
Introduction to Probability

2nd Edition

Problem Solutions
(last updated: 9/29/22)

c© Dimitri P. Bertsekas and John N. Tsitsiklis

Massachusetts Institute of Technology

WWW site for book information and orders

http://www.athenasc.com

Athena Scientific, Belmont, Massachusetts

1



C H A P T E R 1

Solution to Problem 1.1. We have

A = {2, 4, 6}, B = {4, 5, 6},

so A ∪B = {2, 4, 5, 6}, and
(A ∪B)c = {1, 3}.

On the other hand,

Ac ∩Bc = {1, 3, 5} ∩ {1, 2, 3} = {1, 3}.

Similarly, we have A ∩B = {4, 6}, and

(A ∩B)c = {1, 2, 3, 5}.

On the other hand,

Ac ∪Bc = {1, 3, 5} ∪ {1, 2, 3} = {1, 2, 3, 5}.

Solution to Problem 1.2. (a) By using a Venn diagram it can be seen that for any
sets S and T , we have

S = (S ∩ T ) ∪ (S ∩ T c).

(Alternatively, argue that any x must belong to either T or to T c, so x belongs to S
if and only if it belongs to S ∩ T or to S ∩ T c.) Apply this equality with S = Ac and
T = B, to obtain the first relation

Ac = (Ac ∩B) ∪ (Ac ∩Bc).

Interchange the roles of A and B to obtain the second relation.

(b) By De Morgan’s law, we have

(A ∩B)c = Ac ∪Bc,

and by using the equalities of part (a), we obtain

(A∩B)c =
(
(Ac∩B)∪(Ac∩Bc)

)
∪
(
(A∩Bc)∪(Ac∩Bc)

)
= (Ac∩B)∪(Ac∩Bc)∪(A∩Bc).

(c) We have A = {1, 3, 5} and B = {1, 2, 3}, so A ∩B = {1, 3}. Therefore,

(A ∩B)c = {2, 4, 5, 6},
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and
Ac ∩B = {2}, Ac ∩Bc = {4, 6}, A ∩Bc = {5}.

Thus, the equality of part (b) is verified.

Solution to Problem 1.5. Let G and C be the events that the chosen student is
a genius and a chocolate lover, respectively. We have P(G) = 0.6, P(C) = 0.7, and
P(G∩C) = 0.4. We are interested in P(Gc ∩Cc), which is obtained with the following
calculation:

P(Gc∩Cc) = 1−P(G∪C) = 1−
(
P(G)+P(C)−P(G∩C)

)
= 1−(0.6+0.7−0.4) = 0.1.

Solution to Problem 1.6. We first determine the probabilities of the six possible
outcomes. Let a = P({1}) = P({3}) = P({5}) and b = P({2}) = P({4}) = P({6}).
We are given that b = 2a. By the additivity and normalization axioms, 1 = 3a+ 3b =
3a+ 6a = 9a. Thus, a = 1/9, b = 2/9, and P({1, 2, 3}) = 4/9.

Solution to Problem 1.7. The outcome of this experiment can be any finite sequence
of the form (a1, a2, . . . , an), where n is an arbitrary positive integer, a1, a2, . . . , an−1

belong to {1, 3}, and an belongs to {2, 4}. In addition, there are possible outcomes
in which an even number is never obtained. Such outcomes are infinite sequences
(a1, a2, . . .), with each element in the sequence belonging to {1, 3}. The sample space
consists of all possible outcomes of the above two types.

Solution to Problem 1.8. Let pi be the probability of winning against the opponent
played in the ith turn. Then, you will win the tournament if you win against the 2nd
player (probability p2) and also you win against at least one of the two other players
[probability p1 + (1 − p1)p3 = p1 + p3 − p1p3]. Thus, the probability of winning the
tournament is

p2(p1 + p3 − p1p3).

The order (1, 2, 3) is optimal if and only if the above probability is no less than the
probabilities corresponding to the two alternative orders, i.e.,

p2(p1 + p3 − p1p3) ≥ p1(p2 + p3 − p2p3),

p2(p1 + p3 − p1p3) ≥ p3(p2 + p1 − p2p1).

It can be seen that the first inequality above is equivalent to p2 ≥ p1, while the second
inequality above is equivalent to p2 ≥ p3.

Solution to Problem 1.9. (a) Since Ω = ∪ni=1Si, we have

A =

n⋃
i=1

(A ∩ Si),

while the sets A ∩ Si are disjoint. The result follows by using the additivity axiom.

(b) The events B ∩ Cc, Bc ∩ C, B ∩ C, and Bc ∩ Cc form a partition of Ω, so by part
(a), we have

P(A) = P(A ∩B ∩ Cc) + P(A ∩Bc ∩ C) + P(A ∩B ∩ C) + P(A ∩Bc ∩ Cc). (1)
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The event A ∩B can be written as the union of two disjoint events as follows:

A ∩B = (A ∩B ∩ C) ∪ (A ∩B ∩ Cc),

so that
P(A ∩B) = P(A ∩B ∩ C) + P(A ∩B ∩ Cc). (2)

Similarly,
P(A ∩ C) = P(A ∩B ∩ C) + P(A ∩Bc ∩ C). (3)

Combining Eqs. (1)-(3), we obtain the desired result.

Solution to Problem 1.10. Since the events A ∩ Bc and Ac ∩ B are disjoint, we
have using the additivity axiom repeatedly,

P
(
(A∩Bc)∪(Ac∩B)

)
= P(A∩Bc)+P(Ac∩B) = P(A)−P(A∩B)+P(B)−P(A∩B).

Solution to Problem 1.14. (a) Each possible outcome has probability 1/36. There
are 6 possible outcomes that are doubles, so the probability of doubles is 6/36 = 1/6.

(b) The conditioning event (sum is 4 or less) consists of the 6 outcomes{
(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)

}
,

2 of which are doubles, so the conditional probability of doubles is 2/6 = 1/3.

(c) There are 11 possible outcomes with at least one 6, namely, (6, 6), (6, i), and (i, 6),
for i = 1, 2, . . . , 5. Thus, the probability that at least one die is a 6 is 11/36.

(d) There are 30 possible outcomes where the dice land on different numbers. Out of
these, there are 10 outcomes in which at least one of the rolls is a 6. Thus, the desired
conditional probability is 10/30 = 1/3.

Solution to Problem 1.15. Let A be the event that the first toss is a head and
let B be the event that the second toss is a head. We must compare the conditional
probabilities P(A ∩B |A) and P(A ∩B |A ∪B). We have

P(A ∩B |A) =
P
(
(A ∩B) ∩A

)
P(A)

=
P(A ∩B)

P(A)
,

and

P(A ∩B |A ∪B) =
P
(
(A ∩B) ∩ (A ∪B)

)
P(A ∪B)

=
P(A ∩B)

P(A ∪B)
.

Since P(A ∪ B) ≥ P(A), the first conditional probability above is at least as large, so
Alice is right, regardless of whether the coin is fair or not. In the case where the coin
is fair, that is, if all four outcomes HH, HT , TH, TT are equally likely, we have

P(A ∩B)

P(A)
=

1/4

1/2
=

1

2
,

P(A ∩B)

P(A ∪B)
=

1/4

3/4
=

1

3
.

A generalization of Alice’s reasoning is that if A′, B′, and C′ are events such
that B′ ⊂ C′ and A′ ∩ B′ = A′ ∩ C′ (for example if A′ ⊂ B′ ⊂ C′), then the event
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A′ is at least as likely if we know that B′ has occurred than if we know that C′ has
occurred. Alice’s reasoning corresponds to the special case where A′ = A∪B, B′ = A,
and C′ = A ∪B.

Solution to Problem 1.16. In this problem, there is a tendency to reason that since
the opposite face is either heads or tails, the desired probability is 1/2. This is, however,
wrong, because given that heads came up, it is more likely that the two-headed coin
was chosen. The correct reasoning is to calculate the conditional probability

p = P(two-headed coin was chosen | heads came up)

=
P(two-headed coin was chosen and heads came up)

P(heads came up)
.

We have

P(two-headed coin was chosen and heads came up) =
1

3
,

P(heads came up) =
1

2
,

so by taking the ratio of the above two probabilities, we obtain p = 2/3. Thus, the
probability that the opposite face is tails is 1− p = 1/3.

Solution to Problem 1.17. Let A be the event that the batch will be accepted.
Then A = A1 ∩ A2 ∩ A3 ∩ A4, where Ai, i = 1, . . . , 4, is the event that the ith item is
not defective. Using the multiplication rule, we have

P(A) = P(A1)P(A2 |A1)P(A3 |A1∩A2)P(A4 |A1∩A2∩A3) =
95

100
· 94

99
· 93

98
· 92

97
= 0.812.

Solution to Problem 1.18. Using the definition of conditional probabilities, we
have

P(A ∩B |B) =
P(A ∩B ∩B)

P(B)
=

P(A ∩B)

P(B)
= P(A |B).

Solution to Problem 1.19. Let A be the event that Alice does not find her paper
in drawer i. Since the paper is in drawer i with probability pi, and her search is
successful with probability di, the multiplication rule yields P(Ac) = pidi, so that
P(A) = 1 − pidi. Let B be the event that the paper is in drawer j. If j 6= i, then
A ∩B = B, P(A ∩B) = P(B), and we have

P(B |A) =
P(A ∩B)

P(A)
=

P(B)

P(A)
=

pj
1− pidi

.

Similarly, if i = j, we have

P(B |A) =
P(A ∩B)

P(A)
=

P(B)P(A |B)

P(A)
=
pi(1− di)
1− pidi

.

Solution to Problem 1.20. (a) Figure 1.1 provides a sequential description for the
three different strategies. Here we assume 1 point for a win, 0 for a loss, and 1/2 point
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1- pw
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1- pw

1- pw

1- pw

Figure 1.1: Sequential descriptions of the chess match histories under strategies

(i), (ii), and (iii).

for a draw. In the case of a tied 1-1 score, we go to sudden death in the next game,
and Boris wins the match (probability pw), or loses the match (probability 1− pw).

(i) Using the total probability theorem and the sequential description of Fig. 1.1(a),
we have

P(Boris wins) = p2
w + 2pw(1− pw)pw.

The term p2
w corresponds to the win-win outcome, and the term 2pw(1− pw)pw corre-

sponds to the win-lose-win and the lose-win-win outcomes.

(ii) Using Fig. 1.1(b), we have

P(Boris wins) = p2
dpw,

corresponding to the draw-draw-win outcome.

(iii) Using Fig. 1.1(c), we have

P(Boris wins) = pwpd + pw(1− pd)pw + (1− pw)p2
w.
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The term pwpd corresponds to the win-draw outcome, the term pw(1 − pd)pw corre-
sponds to the win-lose-win outcome, and the term (1− pw)p2

w corresponds to lose-win-
win outcome.

(b) If pw < 1/2, Boris has a greater probability of losing rather than winning any one
game, regardless of the type of play he uses. Despite this, the probability of winning
the match with strategy (iii) can be greater than 1/2, provided that pw is close enough
to 1/2 and pd is close enough to 1. As an example, if pw = 0.45 and pd = 0.9, with
strategy (iii) we have

P(Boris wins) = 0.45 · 0.9 + 0.452 · (1− 0.9) + (1− 0.45) · 0.452 ≈ 0.54.

With strategies (i) and (ii), the corresponding probabilities of a win can be calculated
to be approximately 0.43 and 0.36, respectively. What is happening here is that with
strategy (iii), Boris is allowed to select a playing style after seeing the result of the first
game, while his opponent is not. Thus, by being able to dictate the playing style in
each game after receiving partial information about the match’s outcome, Boris gains
an advantage.

Solution to Problem 1.21. Let p(m, k) be the probability that the starting player
wins when the jar initially contains m white and k black balls. We have, using the
total probability theorem,

p(m, k) =
m

m+ k
+

k

m+ k

(
1− p(m, k − 1)

)
= 1− k

m+ k
p(m, k − 1).

The probabilities p(m, 1), p(m, 2), . . . , p(m,n) can be calculated sequentially using this
formula, starting with the initial condition p(m, 0) = 1.

Solution to Problem 1.22. We derive a recursion for the probability pi that a white
ball is chosen from the ith jar. We have, using the total probability theorem,

pi+1 =
m+ 1

m+ n+ 1
pi +

m

m+ n+ 1
(1− pi) =

1

m+ n+ 1
pi +

m

m+ n+ 1
,

starting with the initial condition p1 = m/(m+ n). Thus, we have

p2 =
1

m+ n+ 1
· m

m+ n
+

m

m+ n+ 1
=

m

m+ n
.

More generally, this calculation shows that if pi−1 = m/(m+n), then pi = m/(m+n).
Thus, we obtain pi = m/(m+ n) for all i.

Solution to Problem 1.23. Let pi,n−i(k) denote the probability that after k ex-
changes, a jar will contain i balls that started in that jar and n− i balls that started in
the other jar. We want to find pn,0(4). We argue recursively, using the total probability

7



theorem. We have

pn,0(4) =
1

n
· 1

n
· pn−1,1(3),

pn−1,1(3) = pn,0(2) + 2 · n− 1

n
· 1

n
· pn−1,1(2) +

2

n
· 2

n
· pn−2,2(2),

pn,0(2) =
1

n
· 1

n
· pn−1,1(1),

pn−1,1(2) = 2 · n− 1

n
· 1

n
· pn−1,1(1),

pn−2,2(2) =
n− 1

n
· n− 1

n
· pn−1,1(1),

pn−1,1(1) = 1.

Combining these equations, we obtain

pn,0(4) =
1

n2

(
1

n2
+

4(n− 1)2

n4
+

4(n− 1)2

n4

)
=

1

n2

(
1

n2
+

8(n− 1)2

n4

)
.

Solution to Problem 1.24. Intuitively, there is something wrong with this rationale.
The reason is that it is not based on a correctly specified probabilistic model. In
particular, the event where both of the other prisoners are to be released is not properly
accounted in the calculation of the posterior probability of release.

To be precise, let A, B, and C be the prisoners, and let A be the one who considers
asking the guard. Suppose that all prisoners are a priori equally likely to be released.
Suppose also that if B and C are to be released, then the guard chooses B or C with
equal probability to reveal to A. Then, there are four possible outcomes:

(1) A and B are to be released, and the guard says B (probability 1/3).

(2) A and C are to be released, and the guard says C (probability 1/3).

(3) B and C are to be released, and the guard says B (probability 1/6).

(4) B and C are to be released, and the guard says C (probability 1/6).

Thus,

P(A is to be released | guard says B) =
P(A is to be released and guard says B)

P(guard says B)

=
1/3

1/3 + 1/6
=

2

3
.

Similarly,

P(A is to be released | guard says C) =
2

3
.

Thus, regardless of the identity revealed by the guard, the probability that A is released
is equal to 2/3, the a priori probability of being released.

Solution to Problem 1.25. Let m and m be the larger and the smaller of the two
amounts, respectively. Consider the three events

A = {X < m), B = {m < X < m), C = {m < X).
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Let A (or B or C) be the event that A (or B or C, respectively) occurs and you first
select the envelope containing the larger amount m. Let A (or B or C) be the event
that A (or B or C, respectively) occurs and you first select the envelope containing the
smaller amount m. Finally, consider the event

W = {you end up with the envelope containing m}.

We want to determine P(W ) and check whether it is larger than 1/2 or not.
By the total probability theorem, we have

P(W |A) =
1

2

(
P(W |A) + P(W |A)

)
=

1

2
(1 + 0) =

1

2
,

P(W |B) =
1

2

(
P(W |B) + P(W |B)

)
=

1

2
(1 + 1) = 1,

P(W |C) =
1

2

(
P(W |C) + P(W |C)

)
=

1

2
(0 + 1) =

1

2
.

Using these relations together with the total probability theorem, we obtain

P(W ) = P(A)P(W |A) + P(B)P(W |B) + P(C)P(W |C)

=
1

2

(
P(A) + P(B) + P(C)

)
+

1

2
P(B)

=
1

2
+

1

2
P(B).

Since P(B) > 0 by assumption, it follows that P(W ) > 1/2, so your friend is correct.

Solution to Problem 1.26. (a) We use the formula

P(A |B) =
P(A ∩B)

P(B)
=

P(A)P(B |A)

P(B)
.

Since all crows are black, we have P(B) = 1 − q. Furthermore, P(A) = p. Finally,
P(B |A) = 1 − q = P(B), since the probability of observing a (black) crow is not
affected by the truth of our hypothesis. We conclude that P(A |B) = P(A) = p. Thus,
the new evidence, while compatible with the hypothesis “all cows are white,” does not
change our beliefs about its truth.

(b) Once more,

P(A |C) =
P(A ∩ C)

P(C)
=

P(A)P(C |A)

P(C)
.

Given the event A, a cow is observed with probability q, and it must be white. Thus,
P(C |A) = q. Given the event Ac, a cow is observed with probability q, and it is white
with probability 1/2. Thus, P(C |Ac) = q/2. Using the total probability theorem,

P(C) = P(A)P(C |A) + P(Ac)P(C |Ac) = pq + (1− p) q
2
.

