e PARALLEL AND
DISTRIBUTED COMPUTATION:
NUMERICAL METHODS

Dimitri P. Bertsekas
John N. Tsitsiklis



Parallel and Distributed Computation:
Numerical Methods

Dimitri P. Bertsekas and John N. Tsitsiklis

Massachusetts Institute of Technology

WWW site for book information and orders

http://world.std.com/~athenasc/

Athena Scientific, Belmont, Massachusetts




Athena Scientific

Post Office Box 391
Belmont, Mass. 02178-9998
U.S.A.

Email: athenasc@world.std.com
WWW information and orders: http://world.std.com/~athenasc/

Cover Design: Ann Gallager

© 1997 Dimitri P. Bertsekas and John N. Tsitsiklis

All rights reserved. No part of this book may be reproduced by any elec-
tronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without the publisher’s permission in writing.

Originally published by Prentice-Hall, Inc., in 1989. Corrections listed at
the end.

Publisher’s Cataloging-in-Publication Data

Bertsekas, Dimitri P.

Parallel and Distributed Computation: Numerical Methods
Includes bibliographical references and index

1. Parallel processing (Electronic computers)

I. John Tsitsiklis N., joint author. II. Title.

QAT6.5.B457 1997 004’.35 97-70648

ISBN 1-886529-01-9



To Joanna and Daphne






Contents

PREFACE xv
1 INTRODUCTION 1
1.1 Parallel and Distributed Architectures 2

1.2

1.3

1.1.1 The Need for Parallel and Distributed Computation, 2
1.1.2 Parallel Computing Systems and their Classification, 3

Models, Complexity Measures, and Some Simple Algorithms 8

1.2.1 Models, 8

1.2.2 Complexity Measures, 10

1.2.3 Examples: Vector and Matrix Computations, 16
1.2.4 Parallelization of Iterative Methods, 19

Communication Aspects of Parallel and Distributed
Systems 27

1.3.1 Communication Links, 30
1.3.2 Data Link Control, 33

vii



viii

1.4

Contents

1.3.3 Routing, 37

1.3.4 Newwork Topologies, 39

1.3.5 Concurrency and Communication Tradeoffs, 68
1.3.6 Examples of Matrix-Vector Calculations, 71

Synchronization Issues in Parallel and Distributed
Algorithms 88

1.4.1 Synchronous Algorithms, 88
1.4.2  Asynchronous Algorithms and the Reduction of the
Synchronization Penalty, 95

Part1 Synchronous Algorithms 109

2 ALGORITHMS FOR SYSTEMS OF LINEAR EQUATIONS AND
MATRIX INVERSION 109

2.1

2.2

23
24

2.5

2.6

2.7

Parallel Algorithms for Linear Systems with Special
Structure 110

2.1.1 Triangular Matrices and Back Substitution, 110
2.1.2 Tridiagonal Systems and Odd-Even Reduction, 113

Parallel Direct Methods for General Linear Equations 118

2.2.1 Gaussian Elimination, 119
2.2.2 Triangularization Using Givens Rotations, 124

A Fast Direct Matrix Inversion Algorithm 128

Classical Iterative Methods For Systems of Linear
Equations 130

Parallel Implementation of Classical Iterative Methods 135

2.5.1 An Example: Poisson’s Equation, 137
2.5.2 Multigrid Methods, 139

Convergence Analysis of Classical Iterative Methods 143

2.6.1 Background on Maximum Norms and Nonnegative Matrices, 144
2.6.2 Convergence Analysis Using Maximum Norms, 151

2.6.3 Convergence Analysis Using a Quadratic Cost Function, 153
2.6.4 The Poisson Equation Revisited, 155

The Conjugate Gradient Method 158

2.7.1 Description of the Algorithm, 160
2.7.2 Speed of Convergence, 162



Contents

2.8

29

2.7.3 Preconditioned Conjugate Gradient Method, 164
2.7.4 Parallel Implementation, 165

Computation of the Invariant Distribution of a Markov
Chain 166

Fast Iterative Matrix Inversion 173

3 ITERATIVE METHODS FOR NONLINEAR PROBLEMS

3.1

3.2

33

34

3.5

Contraction Mappings 181

3.1.1 General Results, 182
3.1.2 Contractions Over Cartesian Product Sets, 185
3.1.3 Some Useful Contraction Mappings, 191

Unconstrained Optimization 198

3.2.1 The Main Algorithms, 198

3.2.2 Convergence Analysis Using the Descent Approach, 202
3.2.3 The Case of a Convex Cost Function, 206

3.2.4 Nonlinear Algorithms, 207

Constrained Optimization 210

3.3.1 Optimality Conditions and the Projection Theorem, 210

3.3.2 The Gradient Projection Algorithm, 212

3.3.3 Scaled Gradient Projection Algorithms, 215

3.3.4 The Case of a Product Constraint Set: Parallel
Implementations, 217

3.3.5 Nonlinear Algorithms, 219

Parallelization and Decomposition of Optimization
Problems 224

3.4.1 Quadratic Programming, 225

3.4.2 Separable Strictly Convex Programming, 229
3.4.3 The Proximal Minimization Algorithm, 232
3.4.4 Augmented Lagrangian Methods, 243

Variational Inequalities 264

3.5.1 Examples of Variational Inequality Problems, 264
3.5.2 Preliminaries, 267

3.5.3 The Projection Algorithm, 269

3.5.4 Linearized Algorithms, 273

3.5.5 The Cartesian Product Case: Parallel Implementations, 275

3.5.6 Nonlinear Algorithms, 278
3.5.7 Decomposition Methods for Variational Inequalities, 281

ix

180



X

4 SHORTEST PATHS AND DYNAMIC PROGRAMMING

4.1 The Shortest Path Problem 293

4.1.1 The Bellman—Ford Algorithm, 294
4.1.2 Other Parallel Shortest Path Methods, 302

4.2 Markov Chains with Transition Costs 308
4.3 Markovian Decision Problems 312

4.3.1 Discounted Problems, 316

4.3.2 Undiscounted Problems—Stochastic Shortest Paths, 317

4.3.3 Parallel Implementation of the Dynamic Programming
Iteration, 323

5 NETWORK FLOW PROBLEMS

5.1 The Linear Network Flow Problem and its Dual 332
5.2 The Relaxation Method 340

5.2.1 Application to the Shortest Path Problem, 343
5.2.2 Multiple Node Relaxation Method, 345

5.3 The ¢ — Relaxation Method 355

5.3.1 The Auction Algorithm for the Assignment Problem, 364
5.3.2 Parallel Versions of the e-Relaxation and the Auction
Algorithms, 371

5.4 Complexity Analysis of the e-Relaxation Method and its Scaled
Version 376

5.4.1 The Scaled Version of the Algorithm, 384
5.4.2 Application to the Assignment Problem, 386

5.5 Network Flow Problems with Strictly Convex Cost 390

5.5.1 The Relaxation Method, 397

5.5.2 Convergence Analysis, 398

5.5.3 The Problem without Arc Flow Bounds, 406

5.5.4 An Example: Constrained Matrix Problems, 408

5.5.5 Parallel Implementations of the Relaxation Method, 410

5.6 Nonlinear Multicommodity Flow Problems—Routing
Applications 414

Contents

291

331



Contents

Part2 Asynchronous Algorithms

6 TOTALLY ASYNCHRONOUS ITERATIVE ALGORITHMS

6.1
6.2
6.3

6.4

6.5
6.6
6.7

The Totally Asynchronous Algorithmic Model 426
A General Convergence Theorem 431

Applications to Problems Involving Maximum Norm
Contraction Mappings 434

6.3.1 Solution of Linear Systems of Equations, 434

6.3.2 Unconstrained Optimization, 437

6.3.3 Constrained Optimization and Variational Inequalities, 440

6.3.4 Dynamic Programming, 440

6.3.5 Convergence Rate Comparison of Synchronous and Asynchronous
Algorithms, 441

Applications to Monotone Mappings and the Shortest Path
Problem 445

Linear Network Flow Problems 451
Nonlinear Network Flow Problems 457

Asynchronous Relaxation for Ordinary Differential Equations
and Two-Point Boundary Value Problems 469

