ sk.

Furthermore, if {ym} is a sequence such that for every k, we have ym � X(k) for all k larger than

some index mk, then every limit point of {ym} is a fixed point of f .”

The statement of the asynchronous convergence theorem remains unchanged and its proof is very

similar as in the text.

6.2.2:

Eq. (2.2) should be changed to

f(x1
, x

2
, . . . , x

m) � X(k + 1), ⌘ k, xi � X(k).

The statement of the asynchronous convergence theorem remains unchanged and its proof is very

similar as in the text.

6.2.3:

Eq. (2.2) should be changed to

f(x) X(k + 1), ⌘ k, x � X(k).

71

Chapter 6

The statement of the asynchronous convergence theorem remains unchanged and its proof is very

similar as in the text.

6.2.4:

For this example, (0,0) is the unique fixed point, and convergence occurs because x1(t) will be zero

after its first update. On the other hand, if P2[X(k)] ✏= {x | x1 = 0} and the sets X(k) satisfy the

box condition, we can’t have f [X(k)] X(k).

SECTION 6.3

6.3.1:

For the function f : ✓2 ⇣⌦ ✓2 given by f1(x1, x2) = 0 and f2(x1, x2) = x1x2, x⌅ = (0, 0) is the unique

fixed point and all the sequences generated by the asynchronous iteration (1.1) converge to x
⌅. We

show that there exists no w > 0 such that for all x ✏= 0, we have

1

w2

|x1x2| < max

⌘
|x1|
w1

,

|x2|
w2

✓
.

Choose x1 = 2, x2 = 1. Then we obtain (2/w2) < max{2/w1, 1/w2} and w1 < w2. Choose x1 = 1,

x2 = 2 and we obtain w2 < w1, a contradiction.

6.3.2:

The analog of Prop. 3.2 is:

There holds ⌧x(t)� x
⌅⌧� ⌃ �

t

A
⌧x(0)� x

⌅⌧�, where �A is the unique nonnegative solution of

� = max
k=1,...,m

{�k��bk}

if for all i

|fi(x)� x
⌅
i
| ⌃ max

k=1,...,m

⌘
�k max

j�F
k
(i)

|xj � x
⌅
j
|
✓
, (⌅)

and �A is the unique nonnegative solution of

� = �1�
�b1 + �2�

�b2 + · · · + �m�
�bm

72

Chapter 6

if for all i

|fi(x) � x
⌅
i
| ⌃

m,

k=1

�k max
j�F

k
(i)

|xj � x
⌅
j
|. (⌅⌅)

Under Eq. (⌅) the result is proved by induction on t as follows. The result holds for t = 0. Assume

that it holds for all t ⌃ t̄. Then we have

xi(t̄+ 1) = fi

�
x1

�
�
i

1(t̄)
⇥
, . . . , xn

�
�
i

n(t̄)
⇥⇥
,

and by using the induction hypothesis, we obtain

|xi(t̄ + 1) � x
⌅
i
| = |fi

�
x1

�
�
i

1(t̄)
⇥
, . . . , xn

�
�
i

n(t̄)
⇥⇥
� x

⌅
i
|

⌃ max
k=1,...,m

⌘
�k max

j�F
k
(i)

|xj(� ij (t̄))� x
⌅
j
|
✓

⌃ max
k=1,...,m

⇧
�k�

t̄�b
k

⌃
⌧x(0)� x

⌅⌧�

= max
k=1,...,m

{�k��bk}�t̄⌧x(0)� x
⌅⌧� = �

t̄+1⌧x(0)� x
⌅⌧�,

completing the induction proof. The proof under Eq. (⌅⌅) is similar.

SECTION 6.4

6.4.1:

Let

fi(p) =
ti+

j�S
i

(1 � pj)
.

If there exists a set of feasible probabilities p⌅
j
, we have p⌅ = f(p⌅). Furthermore, f is monotone.

Therefore

0 ⌃ f(0) ⌃ f
2(0) ⌃ · · · ⌃ p

⌅
.

Hence f
k(0) will converge to a vector of probabilities p̃. The asynchronous algorithm will also

converge to p̃.

6.4.2:

See the hint.

73

Chapter 7

CHAPTER 7

SECTION 7.1

7.1.1:

Let us fix some integer B > 0 and consider a time interval during which the index variable t

advances by B units. Whenever t gets incremented, some processor has completed an update. It

follows that during the time interval under consideration, some processor has completed at least B/n

updates. Since each update takes at least A3 (local) time units, the local clock of such a processor

must have advanced by at least A3

�
(B/n) � 1

⇥
units. It follows that the local clock of every other

processor had advanced by at least (A1A3/A2)
�
(B/n) � 1

⇥
. In particular, if B is large enough so

that (A1A3/A2)
�
(B/n)�1

⇥
⌥ A4 +A5, then every other processor has performed at least one update

and Assumption 1.1(a) is satisfied.

We now turn to Assumption 1.1(b). Each processor broadcasts information at least once every

A6 local time units; that is, at least once every A6/A1 global time units. This information is received

by every other processor at most A7 units later. It follows that the information available to any

processor can be outdated by at most A6/A1+A7 global time units. Upon receipt of that information,

a processor may take up to A4 + A5 additional local time units to complete the next update [that

is, up to (A4 +A5)/A1 global time units]. Thus, the information used in an update can be outdated

by at most C = (A6/A1) + A7 + (A4 + A5)/A1 global time units. In the meanwhile, each processor

may have performed up to A2C/A3 + 1 updates and the index variable may have advanced by at

most nA2C/A3 + n.

We conclude that parts (a) and (b) of Assumption 1.1 hold provided that

B ⌥ max

⌘↵
(A4 + A5)A2

A1A3

+ 1

�
n, n

A2C

A3

+ n

✓
.

74

Chapter 7

7.1.2:

(a) See parts (b) and (c) of Prop. 2.1 in Section 7.2.

(b) If c is a positive scalar then Z
⌅ = {cz⌅ | z⌅ � Z

⌅}, because Z⌅ is a subspace. Thus,

d(cz) = inf
z
⌅�Z⌅

⌧cz � z
⌅⌧ = inf

z
⌅�Z⌅

⌧cz � cz
⌅⌧ = inf

z
⌅�Z⌅

c⌧z � z
⌅⌧ = cd(z).

Fix some z⌅ � Z
⌅. Since Z⌅ is a subspace we have z⌅ + w

⌅ � Z
⌅ if and only if w⌅ � Z

⌅. Thus,

d(z � z
⌅) = inf

w
⌅�Z⌅

⌧z � z
⌅ � w

⌅⌧ = inf
{z⌅+w⌅|w⌅�Z⌅}

⌧z � z
⌅ � w

⌅⌧ = inf
y
⌅�Z⌅

⌧z � y
⌅⌧ = d(z).