Hence,

P(A |C) =
pq

pq + (1− p) q
2

=
2p

1 + p
> p.
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Thus, the observation of a white cow makes the hypothesis “all cows are white” more
likely to be true.

Solution to Problem 1.27. Since Bob tosses one more coin that Alice, it is im-
possible that they toss both the same number of heads and the same number of tails.
So Bob tosses either more heads than Alice or more tails than Alice (but not both).
Since the coins are fair, these events are equally likely by symmetry, so both events
have probability 1/2.

An alternative solution is to argue that if Alice and Bob are tied after 2n tosses,
they are equally likely to win. If they are not tied, then their scores differ by at least 2,
and toss 2n+1 will not change the final outcome. This argument may also be expressed
algebraically by using the total probability theorem. Let B be the event that Bob tosses
more heads. Let X be the event that after each has tossed n of their coins, Bob has
more heads than Alice, let Y be the event that under the same conditions, Alice has
more heads than Bob, and let Z be the event that they have the same number of heads.
Since the coins are fair, we have P(X) = P(Y ), and also P(Z) = 1 − P(X) − P(Y ).
Furthermore, we see that

P(B |X) = 1, P(B |Y ) = 0, P(B |Z) =
1

2
.

Now we have, using the total probability theorem,

P(B) = P(X) ·P(B |X) + P(Y ) ·P(B |Y ) + P(Z) ·P(B |Z)

= P(X) +
1

2
·P(Z)

=
1

2
·
(
P(X) + P(Y ) + P(Z)

)
=

1

2
.

as required.

Solution to Problem 1.30. Consider the sample space for the hunter’s strategy.
The events that lead to the correct path are:

(1) Both dogs agree on the correct path (probability p2, by independence).

(2) The dogs disagree, dog 1 chooses the correct path, and hunter follows dog 1
[probability p(1− p)/2].

(3) The dogs disagree, dog 2 chooses the correct path, and hunter follows dog 2
[probability p(1− p)/2].

The above events are disjoint, so we can add the probabilities to find that under the
hunter’s strategy, the probability that he chooses the correct path is

p2 +
1

2
p(1− p) +

1

2
p(1− p) = p.

On the other hand, if the hunter lets one dog choose the path, this dog will also choose
the correct path with probability p. Thus, the two strategies are equally effective.
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Solution to Problem 1.31. (a) Let A be the event that a 0 is transmitted. Using
the total probability theorem, the desired probability is

P(A)(1− ε0) +
(
1−P(A)

)
(1− ε1) = p(1− ε0) + (1− p)(1− ε1).

(b) By independence, the probability that the string 1011 is received correctly is

(1− ε0)(1− ε1)3.

(c) In order for a 0 to be decoded correctly, the received string must be 000, 001, 010,
or 100. Given that the string transmitted was 000, the probability of receiving 000 is
(1 − ε0)3, and the probability of each of the strings 001, 010, and 100 is ε0(1 − ε0)2.
Thus, the probability of correct decoding is

3ε0(1− ε0)2 + (1− ε0)3.

(d) When the symbol is 0, the probabilities of correct decoding with and without the
scheme of part (c) are 3ε0(1 − ε0)2 + (1 − ε0)3 and 1 − ε0, respectively. Thus, the
probability is improved with the scheme of part (c) if

3ε0(1− ε0)2 + (1− ε0)3 > (1− ε0),

or
(1− ε0)(1 + 2ε0) > 1,

which is equivalent to 0 < ε0 < 1/2.

(e) Using Bayes’ rule, we have

P(0 | 101) =
P(0)P(101 | 0)

P(0)P(101 | 0) + P(1)P(101 | 1)
.

The probabilities needed in the above formula are

P(0) = p, P(1) = 1− p, P(101 | 0) = ε20(1− ε0), P(101 | 1) = ε1(1− ε1)2.

Solution to Problem 1.32. The answer to this problem is not unique and depends
on the assumptions we make on the reproductive strategy of the king’s parents.

Suppose that the king’s parents had decided to have exactly two children and
then stopped. There are four possible and equally likely outcomes, namely BB, GG,
BG, and GB (B stands for “boy” and G stands for “girl”). Given that at least one
child was a boy (the king), the outcome GG is eliminated and we are left with three
equally likely outcomes (BB, BG, and GB). The probability that the sibling is male
(the conditional probability of BB) is 1/3 .

Suppose on the other hand that the king’s parents had decided to have children
until they would have a male child. In that case, the king is the second child, and the
sibling is female, with certainty.
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Solution to Problem 1.33. Flip the coin twice. If the outcome is heads-tails,
choose the opera. if the outcome is tails-heads, choose the movies. Otherwise, repeat
the process, until a decision can be made. Let Ak be the event that a decision was
made at the kth round. Conditional on the event Ak, the two choices are equally likely,
and we have

P(opera) =

∞∑
k=1

P(opera |Ak)P(Ak) =

∞∑
k=1

1

2
P(Ak) =

1

2
.

We have used here the property
∑∞

k=0
P(Ak) = 1, which is true as long as P(heads) > 0

and P(tails) > 0.

Solution to Problem 1.34. The system may be viewed as a series connection of
three subsystems, denoted 1, 2, and 3 in Fig. 1.19 in the text. The probability that the
entire system is operational is p1p2p3, where pi is the probability that subsystem i is
operational. Using the formulas for the probability of success of a series or a parallel
system given in Example 1.24, we have

p1 = p, p3 = 1− (1− p)2,

and
p2 = 1− (1− p)

(
1− p

(
1− (1− p)3

))
.

Solution to Problem 1.35. Let Ai be the event that exactly i components are
operational. The probability that the system is operational is the probability of the
union ∪ni=kAi, and since the Ai are disjoint, it is equal to

n∑
i=k

P(Ai) =

n∑
i=k

p(i),

where p(i) are the binomial probabilities. Thus, the probability of an operational
system is

n∑
i=k

(
n

i

)
pi(1− p)n−i.

Solution to Problem 1.36. (a) Let A denote the event that the city experiences a
black-out. Since the power plants fail independent of each other, we have

P(A) =

n∏
i=1

pi.

(b) There will be a black-out if either all n or any n− 1 power plants fail. These two
events are disjoint, so we can calculate the probability P(A) of a black-out by adding
their probabilities:

P(A) =

n∏
i=1

pi +

n∑
i=1

(
(1− pi)

∏
j 6=i

pj

)
.
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Here, (1− pi)
∏
j 6=i pj is the probability that n− 1 plants have failed and plant i is the

one that has not failed.

Solution to Problem 1.37. The probability that k1 voice users and k2 data users
simultaneously need to be connected is p1(k1)p2(k2), where p1(k1) and p2(k2) are the
corresponding binomial probabilities, given by

pi(ki) =

(
ni
ki

)
pkii (1− pi)ni−ki , i = 1, 2.

The probability that more users want to use the system than the system can
accommodate is the sum of all products p1(k1)p2(k2) as k1 and k2 range over all possible
values whose total bit rate requirement k1r1+k2r2 exceeds the capacity c of the system.
Thus, the desired probability is ∑

{(k1,k2) | k1r1+k2r2>c, k1≤n1, k2≤n2}

p1(k1)p2(k2).

Solution to Problem 1.38. We have

pT = P(at least 6 out of the 8 remaining holes are won by Telis),

pW = P(at least 4 out of the 8 remaining holes are won by Wendy).

Using the binomial formulas,

pT =

8∑
k=6

(
8

k

)
pk(1− p)8−k, pW =

8∑
k=4

(
8

k

)
(1− p)kp8−k.

The amount of money that Telis should get is 10 · pT /(pT + pW ) dollars.

Solution to Problem 1.39. Let the event A be the event that the professor teaches
her class, and let B be the event that the weather is bad. We have

P(A) = P(B)P(A |B) + P(Bc)P(A |Bc),

and

P(A |B) =

n∑
i=k

(
n

i

)
pib(1− pb)n−i,

P(A |Bc) =

n∑
i=k

(
n

i

)
pig(1− pg)n−i.

Therefore,

P(A) = P(B)

n∑
i=k

(
n

i

)
pib(1− pb)n−i +

(
1−P(B)

) n∑
i=k

(
n

i

)
pig(1− pg)n−i.

13



Solution to Problem 1.40. Let A be the event that the first n− 1 tosses produce
an even number of heads, and let E be the event that the nth toss is a head. We can
obtain an even number of heads in n tosses in two distinct ways: 1) there is an even
number of heads in the first n − 1 tosses, and the nth toss results in tails: this is the
event A∩Ec; 2) there is an odd number of heads in the first n− 1 tosses, and the nth
toss results in heads: this is the event Ac ∩ E. Using also the independence of A and
E,

qn = P
(
(A ∩ Ec) ∪ (Ac ∩ E)

)
= P(A ∩ Ec) + P(Ac ∩ E)

= P(A)P(Ec) + P(Ac)P(E)

= (1− p)qn−1 + p(1− qn−1).

We now use induction. For n = 0, we have q0 = 1, which agrees with the given
formula for qn. Assume, that the formula holds with n replaced by n− 1, i.e.,

qn−1 =
1 + (1− 2p)n−1

2
.

Using this equation, we have

qn = p(1− qn−1) + (1− p)qn−1

= p+ (1− 2p)qn−1

= p+ (1− 2p)
1 + (1− 2p)n−1

2

=
1 + (1− 2p)n

2
,

so the given formula holds for all n.

Solution to Problem 1.41. We have

P(N = n) = P(A1,n−1 ∩An,n) = P(A1,n−1)P(An,n |A1,n−1),

where for i ≤ j, Ai,j is the event that contestant i’s number is the smallest of the
numbers of contestants 1, . . . , j. We also have

P(A1,n−1) =
1

n− 1
.

We claim that

P(An,n |A1,n−1) = P(An,n) =
1

n
.

The reason is that by symmetry, we have

P(An,n |Ai,n−1) = P(An,n |A1,n−1), i = 1, . . . , n− 1,

while by the total probability theorem,

P(An,n) =

n−1∑
i=1

P(Ai,n−1)P(An,n |Ai,n−1)

= P(An,n |A1,n−1)

n−1∑
i=1

P(Ai,n−1)

= P(An,n |A1,n−1).
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Hence

P(N = n) =
1

n− 1
· 1

n
.

An alternative solution is also possible, using the counting methods developed in
Section 1.6. Let us fix a particular choice of n. Think of an outcome of the experiment
as an ordering of the values of the n contestants, so that there are n! equally likely
outcomes. The event {N = n} occurs if and only if the first contestant’s number is
smallest among the first n − 1 contestants, and contestant n’s number is the smallest
among the first n contestants. This event can occur in (n− 2)! different ways, namely,
all the possible ways of ordering contestants 2, . . . , n− 1. Thus, the probability of this
event is (n− 2)!/n! = 1/(n(n− 1)), in agreement with the previous solution.

Solution to Problem 1.49. A sum of 11 is obtained with the following 6 combina-
tions:

(6, 4, 1) (6, 3, 2) (5, 5, 1) (5, 4, 2) (5, 3, 3) (4, 4, 3).

A sum of 12 is obtained with the following 6 combinations:

(6, 5, 1) (6, 4, 2) (6, 3, 3) (5, 5, 2) (5, 4, 3) (4, 4, 4).

Each combination of 3 distinct numbers corresponds to 6 permutations, while each
combination of 3 numbers, two of which are equal, corresponds to 3 permutations.
Counting the number of permutations in the 6 combinations corresponding to a sum
of 11, we obtain 6 + 6 + 3 + 6 + 3 + 3 = 27 permutations. Counting the number of
permutations in the 6 combinations corresponding to a sum of 12, we obtain 6 + 6 +
3 + 3 + 6 + 1 = 25 permutations. Since all permutations are equally likely, a sum of 11
is more likely than a sum of 12.

Note also that the sample space has 63 = 216 elements, so we have P(11) =
27/216, P(12) = 25/216.

Solution to Problem 1.50. The sample space consists of all possible choices for
the birthday of each person. Since there are n persons, and each has 365 choices
for their birthday, the sample space has 365n elements. Let us now consider those
choices of birthdays for which no two persons have the same birthday. Assuming that
n ≤ 365, there are 365 choices for the first person, 364 for the second, etc., for a total
of 365 · 364 · · · (365− n+ 1). Thus,

P(no two birthdays coincide) =
365 · 364 · · · (365− n+ 1)

365n
.

It is interesting to note that for n as small as 23, the probability that there are two
persons with the same birthday is larger than 1/2.

Solution to Problem 1.51. (a) We number the red balls from 1 to m, and the
white balls from m + 1 to m + n. One possible sample space consists of all pairs of
integers (i, j) with 1 ≤ i, j ≤ m+ n and i 6= j. The total number of possible outcomes
is (m+ n)(m+ n− 1). The number of outcomes corresponding to red-white selection,
(i.e., i ∈ {1, . . . ,m} and j ∈ {m + 1, . . . ,m + n}) is mn. The number of outcomes
corresponding to white-red selection, (i.e., i ∈ {m+ 1, . . . ,m+ n} and j ∈ {1, . . . ,m})
is also mn. Thus, the desired probability that the balls are of different color is

2mn

(m+ n)(m+ n− 1)
.
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Another possible sample space consists of all the possible ordered color pairs, i.e.,
{RR,RW,WR,WW}. We then have to calculate the probability of the event {RW,WR}.
We consider a sequential description of the experiment, i.e., we first select the first ball
and then the second. In the first stage, the probability of a red ball is m/(m+n). In the
second stage, the probability of a red ball is either m/(m+n−1) or (m−1)/(m+n−1)
depending on whether the first ball was white or red, respectively. Therefore, using the
multiplication rule, we have

P(RR) =
m

m+ n
· m− 1

m− 1 + n
, P(RW ) =

m

m+ n
· n

m− 1 + n
,

P(WR) =
n

m+ n
· m

m+ n− 1
, P(WW ) =

n

m+ n
· n− 1

m+ n− 1
.

The desired probability is

P
(
{RW,WR}

)
= P(RW ) + P(WR)

=
m

m+ n
· n

m− 1 + n
+

n

m+ n
· m

m+ n− 1

=
2mn

(m+ n)(m+ n− 1)
.

(b) We calculate the conditional probability of all balls being red, given any of the
possible values of k. We have P(R | k = 1) = m/(m + n) and, as found in part (a),
P(RR | k = 2) = m(m − 1)/(m + n)(m − 1 + n). Arguing sequentially as in part (a),
we also have P(RRR | k = 3) = m(m − 1)(m − 2)/(m + n)(m − 1 + n)(m − 2 + n).
According to the total probability theorem, the desired answer is

1

3

(
m

m+ n
+

m(m− 1)

(m+ n)(m− 1 + n)
+

m(m− 1)(m− 2)

(m+ n)(m− 1 + n)(m− 2 + n)

)
.

Solution to Problem 1.52. The probability that the 13th card is the first king to
be dealt is the probability that out of the first 13 cards to be dealt, exactly one was a
king, and that the king was dealt last. Now, given that exactly one king was dealt in
the first 13 cards, the probability that the king was dealt last is just 1/13, since each
“position” is equally likely. Thus, it remains to calculate the probability that there
was exactly one king in the first 13 cards dealt. To calculate this probability we count
the “favorable” outcomes and divide by the total number of possible outcomes. We
first count the favorable outcomes, namely those with exactly one king in the first 13
cards dealt. We can choose a particular king in 4 ways, and we can choose the other
12 cards in

(
48
12

)
ways, therefore there are 4 ·

(
48
12

)
favorable outcomes. There are

(
52
13

)
total outcomes, so the desired probability is

1

13
·

4 ·
(

48

12

)
(

52

13

) .

For an alternative solution, we argue as in Example 1.10. The probability that
the first card is not a king is 48/52. Given that, the probability that the second is
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not a king is 47/51. We continue similarly until the 12th card. The probability that
the 12th card is not a king, given that none of the preceding 11 was a king, is 37/41.
(There are 52−11 = 41 cards left, and 48−11 = 37 of them are not kings.) Finally, the
conditional probability that the 13th card is a king is 4/40. The desired probability is

48 · 47 · · · 37 · 4
52 · 51 · · · 41 · 40

.

Solution to Problem 1.53. Suppose we label the classes A, B, and C. The proba-
bility that Joe and Jane will both be in class A is the number of possible combinations
for class A that involve both Joe and Jane, divided by the total number of combinations
for class A. Therefore, this probability is(

88

28

)
(

90

30

) .
Since there are three classes, the probability that Joe and Jane end up in the same
class is

3 ·

(
88

28

)
(

90

30

) .
A much simpler solution is as follows. We place Joe in one class. Regarding Jane,

there are 89 possible “slots”, and only 29 of them place her in the same class as Joe.
Thus, the answer is 29/89, which turns out to agree with the answer obtained earlier.

Solution to Problem 1.54. (a) Since the cars are all distinct, there are 20! ways to
line them up.