6.7.1 The Asynchronous Relaxation Algorithm, 470
6.7.2 Two—Point Boundary Value Problems, 477
6.7.3 The Discrete Time Case, 478

7 PARTIALLY ASYNCHRONOUS ITERATIVE METHODS

7.1
7.2

7.3

The Partially Asynchronous Algorithmic Model 483
Algorithms for Fixed Points of Nonexpansive Mappings 490

7.2.1 A Convergence Result, 490
7.2.2 Weakly Diagonally Dominant Systems of Linear Equations, 498
7.2.3 Strictly Convex Network Flow Problems, 501

Algorithms for Agreement and for Markov Chain

Problems 508

7.3.1 The Agreement Algorithm, 508

7.3.2 An Asynchronous Algorithm for the Invariant Distribution of a
Markov chain, 515

xi

425

425

481



Xii Contents

7.4 Load Balancing in a Computer Network 519
7.5 Gradient-Like Optimization Algorithms 527

7.5.1 The Algorithm and its Convergence, 527
7.5.2 The Role of the Various Parameters, 532
7.5.3 Block-lIterative Algorithms, 533

7.5.4 Gradient Projection Algorithms, 534

7.6 Distributed Asynchronous Routing in Data Networks 536

7.6.1 Problem Definition, 536
7.6.2 The Algorithm and its Convergence, 538
7.6.3 Discussion, 546

7.7 A Model in Which Several Processors Update the Same
Variables 550

7.8 Stochastic Gradient Algorithms 556

7.8.1 Description of the Algorithm and Assumptions, 558
7.8.2 A Convergence Result, 559
7.8.3 Discussion and Extensions, 567

8 ORGANIZING AN ASYNCHRONOUS NETWORK OF
PROCESSORS FOR DISTRIBUTED COMPUTATION 570
8.1 Detecting Termination of a Distributed Algorithm 571
8.2 Snapshots 579
8.3 Resource Scheduling 587

8.4 Synchronization Using Rollback: Asynchronous
Simulation 592

8.5 Maintaining Communication with a Center 605

A LINEAR ALGEBRA AND ANALYSIS 619
B GRAPH THEORY 653
C DUALITY THEORY 659

D PROBABILITY THEORY AND MARKOV CHAINS 670



Contents xiii

REFERENCES 680

INDEX 707






Preface

Parallel and distributed computing systems offer the promise of a quantum leap in the
computing power that can be brought to bear on many important problems. Whether and
to what extent this promise can be fulfilled is still a matter of speculation, but several years
of practical experience with both parallel computers and distributed data communication
networks have brought about an understanding of the potential and limitations of parallel
and distributed computation. The purpose of this book is to promote this understanding
by focusing on algorithms that are naturally suited for large scale parallelization and that
represent the best hope for solving problems which are much larger than those that can
be solved at present.

Work on parallel and distributed computation spans several broad areas, such as
the design of parallel machines, parallel programming languages, parallel algorithm de-
velopment and analysis, and applications related issues. The focus of this book is on
algorithms, and, even within this area, we restrict our attention primarily to numerical
algorithms for solving systems of equations or optimization problems. Our choice of
material is motivated by large problems for which it is essential to haness the power
of massive parallelism, while keeping the communication overhead and delays within
tolerable limits. Accordingly, we emphasize algorithms that admit a high degree of
parallelization such as relaxation methods of the Jacobi and Gauss-Seidel type, and we

XV



XVi Preface

address extensively issues of communication and synchronization. In particular, we
discuss algorithms for interprocessor communication and we provide a comprehensive
convergence analysis of asynchronous iterative methods.

The design of parallel algorithms can be pursued at several levels, and this explains
to some extent the diversity of the literature on the subject. For example:

(@) One approach is to parallelize an existing serial algorithm, perhaps after modi-
fications, or to develop a new and easier to parallelize algorithm, without being
too specific about the implementation in particular types of machines. Here one
might be concerned with the algorithm’s convergence and rate of convergence (in
either a synchronous or an asynchronous computing environment), and with the
algorithm’s potential for substantial speedup over its serial counterpart.

(b) A second approach is to focus on the details of implementation on a particular
type of machine. The issues here are algorithmic correctness, as well as time and
communication complexity of the implementation.

(c) In still another approach, the choice of the algorithm and the parallel machine are
interdependent to the point where the design of one has a strong influence on the
design of the other. A typical example is when a VLSI chip is designed to execute
efficiently a special type of parallel algorithm.

We have mostly followed the first approach, concentrating on algorithmic analysis
at a rather high level of abstraction. Our choice of algorithms, however, is such that
in most cases, the methods of parallel implementation are either evident and straight-
forward, or else are covered by our broad discussion of parallel computation given in
Chapter 1. We have not dealt with implementations in specific machines because types of
machines are rapidly changing. Nonetheless, at several points, we have made reference
to computations in regular architectures, such as mesh and hypercube, which are widely
used. We carry out the analysis of various algorithms in considerable depth, guided
by the belief that a thorough understanding of an algorithm is typically essential for its
application to a challenging problem.

The book was developed through a course that we taught to graduate students
at MIT. It is intended for use in graduate courses in engineering, computer science,
operations research, and applied mathematics. We have assumed the equivalent of a first
course in linear algebra and a grasp of advanced calculus and real analysis that most
students are exposed to by the end of their undergraduate studies. Probabilistic notions
beyond the theory of finite-state Markov chains are not needed with the exception of
Section 7.8, which deals with stochastic gradient methods. We have not required any
background in numerical analysis, graph algorithms, optimization, convexity, and duality,
and we have consequently developed this material as needed in the main body of the
text or the appendices. We note, however, that the mathematically mature reader who
has some background in some of these fields is likely to benefit more from the book,
and to gain deeper appreciation of the material.

The book can be used for several types of courses. One possibility is a course
targeted on parallel algorithms, and intended for students who already have some knowl-



Preface XVii

edge of a subset of the fields of numerical analysis, graph theory, and optimization
algorithms. Furthermore, such a course could have either a computer science flavor, by
focusing on Chapters 1 and 8, and parts of Chapters 2, and 4 through 6, or alternatively a
numerical computation flavor by focusing on Chapters 2, 3, and parts of Chapters 1 and
4 through 7. Another possibility is a general course on numerical methods with a strong
bias towards parallelizable algorithms. The book lends itself for such a course because
it develops economically a broad variety of self-contained basic material in considerable
depth.

Chapter 1 contains an exposition of some generic issues that arise in a broad
variety of parallel algorithms and are best addressed without specific reference to any
particular algorithm. In particular, we discuss the scheduling of a set of processors for the
parallel execution of a prescribed algorithm, some basic issues relating to interprocessor
communication, and the effects of the communication penalty on the amount by which an
algorithm can be speeded up. Special attention is paid to a few interesting architectures
such as mesh and hypercube. We then consider issues of synchronization, and we
contrast synchronous and asynchronous algorithms. In this chapter, we also introduce
relaxation methods of the Gauss-Seidel and Jacobi type and some associated issues of
parallelization, communication, and synchronization that are recurring themes throughout
the book.

Chapter 2 deals with parallel algorithms for systems of linear equations and matrix
inversion. It covers direct methods for general systems as well as systems with spe-
cial structure, iterative methods, including their convergence analysis, and the conjugate
gradient method.

Chapter 3 is devoted to iterative methods for nonlinear problems, such as finding
fixed points of contraction mappings, unconstrained and constrained optimization, and
variational inequalities. The convergence theory for such methods is developed in an
economical way and emphasizes the case of Cartesian product constraint sets (in a primal
and a dual setting), which lends itself naturally to parallelization and decomposition.