(c) For any z
⌅ � Z

⌅, we define S(z⌅) =
⇧
z � Z | d(z) = ⌧z � z

⌅⌧
⌃
. For any scalar c, we let

R(c) =
⇧
z � Z | d(z) = c

⌃
. The set S(z⌅) is closed because the functions d and ⌧ · ⌧ are continuous.

Similarly, the set R(c) is closed. It follows that the set S(0)  R(1) is closed. Furthermore, if

z � S(0)  R(1), then ⌧z⌧ = 1 and the set S(0)  R(1) is bounded. We conclude that the set

S(0)  R(1) is compact.

Since condition (a) of Prop. 1.1 is assumed to hold, we have d
�
z(t⌅)

⇥
< d

�
z(0)

⇥
for each z(0) �

S(0)  R(1) and for each scenario. As far as the behavior of the algorithm during the first t⌅ time

units is concerned, there is only a finite number of di⌅erent scenarios. For any z(0) /� Z⌅ let

�

�
z(0)

⇥
= max

d

�
z(t⌅)

⇥

d

�
z(0)

⇥ ,

where the maximum is taken over all possible scenarios. This is the maximum of finitely many

numbers smaller than 1. It follows that �
�
z(0)

⇥
< 1 for every z(0) /� Z

⌅.

Since the function f(x) = Ax is continuous, it follows that z(t⌅) is a continuous function of z(0),

for every scenario. Since the function d is also continuous and since the maximum of a finite number

of continuous functions is continuous, we conclude that � is a continuous function of z(0), over the

set of all z(0) that do not belong to Z
⌅. Let � = sup

z�S(0)R(1) �(z). Here we are maximizing a

continuous function over a compact set and it follows that the supremum is attained. Thus, � < 1.

Let c be some positive scalar and consider some z(0) � S(0)  R(c). We will show that z(0)/c �

S(0)R(1). By part (b), d
�
z(0)/c

⇥
= d

�
z(0)

⇥
/c = 1, which shows that z(0)/c � R(1). Furthermore,

⌧z(0)/c⌧ = ⌧z(0)⌧/c = d

�
z(0)

⇥
/c = d

�
z(0)/c

⇥
, which shows that z(0)/c � S(0). We conclude that

z(0)/c � S(0)  R(1).

Fix some scenario and some z(0) � S(0)  R(c), and let z(t⌅) be the vector generated by the

asynchronous iteration after t⌅ time units. Because of the linearity of the iteration, if z(0) is replaced

by z(0)/c, then z(t⌅) should be replaced by z(t⌅)/c. Thus,

d

�
z(t⌅)

⇥

d

�
z(0)

⇥ =
d

�
z(t⌅)/c

⇥

d

�
z(0)/c

⇥ ⌃ �

�
z(0)/c

⇥
⌃ � < 1,

75

Chapter 7

where the inequalities follow from the definition of � and the fact z(0)/c � S(0) R(1).

Consider now some arbitrary z(0) /� Z
⌅ and let z

⌅ � Z
⌅ be such that d

�
z(0)

⇥
= ⌧z(0) � z

⌅⌧.

Notice that d
�
z(0) � z

⌅
⇥

= d

�
z(0)

⇥
= ⌧z(0) � z

⌅⌧ and this implies that z(0) � z
⌅ � S(0). Fix a

scenario. If the iteration was initialized with z
⌅ instead of z(0), the value of z(t) would be equal

to z
⌅ for all times. Using the linearity of the iteration, we conclude that if z(0) was replaced by

z(0)� z
⌅ then z(t⌅) would be replaced by z(t⌅)� z

⌅. We then have

d

�
z(t⌅)

⇥

d

�
z(0)

⇥ =
d

�
z(t⌅)� z

⌅
⇥

d

�
z(0)� z

⌅
⇥ ⌃ �

�
z(0)� z

⌅
⇥
.

Since z(0)� z
⌅ � S(0), we use the result of the previous paragraph to conclude that �

�
z(t⌅)� z

⌅
⇥
⌃

� < 1.

To summarize, we have shown that, for all z(0) /� Z⌅ and all scenarios, we have d
�
z(t⌅)

⇥
⌃ �d

�
z(0)

⇥

and � < 1. Since the description of the asynchronous iteration does not depend explicitly on t, we

can also conclude that d
�
z(t+ t

⌅)
⇥
⌃ �d

�
z(t)

⇥
for all t. It follows that d

�
z(t)

⇥
⌃ �

�t/t⌅�
d

�
z(0)

⇥
, which

shows that d
�
z(t)

⇥
converges to zero geometrically.

(d) Let us fix some x⌅ such that x⌅ = Ax
⌅+b and let z⌅ = (x⌅, . . . , x⌅) � Z⌅. Let y(t) = x(t)�x⌅ and

w(t) = z(t)� z
⌅ =

�
y(t), . . . , y(t�B + 1)

⇥
. Let W ⌅ be the set of all vectors of the form (y⌅, . . . , y⌅),

where y⌅ satisfies Ay⌅ = y
⌅. Notice that w⌅ �W ⌅ if and only if z⌅ + w

⌅ � Z
⌅.

Since x⌅ = Ax
⌅+b and x(t) is generated by the asynchronous iteration x := Ax+b, it follows that

y(t) = x(t)� x
⌅ is generated by the asynchronous iteration y := Ax+ b� x

⌅ = Ax + b� Ax
⌅ � b =

A(x� x
⌅) = Ay. Now, the distance of w(t) from W

⌅ is the same as the distance d
�
z(t)

⇥
of z(t) from

Z
⌅. Suppose that the assumptions of Prop. 1.1 hold for d

�
z(t)

⇥
. It follows that the same assumptions

hold concerning the distance of w(t) from W
⌅. Using the result of part (c), we conclude that the

distance of w(t) from W
⌅ converges to zero geometrically. This shows that d

�
z(t)

⇥
also converges to

zero geometrically.

7.1.3:

The extension of Prop. 1.1 is as follows. We assume that each function fi is jointly continuous in x

and ⌥i and that Assumption 1.1 (partial asynchronism) holds. Suppose also that there exists some

positive integer t⌅ and a continuous function d : Z ⇣⌦ [0,�) with the following properties:

(a) For every z(0) /� Z⌅, any scenario, and any choice of the parameters ⌥i(t), i = 1, . . . , n, t = 0, 1, . . .,

we have d
�
z(t⌅)

⇥
< d

�
z(0)

⇥
.

(b) For every z(0) � Z, any scenario, any t ⌥ 0, and any choice of the parameters ⌥i(�), i = 1, . . . , n,

� = 0,1, . . ., we have d
�
z(t+ 1)

⇥
⌃ d

�
z(t)

⇥
.