(b) To find the probability that the cars will be parked so that they alternate, we
count the number of “favorable” outcomes, and divide by the total number of possible
outcomes found in part (a). We count in the following manner. We first arrange the
US cars in an ordered sequence (permutation). We can do this in 10! ways, since there
are 10 distinct cars. Similarly, arrange the foreign cars in an ordered sequence, which
can also be done in 10! ways. Finally, interleave the two sequences. This can be done
in two different ways, since we can let the first car be either US-made or foreign. Thus,
we have a total of 2 · 10! · 10! possibilities, and the desired probability is

2 · 10! · 10!

20!
.

Note that we could have solved the second part of the problem by neglecting the fact
that the cars are distinct. Suppose the foreign cars are indistinguishable, and also that
the US cars are indistinguishable. Out of the 20 available spaces, we need to choose
10 spaces in which to place the US cars, and thus there are

(
20
10

)
possible outcomes.

Out of these outcomes, there are only two in which the cars alternate, depending on
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whether we start with a US or a foreign car. Thus, the desired probability is 2/
(

20
10

)
,

which coincides with our earlier answer.

Solution to Problem 1.55. We count the number of ways in which we can safely
place 8 distinguishable rooks, and then divide this by the total number of possibilities.
First we count the number of favorable positions for the rooks. We will place the rooks
one by one on the 8 × 8 chessboard. For the first rook, there are no constraints, so
we have 64 choices. Placing this rook, however, eliminates one row and one column.
Thus, for the second rook, we can imagine that the illegal column and row have been
removed, thus leaving us with a 7×7 chessboard, and with 49 choices. Similarly, for the
third rook we have 36 choices, for the fourth 25, etc. In the absence of any restrictions,
there are 64 · 63 · · · 57 = 64!/56! ways we can place 8 rooks, so the desired probability
is

64 · 49 · 36 · 25 · 16 · 9 · 4
64!

56!

.

Solution to Problem 1.56. (a) There are
(

8
4

)
ways to pick 4 lower level classes, and(

10
3

)
ways to choose 3 higher level classes, so there are(

8

4

)(
10

3

)
valid curricula.

(b) This part is more involved. We need to consider several different cases:

(i) Suppose we do not choose L1. Then both L2 and L3 must be chosen; otherwise
no higher level courses would be allowed. Thus, we need to choose 2 more lower
level classes out of the remaining 5, and 3 higher level classes from the available
5. We then obtain

(
5
2

)(
5
3

)
valid curricula.

(ii) If we choose L1 but choose neither L2 nor L3, we have
(

5
3

)(
5
3

)
choices.

(iii) If we choose L1 and choose one of L2 or L3, we have 2 ·
(

5
2

)(
5
3

)
choices. This is

because there are two ways of choosing between L2 and L3,
(

5
2

)
ways of choosing

2 lower level classes from L4, . . . , L8, and
(

5
3

)
ways of choosing 3 higher level

classes from H1, . . . , H5.

(iv) Finally, if we choose L1, L2, and L3, we have
(

5
1

)(
10
3

)
choices.

Note that we are not double counting, because there is no overlap in the cases we are
considering, and furthermore we have considered every possible choice. The total is
obtained by adding the counts for the above four cases.

Solution to Problem 1.57. Let us fix the order in which letters appear in the
sentence. There are 26! choices, corresponding to the possible permutations of the 26-
letter alphabet. Having fixed the order of the letters, we need to separate them into
words. To obtain 6 words, we need to place 5 separators (“blanks”) between the letters.
With 26 letters, there are 25 possible positions for these blanks, and the number of
choices is

(
25
5

)
. Thus, the desired number of sentences is 26!

(
25
5

)
. Generalizing, the

number of sentences consisting of w nonempty words using exactly once each letter
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from a l-letter alphabet is equal to

l!

(
l − 1

w − 1

)
.

Solution to Problem 1.58. (a) The sample space consists of all ways of drawing 7
elements out of a 52-element set, so it contains

(
52
7

)
possible outcomes. Let us count

those outcomes that involve exactly 3 aces. We are free to select any 3 out of the 4
aces, and any 4 out of the 48 remaining cards, for a total of

(
4
3

)(
48
4

)
choices. Thus,

P(7 cards include exactly 3 aces) =

(
4

3

)(
48

4

)
(

52

7

) .

(b) Proceeding similar to part (a), we obtain

P(7 cards include exactly 2 kings) =

(
4

2

)(
48

5

)
(

52

7

) .

(c) If A and B stand for the events in parts (a) and (b), respectively, we are looking
for P(A ∪ B) = P(A) + P(B) − P(A ∩ B). The event A ∩ B (having exactly 3 aces
and exactly 2 kings) can occur by choosing 3 out of the 4 available aces, 2 out of the 4
available kings, and 2 more cards out of the remaining 44. Thus, this event consists of(

4
3

)(
4
2

)(
44
2

)
distinct outcomes. Hence,

P(7 cards include 3 aces and/or 2 kings) =

(
4

3

)(
48

4

)
+

(
4

2

)(
48

5

)
−
(

4

3

)(
4

2

)(
44

2

)
(

52

7

) .

Solution to Problem 1.59. Clearly if n > m, or n > k, or m − n > 100 − k, the
probability must be zero. If n ≤ m, n ≤ k, and m − n ≤ 100 − k, then we can find
the probability that the test drive found n of the 100 cars defective by counting the
total number of size m subsets, and then the number of size m subsets that contain n
lemons. Clearly, there are

(
100
m

)
different subsets of size m. To count the number of size

m subsets with n lemons, we first choose n lemons from the k available lemons, and
then choose m− n good cars from the 100− k available good cars. Thus, the number
of ways to choose a subset of size m from 100 cars, and get n lemons, is(

k

n

)(
100− k
m− n

)
,

19



and the desired probability is (
k

n

)(
100− k
m− n

)
(

100

m

) .

Solution to Problem 1.60. The size of the sample space is the number of different
ways that 52 objects can be divided in 4 groups of 13, and is given by the multinomial
formula

52!

13! 13! 13! 13!
.

There are 4! different ways of distributing the 4 aces to the 4 players, and there are

48!

12! 12! 12! 12!

different ways of dividing the remaining 48 cards into 4 groups of 12. Thus, the desired
probability is

4!
48!

12! 12! 12! 12!
52!

13! 13! 13! 13!

.

An alternative solution can be obtained by considering a different, but proba-
bilistically equivalent method of dealing the cards. Each player has 13 slots, each one
of which is to receive one card. Instead of shuffling the deck, we place the 4 aces at
the top, and start dealing the cards one at a time, with each free slot being equally
likely to receive the next card. For the event of interest to occur, the first ace can go
anywhere; the second can go to any one of the 39 slots (out of the 51 available) that
correspond to players that do not yet have an ace; the third can go to any one of the
26 slots (out of the 50 available) that correspond to the two players that do not yet
have an ace; and finally, the fourth, can go to any one of the 13 slots (out of the 49
available) that correspond to the only player who does not yet have an ace. Thus, the
desired probability is

39 · 26 · 13

51 · 50 · 49
.

By simplifying our previous answer, it can be checked that it is the same as the one
obtained here, thus corroborating the intuitive fact that the two different ways of
dealing the cards are probabilistically equivalent.
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C H A P T E R 2

Solution to Problem 2.1. Let X be the number of points the MIT team earns over
the weekend. We have

P(X = 0) = 0.6 · 0.3 = 0.18,

P(X = 1) = 0.4 · 0.5 · 0.3 + 0.6 · 0.5 · 0.7 = 0.27,

P(X = 2) = 0.4 · 0.5 · 0.3 + 0.6 · 0.5 · 0.7 + 0.4 · 0.5 · 0.7 · 0.5 = 0.34,

P(X = 3) = 0.4 · 0.5 · 0.7 · 0.5 + 0.4 · 0.5 · 0.7 · 0.5 = 0.14,

P(X = 4) = 0.4 · 0.5 · 0.7 · 0.5 = 0.07,

P(X > 4) = 0.

Solution to Problem 2.2. The number of guests that have the same birthday as
you is binomial with p = 1/365 and n = 499. Thus the probability that exactly one
other guest has the same birthday is(

499

1

)
1

365

(
364

365

)498

≈ 0.3486.

Let λ = np = 499/365 ≈ 1.367. The Poisson approximation is e−λλ = e−1.367 · 1.367 ≈
0.3483, which closely agrees with the correct probability based on the binomial.

Solution to Problem 2.3. (a) Let L be the duration of the match. If Fischer
wins a match consisting of L games, then L− 1 draws must first occur before he wins.
Summing over all possible lengths, we obtain

P(Fischer wins) =

10∑
l=1

(0.3)l−1(0.4) = 0.571425.

(b) The match has length L with L < 10, if and only if (L− 1) draws occur, followed
by a win by either player. The match has length L = 10 if and only if 9 draws occur.
The probability of a win by either player is 0.7. Thus

pL(l) = P(L = l) =

{
(0.3)l−1(0.7), l = 1, . . . , 9,
(0.3)9, l = 10,
0, otherwise.

Solution to Problem 2.4. (a) Let X be the number of modems in use. For k < 50,
the probability that X = k is the same as the probability that k out of 1000 customers
need a connection:

pX(k) =

(
1000

k

)
(0.01)k(0.99)1000−k, k = 0, 1, . . . , 49.
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The probability that X = 50, is the same as the probability that 50 or more out of
1000 customers need a connection:

pX(50) =

1000∑
k=50

(
1000

k

)
(0.01)k(0.99)1000−k.

(b) By approximating the binomial with a Poisson with parameter λ = 1000 ·0.01 = 10,
we have

pX(k) = e−10 10k

k!
, k = 0, 1, . . . , 49,

pX(50) =

1000∑
k=50

e−10 10k

k!
.

(c) Let A be the event that there are more customers needing a connection than there
are modems. Then,

P(A) =

1000∑
k=51

(
1000

k

)
(0.01)k(0.99)1000−k.

With the Poisson approximation, P(A) is estimated by

1000∑
k=51

e−10 10k

k!
.

Solution to Problem 2.5. (a) Let X be the number of packets stored at the end of
the first slot. For k < b, the probability that X = k is the same as the probability that
k packets are generated by the source:

pX(k) = e−λ
λk

k!
, k = 0, 1, . . . , b− 1,

while

pX(b) =

∞∑
k=b

e−λ
λk

k!
= 1−

b−1∑
k=0

e−λ
λk

k!
.

Let Y be the number of number of packets stored at the end of the second
slot. Since min{X, c} is the number of packets transmitted in the second slot, we have
Y = X −min{X, c}. Thus,

pY (0) =

c∑
k=0

pX(k) =

c∑
k=0

e−λ
λk

k!
,

pY (k) = pX(k + c) = e−λ
λk+c

(k + c)!
, k = 1, . . . , b− c− 1,
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pY (b− c) = pX(b) = 1−
b−1∑
k=0

e−λ
λk

k!
.

(b) The probability that some packets get discarded during the first slot is the same as
the probability that more than b packets are generated by the source, so it is equal to

∞∑
k=b+1

e−λ
λk

k!
,

or

1−
b∑

k=0

e−λ
λk

k!
.

Solution to Problem 2.6. We consider the general case of part (b), and we show
that p > 1/2 is a necessary and sufficient condition for n = 2k + 1 games to be better
than n = 2k − 1 games. To prove this, let N be the number of Celtics’ wins in the
first 2k− 1 games. If A denotes the event that the Celtics win with n = 2k+ 1, and B
denotes the event that the Celtics win with n = 2k − 1, then

P(A) = P(N ≥ k + 1) + P(N = k) ·
(
1− (1− p)2

)
+ P(N = k − 1) · p2,

P(B) = P(N ≥ k) = P(N = k) + P(N ≥ k + 1),

and therefore

P(A)−P(B) = P(N = k − 1) · p2 −P(N = k) · (1− p)2

=

(
2k − 1

k − 1

)
pk−1(1− p)kp2 −

(
2k − 1

k

)
(1− p)2pk(1− p)k−1

=
(2k − 1)!

(k − 1)! k!
pk(1− p)k(2p− 1).

It follows that P(A) > P(B) if and only if p > 1
2
. Thus, a longer series is better for

the better team.

Solution to Problem 2.7. Let random variable X be the number of trials you need
to open the door, and let Ki be the event that the ith key selected opens the door.

(a) In case (1), we have

pX(1) = P(K1) =
1

5
,

pX(2) = P(Kc
1)P(K2 |Kc

1) =
4

5
· 1

4
=

1

5
,

pX(3) = P(Kc
1)P(Kc

2 |Kc
1)P(K3 |Kc

1 ∩Kc
2) =

4

5
· 3

4
· 1

3
=

1

5
.

Proceeding similarly, we see that the PMF of X is

pX(x) =
1

5
, x = 1, 2, 3, 4, 5.
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We can also view the problem as ordering the keys in advance and then trying them in
succession, in which case the probability of any of the five keys being correct is 1/5.

In case (2), X is a geometric random variable with p = 1/5, and its PMF is

pX(k) =
1

5
·
(

4

5

)k−1

, k ≥ 1.

(b) In case (1), we have

pX(1) = P(K1) =
2

10
,

pX(2) = P(Kc
1)P(K2 |Kc

1) =
8

10
· 2

9
,

pX(3) = P(Kc
1)P(Kc

2 |Kc
1)P(K3 |Kc

1 ∩Kc
2) =

8

10
· 7

9
· 2

8
=

7

10
· 2

9
.

Proceeding similarly, we see that the PMF of X is

pX(x) =
2 · (10− x)

90
, x = 1, 2, . . . , 10.

Consider now an alternative line of reasoning to derive the PMF of X. If we
view the problem as ordering the keys in advance and then trying them in succession,
the probability that the number of trials required is x is the probability that the first
x− 1 keys do not contain either of the two correct keys and the xth key is one of the
correct keys. We can count the number of ways for this to happen and divide by the
total number of ways to order the keys to determine pX(x). The total number of ways
to order the keys is 10! For the xth key to be the first correct key, the other key must
be among the last 10 − x keys, so there are 10 − x spots in which it can be located.
There are 8! ways in which the other 8 keys can be in the other 8 locations. We must
then multiply by two since either of the two correct keys could be in the xth position.
We therefore have 2 · 10− x · 8! ways for the xth key to be the first correct one and

pX(x) =
2 · (10− x)8!

10!
=

2 · (10− x)

90
, x = 1, 2, . . . , 10,

as before.
In case (2), X is again a geometric random variable with p = 1/5.

Solution to Problem 2.8. For k = 0, 1, . . . , n− 1, we have

pX(k + 1)

pX(k)
=

(
n

k + 1

)
pk+1(1− p)n−k−1(

n

k

)
pk(1− p)n−k

=
p

1− p ·
n− k
k + 1

.

Solution to Problem 2.9. For k = 1, . . . , n, we have

pX(k)

pX(k − 1)
=

(
n

k

)
pk(1− p)n−k(

n

k − 1

)
pk−1(1− p)n−k+1

=
(n− k + 1)p

k(1− p) =
(n+ 1)p− kp

k − kp .
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If k ≤ k∗, then k ≤ (n+1)p, or equivalently k−kp ≤ (n+1)p−kp, so that the above ratio
is greater than or equal to 1. It follows that pX(k) is monotonically nondecreasing. If
k > k∗, the ratio is less than one, and pX(k) is monotonically decreasing, as required.

Solution to Problem 2.10. Using the expression for the Poisson PMF, we have, for
k ≥ 1,

pX(k)

pX(k − 1)
=
λk · e−λ

k!
· (k − 1)!

λk−1 · e−λ =
λ

k
.

Thus if k ≤ λ the ratio is greater or equal to 1, and it follows that pX(k) is monotonically
increasing. Otherwise, the ratio is less than one, and pX(k) is monotonically decreasing,
as required.

Solution to Problem 2.13. We will use the PMF for the number of girls among
the natural children together with the formula for the PMF of a function of a random
variable. Let N be the number of natural children that are girls. Then N has a binomial
PMF

pN (k) =


(

5

k

)
·
(

1

2

)5

, if 0 ≤ k ≤ 5,

0, otherwise.

Let G be the number of girls out of the 7 children, so that G = N + 2. By applying
the formula for the PMF of a function of a random variable, we have

pG(g) =
∑

{n |n+2=g}

pN (n) = pN (g − 2).

Thus

pG(g) =


(

5

g − 2

)
·
(

1

2

)5

, if 2 ≤ g ≤ 7,

0, otherwise.

Solution to Problem 2.14. (a) Using the formula pY (y) =
∑
{x | x mod(3)=y} pX(x),

we obtain
pY (0) = pX(0) + pX(3) + pX(6) + pX(9) = 4/10,

pY (1) = pX(1) + pX(4) + pX(7) = 3/10,

pY (2) = pX(2) + pX(5) + pX(8) = 3/10,

pY (y) = 0, if y 6∈ {0, 1, 2}.

(b) Similarly, using the formula pY (y) =
∑
{x | 5 mod(x+1)=y} pX(x), we obtain

pY (y) =


2/10, if y = 0,
2/10, if y = 1,
1/10, if y = 2,
5/10, if y = 5,
0, otherwise.
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Solution to Problem 2.15. The random variable Y takes the values k ln a, where
k = 1, . . . , n, if and only if X = ak or X = a−k. Furthermore, Y takes the value 0, if
and only if X = 1. Thus, we have

pY (y) =


2

2n+ 1
, if y = ln a, 2 ln a, . . . , n ln a,

1

2n+ 1
, if y = 0,

0, otherwise.