Chapter 4 deals with the shortest path problem and other, more general, dynamic
programming problems. The dynamic programming algorithm can be viewed as a re-
laxation method and lends itself well for parallelization. We establish (and strengthen
somewhat) the classical results for discounted and undiscounted Markovian decision
problems, and we also discuss the associated parallel computation issues.

Chapter 5 is devoted to network flow problems. In the first four sections, we deal
with the important class of linear problems, and we present some easily parallelizable
algorithms, that are conceptually related to the Gauss-Seidel and Jacobi relaxation meth-
ods. We then discuss related algorithms for network problems with nonlinear convex
cost. The methods of the first five sections can be viewed as relaxation methods ap-
plied in a space of dual (price) variables. In the last section we consider relaxation-like
methods applied to nonlinear multicommodity flow problems in the primal space of flow
variables.

The last three chapters deal with asynchronous algorithms in which each processor
computes at its own pace, using intermediate results of other processors that are possibly
outdated due to unpredictable communication delays. Among other topics, we develop



xviii Preface

asynchronous versions of all the major types of synchronous parallel algorithms that were
discussed in previous chapters.

In Chapter 6, we introduce a general class of asynchronous iterative methods (called
“totally asynchronous”), and we develop a general theorem for proving their conver-
gence. This theorem is used repeatedly to establish the validity of a broad variety of
asynchronous algorithms involving iteration mappings that are either monotone or con-
tracting with respect to a weighted maximum norm. In particular, we show convergence
of linear and nonlinear iterations involving weighted maximum norm contractions arising
in the solution of systems of algebraic or differential equations, discounted dynamic pro-
gramming, unconstrained and constrained optimization, and variational inequalities. We
also discuss iterations involving monotone mappings arising in shortest path problems,
undiscounted dynamic programming, and linear and nonlinear network flow problems.

In Chapter 7, we consider “partially asynchronous” algorithms in which some mild
restrictions are placed on the amount of asynchronism present. We prove convergence
of a variety of algorithms for fixed points of nonexpansive mappings, deterministic
and stochastic optimization, Markov chains, load balancing in a computer network, and
optimal routing in data networks.

Chapter 8 is similar in philosophy to Chapter 1 in that it deals with generic issues
of parallel and distributed computation. It discusses the organization of an inherently
asynchronous network of processors for the purpose of executing a general type of parallel
algorithm. It addresses issues like termination detection, processor scheduling, methods
for taking a “snapshot” of the global state of a computing system, synchronization via
“rollback,” and methods for maintaining communication with a center in the face of
topological changes.

Many of our subjects can be covered independently of each other, thereby allowing
the reader or an instructor to use material selectively to suit his/her needs. For example,
the following groups of sections can be omitted without loss of continuity:

(a) Sections 2.1 to 2.3, that deal with direct methods for linear systems of equations.

(b) Sections 2.8, 4.2, 4.3, 7.3, 7.4, 7.7, and 7.8 that develop or use the theory of
Markov chains.

(c) The material on decomposition methods based on duality in Section 3.4 and Sub-
section 3.5.7.

(d) The dynamic programming material of Sections 4.2 and 4.3.
(e) The material on linear network flow problems in Sections 5.1 to 5.4, and 6.5.

(f) Sections 5.6 and 7.6, dealing with nonlinear multicommodity network flow prob-
lems. '

(g) The material on nonlinear network flow problems in Sections 5.5, 6.6, and Sub-
section 7.2.3.

Each major section contains several exercises that, for the most part, illustrate and
supplement the theoretical developments of the text. They include algorithmic variations,
convergence and complexity analysis, examples, and counterexamples. Some of the



Preface . xix

exercises are quite challenging, occasionally representing recent research. The serious
reader will benefit a great deal from these exercises, which constitute one of the principal
components of the text. Solutions of all the exercises are provided in a manual that will
be available to instructors.

A substantial portion of our material has not been covered in other textbooks. This
includes most of the last two sections of Chapter 1, much of the last two sections of
Chapter 3, Sections 5.2 through 5.5, the entire Chapters 6 and 7, and most of Chapter
8. Some of the material presented was developed as the textbook was being written and
has not yet been published elsewhere.

The literature on our subject is enormous, and our references are not comprehensive.
We thus apologize in advance to the many authors whose work has not been cited. We
have restricted ourselves to listing the sources that we have used, together with a selection
of sources that contain material supplementing the text.

We are thankful to a number of individuals and institutions for their help. The
inquisitive spirit of our students motivated us to think harder about many issues. We
learned a great deal about distributed computation through our long association and
collaboration with Bob Gallager and Pierre Humblet. We have appreciated our research
collaboration with Michael Athans, David Castanon, Jon Eckstein, Eli Gafni, and Christos
Papadimitriou, that produced some of the material included in the book. Tom Luo and
Cuneyt Ozveren contributed research material that was incorporated in exercises. We are
thankful for the helpful comments of a number of people, including Chee-Seng Chow,
George Cybenko, Stratis Gallopoulos, George Hart, and Tom Richardson. Our greatest
debt of gratitude to a single individual goes to Paul Tseng who worked closely with us on
several of the topics presented, particularly the communication algorithms of Section 1.3,
the network flow algorithms of Chapter 5, and the partially asynchronous algorithms of
Section 7.2. In addition, Paul reviewed the entire manuscript, sharpened several proofs
and results, and contributed much research in the form of exercises. We were fortunate to
work at the Laboratory for Information and Decision Systems of M.LI.T., which provided
us with a stimulating research environment. Funding for our research was provided by
the Army Research Office through the Center for Intelligent Control Systems, Bellcore
Inc., the National Science Foundation, and the Office of Naval Research.






Infroduction

As we embark on the study of parallel and distributed numerical methods it is useful
to reflect on their differences from their serial counterparts. There are several issues
related to parallelization that do not arise in a serial context. A first issue is task alloca-
tion, that is, the breakdown of the total workload in smaller tasks assigned to different
processors, and the proper sequencing of the tasks when some of them are interdepen-
dent and cannot be executed simultaneously. A second issue is the communication of
interim computation results between the processors; our objective here is to carry out
the communication efficiently, and to estimate its impact on performance. A third issue
is the synchronization of the computations of different processors. In some methods,
called synchronous, processors must wait at predetermined points for the completion of
certain computations or for the arrival of certain data, and the mechanism used to enforce
such synchronization may have an important effect on performance. In other methods,
called asynchronous, there is no requirement for waiting at predetermined points, and
the corresponding implications for the methods’ validity must be assessed. Other issues
relate to the development of appropriate performance measures for parallel methods, and
the effects of the system’s architecture on these performance measures.

Issues such as the above are important in a variety of contexts and are, therefore,
most economically studied without reference to a specific numerical method. We address
some of them in this introductory chapter, and we develop some results and methodolog-
ical approaches that will be used throughout the book. Our analysis is not always fully

1



2 Introduction Chap. 1

rigorous because we do not always adhere to formal models of distributed computation.
This helps us develop the main ideas in a more accessible and intuitive manner than it
would be possible otherwise. At the same time our analysis is sufficiently detailed to
provide the basis for more rigorous proofs where needed, and to convince most readers
of the essential correctness of our results.

Section 1.1 contains a brief overview of some application domains and of the
presently existing parallel computing systems. In Section 1.2, we consider a simple
model of synchronous parallel computation, in which communication issues are ignored,
and discuss the concepts of time complexity, speedup, and efficiency. We also discuss
issues arising in the parallelization of iterative methods. In Section 1.3, we consider
communication issues in parallel and distributed systems. Following a brief discussion
of data link control and routing, we formulate some basic communication problems
that arise frequently in the algorithms of subsequent chapters, and we provide optimal
or nearly optimal algorithms for these problems. At the same time, we discuss the
properties of some of the more popular processor interconnection networks. In Section
1.4, we consider methods for algorithm synchronization. We also introduce asynchronous
algorithms, compare them informally with their synchronous counterparts, and provide a
glimpse of some of their interesting convergence properties that will be the focal point
of Chapters 6 and 7.