76

Chapter 7

Then, we will show that z⌅ � Z
⌅ for every limit point z⌅ � Z of the sequence {z(t)}.

The proof of this result follows the same lines as the proof of Prop. 1.1. Let ⌥ be a vector with

all the parameters ⌥i(�), 0 ⌃ � < t
⌅, i = 1, . . . , n. These are all the parameters that could influence

z(t⌅). Notice that the set of all possible vectors ⌥ is a Cartesian product of compact sets and is

therefore itself compact.

Let Ts(z, ⌥) be the value of z(t⌅) under scenario s, when the initial conditions are z(0) = z and for

a particular choice for the vector ⌥ of parameters. Similarly with the proof of Prop. 1.1, we define

h(z) = max
s,⌥

d

�
T
s(z, ⌥)

⇥
� d(z). (1)

Notice that T s is a continuous function of z and ⌥, for each scenario s, since it is a composition

of the continuous functions fi. As far as the behavior of the algorithm during the time interval

[0, t⌅] is concerned, the number of di⌅erent scenarios is finite. Furthermore, ⌥ belongs to a compact

set. We are therefore maximizing a continuous function over a compact set and this shows that the

maximum in Eq. (1) is attained for any z � Z.

The rest of the proof of Prop. 1.1 remains valid without any modifications, provided that we

establish that the function h is continuous, which we now prove. Let g(z, ⌥) = maxs d
�
T
s(z, ⌥)

⇥
�d(z).

The function g is continuous since it is the maximum of a finite collection of continuous functions.

We now show that h(z) = max⌥ g(z, ⌥) is continuous. Let {zk} be a sequence of elements of Z

converging to some z⌅ � Z. For each k, let ⌥k be such that h(zk) = g(zk, ⌥k), and let ⌥ be such that

h(z⌅) = g(z⌅, ⌥). For each k, we have h(zk) = g(zk, ⌥k) ⌥ g(zk, ⌥). Taking the limit as k ⌦ �, we

obtain

lim inf
k⌦�

h(zk) ⌥ g(z⌅, ⌥⌅) = h(z⌅). (2)

Let A = lim sup
k⌦� h(zk). We notice that A < � because h is bounded above by 0. We choose a

subsequence of {zk} such that h(zk) converges to A. Since the sequence {⌥k} belongs to a compact

set, we can restrict to a further subsequence along which ⌥
k converges to some ⌥

⌅. Taking the

limit along the latter subsequence, we see that h(zk) = g(zk, ⌥k) converges to g(z⌅, ⌥⌅). Thus,

lim sup
k⌦� h(zk) = g(z⌅, ⌥⌅). Now, for any ⌥ we have g(zk, ⌥k) ⌥ (z⌅, ⌥) and taking the limit along

the same subsequence we obtain g(z⌅, ⌥⌅) ⌥ (z⌅, ⌥). Since ⌥ was arbitrary, we conclude that

h(z⌅) = g(z⌅, ⌥⌅) = lim sup
k⌦�

h(zk). (3)

Equations (2) and (3) show that limk⌦� h(zk) = h(z⌅) and this establishes the continuity of h.

SECTION 7.2

77

Chapter 7

7.2.1:

(a) The only place in the proof of Prop. 2.3 where Assumption 1.1(c) was used was part (a) of

Lemma 2.3 and we only need to repeat the proof of that lemma. Suppose that xi(t + 1) ✏= xi(t).

Then xi(t) ✏= hi(xi(t)). Let A be the interval [x⌅
i
� d

⌅
, x
⌅
i
+ d

⌅]. We have

|xi(t)� x
⌅
i
| ⌃ D

�
z(t);x⌅

⇥
⌃ d

�
z(t)

⇥
⌃ d

⌅

and therefore xi(t) belongs to A. Furthermore, by Lemma 2.2, ⌧xi(t) � x
⌅⌧� ⌃ d

⌅ and it follows

that
⌥⌥
hi

�
x
i(t)

⇥
� x

⌅
i

⌥⌥ ⌃ d
⌅. Thus, hi

�
x
i(t)

⇥
� A. We thus see that xi(t + 1) is obtained as a convex

combination of two distinct elements of A. Since 0 < ⇤ < 1, xi(t + 1) must lie in the interior of A,

which shows that Lemma 2.3(a) is still valid.

(b) We demonstrate the possibility of divergence by means of the following example. Let n = 1, and

let h : ✓ ⌦ ✓ be defined by h(x) = �x. To simplify notation we write �(t) and x(t) instead of � 1
1 (t)

and x1(t). Suppose that T 1 = {0,1, . . .}, x(0) = 1, and that

�(t) = max{s | s ⌃ t and s is an integer multiple of B}

We then have, for t = 0,1, . . . B � 1,

x(t+ 1) = x(t) + ⇤(h(1)� 1) = x(t)� 2⇤.

Therefore, x(B) = 1 � 2B⇤. By a similar argument, we obtain x(2B) = (1 � 2B⇤)2 and, more

generally, x(kB) = (1 � 2B⇤)k. Clearly, if B is large enough so that 2B⇤ > 1, the sequence {x(t)}

is unbounded and divergent.

(c) To prove boundedness of the sequence {x(t)}, let x⌅ be some element of X⌅ and let

d = max
�B+1⌃t⌃0

⌧x(t) � x
⌅⌧�.

We will show, by induction on t, that ⌧x(t)�x⌅⌧� ⌃ d, for all t ⌥ �B+1. This is true by definition

for �B + 1 ⌃ t ⌃ 0 and assume that it is true up to some t ⌥ 0. Fix some i. If t ✏� T
i, then

|xi(t + 1) � x
⌅
i
| = |xi(t) � x

⌅
i
| ⌃ d. If t � T

i, then notice that ⌧xi(t) � x
⌅⌧� ⌃ d and, by the

nonexpansive property of h,
⌥⌥
hi

�
x
i(t)

⇥
� x

⌅
i

⌥⌥ ⌃ d. Furthermore, |xi
i
(t) � x

⌅
i
| ⌃ d. Thus,

|xi(t+ 1)� x
⌅
i
| ⌃ (1� ⇤)|xi

i
(t)� x

⌅
i
| + ⇤

⌥⌥
hi

�
x
i(t)

⇥
� x

⌅
i

⌥⌥ ⌃ (1 � ⇤)d+ ⇤d = d.

Consider now the following example: we have n = 2 and h(x) = Ax, where A is the matrix

A =

�
0 1

�1 0

�
.

78

Chapter 7

We are then dealing with the asynchronous linear iteration x := Cx where

C =

�
1� ⇤ ⇤

�⇤ 1� ⇤

�
.