Solution to Problem 2.16. (a) The scalar a must satisfy

1 =
∑
x

pX(x) =
1

a

3∑
x=−3

x2,

so

a =

3∑
x=−3

x2 = (−3)2 + (−2)2 + (−1)2 + 12 + 22 + 32 = 28.

We also have E[X] = 0 because the PMF is symmetric around 0.

(b) If z ∈ {1, 4, 9}, then

pZ(z) = pX(
√
z) + pX(−

√
z) =

z

28
+

z

28
=

z

14
.

Otherwise pZ(z) = 0.

(c) var(X) = E[Z] =
∑
z

zpZ(z) =
∑

z∈{1,4,9}

z2

14
= 7.

(d) We have

var(X) =
∑
x

(x−E[X])2pX(x)

= 12 ·
(
pX(−1) + pX(1)

)
+ 22 ·

(
pX(−2) + pX(2)

)
+ 32 ·

(
pX(−3) + pX(3)

)
= 2 · 1

28
+ 8 · 4

28
+ 18 · 9

28

= 7.

Solution to Problem 2.17. If X is the temperature in Celsius, the temperature in
Fahrenheit is Y = 32 + 9X/5. Therefore,

E[Y ] = 32 + 9E[X]/5 = 32 + 18 = 50.

Also
var(Y ) = (9/5)2var(X),
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where var(X), the square of the given standard deviation of X, is equal to 100. Thus,
the standard deviation of Y is (9/5) · 10 = 18. Hence a normal day in Fahrenheit is
one for which the temperature is in the range [32, 68].

Solution to Problem 2.18. We have

pX(x) =

{
1/(b− a+ 1), if x = 2k, where a ≤ k ≤ b, k integer,

0, otherwise,

and

E[X] =

b∑
k=a

1

b− a+ 1
2k =

2a

b− a+ 1
(1 + 2 + · · ·+ 2b−a) =

2b+1 − 2a

b− a+ 1
.

Similarly,

E[X2] =

b∑
k=a

1

b− a+ 1
(2k)2 =

4b+1 − 4a

3(b− a+ 1)
,

and finally

var(X) =
4b+1 − 4a

3(b− a+ 1)
−
(

2b+1 − 2a

b− a+ 1

)2

.

Solution to Problem 2.19. We will find the expected gain for each strategy, by
computing the expected number of questions until we find the prize.

(a) With this strategy, the probability of finding the location of the prize with i ques-
tions, where i = 1, . . . , 8, is 1/10. The probability of finding the location with 9
questions is 2/10. Therefore, the expected number of questions is

2

10
· 9 +

1

10

8∑
i=1

i = 5.4.

(b) It can be checked that for 4 of the 10 possible box numbers, exactly 4 questions
will be needed, whereas for 6 of the 10 numbers, 3 questions will be needed. Therefore,
with this strategy, the expected number of questions is

4

10
· 4 +

6

10
· 3 = 3.4.

Solution to Problem 2.20. The number C of candy bars you need to eat is a
geometric random variable with parameter p. Thus the mean is E[C] = 1/p, and the
variance is var(C) = (1− p)/p2.

Solution to Problem 2.21. The expected value of the gain for a single game is
infinite since if X is your gain, then

E[X] =

∞∑
k=1

2k · 2−k =

∞∑
k=1

1 =∞.
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Thus if you are faced with the choice of playing for given fee f or not playing at all,
and your objective is to make the choice that maximizes your expected net gain, you
would be willing to pay any value of f . However, this is in strong disagreement with the
behavior of individuals. In fact experiments have shown that most people are willing to
pay only about $20 to $30 to play the game. The discrepancy is due to a presumption
that the amount one is willing to pay is determined by the expected gain. However,
expected gain does not take into account a person’s attitude towards risk taking.

Solution to Problem 2.22. (a) Let X be the number of tosses until the game is
over. Noting that X is geometric with probability of success

P
(
{HT, TH}

)
= p(1− q) + q(1− p),

we obtain

pX(k) =
(
1− p(1− q)− q(1− p)

)k−1(
p(1− q) + q(1− p)

)
, k = 1, 2, . . .

Therefore

E[X] =
1

p(1− q) + q(1− p)

and

var(X) =
pq + (1− p)(1− q)(
p(1− q) + q(1− p)

)2 .
(b) The probability that the last toss of the first coin is a head is

P
(
HT | {HT, TH}

)
=

p(1− q)
p(1− q) + (1− q)p .

Solution to Problem 2.23. Let X be the total number of tosses.

(a) For each toss after the first one, there is probability 1/2 that the result is the same
as in the preceding toss. Thus, the random variable X is of the form X = Y +1, where
Y is a geometric random variable with parameter p = 1/2. It follows that

pX(k) =

{
(1/2)k−1, if k ≥ 2,
0, otherwise,

and

E[X] = E[Y ] + 1 =
1

p
+ 1 = 3.

We also have

var(X) = var(Y ) =
1− p
p2

= 2.

(b) If k > 2, there are k − 1 sequences that lead to the event {X = k}. One such
sequence is H · · ·HT , where k−1 heads are followed by a tail. The other k−2 possible
sequences are of the form T · · ·TH · · ·HT , for various lengths of the initial T · · ·T
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segment. For the case where k = 2, there is only one (hence k − 1) possible sequence
that leads to the event {X = k}, namely the sequence HT . Therefore, for any k ≥ 2,

P(X = k) = (k − 1)(1/2)k.

It follows that

pX(k) =

{
(k − 1)(1/2)k, if k ≥ 2,
0, otherwise,

and

E[X] =

∞∑
k=2

k(k−1)(1/2)k =

∞∑
k=1

k(k−1)(1/2)k =

∞∑
k=1

k2(1/2)k−
∞∑
k=1

k(1/2)k = 6−2 = 4.

We have used here the equalities

∞∑
k=1

k(1/2)k = E[Y ] = 2,

and
∞∑
k=1

k2(1/2)k = E[Y 2] = var(Y ) +
(
E[Y ]

)2
= 2 + 22 = 6,

where Y is a geometric random variable with parameter p = 1/2.

Solution to Problem 2.24. (a) There are 21 integer pairs (x, y) in the region

R =
{

(x, y) | − 2 ≤ x ≤ 4, −1 ≤ y − x ≤ 1
}
,

so that the joint PMF of X and Y is

pX,Y (x, y) =
{

1/21, if (x, y) is in R,
0, otherwise.

For each x in the range [−2, 4], there are three possible values of Y . Thus, we
have

pX(x) =
{

3/21, if x = −2,−1, 0, 1, 2, 3, 4,
0, otherwise.

The mean of X is the midpoint of the range [−2, 4]:

E[X] = 1.

The marginal PMF of Y is obtained by using the tabular method. We have

pY (y) =


1/21, if y = −3,
2/21, if y = −2,
3/21, if y = −1, 0, 1, 2, 3,
2/21, if y = 4,
1/21, if y = 5,
0, otherwise.
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The mean of Y is

E[Y ] =
1

21
· (−3 + 5) +

2

21
· (−2 + 4) +

3

21
· (−1 + 1 + 2 + 3) = 1.

(b) The profit is given by

P = 100X + 200Y,

so that

E[P ] = 100 ·E[X] + 200 ·E[Y ] = 100 · 1 + 200 · 1 = 300.

Solution to Problem 2.25. (a) Since all possible values of (I, J) are equally likely,
we have

pI,J(i, j) =

{ 1∑n

k=1
mk

, if j ≤ mi,

0, otherwise.

The marginal PMFs are given by

pI(i) =

m∑
j=1

pI,J(i, j) =
mi∑n

k=1
mk

, i = 1, . . . , n,

pJ(j) =

n∑
i=1

pI,J(i, j) =
lj∑n

k=1
mk

, j = 1, . . . ,m,

where lj is the number of students that have answered question j, i.e., students i with
j ≤ mi.

(b) The expected value of the score of student i is the sum of the expected values
pija+ (1− pij)b of the scores on questions j with j = 1, . . . ,mi, i.e.,

mi∑
j=1

(
pija+ (1− pij)b

)
.

Solution to Problem 2.26. (a) The possible values of the random variable X are
the ten numbers 101, . . . , 110, and the PMF is given by

pX(k) =

{
P(X > k − 1)−P(X > k), if k = 101, . . . 110,

0, otherwise.

We have P(X > 100) = 1 and for k = 101, . . . 110,

P(X > k) = P(X1 > k,X2 > k,X3 > k)

= P(X1 > k)P(X2 > k)P(X3 > k)

=
(110− k)3

103
.
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It follows that

pX(k) =

{
(111− k)3 − (110− k)3

103
, if k = 101, . . . 110,

0, otherwise.

(An alternative solution is based on the notion of a CDF, which will be introduced in
Chapter 3.)

(b) Since Xi is uniformly distributed over the integers in the range [101, 110], we have
E[Xi] = (101 + 110)/2 = 105.5. The expected value of X is

E[X] =

∞∑
k=−∞

k · pX(k) =

110∑
k=101

k · px(k) =

110∑
k=101

k · (111− k)3 − (110− k)3

103
.

The above expression can be evaluated to be equal to 103.025. The expected improve-
ment is therefore 105.5 - 103.025 = 2.475.

Solution to Problem 2.31. The marginal PMF pY is given by the binomial formula

pY (y) =

(
4

y

)(
1

6

)y (5

6

)4−y
, y = 0, 1, . . . , 4.

To compute the conditional PMF pX|Y , note that given that Y = y, X is the number
of 1’s in the remaining 4− y rolls, each of which can take the 5 values 1, 3, 4, 5, 6 with
equal probability 1/5. Thus, the conditional PMF pX|Y is binomial with parameters
4− y and p = 1/5:

pX|Y (x | y) =

(
4− y
x

)(
1

5

)x (4

5

)4−y−x
,

for all nonnegative integers x and y such that 0 ≤ x + y ≤ 4. The joint PMF is now
given by

pX,Y (x, y) = pY (y)pX|Y (x | y)

=

(
4

y

)(
1

6

)y (5

6

)4−y
(

4− y
x

)(
1

5

)x (4

5

)4−y−x
,

for all nonnegative integers x and y such that 0 ≤ x+ y ≤ 4. For other values of x and
y, we have pX,Y (x, y) = 0.

Solution to Problem 2.32. Let Xi be the random variable taking the value 1 or 0
depending on whether the first partner of the ith couple has survived or not. Let Yi
be the corresponding random variable for the second partner of the ith couple. Then,
we have S =

∑m

i=1
XiYi, and by using the total expectation theorem,

E[S |A = a] =

m∑
i=1

E[XiYi |A = a]

= mE[X1Y1 |A = a]

= mE[Y1 |X1 = 1, A = a]P(X1 = 1 |A = a)

= mP(Y1 = 1 |X1 = 1, A = a)P(X1 = 1 |A = a).
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We have

P(Y1 = 1 |X1 = 1, A = a) =
a− 1

2m− 1
, P(X1 = 1 |A = a) =

a

2m
.

Thus

E[S |A = a] = m
a− 1

2m− 1
· a

2m
=

a(a− 1)

2(2m− 1)
.

Note that E[S |A = a] does not depend on p.

Solution to Problem 2.38. (a) Let X be the number of red lights that Alice
encounters. The PMF of X is binomial with n = 4 and p = 1/2. The mean and the
variance of X are E[X] = np = 2 and var(X) = np(1− p) = 4 · (1/2) · (1/2) = 1.

(b) The variance of Alice’s commuting time is the same as the variance of the time by
which Alice is delayed by the red lights. This is equal to the variance of 2X, which is
4var(X) = 4.

Solution to Problem 2.39. Let Xi be the number of eggs Harry eats on day i.
Then, the Xi are independent random variables, uniformly distributed over the set
{1, . . . , 6}. We have X =

∑10

i=1
Xi, and

E[X] = E

(
10∑
i=1

Xi

)
=

10∑
i=1

E[Xi] = 35.

Similarly, we have

var(X) = var

(
10∑
i=1

Xi

)
=

10∑
i=1

var(Xi),

since the Xi are independent. Using the formula of Example 2.6, we have

var(Xi) =
(6− 1)(6− 1 + 2)

12
≈ 2.9167,

so that var(X) ≈ 29.167.

Solution to Problem 2.40. Associate a success with a paper that receives a grade
that has not been received before. Let Xi be the number of papers between the ith
success and the (i+ 1)st success. Then we have X = 1 +

∑5

i=1
Xi and hence

E[X] = 1 +

5∑
i=1

E[Xi].

After receiving i−1 different grades so far (i−1 successes), each subsequent paper has
probability (6− i)/6 of receiving a grade that has not been received before. Therefore,
the random variable Xi is geometric with parameter pi = (6−i)/6, so E[Xi] = 6/(6−i).
It follows that

E[X] = 1 +

5∑
i=1

6

6− i = 1 + 6

5∑
i=1

1

i
= 14.7.
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Solution to Problem 2.41. (a) The PMF of X is the binomial PMF with parameters
p = 0.02 and n = 250. The mean is E[X] = np = 250·0.02 = 5. The desired probability
is

P(X = 5) =

(
250

5

)
(0.02)5(0.98)245 = 0.1773.

(b) The Poisson approximation has parameter λ = np = 5, so the probability in (a) is
approximated by

e−λ
λ5

5!
= 0.1755.

(c) Let Y be the amount of money you pay in traffic tickets during the year. Then

E[Y ] =

5∑
i=1

50 ·E[Yi],

where Yi is the amount of money you pay on the ith day. The PMF of Yi is

P(Yi = y) =


0.98, if y = 0,
0.01, if y = 10,
0.006, if y = 20,
0.004, if y = 50.

The mean is
E[Yi] = 0.01 · 10 + 0.006 · 20 + 0.004 · 50 = 0.42.

The variance is

var(Yi) = E[Y 2
i ]−

(
E[Yi]

)2
= 0.01 · (10)2 +0.006 · (20)2 +0.004 · (50)2− (0.42)2 = 13.22.

The mean of Y is
E[Y ] = 250 ·E[Yi] = 105,

and using the independence of the random variables Yi, the variance of Y is

var(Y ) = 250 · var(Yi) = 3, 305.

(d) The variance of the sample mean is

p(1− p)
250

so assuming that |p − p̂| is within 5 times the standard deviation, the possible values
of p are those that satisfy p ∈ [0, 1] and

(p− 0.02)2 ≤ 25p(1− p)
250

.
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This is a quadratic inequality that can be solved for the interval of values of p. After
some calculation, the inequality can be written as 275p2 − 35p+ 0.1 ≤ 0, which holds
if and only if p ∈ [0.0025, 0.1245].

Solution to Problem 2.42. (a) Noting that

P(Xi = 1) =
Area(S)

Area
(
[0, 1]× [0, 1]

) = Area(S),

we obtain

E[Sn] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] = E[Xi] = Area(S),

and

var(Sn) = var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

var(Xi) =
1

n
var(Xi) =

1

n

(
1−Area(S)

)
Area(S),

which tends to zero as n tends to infinity.

(b) We have

Sn =
n− 1

n
Sn−1 +

1

n
Xn.

(c) We can generate S10000 (up to a certain precision) as follows :

1. Initialize S to zero.

2. For i = 1 to 10000

3. Randomly select two real numbers a and b (up to a certain precision)

independently and uniformly from the interval [0, 1].

4. If (a− 0.5)2 + (b− 0.5)2 < 0.25, set x to 1 else set x to 0.

5. Set S := (i− 1)S/i+ x/i .

6. Return S.

By running the above algorithm, a value of S10000 equal to 0.7783 was obtained (the
exact number depends on the random number generator). We know from part (a) that
the variance of Sn tends to zero as n tends to infinity, so the obtained value of S10000

is an approximation of E[S10000]. But E[S10000] = Area(S) = π/4, this leads us to the
following approximation of π:

4 · 0.7783 = 3.1132.

(d) We only need to modify the test done at step 4. We have to test whether or not
0 ≤ cosπa+ sinπb ≤ 1. The obtained approximation of the area was 0.3755.
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C H A P T E R 3

Solution to Problem 3.1. The random variable Y = g(X) is discrete and its PMF
is given by

pY (1) = P(X ≤ 1/3) = 1/3, pY (2) = 1− pY (1) = 2/3.

Thus,

E[Y ] =
1

3
· 1 +

2

3
· 2 =

5

3
.

The same result is obtained using the expected value rule:

E[Y ] =

∫ 1

0

g(x)fX(x) dx =

∫ 1/3

0

dx+

∫ 1

1/3

2 dx =
5

3
.