1.1 PARALLEL AND DISTRIBUTED ARCHITECTURES

Parallel and distributed computation is currently an area of intense research activity,
motivated by a variety of factors. There has always been a need for the solution of
very large computational problems, but it is only recently that technological advances
have raised the possibility of massively parallel computation and have made the solution
of such problems possible. Furthermore, the availability of powerful parallel computers
is generating interest in new types of problems that were not addressed in the past.
Accordingly, the development of parallel and distributed algorithms is guided by this
interplay between old and new computational needs on the one hand, and technological
progress on the other. To appreciate this effect, we briefly discuss some application areas
and the types of computing systems that new technologies have made possible.

1.1.1 The Need for Parallel and Distributed Computation

We restrict attention to numerical computation, since this is the major application consid-
ered in this book. Symbolic computation and artificial intelligence applications have also
played an important role in the development of the subject, but are outside our scope.
The original needs for fast computation have been in a number of contexts involving
partial differential equations (PDEs), such as computational fluid dynamics and weather
prediction, as well as in image processing, etc. In these applications, there is a large
number of numerical computations to be performed. The desire to solve more and more



Sec. 1.1 Parallel and Distributed Architectures 3

complex problems has always been running ahead of the capabilities of the time, and has
provided a driving force for the development of faster, and possibly parallel, computing
machines. The above mentioned types of problems can be easily decomposed along a
spatial dimension, and have therefore been prime candidates for parallelization, with a
different computational unit (processor) assigned the task of manipulating the variables
associated with a small region in space. Furthermore, in such problems, interactions
between variables are local in nature, thus leading to the design of parallel computers
consisting of a number of processors with nearest neighbor connections.

More recently, there has been increased interest in other types of large scale com-
putation. Some examples are the analysis, simulation, and optimization of large scale
interconnected systems, queueing systems being a noteworthy representative. Other ex-
amples relate to the solution of general systems of equations, mathematical program-
ming, and optimization problems. A common property of such problems, as they arise
in practice, is that they can be decomposed, but the subtasks obtained from such a de-
composition tend to be fewer and more complex than those obtained in the context of
partial differential equations. In particular, the regular and repetitive structure of PDEs
is lost. Accordingly, one is led to use fewer and more powerful processors, coordinated
through a more complex control mechanism.

In both of the above classes of applications, the main concerns are cost and speed:
the hardware should not be prohibitively expensive, and the computation should terminate
within an amount of time that is acceptable for the particular application.

A third area of application of parallel, or rather distributed, computation is in infor-
mation acquisition, information extraction, and control, within geographically distributed
systems. An example is a sensor network in which a set of geographically distributed
sensors obtain information on the state of the environment and process it cooperatively.
Another example is provided by data communication networks in which certain func-
tions of the network (such as correct and timely routing of the messages traveling in the
network) have to be controlled in a distributed manner, through the cooperation of the
computers residing at the nodes of the network. In this context of distributed computa-
tion, the predominant issues are somewhat different from those discussed earlier. Besides
cost and speed, there is a more fundamental concern: the distributed system should be
able to operate correctly in the presence of limited, sometimes unreliable, communication
capabilities, and often in the absence of a central control mechanism.

1.1.2 Parallel Computing Systems and their Classification

We discuss here how technology has responded to the computational needs just men-
tioned, and we provide a classification of existing systems. An important distinction is
between parallel and distributed computing systems. Roughly speaking, parallel com-
puting systems consist of several processors that are located within a small distance
of each other. Their main purpose is to execute jointly a computational task and they
have been designed with such a purpose in mind; communication between processors
is reliable and predictable. Distributed computing systems are different in a number of



4 Introduction Chap. 1

ways. Processors may be far apart, and interprocessor communication is more prob-
lematic. Communication delays may be unpredictable, and the communication links
themselves may be unreliable. Furthermore, the topology of a distributed system may
undergo changes while the system is operating, due to failures or repairs of communi-
cation links, as well as due to addition or removal of processors. Distributed computing
systems are usually loosely coupled; there is very little, if any, central coordination and
control. Each processor may be engaged in its own private activities while at the same
time cooperating with other processors in the context of some computational task. Often,
the cooperative computation in a distributed computing system is not the raison d’étre
of the system; for example, a data network exists in order to service some data com-
munication needs, and the distributed computation taking place in the network is only
a side activity supporting the main activity. For this reason, while the architecture of a
parallel system is typically under the control of a system’s designer, the structure of some
distributed systems is dictated by exogenous considerations. Our subsequent discussion
in this section is geared toward parallel computing systems. A number of issues more
relevant to distributed systems will be touched upon in Sections 1.3 and 1.4. Still, there
is no clear dividing line between parallel and distributed systems: several algorithmic
issues are similar and we will often use the two terms interchangeably.

Traditional serial computers are characterized by the presence of a single locus
of control that determines the next instruction to be executed. The data to be operated
upon, during the execution of each instruction, are fetched from a global memory, one at
time. Thus, only one instruction is executed at a time, while the speed of memory access
and the speed of input—output devices can slow down the computation. Several methods
have been developed for alleviating these bottlenecks, cache memories and pipelining,
for example. The first supercomputers were developed on the basis of such advanced
computer architecture designs. By means of intelligent memory organization and use of
pipelining, supercomputers have been able to execute vector operations (e.g., addition of
two vectors) in time comparable to the time required for scalar operations (e.g., addition
of two numbers). Thus, as far as the user is concerned, supercomputers behave as if the
components of a vector are operated upon simultaneously. Nevertheless, there seem to
be some fundamental limitations to the speed of fast serial computers, notwithstanding
the fact that they are very costly.

Parallel computers have deviated from the above described model in a variety of
ways. The first such computers consisted of a one— or two—dimensional array of proces-
sors, with nearest neighbor interconnections. Such an interconnection pattern is very nat-
ural for spatially decomposable problems like PDEs and image processing. Furthermore,
there was a host computer overseeing and controlling the progress of the computation
by passing to the processors the instruction to be executed next.

Processor arrays are well suited for the applications for which they are designed,
but not necessarily for general purpose computation. Thus, more coarse—grained parallel
computers have been introduced, in which each processor has considerably more control
of its own computations, together with more computational power. Accordingly, the pro-
cessors in such parallel computers are less tightly coupled. Such systems are sometimes
called multiprocessors, and they are designed so that they can flexibly support general
purpose computation.



Sec. 1.1 Parallel and Distributed Architectures 5

Another line of development, resting on recent advances in very large scale inte-
gration (VLSI) technology, has led to closely coupled parallel computing systems (all
computational elements are often placed on a single chip), designed for a special pur-
pose, such as solving systems of linear equations with special structure, or performing fast
Fourier transforms. Here the movement of data is very regular and the traditional notion
of a stored program is not quite applicable; in effect, much of the program is encoded
in the system hardware. Systolic arrays provide a prime example of such computing
systems.

Still, the above discussion is too simple to accurately describe the wealth of parallel
computers available today. For example, there are systems consisting of a large number
of processors connected in some regular fashion, reminiscent of processor arrays, which
are also capable of general purpose computation.

There are several parameters that can be used to describe or classify a parallel
computer and we refer to these briefly.

(@) Type and number of processors. There are parallel computing systems with
thousands of processors. Such systems are called massively parallel, and hold the great-
est promise for significantly extending the range of practically solvable computational
problems. A diametrically opposite option is coarse—grained parallelism, in which there
is a small number of processors, say of the order of 10. In this case, each processor is
usually fairly powerful, and the processors are loosely coupled, so that each processor
may be performing a different type of task at any given time.