The matrix |C| is stochastic and therefore �(|C |) = 1. Furthermore, the equation x = Cx has zero

as a unique solution. Therefore, 1 is not an eigenvalue of C and the matrix I � C is invertible. We

then see that Prop. 3.1 of Section 6.3 (necessary conditions for asynchronous convergence of linear

iterations) applies and shows that the algorithm is not guaranteed to converge, even if B = 2.

7.2.2:

Let ⌅ be the smallest of the diagonal entries of A. The asynchronous iteration x := Ax can be

rewritten as

x := x� (1� ⌅)
I � A

1� ⌅

x.

This iteration is of the form [cf. Eq. (2.6)]

x := x� ⇤(Dx� b),

where ⇤ = 1 � ⌅, b = 0, and D = (I � A)/(1 � ⌅). We have ⌅ > 0 since the diagonal entries of A

are positive. Furthermore, ⌅ < 1 because otherwise A would be the identity matrix, which is not

irreducible. (An exception is if n = 1 and A = 1; in this case however, the result of the exercise

is trivially true.) We thus have 0 < ⌅ < 1 and it follows that 0 < ⇤ < 1. We now show that

Assumption 2.3 is satisfied by the matrix D and the vector b. Indeed,

⌥⌥⌥1�
1� aii

1� ⌅

⌥⌥⌥ +
,

j ✏=i

aij

1� ⌅

=
1

1� ⌅

aii � ⌅ +

,

j ✏=i
aij

⌦
⌃ 1

1� ⌅

(1� ⌅) = 1.

This verifies Assumption 2.3(a). The equation Dx = b is equivalent to the equation Ax = x and has

the zero vector as a solution, which verifies Assumption 2.3(b). Finally, since A is irreducible, so

is D because there is a one–to–one correspondence between their nonzero entries. Therefore, Prop.

2.4 applies to the iteration x := x� ⇤(Dx� b) and implies convergence to a fixed point. It follows

that the equivalent iteration x := Ax also converges to a fixed point, that is to a vector x⌅ satisfying

Ax
⌅ = x

⌅.

SECTION 7.3

79

Chapter 7

7.3.1:

(a) Let there be three processors (n = 3), let

A =

�

"

1/2 0 1/2

1/2 1/2 0

0 1/2 1/2

�

#! ,

and suppose that information is instantaneous; that is, � i
j
(t) = t, for all t � T

i. Suppose that

x(0) = (0, 0,1), let ⇧0 be a small positive number and consider the following scenario.

(i) Processor 1 executes a large number t1 of iterations until x1(t1) ⌥ 1� ⇧0. Then x(t1) � (1, 0,1).

(ii) Processor 3 executes a large number t2�t1 of iterations until x3(t2) ⌃ ⇧0. Then x(t2) � (1, 0, 0).

(iii) Processor 2 executes a large number t3 � t2 of iterations until x2(t3) ⌥ 1 � 2⇧0. Then x(t3) �

(1, 1, 0).

Thus, at time t3, each processor has performed an update and M(t3) �m(t3) ⌥ 1� 3⇧0.

We now repeat the same sequence of events except that we use a smaller value of ⇧; namely,

⇧1 = ⇧0/2. When the new round terminates, at some time t4, we have

M(t4)�m(t4) ⌥ (1 � 3⇧1)(1� 3⇧0).

More generally, at the kth round we use ⇧k = 2�k⇧0 and, at the time t� that the kth round ends, we

have

M(t�)�m(t�) ⌥
k�1-

i=0

(1 � 3 · 2�i⇧0).

As k tends to infinity, t� also tends to infinity. However, the infinite product
+�

i=0(1 � 3 · 2�i⇧0) is

positive and it follows that M(t) � m(t) does not converge to zero. Thus, the result of Prop. 3.1

is not true. Using the same argument for the iteration ↵ := ↵A we see that Prop. 3.2 is not true

either.

(b) Let n = 2,

A =

�
1/2 1/2

1/2 1/2

�
,

and x1(0) = 0, x2(0) = 1. Let

x1(1) = x2(1) =
1

2
x1(0) +

1

2
x2(0) =

1

2
.

Then let

x1(2) = x2(2) =
1

2
x1(0) +

1

2
x2(1) =

1

4
.

From then on, let

xi(t) =
1

2
x1(t� 2) +

1

2
x2(t� 2), t ⌥ 3.

80

Chapter 7

It is easily seen that, for t ⌥ 3,

xi(t) =

�
1/2, if t is odd

1/4, if t is even.

Clearly, this is a partially asynchronous scenario with B = 2, for which the agreement algorithm

does not converge. Since the matrix A is symmetric, the above example also applies to the iteration

↵ := ↵A. Thus, Props. 3.1 and 3.2 fail to hold if Assumption 1.1(c) is relaxed.

7.3.2:

(a) We replace parts (a) and (b) of Assumption 1.1 by the assumption that for every t ⌥ 0 and every

i, j, such that (j, i) � A, at least one of the elements of the set {t, t+1, . . . , t+B� 1} belongs to T i

j
.

Part (c) of Assumption 1.1 is not relevant to the algorithm considered here and is not needed. We

also replace Assumption 3.1 by the requirement that there exists some processor i such that there

exists a positive path from i to every other processor j.

With the above assumption, the proof of Prop. 3.1 goes through with only minor modifications,

provided that we redefine � to be equal to

� = min{aij , 1� aij | (j, i) � A}.

(b) Let Ḡ be the subgraph of G obtained by removing the processor that has broken down. If there

is some processor i and a positive path from i to every other processor j in the new graph Ḡ, then

the remaining processors still satisfy the assumptions in part (a) of this exercise and will converge

to agreement. The crucial point is that the value possessed by a processor who sends no messages

cannot influence the computations of the remaining processors.

(c) With the original algorithm of Eqs. (3.2)–(3.3), if some processor j has broken down then, when

processor i executes Eq. (3.3), it will be forced to use an increasingly outdated value of xj and this

can destroy convergence to agreement for the remaining processors. [In contrast to part (b), the

value of a processor that has broken down continues to a⌅ect the progress of the algorithm.] For a

concrete example suppose that

A =

�

"

0 1 0

1/2 0 1/2

0 0 1

�

#!

and that x1(0) = 1, x2(0) = x3(0) = 0. Here, Assumption 3.1 is satisfied, with D = {3}. Suppose

that communication is instantaneous and that processor 1 breaks down right after communicating

its initial value x1(0). Then,

x3(t) = x3(0) = 0, ⌘t ⌥ 0,

81

Chapter 7

but

x2(t) =
1

2
x1(0) +

1

2
x3(0) =

1

2
, ⌘t ⌥ 0.

Thus processors 2 and 3 do not converge to agreement.