Solution to Problem 3.2. We have∫ ∞
−∞

fX(x)dx =

∫ ∞
−∞

λ

2
e−λ|x| dx = 2 · 1

2

∫ ∞
0

λe−λx dx = 2 · 1

2
= 1,

where we have used the fact
∫∞

0
λe−λxdx = 1, i.e., the normalization property of the

exponential PDF. By symmetry of the PDF, we have E[X] = 0. We also have

E[X2] =

∫ ∞
−∞

x2 λ

2
e−λ|x|dx =

∫ ∞
0

x2λe−λxdx =
2

λ2
,

where we have used the fact that the second moment of the exponential PDF is 2/λ2.
Thus

var(X) = E[X2]−
(
E[X]

)2
= 2/λ2.

Solution to Problem 3.5. Let A = bh/2 be the area of the given triangle, where
b is the length of the base, and h is the height of the triangle. From the randomly
chosen point, draw a line parallel to the base, and let Ax be the area of the triangle
thus formed. The height of this triangle is h − x and its base has length b(h − x)/h.
Thus Ax = b(h− x)2/(2h). For x ∈ [0, h], we have

FX(x) = 1−P(X > x) = 1− Ax
A

= 1− b(h− x)2/(2h)

bh/2
= 1−

(
h− x
h

)2

,

while FX(x) = 0 for x < 0 and FX(x) = 1 for x > h.
The PDF is obtained by differentiating the CDF. We have

fX(x) =
dFX
dx

(x) =

{
2(h− x)

h2
, if 0 ≤ x ≤ h,

0, otherwise.
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Solution to Problem 3.6. Let X be the waiting time and Y be the number of
customers found. For x < 0, we have FX(x) = 0, while for x ≥ 0,

FX(x) = P(X ≤ x) =
1

2
P(X ≤ x |Y = 0) +

1

2
P(X ≤ x |Y = 1).

Since

P(X ≤ x |Y = 0) = 1,

P(X ≤ x |Y = 1) = 1− e−λx,

we obtain

FX(x) =

{ 1

2
(2− e−λx), if x ≥ 0,

0, otherwise.

Note that the CDF has a discontinuity at x = 0. The random variable X is neither
discrete nor continuous.

Solution to Problem 3.7. (a) We first calculate the CDF of X. For x ∈ [0, r], we
have

FX(x) = P(X ≤ x) =
πx2

πr2
=
(
x

r

)2

.

For x < 0, we have FX(x) = 0, and for x > r, we have FX(x) = 1. By differentiating,
we obtain the PDF

fX(x) =

{
2x

r2
, if 0 ≤ x ≤ r,

0, otherwise.

We have

E[X] =

∫ r

0

2x2

r2
dx =

2r

3
.

Also

E[X2] =

∫ r

0

2x3

r2
dx =

r2

2
,

so

var(X) = E[X2]−
(
E[X]

)2
=
r2

2
− 4r2

9
=
r2

18
.

(b) Alvin gets a positive score in the range [1/t,∞) if and only if X ≤ t, and otherwise
he gets a score of 0. Thus, for s < 0, the CDF of S is FS(s) = 0. For 0 ≤ s < 1/t, we
have

FS(s) = P(S ≤ s) = P(Alvin’s hit is outside the inner circle) = 1−P(X ≤ t) = 1− t
2

r2
.

For 1/t < s, the CDF of S is given by

FS(s) = P(S ≤ s) = P(X ≤ t)P(S ≤ s |X ≤ t) + P(X > t)P(S ≤ s |X > t).
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We have

P(X ≤ t) =
t2

r2
, P(X > t) = 1− t2

r2
,

and since S = 0 when X > t,

P(S ≤ s |X > t) = 1.

Furthermore,

P(S ≤ s |X ≤ t) = P(1/X ≤ s |X ≤ t) =
P(1/s ≤ X ≤ t)

P(X ≤ t) =

πt2 − π(1/s)2

πr2

πt2

πr2

= 1− 1

s2t2
.

Combining the above equations, we obtain

P(S ≤ s) =
t2

r2

(
1− 1

s2t2

)
+ 1− t2

r2
= 1− 1

s2r2
.

Collecting the results of the preceding calculations, the CDF of S is

FS(s) =


0, if s < 0,

1− t2

r2
, if 0 ≤ s < 1/t,

1− 1

s2r2
, if 1/t ≤ s.

Because FS has a discontinuity at s = 0, the random variable S is not continuous.

Solution to Problem 3.8. (a) By the total probability theorem, we have

FX(x) = P(X ≤ x) = pP(Y ≤ x) + (1− p)P(Z ≤ x) = pFY (x) + (1− p)FZ(x).

By differentiating, we obtain

fX(x) = pfY (x) + (1− p)fZ(x).

(b) Consider the random variable Y that has PDF

fY (y) =

{
λeλy, if y < 0
0, otherwise,

and the random variable Z that has PDF

fZ(z) =

{
λe−λz, if y ≥ 0
0, otherwise.

We note that the random variables −Y and Z are exponential. Using the CDF of the
exponential random variable, we see that the CDFs of Y and Z are given by

FY (y) =

{
eλy, if y < 0,
1, if y ≥ 0,
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FZ(z) =
{

0, if z < 0,
1− e−λz, if z ≥ 0.

We have fX(x) = pfY (x) + (1 − p)fZ(x), and consequently FX(x) = pFY (x) + (1 −
p)FZ(x). It follows that

FX(x) =

{
peλx, if x < 0,
p+ (1− p)(1− e−λx), if x ≥ 0,

=

{
peλx, if x < 0,
1− (1− p)e−λx, if x ≥ 0.

Solution to Problem 3.11. (a) X is a standard normal, so by using the normal
table, we have P(X ≤ 1.5) = Φ(1.5) = 0.9332. Also P(X ≤ −1) = 1 − Φ(1) =
1− 0.8413 = 0.1587.

(b) The random variable (Y − 1)/2 is obtained by subtracting from Y its mean (which
is 1) and dividing by the standard deviation (which is 2), so the PDF of (Y − 1)/2 is
the standard normal.

(c) We have, using the normal table,

P(−1 ≤ Y ≤ 1) = P
(
−1 ≤ (Y − 1)/2 ≤ 0

)
= P(−1 ≤ Z ≤ 0)

= P(0 ≤ Z ≤ 1)

= Φ(1)− Φ(0)

= 0.8413− 0.5

= 0.3413,

where Z is a standard normal random variable.

Solution to Problem 3.12. The random variable Z = X/σ is a standard normal,
so

P(X ≥ kσ) = P(Z ≥ k) = 1− Φ(k).

From the normal tables we have

Φ(1) = 0.8413, Φ(2) = 0.9772, Φ(3) = 0.9986.

Thus P(X ≥ σ) = 0.1587, P(X ≥ 2σ) = 0.0228, P(X ≥ 3σ) = 0.0014.
We also have

P
(
|X| ≤ kσ

)
= P

(
|Z| ≤ k

)
= Φ(k)−P(Z ≤ −k) = Φ(k)−

(
1− Φ(k)

)
= 2Φ(k)− 1.

Using the normal table values above, we obtain

P(|X| ≤ σ) = 0.6826, P(|X| ≤ 2σ) = 0.9544, P(|X| ≤ 3σ) = 0.9972,

where t is a standard normal random variable.
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Solution to Problem 3.13. Let X and Y be the temperature in Celsius and
Fahrenheit, respectively, which are related by X = 5(Y − 32)/9. Therefore, 59 degrees
Fahrenheit correspond to 15 degrees Celsius. So, if Z is a standard normal random
variable, we have using E[X] = σX = 10,

P(Y ≤ 59) = P(X ≤ 15) = P

(
Z ≤ 15−E[X]

σX

)
= P(Z ≤ 0.5) = Φ(0.5).

From the normal tables we have Φ(0.5) = 0.6915, so P(Y ≤ 59) = 0.6915.

Solution to Problem 3.15. (a) Since the area of the semicircle is πr2/2, the joint
PDF of X and Y is fX,Y (x, y) = 2/πr2, for (x, y) in the semicircle, and fX,Y (x, y) = 0,
otherwise.

(b) To find the marginal PDF of Y , we integrate the joint PDF over the range of
X. For any possible value y of Y , the range of possible values of X is the interval
[−
√
r2 − y2,

√
r2 − y2], and we have

fY (y) =

∫ √r2−y2
−
√
r2−y2

2

πr2
dx =

 4
√
r2 − y2

πr2
, if 0 ≤ y ≤ r,

0, otherwise.

Thus,

E[Y ] =
4

πr2

∫ r

0

y
√
r2 − y2 dy =

4r

3π
,

where the integration is performed using the substitution z = r2 − y2.

(c) There is no need to find the marginal PDF fY in order to find E[Y ]. Let D denote
the semicircle. We have, using polar coordinates

E[Y ] =

∫ ∫
(x,y)∈D

yfX,Y (x, y) dx dy =

∫ π

0

∫ r

0

2

πr2
s(sin θ)s ds dθ =

4r

3π
.

Solution to Problem 3.16. Let A be the event that the needle will cross a horizontal
line, and let B be the probability that it will cross a vertical line. From the analysis of
Example 3.11, we have that

P(A) =
2l

πa
, P(B) =

2l

πb
.

Since at most one horizontal (or vertical) line can be crossed, the expected number of
horizontal lines crossed is P(A) [or P(B), respectively]. Thus the expected number of
crossed lines is

P(A) + P(B) =
2l

πa
+

2l

πb
=

2l(a+ b)

πab
.

The probability that at least one line will be crossed is

P(A ∪B) = P(A) + P(B)−P(A ∩B).
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Let X (or Y ) be the distance from the needle’s center to the nearest horizontal (or
vertical) line. Let Θ be the angle formed by the needle’s axis and the horizontal lines
as in Example 3.11. We have

P(A ∩B) = P
(
X ≤ l sin Θ

2
, Y ≤ l cos Θ

2

)
.

We model the triple (X,Y,Θ) as uniformly distributed over the set of all (x, y, θ) that
satisfy 0 ≤ x ≤ a/2, 0 ≤ y ≤ b/2, and 0 ≤ θ ≤ π/2. Hence, within this set, we have

fX,Y,Θ(x, y, θ) =
8

πab
.

The probability P(A ∩B) is

P
(
X ≤ (l/2) sin Θ, Y ≤ (l/2) cos Θ

)
=

∫ ∫
x≤(l/2) sin θ
y≤(l/2) cos θ

fX,Y,Θ(x, y, θ) dx dy dθ

=
8

πab

∫ π/2

0

∫ (l/2) cos θ

0

∫ (l/2) sin θ

0

dx dy dθ

=
2l2

πab

∫ π/2

0

cos θ sin θ dθ

=
l2

πab
.

Thus we have

P(A ∪B) = P(A) + P(B)−P(A ∩B) =
2l

πa
+

2l

πb
− l2

πab
=

l

πab

(
2(a+ b)− l

)
.

Solution to Problem 3.18. (a) We have

E[X] =

∫ 3

1

x2

4
dx =

x3

12

∣∣∣3
1

=
27

12
− 1

12
=

26

12
=

13

6
,

P(A) =

∫ 3

2

x

4
dx =

x2

8

∣∣∣3
2

=
9

8
− 4

8
=

5

8
.

We also have

fX|A(x) =

{
fX(x)

P(A)
, if x ∈ A,

0, otherwise,

=

{
2x

5
, if 2 ≤ x ≤ 3,

0, otherwise,

40



from which we obtain

E[X |A] =

∫ 3

2

x · 2x

5
dx =

2x3

15

∣∣∣3
2

=
54

15
− 16

15
=

38

15
.

(b) We have

E[Y ] = E[X2] =

∫ 3

1

x3

4
dx = 5,

and

E[Y 2] = E[X4] =

∫ 3

1

x5

4
dx =

91

3
.

Thus,

var(Y ) = E[Y 2]−
(
E[Y ]

)2
=

91

3
− 52 =

16

3
.

Solution to Problem 3.19. (a) We have, using the normalization property,∫ 2

1

cx−2 dx = 1,

or

c =
1∫ 2

1

x−2 dx

= 2.

(b) We have

P(A) =

∫ 2

1.5

2x−2 dx =
1

3
,

and

fX|A(x |A) =

{
6x−2, if 1.5 < x ≤ 2,
0, otherwise.

(c) We have

E[Y |A] = E[X2 |A] =

∫ 2

1.5

6x−2x2 dx = 3,

E[Y 2 |A] = E[X4 |A] =

∫ 2

1.5

6x−2x4 dx =
37

4
,

and

var(Y |A) =
37

4
− 32 =

1

4
.

Solution to Problem 3.20. The expected value in question is

E[Time] =
(
5 + E[stay of 2nd student]

)
·P(1st stays no more than 5 minutes)

+
(
E[stay of 1st | stay of 1st ≥ 5] + E[stay of 2nd]

)
·P(1st stays more than 5 minutes).
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We have E[stay of 2nd student] = 30, and, using the memorylessness property of the
exponential distribution,

E[stay of 1st | stay of 1st ≥ 5] = 5 + E[stay of 1st] = 35.

Also
P(1st student stays no more than 5 minutes) = 1− e−5/30,

P(1st student stays more than 5 minutes) = e−5/30.

By substitution we obtain

E[Time] = (5 + 30) · (1− e−5/30) + (35 + 30) · e−5/30 = 35 + 30 · e−5/30 = 60.394.

Solution to Problem 3.21. (a) We have fY (y) = 1/l, for 0 ≤ y ≤ l. Furthermore,
given the value y of Y , the random variableX is uniform in the interval [0, y]. Therefore,
fX|Y (x | y) = 1/y, for 0 ≤ x ≤ y. We conclude that

fX,Y (x, y) = fY (y)fX|Y (x | y) =

{ 1

l
· 1

y
, 0 ≤ x ≤ y ≤ l,

0, otherwise.

(b) We have

fX(x) =

∫
fX,Y (x, y) dy =

∫ l

x

1

ly
dy =

1

l
ln(l/x), 0 ≤ x ≤ l.

(c) We have

E[X] =

∫ l

0

xfX(x) dx =

∫ l

0

x

l
ln(l/x) dx =

l

4
.

(d) The fraction Y/l of the stick that is left after the first break, and the further fraction
X/Y of the stick that is left after the second break are independent. Furthermore, the
random variables Y and X/Y are uniformly distributed over the sets [0, l] and [0, 1],
respectively, so that E[Y ] = l/2 and E[X/Y ] = 1/2. Thus,

E[X] = E[Y ]E
[
X

Y

]
=
l

2
· 1

2
=
l

4
.

Solution to Problem 3.22. Define coordinates such that the stick extends from
position 0 (the left end) to position 1 (the right end). Denote the position of the first
break by X and the position of the second break by Y . With method (ii), we have
X < Y . With methods (i) and (iii), we assume that X < Y and we later account for
the case Y < X by using symmetry.

Under the assumption X < Y , the three pieces have lengths X, Y − X, and
1 − Y . In order that they form a triangle, the sum of the lengths of any two pieces
must exceed the length of the third piece. Thus they form a triangle if

X < (Y −X) + (1− Y ), (Y −X) < X + (1− Y ), (1− Y ) < X + (Y −X).
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y 

1
f X,Y(x ,y) = 2

f X |Y(x  | y )

1 -  y 

1

(a ) ( b )

x 11 -  y 

y 

x 11 -  y 

Figure 3.1: (a) The joint PDF. (b) The conditional density of X.

These conditions simplify to

X < 0.5, Y > 0.5, Y −X < 0.5.

Consider first method (i). For X and Y to satisfy these conditions, the pair
(X,Y ) must lie within the triangle with vertices (0, 0.5), (0.5, 0.5), and (0.5, 1). This
triangle has area 1/8. Thus the probability of the event that the three pieces form a
triangle and X < Y is 1/8. By symmetry, the probability of the event that the three
pieces form a triangle and X > Y is 1/8. Since there two events are disjoint and form
a partition of the event that the three pieces form a triangle, the desired probability is
1/8 + 1/8 = 1/4.

Consider next method (ii). Since X is uniformly distributed on [0, 1] and Y is
uniformly distributed on [X, 1], we have for 0 ≤ x ≤ y ≤ 1,

fX,Y (x, y) = fX(x) fY |X(y |x) = 1 · 1

1− x .

The desired probability is the probability of the triangle with vertices (0, 0.5), (0.5, 0.5),
and (0.5, 1):∫ 1/2

0

∫ x+1/2

1/2

fX,Y (x, y)dydx =

∫ 1/2

0

∫ x+1/2

1/2

1

1− xdydx =

∫ 1/2

0

x

1− xdydx = −1

2
+ln 2.

Consider finally method (iii). Consider first the case X < 0.5. Then the larger
piece after the first break is the piece on the right. Thus, as in method (ii), Y is
uniformly distributed on [X, 1] and the integral above gives the probability of a triangle
being formed and X < 0.5. Considering also the case X > 0.5 doubles the probability,
giving a final answer of −1 + 2 ln 2.

Solution to Problem 3.23. (a) We interpret the word “triangle” to mean the
“closed triangle,” that is, its boundary is also included. The area of the triangle is 1/2,
so that fX,Y (x, y) = 2, on the triangle indicated in Fig. 3.1(a), and zero everywhere
else.
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(b) We have

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =

∫ 1−y

0

2 dx = 2(1− y), 0 ≤ y ≤ 1.