(b) Presence or absence of a global control mechanism. Parallel computers almost
always have some central locus of control, but the question is one of degree: At what
level of detail is the operation of the processors controlled? At one extreme, the global
control mechanism is only used to load a program and the data to the processors, and
each processor is allowed to work on its own thereafter. At the other extreme, the control
mechanism is used to instruct each processor what to do at each step, as in the processor
arrays mentioned earlier. Intermediate situations are also conceivable. A related popular
classification along these lines distinguishes between SIMD (Single Instruction Multiple
Data) and MIMD (Multiple Instruction Multiple Data) parallel computers, referring to
the ability of different processors to execute different instructions at any given point in
time.

(c) Synchronous vs. asynchronous operation. The distinction here refers to the
presence or absence of a common global clock used to synchronize the operation of the
different processors. Such synchronization is present in SIMD machines, by definition.
Synchronous operation has some desirable properties: the behavior of the processors is
much easier to control and algorithm design is considerably simplified. On the other
hand, it may require some undesirable overhead and, in some contexts, synchronization
may be just impossible. For example, it is quite hard to synchronize a data communi-
cation network and, even if this were feasible, it is questionable whether the associated
overhead can be justified. Some related issues are discussed in Section 1.4. Finally, it
should be noted that a parallel computing system operating asynchronously can simulate
a synchronous system (see Section 1.4).



6 Introduction Chap. 1

(d) Processor interconnections. A significant aspect of parallel computers is the
mechanism by which processors exchange information. Generally speaking, there are
two extreme alternatives known as shared memory and message—passing architectures,
and a variety of hybrid designs lying in between. The first alternative uses a global shared
memory that can be accessed by all processors. A processor can communicate to another
by writing into the global memory, and then having the second processor read that same
location in the memory. This solves the interprocessor communication problem, but
introduces the problem of simultaneous accessing of different locations of the memory
by several processors. A common approach for handling memory accesses is based on
switching systems, such as the one depicted in Fig. 1.1.1. Naturally, the complexity of
such switching systems has to increase with the number of processors; this is reflected in
longer memory access times. On the other hand, under such an architecture, algorithm
design is simplified, because, on a high level, the system behaves as if all processors
were directly connected to each other.

P

A 2

3

P

®@E 606

Figure 1.1.1 A switching system connecting processors P; to memory elements M;.
Here the intermediate nodes correspond to switches. When a message reaches a switch,
it can continue on either of the two outgoing links, depending on the destination and the
routing algorithm being used. Notice that in this example, there are two alternative paths
from each processor to each memory element, used to reduce the probability that two
processors simultaneously attempt to utilize the same link. Such redundancy improves
reliability, and provides some flexibility which reduces congestion.

In the second major approach, there is no shared memory, but rather each processor
has its own local memory. (Of course, each processor may have its own local memory
even if there is a shared memory.) Processors communicate through an interconnection
network consisting of direct communication links joining certain pairs of processors, as
shown in Fig. 1.1.2. Which processors are connected together is ‘an important design
choice. It would be best if all processors were directly connected to each other, but
this is often not feasible: either there is an excessive number of links, which leads to
increased cost, or the processors communicate through a shared bus, which leads to
excessive delays when the number of processors is very large, due to the necessary bus
contention.

There are also several possibilities for Aybrid designs that combine certain features
from the different approaches just described. Some examples are shown in Fig. 1.1.3,
although several more combinations are possible.



Sec. 1.1 Parallel and Distributed Architectures 7

M, M,

Figure 1.1.2 An interconnection network
m. M joining a set of processors P;, each one
3 4 e
endowed with its own local memory M;.

P, Ps

(a) (b)

Figure 1.1.3 Examples of hybrid designs: (a) coexistence of a shared memory and
a point-to—point network; and (b) clusters of processors: a high speed bus serves for
intracluster communication, and an interconnection network is used for intercluster com-
munication.

When distant processors communicate through an interconnection network, there
is usually a choice of several paths that can be used. Paths should be chosen so as to
avoid underutilization of some at the expense of congestion of others. Furthermore, path
selection has to be done locally, by processors that have only partial information on the
congestion levels at distant parts of the network. How to do this best is the subject of
the distributed routing problem. Routing in interconnection networks is briefly discussed
in Subsection 1.3.3, and a particular formulation of the routing problem, relevant to data
communication networks, is studied in Chapters 5 and 7. ‘

The structure (topology) of interconnection networks is very important in both
parallel and distributed computing systems, but there is an important difference. In
parallel computers, the interconnection network is under the control of the designer



8 Introduction Chap. 1

and for this reason it is usually designed to be very regular, whereas in some distributed
systems, like data communication networks, the topology of the network is predetermined
and is usually irregular.

1.2 MODELS, COMPLEXITY MEASURES, AND SOME SIMPLE
ALGORITHMS

1.2.1 Models

There is a variety of models of parallel and distributed computation, incorporating dif-
ferent assumptions on the computing power of each individual processor and on the
interprocessor information transfer mechanism. For the applications considered in this
book, formal models of parallel computation are not essential and we refer the reader to
the literature for more detailed expositions (see the notes and sources at the end of the
chapter).

Loosely stated, we shall assume that each processor is capable of executing cer-
tain basic instructions (such as the basic arithmetic operations, comparisons, branching
instructions of the “if ... then” type, etc.), and that there is a mechanism through which
processors may exchange information. Concerning the processors’ computational power,
it will be often assumed that each basic instruction requires one time unit. Concerning
information exchange, we shall sometimes make the simplifying assumption that infor-
mation transfers are instantaneous and cost—free. On other occasions, we shall assume
that the processors communicate through a shared memory or by exchanging messages
through an interconnection network. In the latter case, more specific assumptions on
the delay incurred by messages as they travel through the network will be introduced as
needed.

We postpone the discussion of communication issues for Section 1.3. We now
describe in some detail a simple model that will be used to illustrate certain key aspects
of parallel computation. This model is actually adequate for most of the synchronous
algorithms considered in this book, as long as communication issues are ignored.

Representation of Parallel Algorithms by Directed Acyclic Graphs

A directed acyclic graph (DAG) is a directed graph that has no positive cycles, that is,
no cycles consisting exclusively of forward arcs (see Appendix B). A DAG can be used
to represent a parallel algorithm, as we proceed to show.

Let G = (N, A) be a DAG, where N = {1,...,|N|} is the set of nodes, and A is
the set of directed arcs. Each node represents an operation performed by an algorithm,
and the arcs are used to represent data dependencies. In particular, an arc (7,j) € A
indicates that the operation corresponding to node j uses the results of the operation
corresponding to node ¢. An operation could be elementary (e.g., an arithmetic or a
binary Boolean operation, as shown in Fig. 1.2.1), or it could be a high-level operation
like the execution of a subroutine.



Sec. 1.2 Models, Complexity Measures, and Some Simple Algorithms 9

Figure 1.2.1 Representation of an
algorithm for evaluating the arithmetic
expression (x| + x2)(z2 + z3) by means
of a DAG. The label at each node indicates
the operation corresponding to that node. In
(xy +x3) (x5 +x3) particular, the label S stands for squaring.

X1X3 + XX

We introduce some graph-theoretic terminology. We say that node ¢ € N is a
predecessor of node j € N if (i,7) € A. The in—degree of node ¢ € N is the number
of predecessors of that node. The out—degree of node ¢ € N is the number of nodes for
which ¢ is a predecessor. Nodes with in—degree zero are called input nodes and nodes
with out—degree zero are called output nodes. We use Ny to denote the set of nodes
that are not input nodes. A positive path is a sequence iy, ...,ix of nodes such that
(ik,%%k+1) € Afor k=0,..., K —1. The number K is called the length of the path. The
depth of a DAG is defined as the largest length of the positive paths, and is denoted by
D. It is seen that D is finite, as a consequence of acyclicity, and that a longest positive
path must start at an input node and end at an output node. We assume throughout that
G has at least one arc and therefore D > 1.