The only remedy in a situation where some processor i fails, is for the remaining processors to

detect this event and modify the matrix A so that aji = 0, for every j ✏= i, and so that Assumption

3.1 is still satisfied. Then, the remaining processors will again be able to converge to agreement.

7.3.3:

We fix some positive integer s and some scenario. We define v(t) by letting v(t) = x(t) if t ⌃ s,

vi(t+ 1) =

n,

j=1

aijvj(�
i

j
(t)), if � ⌥ s and t � T i

,

and vi(t+ 1) = vi(t) if t ⌥ s and t ✏� T
i. Let

q(t) = min
i

min
t�B+1⌃�⌃t

vi(�),

Q(t) = max
i

max
t�B+1⌃�⌃t

vi(�).

We notice that vi(t) is generated by the agreement algorithm and therefore, as shown in the proof

of Prop. 3.1, we have [cf. Eq. (3.9)]

Q(s+ 2LB + B) � q(s + 2LB + B) ⌃ ⌃

�
Q(s)� q(s)

⇥
,

where ⌃ is a positive constant smaller than 1.

Since ⇧i(t) converges to zero geometrically, there exist some C > 0, c � (0, 1) such that |⇧i(t)| ⌃

Cc
t. By comparing the equations defining xi(t) and vi(t), we see that

|vi(t) � xi(t)| ⌃
t�1,

�=s

|⇧i(�)| ⌃
�,

�=s

Cc
� =

Cc
s

1� c

, ⌘i.

It follows that

M(s+ 2LB + B) ⌃ Q(s + 2LB +B) +
Cc

s

1� c

,

m(s+ 2LB + B) ⌥ q(s+ 2LB + B) � Cc
s

1� c

,

where the functions M and m are defined by Eqs. (3.4)–(3.5). Furthermore, M(s) = Q(s) and

m(s) = q(s). Thus,

M(s + 2LB +B)�m(s + 2LB + B) ⌃ ⌃

�
M(s) �m(s)

⇥
+ ⌅(s),

82

Chapter 7

where ⌅(s) = 2Ccs/(1 � c). It is easily seen from the latter inequality that M(t) �m(t) converges

geometrically to zero.

Due to the presence of the perturbations ⇧i(t), it is not necessarily true that mi(t) is nondecreasing

in t. On the other hand, it is easily shown that

m(s + t) ⌥ m(s)�
s+t�1,

�=s

|max
i

⇧i(�)| ⌥ m(s) +
Cc

s

1� c

.

Thus,

lim inf
t⌦�

m(t) = lim inf
t⌦�

m(s + t) ⌥ m(s) +
Cc

s

1� c

. (1)

Since s is arbitrary, we can take the limit superior of both sides to obtain

lim inf
t⌦�

m(t) ⌥ m(s).

This shows that m(t) is either unbounded or it converges. We show that it cannot be unbounded.

Indeed, Eq. (1) shows that m(t) is bounded below. Furthermore, a symmetrical argument shows

that M(t) is bounded above, and since m(t) ⌃ M(t), we see that m(t) is also bounded above. We

conclude that m(t) converges to some limit y. Since M(t) � m(t) converges to zero, M(t) also

converges to y and this easily implies that xi(t) also converges to y for each i.

7.3.4:

We renumber the states of the Markov chain to rewrite P in the form

P =

�
P11 P12

0 P22

�
.

Here P11 is a m⇤m matrix, where m is the number of transient states of the Markov chain. Since

P has a single ergodic class, it follows that P22 is irreducible.

We decompose accordingly the vector ↵(t) =
�
↵

(1)(t), ↵2(t)
⇥
. Thus, the asynchronous iteration

↵ := ↵P can be rewritten as

↵
(1) := ↵

(1)
P11, (1)

↵
(2) := ↵

(1)
P12 + ↵

(2)
P22. (2)

It can be seen that �(P11) < 1. [The proof is identical with the proof that �(P̃) < 1, in Prop. 8.4 of

Section 2.8.] Thus, under the partial asynchronism assumption, iteration (1) converges geometrically

to zero. Let ↵⌅ be a positive row vector such that ↵⌅P22 = ↵
⌅ and whose components add to one.

Such a vector exists because P22 is irreducible. Consider the change of variables

xi(t) =
↵

(2)

i
(t)

↵
⌅
i

.

83

Chapter 7

We proceed, as in the proof of Prop. 3.2, to see that xi(t) is generated according to the perturbed

agreement algorithm of Exercise 7.3.3, provided that we let

⇧i(t) =
[↵(1)(t)P12]i

↵
⌅
i

,

which has been shown to converge geometrically to zero. We use the result of Exercise 7.3.3 and it

follows, as in the proof of Prop. 3.2, that ↵(2)(t) converges geometrically to c↵
⌅, for some positive

constant c. Thus, ↵(t) converges geometrically to a positive multiple of the vector (0, ↵⌅). However,

(0, ↵⌅)P = (0, ↵⌅) and (0,↵⌅) is the vector of invariant probabilities corresponding to P .

SECTION 7.4

7.4.1:

(a) Let there be two processors, let T i = {1, , 2, . . .} for i = 1, 2, let L = 1, suppose that any load

transferred from one processor is immediately delivered to the other, and suppose that information

exchanges are instantaneous. Let x1(0) = 1, x2(0) = 0. Let {⇧k} be an increasing sequence of positive

numbers whose limit is smaller than 1/2. Suppose that at some time tk we have

x1(tk) ⌥ 1� ⇧k and x2(tk) ⌃ ⇧k,

and let the processors exchange information at that time. Until the next time tk+1 that information is

exchanged, processor 1 keeps transferring parts of its load to processor 2. In particular, if a long time

elapses until information is exchanged again, we will have x1(tk+1) ⌃ ⇧k+1, and x2(tk+1) ⌥ 1� ⇧k+1.

Since ⇧k does not converge to 1/2, we see that the di⌅erence x1(t)� x2(t) does not converge to zero.

(b) The example here is similar. We have initially x2(0) = 0. As long as the load transferred

from processor 1 has not reached its destination, the condition x1(t) ⌥ x2(t) = 0 holds. Thus

x1(t + 1) ⌃ (1 � �)x1(t), where � is the constant of Assumption 4.2. Eventually, we will have

x1(t1 + 1) ⌃ ⇧1. Suppose that when this happens, all of the load in transit reaches processor 2. We

repeat this sequence, with the roles of of the two processors interchanged, to obtain x2(t2 + 1) ⌃ ⇧2

at some later time t2. We continue similarly and if the sequence {⇧k} has a limit smaller than 1/2,

the di⌅erence x1(t) � x2(t) does not converge to zero.

(c) Let there be four processors connected as in the figure.

84

Chapter 7

Figure For Exercise 7.4.1.