(c) We have

fX|Y (x | y) =
fX,Y (x, y)

fY (y)
=

1

1− y , 0 ≤ y < 1, 0 ≤ x ≤ 1− y.

When y = 1, fY (y) is zero and so the conditional PDF is undefined. Furthermore,
given any y, with 0 ≤ y < 1, fX|Y (x | y) = 0 when x lies outside the interval [0, 1− y].
Finally, the conditional PDF is undefined for y /∈ [0, 1]. The conditional density is
shown in the figure.

Intuitively, since the joint PDF is constant, the conditional PDF (which is a
“slice” of the joint, at some fixed y) is also constant. Therefore, the conditional PDF
must be a uniform distribution. Given that Y = y, X ranges from 0 to 1−y. Therefore,
for the PDF to integrate to 1, its height must be equal to 1/(1− y), in agreement with
the figure.

(d) For y > 1 or y < 0, the conditional PDF is undefined, since these values of y are
impossible. For 0 ≤ y < 1, the conditional mean E[X |Y = y] is obtained using the
uniform PDF in Fig. 3.1(b), and we have

E[X |Y = y] =
1− y

2
, 0 ≤ y < 1.

For y = 1, X must be equal to 0, with certainty, so E[X |Y = 1] = 0. Thus, the above
formula is also valid when y = 1. The conditional expectation is undefined when y is
outside [0, 1].

The total expectation theorem yields

E[X] =

∫ 1

0

1− y
2

fY (y) dy =
1

2
− 1

2

∫ 1

0

yfY (y) dy =
1−E[Y ]

2
.

(e) Because of symmetry, we must have E[X] = E[Y ]. Therefore, E[X] =
(
1−E[X]

)
/2,

which yields E[X] = 1/3.

Solution to Problem 3.24. The conditional density of X given that Y = y is
uniform over the interval [0, (2− y)/2], and we have

E[X |Y = y] =
2− y

4
, 0 ≤ y ≤ 2.

Therefore, using the total expectation theorem,

E[X] =

∫ 2

0

2− y
4

fY (y) dy =
2

4
− 1

4

∫ 2

0

yfY (y) dy =
2−E[Y ]

4
.
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Similarly, the conditional density of Y given that X = x is uniform over the
interval [0, 2(1− x)], and we have

E[Y |X = x] = 1− x, 0 ≤ x ≤ 1.

Therefore,

E[Y ] =

∫ 1

0

(1− x)fX(x) dx = 1−E[X].

By solving the two equations above for E[X] and E[Y ], we obtain

E[X] =
1

3
, E[Y ] =

2

3
.

Solution to Problem 3.25. Let C denote the event that X2 + Y 2 ≥ c2. The
probability P(C) can be calculated using polar coordinates, as follows:

P(C) =
1

2πσ2

∫ 2π

0

∫ ∞
c

re−r
2/2σ2

dr dθ

=
1

σ2

∫ ∞
c

re−r
2/2σ2

dr

= e−c
2/2σ2

.

Thus, for (x, y) ∈ C,

fX,Y |C(x, y) =
fX,Y (x, y)

P(C)
=

1

2πσ2
e
−

1

2σ2
(x2 + y2 − c2)

.

Solution to Problem 3.34. (a) Let A be the event that the first coin toss resulted
in heads. To calculate the probability P(A), we use the continuous version of the total
probability theorem:

P(A) =

∫ 1

0

P(A |P = p)fP (p) dp =

∫ 1

0

p2ep dp,

which after some calculation yields

P(A) = e− 2.

(b) Using Bayes’ rule,

fP |A(p) =
P(A|P = p)fP (p)

P(A)

=

 p2ep

e− 2
, 0 ≤ p ≤ 1,

0, otherwise.
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(c) Let B be the event that the second toss resulted in heads. We have

P(B |A) =

∫ 1

0

P(B |P = p,A)fP |A(p) dp

=

∫ 1

0

P(B |P = p)fP |A(p) dp

=
1

e− 2

∫ 1

0

p3ep dp.

After some calculation, this yields

P(B |A) =
1

e− 2
· (6− 2e) =

0.564

0.718
≈ 0.786.
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C H A P T E R 4

Solution to Problem 4.1. Let Y =
√
|X|. We have, for 0 ≤ y ≤ 1,

FY (y) = P(Y ≤ y) = P(
√
|X| ≤ y) = P(−y2 ≤ X ≤ y2) = y2,

and therefore by differentiation,

fY (y) = 2y, for 0 ≤ y ≤ 1.

Let Y = − ln |X|. We have, for y ≥ 0,

FY (y) = P(Y ≤ y) = P(ln |X| ≥ −y) = P(X ≥ e−y) + P(X ≤ −e−y) = 1− e−y,

and therefore by differentiation

fY (y) = e−y, for y ≥ 0,

so Y is an exponential random variable with parameter 1. This exercise provides a
method for simulating an exponential random variable using a sample of a uniform
random variable.

Solution to Problem 4.2. Let Y = eX . We first find the CDF of Y , and then take
the derivative to find its PDF. We have

P(Y ≤ y) = P(eX ≤ y) =
{
P(X ≤ ln y), if y > 0,
0, otherwise.

Therefore,

fY (y) =

{ d

dx
FX(ln y), if y > 0,

0, otherwise,

=

{ 1

y
fX(ln y), if y > 0,

0, otherwise.

When X is uniform on [0, 1], the answer simplifies to

fY (y) =

{ 1

y
, if 1 < y ≤ e,

0, otherwise.

Solution to Problem 4.3. Let Y = |X|1/3. We have

FY (y) = P(Y ≤ y) = P
(
|X|1/3 ≤ y

)
= P

(
− y3 ≤ X ≤ y3

)
= FX(y3)− FX(−y3),
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and therefore, by differentiating,

fY (y) = 3y2fX(y3) + 3y2fX(−y3), for y > 0.

Let Y = |X|1/4. We have

FY (y) = P(Y ≤ y) = P
(
|X|1/4 ≤ y

)
= P(−y4 ≤ X ≤ y4) = FX(y4)− FX(−y4),

and therefore, by differentiating,

fY (y) = 4y3fX(y4) + 4y3fX(−y4), for y > 0.

Solution to Problem 4.4. We have

FY (y) =


0, if y ≤ 0,
P(5− y ≤ X ≤ 5) + P(20− y ≤ X ≤ 20), if 0 ≤ y ≤ 5,
P(20− y ≤ X ≤ 20), if 5 < y ≤ 15,
1, if y > 15.

Using the CDF of X, we have

P(5− y ≤ X ≤ 5) = FX(5)− FX(5− y),

P(20− y ≤ X ≤ 20) = FX(20)− FX(20− y).

Thus,

FY (y) =


0, if y ≤ 0,
FX(5)− FX(5− y) + FX(20)− FX(20− y), if 0 ≤ y ≤ 5,
FX(20)− FX(20− y), if 5 < y ≤ 15,
1, if y > 15.

Differentiating, we obtain

fY (y) =

{
fX(5− y) + fX(20− y), if 0 ≤ y ≤ 5,
fX(20− y), if 5 < y ≤ 15,
0, otherwise,

consistent with the result of Example 3.14.

Solution to Problem 4.5. Let Z = |X − Y |. We have

FZ(z) = P
(
|X − Y | ≤ z

)
= 1− (1− z)2.

(To see this, draw the event of interest as a subset of the unit square and calculate its
area.) Taking derivatives, the desired PDF is

fZ(z) =
{

2(1− z), if 0 ≤ z ≤ 1,
0, otherwise.
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Solution to Problem 4.6. Let Z = |X − Y |. To find the CDF, we integrate the
joint PDF of X and Y over the region where |X − Y | ≤ z for a given z. In the case
where z ≤ 0 or z ≥ 1, the CDF is 0 and 1, respectively. In the case where 0 < z < 1,
we have

FZ(z) = P(X − Y ≤ z, X ≥ Y ) + P(Y −X ≤ z, X < Y ).

The events {X − Y ≤ z, X ≥ Y } and {Y − X ≤ z, X < Y } can be identified with
subsets of the given triangle. After some calculation using triangle geometry, the areas
of these subsets can be verified to be z/2 + z2/4 and 1/4 − (1− z)2/4, respectively.
Therefore, since fX,Y (x, y) = 1 for all (x, y) in the given triangle,

FZ(z) =

(
z

2
+
z2

4

)
+

(
1

4
− (1− z)2

4

)
= z.

Thus,

FZ(z) =

{
0, if z ≤ 0,
z, if 0 < z < 1,
1, if z ≥ 1.

By taking the derivative with respect to z, we obtain

fZ(z) =
{

1, if 0 ≤ z ≤ 1,
0, otherwise.

Solution to Problem 4.7. Let X and Y be the two points, and let Z = max{X,Y }.
For any t ∈ [0, 1], we have

P(Z ≤ t) = P(X ≤ t)P(Y ≤ t) = t2,

and by differentiating, the corresponding PDF is

fZ(z) =

{
0, if z ≤ 0,
2z, if 0 ≤ z ≤ 1,
0, if z ≥ 1.

Thus, we have

E[Z] =

∫ ∞
−∞

zfZ(z)dz =

∫ 1

0

2z2dz =
2

3
.

The distance of the largest of the two points to the right endpoint is 1 − Z, and its
expected value is 1 − E[Z] = 1/3. A symmetric argument shows that the distance of
the smallest of the two points to the left endpoint is also 1/3. Therefore, the expected
distance between the two points must also be 1/3.

Solution to Problem 4.8. Note that fX(x) and fY (z − x) are nonzero only when
x ≥ 0 and x ≤ z, respectively. Thus, in the convolution formula, we only need to
integrate for x ranging from 0 to z:

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x) dx =

∫ z

0

λe−λxλe−λ(z−x) dx = λ2e−z
∫ z

0

dx = λ2ze−λz.
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Solution to Problem 4.9. Let Z = X − Y . We will first calculate the CDF FZ(z)
by considering separately the cases z ≥ 0 and z < 0. For z ≥ 0, we have (see the left
side of Fig. 4.6)

FZ(z) = P(X − Y ≤ z)
= 1−P(X − Y > z)

= 1−
∫ ∞

0

(∫ ∞
z+y

fX,Y (x, y) dx

)
dy

= 1−
∫ ∞

0

µe−µy
(∫ ∞

z+y

λe−λx dx

)
dy

= 1−
∫ ∞

0

µe−µye−λ(z+y) dy

= 1− e−λz
∫ ∞

0

µe−(λ+µ)y dy

= 1− µ

λ+ µ
e−λz.

For the case z < 0, we have using the preceding calculation

FZ(z) = 1− FZ(−z) = 1−
(

1− λ

λ+ µ
e−µ(−z)

)
=

λ

λ+ µ
eµz.

Combining the two cases z ≥ 0 and z < 0, we obtain

FZ(z) =


1− µ

λ+ µ
e−λz, if z ≥ 0,

λ

λ+ µ
eµz, if z < 0.

The PDF of Z is obtained by differentiating its CDF. We have

fZ(z) =


λµ

λ+ µ
e−λz, if z ≥ 0,

λµ

λ+ µ
eµz, if z < 0.

For an alternative solution, fix some z ≥ 0 and note that fY (x − z) is nonzero
only when x ≥ z. Thus,

fX−Y (z) =

∫ ∞
−∞

fX(x)fY (x− z) dx

=

∫ ∞
z

λe−λxµe−µ(x−z) dx

= λµeλz
∫ ∞
z

e−(λ+µ)x dx

= λµeλz
1

λ+ µ
e−(λ+µ)z

=
λµ

λ+ µ
e−µz,
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in agreement with the earlier answer. The solution for the case z < 0 is obtained with
a similar calculation.

Solution to Problem 4.10. We first note that the range of possible values of Z are
the integers from the range [1, 5]. Thus we have

pZ(z) = 0, if z 6= 1, 2, 3, 4, 5.

We calculate pZ(z) for each of the values z = 1, 2, 3, 4, 5, using the convolution formula.
We have

pZ(1) =
∑
x

pX(x)pY (1− x) = pX(1)pY (0) =
1

3
· 1

2
=

1

6
,

where the second equality above is based on the fact that for x 6= 1 either pX(x) or
pY (1− x) (or both) is zero. Similarly, we obtain

pZ(2) = pX(1)pY (1) + pX(2)pY (0) =
1

3
· 1

3
+

1

3
· 1

2
=

5

18
,

pZ(3) = pX(1)pY (2) + pX(2)pY (1) + pX(3)pY (0) =
1

3
· 1

6
+

1

3
· 1

3
+

1

3
· 1

2
=

1

3
,

pZ(4) = pX(2)pY (2) + pX(3)pY (1) =
1

3
· 1

6
+

1

3
· 1

3
=

1

6
,

pZ(5) = pX(3)pY (2) =
1

3
· 1

6
=

1

18
.

Solution to Problem 4.11. The convolution of two Poisson PMFs is of the form

k∑
i=0

λie−λ

i!
· µ

k−ie−µ

(k − i)! = e−(λ+µ)

k∑
i=0

λiµk−i

i! (k − i)! .

We have

(λ+ µ)k =

k∑
i=0

(
k

i

)
λiµk−i =

k∑
i=0

k!

i! (k − i)!λ
iµk−i.

Thus, the desired PMF is

e−(λ+µ)

k!

k∑
i=0

k!λiµk−i

i! (k − i)! =
e−(λ+µ)

k!
(λ+ µ)k,

which is a Poisson PMF with mean λ+ µ.

Solution to Problem 4.12. Let V = X + Y . As in Example 4.10, the PDF of V is

fV (v) =

{
v, 0 ≤ v ≤ 1,
2− v, 1 ≤ v ≤ 2,
0, otherwise.

Let W = X + Y + Z = V + Z. We convolve the PDFs fV and fZ , to obtain

fW (w) =

∫
fV (v)fZ(w − v) dv.
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We first need to determine the limits of the integration. Since fV (v) = 0 outside the
range 0 ≤ v ≤ 2, and fW (w − v) = 0 outside the range 0 ≤ w − v ≤ 1, we see that the
integrand can be nonzero only if

0 ≤ v ≤ 2, and w − 1 ≤ v ≤ w.

We consider three separate cases. If w ≤ 1, we have

fW (w) =

∫ w

0

fV (v)fZ(w − v) dv =

∫ w

0

v dv =
w2

2
.

If 1 ≤ w ≤ 2, we have

fW (w) =

∫ w

w−1

fV (v)fZ(w − v) dv

=

∫ 1

w−1

v dv +

∫ w

1

(2− v) dv

=
1

2
− (w − 1)2

2
− (w − 2)2

2
+

1

2
.

Finally, if 2 ≤ w ≤ 3, we have

fW (w) =

∫ 2

w−1

fV (v)fZ(w − v) dv =

∫ 2

w−1

(2− v) dv =
(3− w)2

2
.

To summarize,

fW (w) =


w2/2, 0 ≤ w ≤ 1,
1− (w − 1)2/2− (2− w)2/2, 1 ≤ w ≤ 2,
(3− w)2/2, 2 ≤ w ≤ 3,
0, otherwise.

Solution to Problem 4.13. We have X−Y = X+Z− (a+ b), where Z = a+ b−Y
is distributed identically with X and Y . Thus, the PDF of X + Z is the same as the
PDF of X + Y , and the PDF of X − Y is obtained by shifting the PDF of X + Y to
the left by a+ b.

Solution to Problem 4.14. For all z ≥ 0, we have, using the independence of X
and Y , and the form of the exponential CDF,

FZ(z) = P
(
min{X,Y } ≤ z

)
= 1−P

(
min{X,Y } > z

)
= 1−P(X > z, Y > z)

= 1−P(X > z)P(Y > z)

= 1− e−λze−µz

= 1− e−(λ+µ)z.
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This is recognized as the exponential CDF with parameter λ + µ. Thus, the mini-
mum of two independent exponentials with parameters λ and µ is an exponential with
parameter λ+ µ.

Solution to Problem 4.17. Because the covariance remains unchanged when we
add a constant to a random variable, we can assume without loss of generality that X
and Y have zero mean. We then have

cov(X − Y,X + Y ) = E
[
(X − Y )(X + Y )

]
= E[X2]−E[Y 2] = var(X)− var(Y ) = 0,

since X and Y were assumed to have the same variance.

Solution to Problem 4.18. We have

cov(R,S) = E[RS]−E[R]E[S] = E[WX +WY +X2 +XY ] = E[X2] = 1,

and
var(R) = var(S) = 2,

so

ρ(R,S) =
cov(R,S)√
var(R)var(S)

=
1

2
.

We also have

cov(R, T ) = E[RT ]−E[R]E[T ] = E[WY +WZ +XY +XZ] = 0,

so that
ρ(R, T ) = 0.

Solution to Problem 4.19. To compute the correlation coefficient

ρ(X,Y ) =
cov(X,Y )

σXσY
,

we first compute the covariance:

cov(X,Y ) = E[XY ]−E[X]E[Y ]

= E[aX + bX2 + cX3]−E[X]E[Y ]

= aE[X] + bE[X2] + cE[X3]

= b.