Let us denote by z; the result of the operation corresponding to the ith node in the
DAG. Then, the DAG can be viewed as a representation of functional dependencies of
the form

z; = fi({:cj | 7 is a predecessor of z})

Here f; is a function describing the operation corresponding to the ith node. If i is an
input node, then z; does not depend on other variables and is viewed as an external input
variable. Thus, the operation corresponding to an input node ¢ essentially amounts to
reading the value of the input variable x;, and we will assume that this takes negligible
time. For any node 7 that is not an input node (i.e., ¢ € Ny), we shall assume that the
corresponding operation (that is, the evaluation of the function f;) takes one time unit.
This assumption is reasonable if each node represents an arithmetic operation. However,
in more complicated numerical algorithms, the execution times corresponding to different
nodes could be widely different. In that case, the assumption of unit time per operation
may be considerably violated, with an attendant complication of the scheduling issues
discussed below.

A DAG is only a partial representation of an algorithm. It specifies what operations
are to be performed, on what operands, and imposes certain precedence constraints on



10 Introduction Chap. 1

the order that these operations are to be performed. To determine completely a parallel
algorithm we have to specify which processor performs what operation and at what time.
Let us assume that we have available a pool of p processors and that each processor
is capable of performing any one of the desired operations. For any node ¢ that is
not an input node (i.e., ¢ € Np), let P; be the processor assigned the responsibility of
performing the corresponding operation. Also, for z € Ny, we let ¢; be a positive integer
variable specifying the time that the operation corresponding to node ¢ is completed. No
processors are assigned to input nodes, and we use the convention ¢; = O for every input
node ¢. There are two constraints that have to be imposed:

(a) A processor can perform at most one operation at a time. Thus, if 2 € Ny, 7 € Ny,
t # j, and t; = t;, then P; # P;.

(b) If (4,5) € A, then t; > t; + 1. This requirement reflects the fact that the operation
corresponding to node j can only start after the operation corresponding to node ¢
has been completed.

Once P; and t; have been fixed, subject to the above constraints, we say that the
DAG has been scheduled for parallel execution, and we call the set {(i, P,t)|i¢€ No}
a schedule.

The above described setup could correspond to a variety of actual implementations.
For example, processor P; could store the result z; of its operation in a shared memory
from where it can be retrieved by other processors. Alternatively, in a message—passing
implementation, processor P; sends a message with the value of z; to any processor
P; that needs this value [that is, (i,7) € A]. In practice, a memory access or the
transmission of a message may require some time and this has been neglected in our
earlier discussion. For example, if a transmission of a message requires exactly 7 time
units, and if (¢, j) € A, then the constraint ¢; > t; 4+ 1 should be modified to

and

2t +T7+1, if P; # P;.
In fact, even this requirement is rather crude, because the message delay ~ may depend
on the location of processors P; and P; in an interconnection network. In any case,
memory access times and message delays are assumed to be negligible in this section
and will be addressed in detail in Section 1.3.
1.2.2 Complexity Measures
We first define some notation that is used throughout the text. Let A be some subset

of Rand let f: A~ Rand g : A — R be some functions. The notation f(z) =
O(g(x)) [respectively, f(z) = Q(g(x)) | means that there exists some positive constant



Sec. 1.2 Models, Complexity Measures, and Some Simple Algorithms 11

c and some z, such that for every z € A satisfying = > zo, we have |f(z)| < cg(x)
[respectively, f(z) > cg(z)]. The notation f(z) = ©(g(z)) means that both f(z) =
O(g(z)) and f(z) = Q(g(x)) are true. We also use logz to denote the logarithm of z
with base 2. Thus, z = 2'°¢% for every nonnegative real number z.

Complexity measures are intended to quantify the amount of computational re-
sources utilized by a parallel algorithm. Some interesting complexity measures are the
following:

(@) The number of processors

(b) The time until the algorithm terminates (time complexity)

(c¢) The number of messages transmitted in the course of the algorithm (communication
complexity)

Complexity measures are often expressed as functions of the size of the problem
being solved, informally defined as the number of inputs to the computation. (For
example, in the problem of adding n integers, n is a natural measure of problem size.)
If the problem size is held constant, it is still possible that the resources used depend
on the actual values of the input variables. The usual approach in this case is to count
the amount of resources required in the worst case over all possible choices of data
corresponding to a given problem size.

There is a further subtlety in the definition of time complexity. It is conceivable
that an algorithm has terminated, meaning that the desired outputs of the computation are
available at some processors, but no individual processor is aware of this fact. In such
a case, it is natural to count the additional time required for the processors to become
aware of termination.

Time Complexity of Algorithms Specified by a DAG

In the case of parallel algorithms specified by a DAG, time complexity is easy to define
precisely, as we proceed to show. Let G = (IV, A) be a DAG representing some parallel
algorithm. Let {(z, P;,t;) | ¢ € Np} be a schedule for this DAG that uses p processors.
The time spent by such a schedule is equal to max;c v t;. We define T, as the minimum of
max;e y t;, where the minimum is taken over all possible schedules that use p processors.
We view T, as the time complexity of the algorithm described by G. Note that T}, is a
function of the number p of available processors.
We define

T = o 21111 Tp.
It is seen that T, is a nonincreasing function of p, and is bounded below by 0. Since T},
is integer valued, there exists a minimal integer p* such that T, = T, for all p > p*.
We view T, as the time complexity of the algorithm specified by G when a sufficiently
large number of processors (at least p*) is available.
We continue with a few observations. The quantity 77 is the time needed for
a serial execution of the algorithm under consideration. Evidently, T} is equal to the



12 Introduction Chap. 1

number of nodes in the DAG that are not input nodes. Another important fact is that
T is equal to the depth of the DAG, which we proceed to prove.

Let d,...,ix be a longest positive path in G. Then, node 7 is an input node and
K is equal to the depth D, by the definition of D. For any schedule, we have ¢;, = 0
and t;,,, > t;, + 1 (for k = 0,...,K — 1), and it follows that ¢;, > K = D. We
conclude that T, > D. For the reverse inequality, we assign a different processor P;
to each node ¢ and we let ¢; be the number of arcs in a longest positive path from an
input node to node 7. (We set ¢; = O if 7 is itself an input node.) If (z,j) € A then
t; > t; + 1. This is because we can take a longest positive path from an input node to
node ¢ and append arc (¢, j) to obtain a path to node j. It follows that we have a valid
schedule and the corresponding time is max; t; = D. Therefore, T, < D, which proves
that T, = D.

For an arbitrary value of p, we have T; > T, > T,,. The exact value of T}, is not
easy to determine, in general. In fact the problem of computing T,, given a particular
DAG and a value of p, is a difficult combinatorial problem. This is not necessarily a
concern because, as will be seen, there are some simple useful bounds for 75,.

Properties of T},

Let us fix a DAG G. Our first result provides a fundamental limitation on the speed of
a parallel algorithm.

Proposition 2.1. Suppose that for some output node ¢, there exists a positive
path from every input node to . Furthermore, suppose that the in—degree of each node
is at most 2. Then,

T 2 logn,

where n is the number of input nodes.

Proof. We say that a node j in the DAG depends on £ inputs if there exist k£ input
nodes and a positive path from each one of them to node j. (For completeness, we
also say that an input node j depends on one input.) We prove, by induction on k, that
t; > logk for every node j depending on k inputs and for every schedule. The claim
is clearly true if K = 1. Assume that the claim is true for every k < ko and consider a
node j that depends on kg + 1 inputs. Since j can have at most two predecessors, it has
a predecessor £ that depends on at least [(ko + 1)/2] inputs. Then, using the induction
hypothesis,

ko+1

thtz+1210g[ l+1210g(ko+1),

and the induction is complete. Q.E.D.

The next result expresses the fact that if the number of processors is reduced by a
certain factor, then the execution time is increased by at most that factor.



Sec. 1.2 Models, Complexity Measures, and Some Simple Algorithms 13

Proposition 2.2. If c is a positive integer and g = cp then T}, < cTj,.