Let L = 3. Initially x1(0) = 3, x2(0) = x3(0) = x4(0) = 0. Suppose that at some time t we have

x1(t) = 1 + ⇧(t), x2(t) = x3(t) = 1� ⇧(t)

2
x4(t) = 0,

where ⇧(t) is positive. Let t � T
1. Processor 1 sends an amount

�
x1(t)� x2(t)

⇥
/3 = ⇧(t)/2 of load to

processor 2, which is received immediately. Thus, x2(t+ 1) = 1. Let t+ 1 � T
2. Processor 2 instead

of sending load to the lightest loaded neighbor, sends an amount
�
x2(t + 1) � x3(t+ 1)

⇥
/2 = ⇧(t)/4

to processor 3 [thus violating Assumption 4.2(a)]. We then have

x1(t + 2) = 1 +
⇧(t)

2
, x2(t + 2) = x3(t + 2) = 1� ⇧(t)

4
, x4(t) = 0.

We now interchange the roles of processors 2 and 3 and follow a similar scenario to obtain

x1(t + 4) = 1 +
⇧(t)

4
, x2(t + 4) = x3(t + 4) = 1� ⇧(t)

8
, x4(t) = 0.

We repeat the above 4–step sequence of events, periodically. All assumptions, except for Assumption

4.2(a) are satisfied but x4(t) = 0 for all t.

(d) Let there be two processors, let T 1 = T
2 be the set of all nonnegative integers and let � i

j
(t) = t

for all t. Under the requirements x1(t) ⌥ x2(t) + s12(t), x2(t) ⌥ x1(t) + s21(t), we could have:

x1(0) = 1, s12(0) = 1, x1(1) = 0, s12(1) = 0, x1(2) = 1,

x2(1) = 0, s21(0) = 0, x2(1) = 1, s21(1) = 1, x2(2) = 0.

Repeating periodically, we see that convergence fails to hold.

7.4.2:

Let there be four fully connected processors. Suppose that L = 3, x1(0) = x2(0) = x3(0) = 1,

and x4(0) = 0. Let � i
j
(t) = t for all t. Thus M(0) = 1. Suppose that processors i = 1, 2,3, send

85

Chapter 7

at time 0 an amount si4(0) =
�
xi(0) � x4(0)

⇥
/2 = 1/2 of load to processor 4. If these loads are

immediately received by processor 4, we will have x4(1) = 3/2 > 1 and M(1) > M(0).

7.4.3:

Follow the hint.

7.4.4:

The proof is by induction in d. The algorithm clearly works if d = 1. Suppose it also works for

some general d. Consider a (d+ 1)-cube and let H0, H1 be the subcubes in which the first bit in the

identity of each processor is zero (respectively one). After the first phase, for every processor in H0

there exists a processor in H1 (the one obtained by setting the first bit of its identity) who has the

same load. It follows that the load in each subcube H0,H1 is exactly one half of the total. After

stage 1, the subcubes H0, H1 do not interact and by the induction hypothesis the load is equalized in

each one of them after the additional d phases are over. Since the load in each subcube is equalized

and since the total loads in the two subcubes are equal it follows that all processors have the same

load.

SECTION 7.5

7.5.1:

The condition ⇤ > 0 is necessary for convergence even for the case of a synchronous iteration. This

is because, for the synchronous iteration, convergence obtains if and only if �(I�⇤A) < 1 and, since

A is positive definite, this implies that ⇤ > 0.

We now turn to the necessity of the condition ⇤ ⌃ c/B, where c is a constant idenpendent of

⇤ or B. As shown in Example 1.3 of Section 7.1, a necessary condition for the convergence of the

partially asynchronous algorithm is |g(B,⇤)| < 1, where

g(B, ⇤) =
�
1� ⇤(1 + ⇧)

⇥
B � 2

1�
�
1� ⇤(1 + ⇧)

⇥
B

1 + ⇧

=

1 +

2

1 + ⇧

⌦�
1� ⇤(1 + ⇧)

⇥
B � 2

1 + ⇧

.

86

Chapter 7

Let us use the notation ⇤(B) = sup{⇤ > 0 | |g(B, ⇤)| < 1}. (In particular, for any B, the condition

⇤ ⌃ ⇤(B) is necessary for convergence.) Since g is continuous, we have
⌥⌥
g

�
B,⇤(B)

⇥⌥⌥ ⌃ 1 for all B.

Recall that ⇧ < 1, which implies that 2/(1 + ⇧) > 1. The condition
⌥⌥
g

�
B,⇤(B)

⇥⌥⌥ ⌃ 1 implies that

there exists some c � (0, 1) such that
�
1� ⇤(B)(1 + ⇧)

⇥
B ⌥ c for all B. Thus, 1�⇤(B)(1 + ⇧) ⌥ c

1/B

for all B. Taking the limit as B ⌦ �, the expression c
1/B converges to 1, and this implies that

limB⌦� ⇤(B) = 0. Now, notice that

c ⌃ lim inf
B⌦�

�
1� ⇤(B)(1 + ⇧)

⇥
B

= lim inf
B⌦�

�
1� ⇤(B)(1 + ⇧)

⇥
B⇤(B)(1+⇧)/⇤(B)(1+⇧)

= lim inf
B⌦�

e
�B⇤(B)(1+⇧)

.

[We have used here the well known fact limx↵0(1� x)1/x = e
�1.] We conclude that

lim sup
B⌦�

B⇤(B) ⌃ | log c|/(1 + ⇧) <�.

This implies that there exists a constant d such that B⇤(B) ⌃ d for all B. Since the condition

⇤ ⌃ ⇤(B) is necessary for convergence, we obtain the necessary condition ⇤ ⌃ d/B.

7.5.2:

The only changes needed are the following. In the third line of Eq. (5.8), the term si(t)�iF

�
x
i(t)

⇥

becomes si(t)��iF

�
x
i(t)

⇥
and is bounded above by ⌧si(t)⌧2

/K3, because of Assumption 5.5(a). Fur-

thermore, |si(t)| should be replaced throughout by ⌧si(t)⌧. Finally, once Eq. (5.13) is established,

we invoke Assumption 5.5(b) [instead of Assumption 5.2(b)] to conclude that �F
�
x
i(t)

⇥
converges

to zero.

SECTION 7.6

7.6.1:

Let t0 be an integer. Then x̄p(t) remains constant during the interval (t0, t0 + 1), and so does �p(t).

We have,
dxp(t)

dt

= ⌅ �p(t)� µxp(t)

= ⌅

x̄p(t0)

r
⌅ � µxp(t)

= µ

�
x̄p(t0) � xp(t)

⇥
, t � (t0, t0 + 1).

87

Chapter 7

We solve this di⌅erential equation and we obtain

xp(t0 + 1) = x̄p(t0) +
�
xp(t0)� x̄p(t0)

⇥
e
�µ
.