We also have

var(Y ) = var(a+ bX + cX2)

= E
[
(a+ bX + cX2)2

]
−
(
E[a+ bX + cX2]

)2
= (a2 + 2ac+ b2 + 3c2)− (a2 + c2 + 2ac)

= b2 + 2c2,
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and therefore, using the fact var(X) = 1,

ρ(X,Y ) =
b√

b2 + 2c2
.

Solution to Problem 4.22. If the gambler’s fortune at the beginning of a round is
a, the gambler bets a(2p−1). He therefore gains a(2p−1) with probability p, and loses
a(2p− 1) with probability 1− p. Thus, his expected fortune at the end of a round is

a
(
1 + p(2p− 1)− (1− p)(2p− 1)

)
= a
(
1 + (2p− 1)2

)
.

Let Xk be the fortune after the kth round. Using the preceding calculation, we
have

E[Xk+1 |Xk] =
(
1 + (2p− 1)2

)
Xk.

Using the law of iterated expectations, we obtain

E[Xk+1] =
(
1 + (2p− 1)2

)
E[Xk],

and
E[X1] =

(
1 + (2p− 1)2

)
x.

We conclude that
E[Xn] =

(
1 + (2p− 1)2

)n
x.

Solution to Problem 4.23. (a) Let W be the number of hours that Nat waits. We
have

E[X] = P(0 ≤ X ≤ 1)E[W | 0 ≤ X ≤ 1] + P(X > 1)E[W |X > 1].

Since W > 0 only if X > 1, we have

E[W ] = P(X > 1)E[W |X > 1] =
1

2
· 1

2
=

1

4
.

(b) Let D be the duration of a date. We have E[D | 0 ≤ X ≤ 1] = 3. Furthermore,
when X > 1, the conditional expectation of D given X is (3−X)/2. Hence, using the
law of iterated expectations,

E[D |X > 1] = E
[
E[D |X] |X > 1

]
= E

[
3−X

2

∣∣ X > 1
]
.

Therefore,

E[D] = P(0 ≤ X ≤ 1)E[D | 0 ≤ X ≤ 1] + P(X > 1)E[D |X > 1]

=
1

2
· 3 +

1

2
·E
[

3−X
2

∣∣ X > 1
]

=
3

2
+

1

2

(
3

2
− E[X |X > 1]

2

)
=

3

2
+

1

2

(
3

2
− 3/2

2

)
=

15

8
.
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(c) The probability that Pat will be late by more than 45 minutes is 1/8. The number of
dates before breaking up is the sum of two geometrically distributed random variables
with parameter 1/8, and its expected value is 2 · 8 = 16.

Solution to Problem 4.24. (a) Consider the following two random variables:

X = amount of time the professor devotes to his task [exponentially distributed with
parameter λ(y) = 1/(5− y)];

Y = length of time between 9 a.m. and his arrival (uniformly distributed between 0
and 4).

Note that E[Y ] = 2. We have

E[X |Y = y] =
1

λ(y)
= 5− y,

which implies that
E[X |Y ] = 5− Y,

and
E[X] = E

[
E[X |Y ]

]
= E[5− Y ] = 5−E[Y ] = 5− 2 = 3.

(b) Let Z be the length of time from 9 a.m. until the professor completes the task.
Then,

Z = X + Y.

We already know from part (a) that E[X] = 3 and E[Y ] = 2, so that

E[Z] = E[X] + E[Y ] = 3 + 2 = 5.

Thus the expected time that the professor leaves his office is 5 hours after 9 a.m.

(c) We define the following random variables:

W = length of time between 9 a.m. and arrival of the Ph.D. student (uniformly dis-
tributed between 9 a.m. and 5 p.m.).

R = amount of time the student will spend with the professor, if he finds the professor
(uniformly distributed between 0 and 1 hour).

T = amount of time the professor will spend with the student.

Let also F be the event that the student finds the professor.
To find E[T ], we write

E[T ] = P(F )E[T |F ] + P(F c)E[T |F c]

Using the problem data,

E[T |F ] = E[R] =
1

2

(this is the expected value of a uniformly distribution ranging from 0 to 1),

E[T |F c] = 0
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(since the student leaves if he does not find the professor). We have

E[T ] = E[T |F ]P(F ) =
1

2
P(F ),

so we need to find P(F ).
In order for the student to find the professor, his arrival should be between the

arrival and the departure of the professor. Thus

P(F ) = P(Y ≤W ≤ X + Y ).

We have that W can be between 0 (9 a.m.) and 8 (5 p.m.), but X + Y can be any
value greater than 0. In particular, it may happen that the sum is greater than the
upper bound for W . We write

P(F ) = P(Y ≤W ≤ X + Y ) = 1−
(
P(W < Y ) + P(W > X + Y )

)
We have

P(W < Y ) =

∫ 4

0

1

4

∫ y

0

1

8
dw dy =

1

4

and

P(W > X + Y ) =

∫ 4

0

P(W > X + Y |Y = y)fY (y) dy

=

∫ 4

0

P(X < W − Y |Y = y)fY (y) dy

=

∫ 4

0

∫ 8

y

FX|Y (w − y)fW (w)fY (y) dw dy

=

∫ 4

0

1

4

∫ 8

y

1

8

∫ w−y

0

1

5− y e
− x

5−y dx dw dy

=
12

32
+

1

32

∫ 4

0

(5− y)e
− 8−y

5−y dy.

Integrating numerically, we have∫ 4

0

(5− y)e
− 8−y

5−y dy = 1.7584.

Thus,

P(Y ≤W ≤ X + Y ) = 1−
(
P(W < Y ) + P(W > X + Y )

)
= 1− 0.68 = 0.32.

The expected amount of time the professor will spend with the student is then

E[T ] =
1

2
P(F ) =

1

2
0.32 = 0.16 = 9.6 mins.

Next, we want to find the expected time the professor will leave his office. Let Z
be the length of time measured from 9 a.m. until he leaves his office. If the professor
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doesn’t spend any time with the student, then Z will be equal to X +Y . On the other
hand, if the professor is interrupted by the student, then the length of time will be
equal to X +Y +R. This is because the professor will spend the same amount of total
time on the task regardless of whether he is interrupted by the student. Therefore,

E[Z] = P(F )E[Z |F ] + P(F c)E[Z |F c] = P(F )E[X + Y +R] + P(F c)E[X + Y ].

Using the results of the earlier calculations,

E[X + Y ] = 5,

E[X + Y +R] = E[X + Y ] + E[R] = 5 +
1

2
=

11

2
.

Therefore,

E[Z] = 0.68 · 5 + 0.32 · 11

2
= 5.16.

Thus the expected time the professor will leave his office is 5.16 hours after 9 a.m.

Solution to Problem 4.29. The transform is given by

M(s) = E[esX ] =
1

2
es +

1

4
e2s +

1

4
e3s.

We have

E[X] =
d

ds
M(s)

∣∣∣
s=0

=
1

2
+

2

4
+

3

4
=

7

4
,

E[X2] =
d2

ds2
M(s)

∣∣∣
s=0

=
1

2
+

4

4
+

9

4
=

15

4
,

E[X3] =
d3

ds3
M(s)

∣∣∣
s=0

=
1

2
+

8

4
+

27

4
=

37

4
.

Solution to Problem 4.30. The transform associated with X is

MX(s) = es
2/2.

By taking derivatives with respect to s, we find that

E[X] = 0, E[X2] = 1, E[X3] = 0, E[X4] = 3.

Solution to Problem 4.31. The transform is

M(s) =
λ

λ− s .

Thus,

d

ds
M(s) =

λ

(λ− s)2
,

d2

ds2
M(s) =

2λ

(λ− s)3
,

d3

ds3
M(s) =

6λ

(λ− s)4
,
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d4

ds4
M(s) =

24λ

(λ− s)5
,

d5

ds5
M(s) =

120λ

(λ− s)6
.

By setting s = 0, we obtain

E[X3] =
6

λ3
, E[X4] =

24

λ4
, E[X5] =

120

λ5
.

Solution to Problem 4.32. (a) We must have M(0) = 1. Only the first option
satisfies this requirement.

(b) We have

P(X = 0) = lim
s→−∞

M(s) = e2(e−1−1) ≈ 0.2825.

Solution to Problem 4.33. We recognize this transform as corresponding to the
following mixture of exponential PDFs:

fX(x) =

{
1

3
· 2e−2x +

2

3
· 3e−3x, for x ≥ 0,

0, otherwise.

By the inversion theorem, this must be the desired PDF.

Solution to Problem 4.34. For i = 1, 2, 3, let Xi, i = 1, 2, 3, be a Bernoulli random
variable that takes the value 1 if the ith player is successful. We have X = X1+X2+X3.
Let qi = 1−pi. Convolution of the PMFs of X1 and X2 yields the PMF of Z = X1+X2:

pZ(z) =


q1q2, if z = 0,
q1p2 + p1q2, if z = 1,
p1p2, if z = 2,
0, otherwise.

Convolution of the PMFs of Z and X3 yields the PMF of X = X1 +X2 +X3:

pX(x) =


q1q2q3, if x = 0,
p1q2q3 + q1p2q3 + q1q2p3, if x = 1,
q1p2p3 + p1q2p3 + p1p2q3, if x = 2,
p1p2p3, if x = 3,
0, otherwise.

The transform associated with X is the product of the transforms associated with
Xi, i = 1, 2, 3. We have

MX(s) = (q1 + p1e
s)(q2 + p2e

s)(q3 + p3e
s).

By carrying out the multiplications above, and by examining the coefficients of the
terms eks, we obtain the probabilities P(X = k). These probabilities are seen to
coincide with the ones computed by convolution.
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Solution to Problem 4.35. We first find c by using the equation

1 = MX(0) = c · 3 + 4 + 2

3− 1
,

so that c = 2/9. We then obtain

E[X] =
dMX

ds
(s)

∣∣∣
s=0

=
2

9
· (3− es)(8e2s + 6e3s) + es(3 + 4e2s + 2e3s)

(3− es)2

∣∣∣
s=0

=
37

18
.

We now use the identity

1

3− es =
1

3
· 1

1− es/3 =
1

3

(
1 +

es

3
+
e2s

9
+ · · ·

)
,

which is valid as long as s is small enough so that es < 3. It follows that

MX(s) =
2

9
· 1

3
· (3 + 4e2s + 2e3s) ·

(
1 +

es

3
+
e2s

9
+ · · ·

)
.

By identifying the coefficients of e0s and es, we obtain

pX(0) =
2

9
, pX(1) =

2

27
.

Let A = {X 6= 0}. We have

pX|{X∈A}(k) =


pX(k)

P(A)
, if k 6= 0,

0, otherwise,

so that

E[X |X 6= 0] =

∞∑
k=1

kpX|A(k)

=

∞∑
k=1

kpX(k)

P(A)

=
E[X]

1− pX(0)

=
37/18

7/9

=
37

14
.

Solution to Problem 4.36. (a) We have U = X if X = 1, which happens with
probability 1/3, and U = Z if X = 0, which happens with probability 2/3. Therefore,
U is a mixture of random variables and the associated transform is

MU (s) = P(X = 1)MY (s) + P(X = 0)MZ(s) =
1

3
· 2

2− s +
2

3
e3(es−1).
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(b) Let V = 2Z + 3. We have

MV (s) = e3sMZ(2s) = e3se3(e2s−1) = e3(s−1+e2s).

(c) Let W = Y + Z. We have

MW (s) = MY (s)MZ(s) =
2

2− se
3(es−1).

Solution to Problem 4.37. Let X be the number of different types of pizza ordered.
Let Xi be the random variable defined by

Xi =
{

1, if a type i pizza is ordered by at least one customer,
0, otherwise.

We have X = X1 + · · ·+Xn, and by the law of iterated expectations,

E[X] = E
[
E[X |K]

]
= E

[
E[X1 + · · ·+Xn |K]

]
= nE

[
E[X1 |K]

]
.

Furthermore, since the probability that a customer does not order a pizza of type 1 is
(n− 1)/n, we have

E[X1 |K = k] = 1−
(
n− 1

n

)k
,

so that

E[X1 |K] = 1−
(
n− 1

n

)K
.

Thus, denoting

p =
n− 1

n
,

we have

E[X] = nE
[
1− pK

]
= n− nE

[
pK
]

= n− nE
[
eK log p

]
= n− nMK(log p).

Solution to Problem 4.41. (a) Let N be the number of people that enter the
elevator. The corresponding transform isMN (s) = eλ(es−1). LetMX(s) be the common
transform associated with the random variables Xi. Since Xi is uniformly distributed
within [0, 1], we have

MX(s) =
es − 1

s
.

The transform MY (s) is found by starting with the transform MN (s) and replacing
each occurrence of es with MX(s). Thus,

MY (s) = eλ(MX (s)−1) = e
λ
(
es−1
s
−1
)
.
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(b) We have using the chain rule

E[Y ] =
d

ds
MY (s)

∣∣∣∣∣
s=0

=
d

ds
MX(s)

∣∣∣∣∣
s=0

· λeλ(MX (s)−1)

∣∣∣∣∣
s=0

=
1

2
· λ =

λ

2
,

where we have used the fact that MX(0) = 1.

(c) From the law of iterated expectations we obtain

E[Y ] = E
[
E[Y |N ]

]
= E

[
NE[X]

]
= E[N ]E[X] =

λ

2
.

Solution to Problem 4.42. Take X and Y to be normal with means 1 and 2,
respectively, and very small variances. Consider the random variable that takes the
value of X with some probability p and the value of Y with probability 1 − p. This
random variable takes values near 1 and 2 with relatively high probability, but takes
values near its mean (which is 3−2p) with relatively low probability. Thus, this random
variable is not normal.

Now letN be a random variable taking only the values 1 and 2 with probabilities p
and 1−p, respectively. The sum of a number N of independent normal random variables
with mean equal to 1 and very small variance is a mixture of the type discussed above,
which is not normal.

Solution to Problem 4.43. (a) Using the total probability theorem, we have

P(X > 4) =

4∑
k=0

P(k lights are red)P(X > 4 | k lights are red).

We have

P(k lights are red) =

(
4

k

)(
1

2

)4

.

The conditional PDF of X given that k lights are red, is normal with mean k minutes
and standard deviation (1/2)

√
k. Thus, X is a mixture of normal random variables and

the transform associated with its (unconditional) PDF is the corresponding mixture
of the transforms associated with the (conditional) normal PDFs. However, X is not
normal, because a mixture of normal PDFs need not be normal. The probability
P(X > 4 | k lights are red) can be computed from the normal tables for each k, and
P(X > 4) is obtained by substituting the results in the total probability formula above.

(b) Let K be the number of traffic lights that are found to be red. We can view X as
the sum of K independent normal random variables. Thus the transform associated
with X can be found by replacing in the binomial transform MK(s) = (1/2 + (1/2)es)4

the occurrence of es by the normal transform corresponding to µ = 1 and σ = 1/2.
Thus

MX(s) =

(
1

2
+

1

2

(
e

(1/2)2s2

2
+s

))4

.

Note that by using the formula for the transform, we cannot easily obtain the proba-
bility P(X > 4).
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Solution to Problem 4.44. (a) Using the random sum formulas, we have

E[N ] = E[M ]E[K],

var(N) = E[M ] var(K) +
(
E[K]

)2
var(M).

(b) Using the random sum formulas and the results of part (a), we have

E[Y ] = E[N ]E[X] = E[M ]E[K]E[X],

var(Y ) = E[N ] var(X) +
(
E[X]

)2
var(N)

= E[M ]E[K] var(X) +
(
E[X]

)2(
E[M ] var(K) +

(
E[K]

)2
var(M)

)
.

(c) Let N denote the total number of widgets in the crate, and let Xi denote the weight
of the ith widget. The total weight of the crate is

Y = X1 + · · ·+XN ,

with
N = K1 + · · ·+KM ,

so the framework of part (b) applies. We have

E[M ] =
1

p
, var(M) =

1− p
p2

, (geometric formulas),

E[K] = µ, var(M) = µ, (Poisson formulas),

E[X] =
1

λ
, var(M) =

1

λ2
, (exponential formulas).

Using these expressions into the formulas of part (b), we obtain E[Y ] and var(Y ), the
mean and variance of the total weight of a crate.
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C H A P T E R 5

Solution to Problem 5.1. (a) We have σMn = 1/
√
n, so in order that σMn ≤ 0.01,

we must have n ≥ 10, 000.

(b) We want to have
P
(
|Mn − h| ≤ 0.05

)
≥ 0.99.

Using the facts h = E[Mn], σ2
Mn = 1/n, and the Chebyshev inequality, we have

P
(
|Mn − h| ≤ 0.05

)
= P

(
|Mn −E[Mn]| ≤ 0.05

)
= 1−P

(
|Mn −E[Mn]| ≥ 0.05

)
≥ 1− 1/n

(0.05)2
.

Thus, we must have

1− 1/n

(0.05)2
≥ 0.99,

which yields n ≥ 40, 000.