Proof. Consider a schedule which takes time T, using g processors. At each stage,
at most ¢ operations are performed, and can be carried out in at most ¢/p = c time units
using p processors. We have thus obtained a schedule with p processors which takes at
most cT; time units. Q.E.D.

Another useful result is the following:

Proposition 2.3. For every p, we have

T
T,,<T°°+;1.

Proof. Consider a schedule S for which the execution time is equal to T, and, for
every positive integer 7, let n, be the number of nodes ¢ for which ¢; = 7. We define a
new schedule S’ that uses only p processors. The schedule S’ proceeds in phases. At the
Tth phase, we perform the operations that were scheduled for time 7 under the original
schedule S. Given that there are p processors available, the 7th phase can be completed
in [n,/p] time units. Since T, cannot be larger than the time required by schedule S’,
we obtain

40 n Lo n T
T, < {—T-‘<Z<—T+l>=—l+Tw,
T=1 p T=1 p
where we have used the fact that ZZ‘:I n, is equal to 17, the total number of nodes in
the DAG that are not input nodes. Q.E.D.

The following result is a corollary of Prop. 2.3.

Proposition 2.4. (a) If p > T;/T, then T, < 2T. More generally, if p =
UT1/Tw), then T, = O(Too).
) If p < T} /T, then

More generally, if p = O(T} /Tw), then T,, = ©(T1/p).

Proof. (a) If p > T} /T [respectively, p = QT /Tw)], then T} /p < T, [respec-
tively, 71 /p = O(T)], and the result follows from Prop. 2.3.
() If p < T1/Tw [respectively, p = O(T1/Tw)], then T, < Ti/p [respectively,
T = O(T1/p)], and Prop. 2.3 yields T, < 2Ty /p [respectively, T, = O(T}/p)]. Fur-
thermore, Prop. 2.2 yields T} < pT,, from which we obtain T, > T} /p = QT}/p).
Q.E.D.



14 Introduction Chap. 1

The last two results are of fundamental importance. They establish that although
Ty is defined under the assumption of an unlimited number of processors, (7} /7o)
processors are actually sufficient to come within a constant factor of T, [Prop. 2.4(a)].
Furthermore, a corresponding schedule is obtained by simply modifying an optimal sched-
ule for the case of an unlimited number of processors (see the proof of Prop. 2.3), as
opposed to solving a generally difficult scheduling problem. This suggests a methodology
whereby we first develop a parallel algorithm as if an unlimited number of processors
were available, and then adapt the algorithm to the available number of processors. The
significance of Prop. 2.4(b) is that as long as p = O(T}/T), the availability of p pro-
cessors allows us to speed up the computation by a factor proportional to p, which is the
best possible. We thus see that for a number of processors nearly equal to T} /T, We
obtain both optimal execution time and optimal speeding up of the computation (within
constant factors).

Finding an Optimal DAG

It is seen that there can be several DAGs corresponding to different algorithms for the
same computational problem (see Fig. 1.2.2). It may then be of interest to find a DAG
for which T}, is minimized, where p is the number of available processors. Let us denote
by T} the value of T}, corresponding to such an optimal DAG and view it as the optimal
parallel time, using p processors, for the computational problem under consideration.
The value of T is a measure of the complexity of the problem, as opposed to T}, which
is the complexity of a particular algorithm.

Figure 1.2.2 Another DAG representing
an algorithm for evaluating the arithmetic
expression (z; + z2)(z; + x3). We have
T1 = 3 and Toc = D = 2. This should
be contrasted with the DAG of Fig. 1.2.1
which solves the same computational
problem and for which 7} = 7 and D = 3.
We conclude that the DAG given here

{xy +x3) (x5 + x3) represents a better parallel algorithm.

An explicit evaluation of T} is usually very difficult. However, for several inter-
esting classes of problems, there exist methods for constructing DAGs that come within
a constant factor of the optimal. We do not pursue this issue any further and refer the
reader to the notes and sources at the end of this chapter.

Speedup and Efficiency

We now assume that a particular model of parallel computation has been chosen. This
could be the DAG model considered earlier, or any other model. Let us consider a
computational problem parametrized by a variable n representing problem size. (In the
DAG model, different problem sizes correspond to different numbers of input variables.



Sec. 1.2 Models, Complexity Measures, and Some Simple Algorithms 15

Thus, properly speaking, an algorithm is not specified by a single DAG, but rather by a
family of DAGs, one for each problem size.) Time complexity is generally dependent
on n, and we incorporate this dependence in our notation.

We describe a few concepts that are sometimes useful in comparing serial and
parallel algorithms. Suppose that we have a parallel algorithm that uses p processors (p
may depend on n), and that terminates in time T,(n). Let T™(n) be the optimal serial
time to solve the same problem, that is, the time required by the best possible serial
(uniprocessor) algorithm for this problem. The ratio

is called the speedup of the algorithm, and describes the speed advantage of the parallel
algorithm, compared to the best possible serial algorithm. The ratio

Sp(n) _ T*(n)

E —
o) p pIp(n)

is called the efficiency of the algorithm, and essentially measures the fraction of time that
a typical processor is usefully employed. Ideally, Sp(n) = p and E,(n) = 1, in which
case, the availability of p processors allows us to speed up the computation by a factor of
p. For this to occur, the parallel algorithm should be such that no processor ever remains
idle or does any unnecessary work. This ideal situation is practically unattainable. A
more realistic objective is to aim at an efficiency that stays bounded away from zero, as
n and p increase.

There is a difficulty with the above definitions because the optimal serial time
T*(n) is unknown, even for seemingly simple computational problems like matrix mul-
tiplication. For this reason, T*(n) is sometimes defined differently. Some alternatives
are the following:

(a) Let T*(n) be the time required by the best existing serial algorithm.

(b) Let T*(n) be the time required by a benchmark serial algorithm. For example,
for multiplication of two dense n X n matrices, ©(n?3) is a reasonable benchmark,
even though there exist algorithms with substantially smaller time requirements
[AHU74].

(c) Finally, we may let T™(n) be the time required by a single processor to execute
the particular parallel algorithm being analyzed. (That is, we let a single processor
simulate the operation of the p parallel processors.) With this choice of T*(n),
efficiency relates to how well a particular algorithm has been parallelized, but
provides no information on the absolute merits of the algorithm [in contrast with
our earlier definitions of 7*(n)].

Notice that if 7*(n) is defined as in (c), and if algorithms are specified by means of
the DAG model, then T*(n) coincides with T7(n). In particular, if p < O(Tl (n)/ Too(n)),
then T},(n) = ©(Ti(n)/p) [Prop. 2.4(b)] and



16 Introduction ~ Chap. 1

Tin) _
pr (n)

E,(n) = o(l).

This shows that if the number of processors is suitably small, then efficient parallel
implementations are possible. Furthermore, if p = G(Tl(n)/Too(n)), we also have
Tp(n) = ©(Teo(n)) [Prop. 2.4(a)] and we have a parallel implementation that is both
efficient and has a time complexity within a constant factor from the optimum.

The above discussion suggests that efficiency of parallel implementation is not a
concern, at least when an algorithm is specified by a DAG, and as long as communication
issues are ignored. A more fundamental issue is whether the maximum attainable speedup
T1(n)/Ts(n) can be made arbitrarily large, as n is increased. In certain applications,
the required computations are quite unstructured, and there has been considerable debate
on the range of achievable speedups in real world situations. The main difficulty is
that some programs have some sections that are easily parallelizable, but also have
some sections that are inherently sequential. When a large number of processors is
available, the parallelizable sections are quickly executed, but the sequential sections
lead to bottlenecks. This observation is known as Amdahl’s law and can be quantified as
follows: if a program consists of two sections, one that is inherently sequential and one
that is fully parallelizable, and if the inherently sequential section consumes a fraction f
of the total computation, then the speedup is limited by

S S
f+a-pnlp = §

On the other hand, there are numerous computational problems for which f decreases to
zero as the size of the problem increases, and Amdahl’s law is not a concern.