This shows that Eq. (6.11) holds with ap(t0) = 1� e
�µ

> 0, and since ap(t0) does not depend on t0,

(6.10) is also valid.

7.6.2:

See [TsB86].

7.6.3:

Omitted.

SECTION 7.8

7.8.1:

We are dealing with the di⌅erence equation

V (t+ 1) =
�
1� ⇤(t)

⇥2
V (t) + �

2
⇤

2(t). (1)

Since
*�

t=1 ⇤
2(t) < �, we obtain limt⌦� ⇤(t) = 0. Therefore, without loss of generality, we can

assume that ⇤(t) < 1 for all t. We then obtain from Eq. (1), V (t+ 1) ⌃ V (t) + �
2
⇤

2(t), which leads

to V (t) ⌃ V (1)+
*�

�=1 ⇤
2(�) for all t. Since

*�
t=1 ⇤

2(t) < �, we see that there exists some constant

A such that V (t) ⌃ A for all t.

Using the bound on V (t), Eq. (1) yields

V (t+ 1) ⌃ V (t) � 2⇤(t)V (t) + ⇤
2(t)(A+ �

2), (2)

which leads to

0 ⌃ V (t+ 1) ⌃ V (1)� 2

t,

�=1

⇤(�)V (�) + (A+ �
2)

�,

�=1

⇤
2(�). (3)

88

Chapter 7

The last term in the right–hand side of inequality (3) is finite. Therefore,
*�

�=1 ⇤(�)V (�) must also

be finite because otherwise the right–hand side of Eq. (3) would be equal to minus infinity. Since
*�

t=1 ⇤(t) = �, this implies that lim inf t⌦� V (t) = 0.

Given some ⇧ > 0, let us choose some t0 such that V (t0) ⌃ ⇧ and (A+ �
2)
*�

�=t0
⇤

2(�) ⌃ ⇧. Using

Eq. (2), we obtain

V (t + 1) ⌃ V (t0)� 2

t,

�=t0

⇤(�)V (�) + (A+ �
2)

�,

�=t0

⇤
2(�) ⌃ ⇧+ ⇧ = 2⇧, ⌘t ⌥ t0.

Thus, lim sup
t⌦� V (t) ⌃ ⇧. Since this is true for every ⇧ > 0, we conclude that limt⌦� V (t) = 0.

89

Chapter 8

CHAPTER 8

SECTION 8.2

8.2.1:

Consider the messages sent from some processor i to some processor j. Since the times {ti | i � N}

are possibly simultaneous, any message sent at or after time ti is received after time tj . Similarly,

any message sent at or after time t
�
i

is received after time t
�
j
. We conclude that any message sent

at or after max{ti, t�i} is received after time max{tj, t�j}. This argument holds for any pair i, j of

processors and shows that the times
⇧

max{ti, t�i} | i � N
⌃

are possibly simultaneous. The argument

for
⇧

min{ti, t�
i
} | i � N

⌃
is similar.

SECTION 8.3

8.3.1:

We claim that at any time t, at most one of the nodes i1, . . . , iK is a sink. Let G(t) be the directed

acyclic graph at stage t and let Ḡ(t) be the subgraph of G(t) consisting of the nodes i1, . . . , iK and

the arcs that connect them. Notice that if a node ik is a sink in the graph G(t) then it is also a

sink in the graph Ḡ(t). Thus, in order to establish our claim, it is su⌥cient to show that Ḡ(t) has

exactly one sink at any given time. This is certainly true for t = 1, by assumption. We proceed by

induction. Assume it is true for some t. If none of the nodes i1, . . . , iK performs an arc reversal at

stage t, then Ḡ(t + 1) = Ḡ(t) and Ḡ(t + 1) has exactly one sink. If on the other hand, one of the

nodes i1, . . . , iK performs an arc reversal at time t, it is easily seen that Ḡ(t + 1) also has exactly

one sink (see the figure).

90

Chapter 8

Figure For Exercise 8.3.1. (a) The graph Ḡ(1). (b) Suppose that

Ḡ(t) has the structure shown and that node i
k

performs an arc reversal

at stage t. (c) The graph Ḡ(t + 1) has the same structure as Ḡ(t) and

has exactly one sink.

Having established that at most one of the nodes i1, . . . , iK can be a sink at any given time, we

obtain
*

K

k=1

�
Xi

k
(t + 1) � Xi

k
(t)
⇥
⌃ 1 for all t. This implies that

*
K

k=1Xi
k
(t) ⌃ t. We divide by

t, take the limit as t ⌦ �, and use the fact limt⌦�
�
Xi(t)/t) = M/n, to obtain KM/n ⌃ 1, or

M ⌃ n/K.

8.3.2:

We can assume that the mesh–points are points in d–dimensional space with integer coordinates.

We say that a node in the mesh with coordinates (x1, . . . , xd) is black or white depending on whether

x1+· · ·+xd is even or odd, respectively. Notice that any arc in the graph G joins nodes with di⌅erent

colors. Let us orient the arcs so that each arc is directed from a black to a white node. Then, all

white nodes are sinks and, when an arc reversal is performed, all black nodes become sinks. Thus,

at any time, half of the nodes are sinks and M = n/2. We argue that this is the best possible.

Indeed, no node can perform arc reversals at two consecutive time stages because an arc reversal of

its neighbors must occur in between. Thus, Xi(t) ⌃ (t/2) + 1 for every i, from which it follows that

M ⌃ n/2.

SECTION 8.4

91

Chapter 8

8.4.1:

Let M(t) be the number of messages and antimessages with timestamp less than or equal to t and

let R(t) be the number of rollbacks that reset some �i to a value less than or equal to t. We have

M(�1) = 0 and R(�1) = 0. Notice that a rollback can reset some �i to a value less than or equal

to t, if and only if processor i receives a message or antimessage with timestamp less than or equal

to t. Furthermore, distinct rollbacks are triggered by di⌅erent messages. Thus, R(t) ⌃ M(t). A

processor i can send an antimessage with timestamp less than equal to t + 1 only after a rollback

occurs that resets �i to a value less than or equal to t. Thus, the number of such antimessages is

bounded by ntR(t). (The factor of nt is present because a rollback by a processor leads, in the

worst case, to the cancellation of nt messages.) Furthermore, for any � , the number of messages

from processor i to processor j with timestamp � , is at most 1 plus the number of antimessages

with the same timestamp. (This is because exactly one antimessage has to be sent between two

consecutive messages.) Thus, the total number of messages with timestamp less than or equal to

t + 1 is bounded by the number of corresponding antimessages plus n
2(t + 1). This shows that

M(t+1) ⌃ 2ntR(t)+(t+1)n2 ⌃ 2ntM(t)+(t+1)n2. We conclude that there exists a bound f(T, n)

such that M(T) ⌃ f(T, n).

8.4.2:

(a) The modification is as follows. Whenever a processor executes a simulation step, it can “flag”

the particular message that was used in that step. Then, if an antimessage arrives, invalidating an

unflagged message, both the message and the antimessage are discarded without any further e⌅ects

and without a rollback. This modification has the same e⌅ect as artificially delaying the processing

of the unflagged message until after the corresponding antimessage is received, at which time both

of them are discarded. Therefore, the modification cannot a⌅ect the correctness of the algorithm.

(b) Suppose that processor i has received a message (t,m, j, i) and later receives another message

(t,m�
, j, i). The second message must have been generated by processor Pj after a rollback that

invalidated the first message. Since the invalidation of old messages subsequent to a rollback comes

before the reevaluation of the messages, processor Pj must have sent an antimessage (t, m, j, i, ⌅)

in between. Assuming that messages and antimessages are received in the order that they are

transmitted, then the antimessage (t,m, j, i, ⌅) must have arrived before the new message (t,m�
, j, i).

If we make the further assumption (that was omitted from the statement of the problem) that

messages and antimessages are processed by the receiving processor in the order that they are

received, it follows that by the time that (t,m�
, j, i) enters the bu⌅er of messages received and

processed, the message (t,m, j, i) will have already been deleted from that bu⌅er.

92

Chapter 8

SECTION 8.5

8.5.1:

Let Xi be the number of arc reversals performed by node i. We argue, by induction on i, that Xi = i

for each i. Consider the case i = 1. The arc (1, 0) initially points towards node 1 and in the end

it points towards node 0. Thus, node 1 performs at least one arc reversal. Subsequent to the first

arc reversal by node 1, the arc (1, 0) will point towards node 0 and its orientation can never again

change, since node 0 never performs any arc reversals. This shows that node 1 performs exactly one

arc reversal. Suppose that Xk = k. Consider the arc (k, k + 1). Initially this arc points towards

node k + 1. Just before the first arc reversal by node k, it must point towards node k. Thus, node

k + 1 performs at least one arc reversal before the first arc reversal by node k. Furthermore, since

neighbors have to take turns in performing arc reversals, node k + 1 performs k � 1 arc reversals

in between the arc reversals of node k. Finally, just after the last arc reversal of node k, the arc

(k, k+1) points towards node k+1, and when the algorithm terminates this same arc points towards

node k. Thus, node k + 1 must perform one more arc reversal, subsequent to the last arc reversal

by node k. This shows that Xk+1 ⌥ k + 1. On the other hand, we have |Xk+1 � Xk| ⌃ 1, since

neighbors take turns in performing arc reversals. This shows that Xk+1 = k + 1. The total number

of arc reversals is given by
*

n

k=1 k = (n+ 1)n/2. For the case n = 3, the answer is 6, in agreement

with Fig. 8.5.5.

8.5.2:

Suppose that G = (N,A) is acyclic. If the graph (N,A�) is not acyclic, it must have a positive

cycle that uses arc (i, j). Thus, there exists a positive path from node j to node i in the graph G.

Similarly, if the graph (N,A��) is not acyclic, there exists a positive path from node i to node j in the

graph G. Thus, if neither (N,A�) nor (N,A��) is acyclic, we can join the above described two paths

to form a positive cycle that goes through nodes i and j, which would contradict the acyclicity of

G.

8.5.3:

(a) Consider three consecutive partial arc reversals by processor i that take place at times t1, t2, t3,

respectively. Just after time t1, the list maintained by processor i is empty. If processor j has not

93

Chapter 8

performed an arc reversal between t1 and t2, then at time t2 the arc (i, j) is not in the list maintained

by processor i. Therefore, this arc must be reversed at the second arc reversal by processor i (at

time t2). At time t3, processor i must be a sink and this implies that processor j must have reversed

the direction of arc (i, j) at some time between t2 and t3.

(b) Suppose that processor i has performed Xi(t) partial arc reversals, the kth such reversal occuring

at time tk. Processor j must have performed at least one arc reversal during each one of the

time intervals (t1, t3), (t3, t5), There exist at least
�
Xi(t) � 2)/2 such intervals. Therefore,

Xj(t) ⌥
�
Xi(t)� 2)/2, or Xi(t) ⌃ 2Xj(t) + 2.

(c) Let Yd(t) = maxi Xi(t), where the maximum is taken over all nodes i whose shortest distance

from node 0 is at most d. Clearly, Y0(t) = 0 for all t, because the only node at distance 0 from the

center is the center itself, which never performs any arc reversals. Using the result of part (b), we

obtain

Yd+1(t) ⌃ 2Yd(t) + 2, ⌘t. (1)

Let D be the diameter of the graph, which is also the largest value of interest for the variable d.

The di⌅erence equation (1) is easily solved to obtain YD(t) ⌃ 2D+1 � 2. Thus, the total number

of arc reversals is bounded by nYD(t) ⌃ n2D+1, where n is the number of nodes. Since the bound

is independent of t, we see that the total number of arc reversals is finite and the algorithm must

eventually terminate.

8.5.4:

In between two consecutive arc reversals, the orientation of the arcs remains the same and any

message that gets forwarded along outgoing arcs can only travel n � 1 arcs, because the graph is

acyclic. Thus, the total number of arcs travelled is at most (n � 1)A, where A is a bound on the

number of arc reversals throughout the algorithm. In particular, we can take A = nD for the

full reversal algorithm and (using the result of Exercise 8.5.3) A = n2D+1 for the partial reversal

algorithm, where D is the diameter of the graph.

94

	Parallel and Distributed Computation: Numerical Methods
	Contents
	Preface
	Chapter 1: Introduction
	Chapter 2: Algorithms for Systems of Linear Equations and Matrix Inversion
	Chapter 3: Iterative Methods for Monlinear Problems
	Chapter 4: Shortest Paths and Dynamic Programming
	Chapter 5: Network Flow Problems
	Chapter 6: Totally Asynchronous Iterative Algorithms
	Chapter 7: Partially Asynchronous Iterative Methods
	Chapter 8: Organizing an Asynchronous Network of Processors for Distributed Computation
	Appendix A: Linear Algebra and Analysis
	Appendix B: Graph Theory
	Appendix C: Duality Theory
	Appendix D: Probability Theory and Markov Chains
	References
	Index
	Partial Solutions Manual
	Solutions: Chapter 1
	Solutions: Chapter 2
	Solutions: Chapter 3
	Solutions: Chapter 4
	Solutions: Chapter 5
	Solutions: Chapter 6
	Solutions: Chapter 7
	Solutions: Chapter 8
	Corrections