Sp(n) < Vp.

1.2.3 Examples: Vector and Matrix Computations

In this subsection, we consider some elementary but very common numerical computa-
tional tasks, present some simple parallel algorithms, and discuss their complexity and
efficiency. All of the algorithms to be considered can be represented by DAGs and
such representations will be occasionally employed. It is assumed that each addition or
multiplication takes unit time and that processors are able to instantly exchange interme-
diate results. In practice, processors may be communicating through an interconnection
network or through a shared memory and our analysis ignores the associated commu-
nication and memory access delays. Nevertheless, the algorithms considered here are
simple enough so that they can be implemented in some architectures with negligible
communication overhead. The communication aspects of such implementations will be
discussed in Subsections 1.3.4 to 1.3.6.

Scalar Addition

The simplest computational task is the addition of n scalars. It is clear that the best se-
rial algorithm requires n — 1 operations. Thus, 7*(n) = n— 1. We now present a parallel



Sec. 1.2 Models, Complexity Measures, and Some Simple Algorithms 17

algorithm under the simplifying assumption that n is a power of 2. We partition the n
scalars into n/2 disjoint pairs and we use n/2 different processors to add the two scalars
in each pair. Thus, after one time unit, we are left with the task of adding only n/2
scalars. Continuing similarly, after logn stages, we are left with a single number and
the computation terminates (see Fig. 1.2.3). This algorithm generalizes easily to the case
where n is not a power of 2: the execution time becomes [logn] using |n/2] processors
(see Fig. 1.2.3).

Figure 1.2.3 Parallel computation of the sum of 16 scalars. Eight processors are needed
for the parallel additions at the first stage and a total of 4 = log 16 stages are needed.
If the portion of the diagram enclosed in the dashed circle is removed, we obtain an
algorithm for the parallel addition of 15 scalars. Notice that now only 7 = |15/2
processors are needed.

The efficiency of the above algorithm is

n—1
[n/2] [logn]’

which goes to zero as n increases. An alternative parallel algorithm is obtained as follows
(see Fig. 1.2.4). We assume for simplicity that logn is an integer, and that n/logn is
an integer and a power of 2. We split the n numbers into n/logn groups of logn
numbers each. We use n/logn processors and the ith processor adds the numbers in
the ith group; this task takes time logn — 1. We are then left with the task of adding
n/logn numbers. This can be accomplished by our previous parallel algorithm in time
log(n/logn) < logn, using n/(2logn) processors. This two—phase algorithm requires
time approximately equal to 2 logn (the speed is reduced by a factor of 2), but uses only
n/logn processors and therefore its efficiency is approximately equal to 1/2. Notice that
we have chosen the number of processors p to be approximately equal to T}(n)/T ().
As discussed earlier, such a choice always leads to efficient algorithms. This example
illustrates that with a small sacrifice in speed, efficiency can be substantially improved.



18 Introduction Chap. 1

Figure 1.2.4 An alternative algorithm for the parallel addition of 16 scalars. Only four
processors are used and the time requirements increase to 5 stages. Overall, however,
there is an efficiency improvement over the algorithm of Fig. 1.2.3.

In fact, it will be seen later (Subsection 1.3.5) that decreasing the number of processors
can also substantially decrease the communication requirements of an algorithm.

inner Products

The inner product -, z;y; of two n—dimensional vectors can be computed in time
[logn] + 1 using n processors as follows: at the first step, each processor i computes
the product z;y; and then the [logn] time algorithm for scalar addition is used.

Matrix Addition and Multiplication

The sum of n matrices of dimensions m x m can be computed in time [logn] using
m?|n /2| processors by letting a different group of |n/2] processors compute a different
entry of the sum. Similarly, multiplication of two matrices of dimensions m X n and
n X £ consists of the evaluation of m/ inner products of n—dimensional vectors and
can be therefore accomplished in time [logn] + 1 using nm{ processors. In the case
where n = m = £, the processor requirements become n®. The corresponding number
Ti(n) of operations is @(n?). In fact, there exist more economical algorithms for matrix
multiplication in terms of processor requirements, or in terms of Tj(n), but they are
somewhat impractical and will not be considered here.

Powers of a Matrix

Suppose now that A is an n x n matrix and that we wish to compute A* for some
integer k. If k is a power of 2, this can be accomplished by repeated squaring: we
first compute A2; we then compute A2A? = A% etc. After log k stages, A* is obtained.
This procedure involves log k£ consecutive matrix multiplications and can be therefore
carried out in time log k([logn] + 1) using n® processors. A simple modification of this
procedure can be used to compute A* in time ©(logk - logn) even if k is not a power
of 2 (Exercise 2.4).



Sec. 1.2 Models, Complexity Measures, and Some Simple Algorithms 19

A consequence of the above discussion is that all the powers A2, ..., A™ of an
n x n matrix can be computed in time ©(log® n) using n* processors by using a dif-
ferent group of n® processors for the computation of each power A*. An alternative
method for computing the powers A2,..., A®, which avoids unnecessary duplication of
computational effort, is shown in Fig. 1.2.5.

Figure 1.2.5 Parallel computation of the
powers A%,..., A" of an n X n matrix
A. A node with a label S represents a
matrix s%uan'ng operation. At the first
stage, A“ is computed. At the second
stage, A% and A* are computed by
multiplying earlier computed matrices.
More generally, at the kth stage, the
matrices A2°7'+1, ..., A?* are computed.
Thus, @(log n) stages suffice for the
computation of A2, ..., A™. Each stage
involves at most ©(rn) simultaneous matrix
multiplications and can be carried out using
n* processors in time ©(log n), leading to
an overall time @(log2 n).

In the previously discussed algorithms, we have strived for the fastest possible
execution times; such an approach often leads to excessive processor requirements and
low efficiency. On the other hand, as discussed earlier, the same algorithms can be
made efficient if the number of processors is chosen so that p = O(Tl(n)/Tw(n)).
For example, the product of two n X n matrices can be computed in time ©(logn)
using ©(n®/logn) processors, and the corresponding efficiency is ©(1). If the number
of processors is reduced even further, the execution time will be © (T (n)/p) [Prop.
2.4(b)]. Thus, two n x n matrices can be multiplied in time ©(n) when n? processors
are used, and in time ©(n?) when n processors are used.

1.2.4 Parallelization of Iterative Methods

Many interesting algorithms for the solution of systems of equations, optimization, and
other problems have the structure

z(t + 1) = f(z(t)), t=0,1,..., 2.1

where each z(t) is an n—dimensional vector, and f is some function from R" into itself.
(Several examples will be seen in Chapters 2 and 3.) They are called iterative algorithms
or, in certain contexts, relaxation methods. An alternative notation that is sometimes used
in place of Eq. (2.1) is z := f(z). Notice that if the sequence {z(t)} generated by the
above iteration converges to a limit z*, and if the function f is continuous, then z* is a
fixed point of f, that is, it satisfies * = f(z*). A common special case arises when the
function f is of the form f(z) = Ax + b, where A is a square matrix and b is a vector,



20 Introduction Chap. 1

in which case we are dealing with a linear iterative algorithm. In this subsection, we
make some general observations on the possibilities for parallel execution of iterative
algorithms. It should be mentioned here that the concept of time complexity is not
quite relevant to algorithms of the form x := f(z) unless a termination criterion is also
specified. '

Let z;(t) denote the ith component of z(t) and let f; denote the ith component of
the function f. Then, we can write z(t + 1) = f(z(t)) as

it + 1) = fi(z1(t), ..., za(®)), i=1,...,n. (2.2)

The iterative algorithm z := f(x) can be parallelized by letting each one of n processors
update a different component of = according to Eq. (2.2). At each stage, the ith processor
knows the value of all components of z(t) on which f; depends, computes the new value
z;(t + 1), and communicates it to other processors in order to start the next iteration.

The communication <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>