(c) Based on Example 5.3, σ2
Xi
≤ (0.6)2/4, so he should use 0.3 meters in place of 1.0

meters as the estimate of the standard deviation of the samples Xi in the calculations
of parts (a) and (b). In the case of part (a), we have σMn = 0.3/

√
n, so in order that

σMn ≤ 0.01, we must have n ≥ 900. In the case of part (b), we have σMn = 0.3/
√
n,

so in order that σMn ≤ 0.01, we must have n ≥ 900. In the case of part (a), we must
have

1− 0.09/n

(0.05)2
≥ 0.99,

which yields n ≥ 3, 600.

Solution to Problem 5.4. Proceeding as in Example 5.5, the best guarantee that
can be obtained from the Chebyshev inequality is

P
(
|Mn − f | ≥ ε

)
≤ 1

4nε2
.

(a) If ε is reduced to half its original value, and in order to keep the bound 1/(4nε2)
constant, the sample size n must be made four times larger.

(b) If the error probability δ is to be reduced to δ/2, while keeping ε the same, the
sample size has to be doubled.

Solution to Problem 5.5. In cases (a), (b), and (c), we show that Yn converges to
0 in probability. In case (d), we show that Yn converges to 1 in probability.

(a) For any ε > 0, we have
P
(
|Yn| ≥ ε

)
= 0,
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for all n with 1/n < ε, so P
(
|Yn| ≥ ε

)
→ 0.

(b) For all ε ∈ (0, 1), we have

P
(
|Yn| ≥ ε

)
= P

(
|Xn|n ≥ ε

)
= P

(
Xn ≥ ε1/n

)
+ P

(
Xn ≤ −ε1/n

)
= 1− ε1/n,

and the two terms in the right-hand side converge to 0, since ε1/n → 1.

(c) Since X1, X2, . . . are independent random variables, we have

E[Yn] = E[X1] · · ·E[Xn] = 0.

Also

var(Yn) = E[Y 2
n ] = E[X2

1 ] · · ·E[X2
n] = var(X1)n =

(
4

12

)n
,

so var(Yn) → 0. Since all Yn have 0 as a common mean, from Chebyshev’s inequality
it follows that Yn converges to 0 in probability.

(d) We have for all ε ∈ (0, 1), using the independence of X1, X2, . . .,

P
(
|Yn − 1| ≥ ε

)
= P

(
max{X1, . . . , Xn} ≥ 1 + ε

)
+ P

(
max{X1, . . . , Xn} ≤ 1− ε

)
= P(X1 ≤ 1− ε, . . . , Xn ≤ 1− ε)

=
(
P(X1 ≤ 1− ε)

)n
=
(

1− ε

2

)n
.

Hence P
(
|Yn − 1| ≥ ε

)
→ 0.

Solution to Problem 5.8. Let S be the number of times that the result was odd,
which is a binomial random variable, with parameters n = 100 and p = 0.5, so that
E[X] = 100 · 0.5 = 50 and σS =

√
100 · 0.5 · 0.5 =

√
25 = 5. Using the normal

approximation to the binomial, we find

P(S > 55) = P
(
S − 50

5
>

55− 50

5

)
≈ 1− Φ(1) = 1− 0.8413 = 0.1587.

A better approximation can be obtained by using the de Moivre-Laplace approx-
imation, which yields

P(S > 55) = P(S ≥ 55.5) = P
(
S − 50

5
>

55.5− 50

5

)
≈ 1− Φ(1.1) = 1− 0.8643 = 0.1357.

Solution to Problem 5.9. (a) Let S be the number of crash-free days, which is
a binomial random variable with parameters n = 50 and p = 0.95, so that E[X] =
50 · 0.95 = 47.5 and σS =

√
50 · 0.95 · 0.05 = 1.54. Using the normal approximation to

the binomial, we find

P(S ≥ 45) = P
(
S − 47.5

1.54
≥ 45− 47.5

1.54

)
≈ 1− Φ(−1.62) = Φ(1.62) = 0.9474.
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A better approximation can be obtained by using the de Moivre-Laplace approximation,
which yields

P(S ≥ 45) = P(S > 44.5) = P
(
S − 47.5

1.54
≥ 44.5− 47.5

1.54

)
≈ 1− Φ(−1.95) = Φ(1.95) = 0.9744.

(b) The random variable S is binomial with parameter p = 0.95. However, the random
variable 50−S (the number of crashes) is also binomial with parameter p = 0.05. Since
the Poisson approximation is exact in the limit of small p and large n, it will give more
accurate results if applied to 50−S. We will therefore approximate 50−S by a Poisson
random variable with parameter λ = 50 · 0.05 = 2.5. Thus,

P(S ≥ 45) = P(50− S ≤ 5)

=

5∑
k=0

P(n− S = k)

=

5∑
k=0

e−λ
λk

k!

= 0.958.

It is instructive to compare with the exact probability which is

5∑
k=0

(
50

k

)
0.05k · 0.9550−k = 0.962.

Thus, the Poisson approximation is closer. This is consistent with the intuition that
the normal approximation to the binomial works well when p is close to 0.5 or n is very
large, which is not the case here. On the other hand, the calculations based on the
normal approximation are generally less tedious.

Solution to Problem 5.10. (a) Let Sn = X1 + · · · + Xn be the total number of
gadgets produced in n days. Note that the mean, variance, and standard deviation of
Sn is 5n, 9n, and 3

√
n, respectively. Thus,

P(S100 < 440) = P(S100 ≤ 439.5)

= P
(
S100 − 500

30
<

439.5− 500

30

)
≈ Φ(

439.5− 500

30
)

= Φ(−2.02)

= 1− Φ(2.02)

= 1− 0.9783

= 0.0217.
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(b) The requirement P(Sn ≥ 200 + 5n) ≤ 0.05 translates to

P

(
Sn − 5n

3
√
n
≥ 200

3
√
n

)
≤ 0.05,

or, using a normal approximation,

1− Φ

(
200

3
√
n

)
≤ 0.05,

and

Φ

(
200

3
√
n

)
≥ 0.95.

From the normal tables, we obtain Φ(1.65) ≈ 0.95, and therefore,

200

3
√
n
≥ 1.65,

which finally yields n ≤ 1632.

(c) The event N ≥ 220 (it takes at least 220 days to exceed 1000 gadgets) is the same
as the event S219 ≤ 1000 (no more than 1000 gadgets produced in the first 219 days).
Thus,

P(N ≥ 220) = P(S219 ≤ 1000)

= P

(
S219 − 5 · 219

3
√

219
≤ 1000− 5 · 219

3
√

219

)
= 1− Φ(2.14)

= 1− 0.9838

= 0.0162.

Solution to Problem 5.11. Note that W is the sample mean of 16 independent
identically distributed random variables of the form Xi−Yi, and a normal approxima-
tion is appropriate. The random variables Xi − Yi have zero mean, and variance equal
to 2/12. Therefore, the mean of W is zero, and its variance is (2/12)/16 = 1/96. Thus,

P
(
|W | < 0.001

)
= P

(
|W |√
1/96

<
0.001√

1/96

)
≈ Φ

(
0.001

√
96
)
− Φ

(
− 0.001

√
96
)

= 2Φ
(
0.001

√
96
)
− 1 = 2Φ(0.0098)− 1 ≈ 2 · 0.504− 1 = 0.008.

Let us also point out a somewhat different approach that bypasses the need for
the normal table. Let Z be a normal random variable with zero mean and standard
deviation equal to 1/

√
96. The standard deviation of Z, which is about 0.1, is much

larger than 0.001. Thus, within the interval [−0.001, 0.001], the PDF of Z is approxi-
mately constant. Using the formula P(z− δ ≤ Z ≤ z+ δ) ≈ fZ(z) · 2δ, with z = 0 and
δ = 0.001, we obtain

P
(
|W | < 0.001

)
≈ P(−0.001 ≤ Z ≤ 0.001) ≈ fZ(0) · 0.002 =

0.002√
2π(1/

√
96)

= 0.0078.
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C H A P T E R 6

Solution to Problem 6.1. (a) The random variable R is binomial with parameters
p and n. Hence,

pR(r) =

(
n

r

)
(1− p)n−rpr, for r = 0, 1, 2, . . . , n,

E[R] = np, and var(R) = np(1− p).

(b) Let A be the event that the first item to be loaded ends up being the only one on
its truck. This event is the union of two disjoint events:

(i) the first item is placed on the red truck and the remaining n − 1 are placed on
the green truck, and,

(ii) the first item is placed on the green truck and the remaining n− 1 are placed on
the red truck.

Thus, P(A) = p(1− p)n−1 + (1− p)pn−1.

(c) Let B be the event that at least one truck ends up with a total of exactly one
package. The event B occurs if exactly one or both of the trucks end up with exactly
1 package, so

P(B) =


1, if n = 1,

2p(1− p), if n = 2,(
n

1

)
(1− p)n−1p+

(
n

n− 1

)
pn−1(1− p), if n = 3, 4, 5, . . .

(d) Let D = R −G = R − (n− R) = 2R − n. We have E[D] = 2E[R]− n = 2np− n.
Since D = 2R− n, where n is a constant,

var(D) = 4var(R) = 4np(1− p).

(e) Let C be the event that each of the first 2 packages is loaded onto the red truck.
Given that C occurred, the random variable R becomes

2 +X3 +X4 + · · ·+Xn.

Hence,

E[R |C] = E[2 +X3 +X4 + · · ·+Xn] = 2 + (n− 2)E[Xi] = 2 + (n− 2)p.

Similarly, the conditional variance of R is

var(R |C) = var(2 +X3 +X4 + · · ·+Xn) = (n− 2)var(Xi) = (n− 2)p(1− p).
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Finally, given that the first two packages are loaded onto the red truck, the probability
that a total of r packages are loaded onto the red truck is equal to the probability that
r − 2 of the remaining n− 2 packages go to the red truck:

pR|C(r) =

(
n− 2

r − 2

)
(1− p)n−rpr−2, for r = 2, . . . , n.

Solution to Problem 6.2. (a) Failed quizzes are a Bernoulli process with parameter
p = 1/4. The desired probability is given by the binomial formula:(

6

2

)
p2(1− p)4 =

6!

4! 2!

(
1

4

)2 (3

4

)4

.

(b) The expected number of quizzes up to the third failure is the expected value of
a Pascal random variable of order three, with parameter 1/4, which is 3 · 4 = 12.
Subtracting the number of failures, we have that the expected number of quizzes that
Dave will pass is 12− 3 = 9.

(c) The event of interest is the intersection of the following three independent events:

A: there is exactly one failure in the first seven quizzes.

B: quiz eight is a failure.

C: quiz nine is a failure.

We have

P(A) =

(
7

1

)(
1

4

)(
3

4

)6

, P(B) = P(C) =
1

4
,

so the desired probability is

P(A ∩B ∩ C) = 7
(

1

4

)3 (3

4

)6

.

(d) Let B be the event that Dave fails two quizzes in a row before he passes two
quizzes in a row. Let us use F and S to indicate quizzes that he has failed or passed,
respectively. We then have

P(B) = P(FF ∪ SFF ∪ FSFF ∪ SFSFF ∪ FSFSFF ∪ SFSFSFF ∪ · · ·)

= P(FF ) + P(SFF ) + P(FSFF ) + P(SFSFF ) + P(FSFSFF )

+ P(SFSFSFF ) + · · ·

=
(

1

4

)2

+
3

4

(
1

4

)2

+
1

4
· 3

4

(
1

4

)2

+
3

4
· 1

4
· 3

4

(
1

4

)2

+
1

4
· 3

4
· 1

4
· 3

4

(
1

4

)2

+
3

4
· 1

4
· 3

4
· 1

4
· 3

4

(
1

4

)2

+ · · ·

=

[(
1

4

)2

+
1

4
· 3

4

(
1

4

)2

+
1

4
· 3

4
· 1

4
· 3

4

(
1

4

)2

+ · · ·
]

+

[
3

4

(
1

4

)2

+
3

4
· 1

4
· 3

4

(
1

4

)2

+
3

4
· 1

4
· 3

4
· 1

4
· 3

4

(
1

4

)2

+ · · ·
]
.
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Therefore, P(B) is the sum of two infinite geometric series, and

P(B) =

(
1

4

)2

1− 1

4
· 3

4

+

3

4

(
1

4

)2

1− 3

4
· 1

4

=
7

52
.

Solution to Problem 6.3. The answers to these questions are found by considering
suitable Bernoulli processes and using the formulas of Section 6.1. Depending on the
specific question, however, a different Bernoulli process may be appropriate. In some
cases, we associate trials with slots. In other cases, it is convenient to associate trials
with busy slots.

(a) During each slot, the probability of a task from user 1 is given by p1 = p1|BpB =
(5/6) · (2/5) = 1/3. Tasks from user 1 form a Bernoulli process and

P(first user 1 task occurs in slot 4) = p1(1− p1)3 =
1

3
·
(

2

3

)3

.

(b) This is the probability that slot 11 was busy and slot 12 was idle, given that 5
out of the 10 first slots were idle. Because of the fresh-start property, the conditioning
information is immaterial, and the desired probability is

pB · pI =
5

6
· 1

6
.

(c) Each slot contains a task from user 1 with probability p1 = 1/3, independent of
other slots. The time of the 5th task from user 1 is a Pascal random variable of order
5, with parameter p1 = 1/3. Its mean is given by

5

p1
=

5

1/3
= 15.

(d) Each busy slot contains a task from user 1 with probability p1|B = 2/5, independent
of other slots. The random variable of interest is a Pascal random variable of order 5,
with parameter p1|B = 2/5. Its mean is

5

p1|B
=

5

2/5
=

25

2
.

(e) The number T of tasks from user 2 until the 5th task from user 1 is the same as the
number B of busy slots until the 5th task from user 1, minus 5. The number of busy
slots (“trials”) until the 5th task from user 1 (“success”) is a Pascal random variable
of order 5, with parameter p1|B = 2/5. Thus,

pB(t) =

(
t− 1

4

)(
2

5

)5 (
1− 2

5

)t−5

, t = 5, 6, . . ..
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Since T = B − 5, we have pT (t) = pB(t+ 5), and we obtain

pT (t) =

(
t+ 4

4

)(
2

5

)5 (
1− 2

5

)t
, t = 0, 1, . . ..

Using the formulas for the mean and the variance of the Pascal random variable B, we
obtain

E[T ] = E[B]− 5 =
25

2
− 5 = 7.5,

and

var(T ) = var(B) =
5
(
1− (2/5)

)
(2/5)2

.

Solution to Problem 6.8. The total number of accidents between 8 am and 11
am is the sum of two independent Poisson random variables with parameters 5 and
3 · 2 = 6, respectively. Since the sum of independent Poisson random variables is also
Poisson, the total number of accidents has a Poisson PMF with parameter 5+6=11.

Solution to Problem 6.9. As long as the pair of players is waiting, all five courts
are occupied by other players. When all five courts are occupied, the time until a court
is freed up is exponentially distributed with mean 40/5 = 8 minutes. For our pair of
players to get a court, a court must be freed up k+1 times. Thus, the expected waiting
time is 8(k + 1).

Solution to Problem 6.10. (a) This is the probability of no arrivals in 2 hours. It
is given by

P (0, 2) = e−0.6·2 = 0.301.

For an alternative solution, this is the probability that the first arrival comes after 2
hours:

P(T1 > 2) =

∫ ∞
2

fT1(t) dt =

∫ ∞
2

0.6e−0.6t dt = e−0.6·2 = 0.301.

(b) This is the probability of zero arrivals between time 0 and 2, and of at least
one arrival between time 2 and 5. Since these two intervals are disjoint, the desired
probability is the product of the probabilities of these two events, which is given by

P (0, 2)
(
1− P (0, 3)

)
= e−0.6·2(1− e−0.6·3) = 0.251.

For an alternative solution, the event of interest can be written as {2 ≤ T1 ≤ 5}, and
its probability is∫ 5

2

fT1(t) dt =

∫ 5

2

0.6e−0.6t dt = e−0.6·2 − e−0.6·5 = 0.251.

(c) If he catches at least two fish, he must have fished for exactly two hours. Hence,
the desired probability is equal to the probability that the number of fish caught in the
first two hours is at least two, i.e.,

∞∑
k=2

P (k, 2) = 1− P (0, 2)− P (1, 2) = 1− e−0.6·2 − (0.6 · 2)e−0.6·2 = 0.337.
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For an alternative approach, note that the event of interest occurs if and only if the
time Y2 of the second arrival is less than or equal to 2. Hence, the desired probability
is

P(Y2 ≤ 2) =

∫ 2

0

fY2(y) dy =

∫ 2

0

(0.6)2ye−0.6y dy.

This integral can be evaluated by integrating by parts, but this is more tedious than
the first approach.

(d) The expected number of fish caught is equal to the expected number of fish caught
during the first two hours (which is 2λ = 2 · 0.6 = 1.2), plus the expectation of the
number N of fish caught after the first two hours. We have N = 0 if he stops fishing
at two hours, and N = 1, if he continues beyond the two hours. The event {N = 1}
occurs if and only if no fish are caught in the first two hours, so that E[N ] = P(N =
1) = P (0, 2) = 0.301. Thus, the expected number of fish caught is 1.2 + 0.301 = 1.501.

(e) Given that he has been fishing for 4 hours, the future fishing time is the time until
the first fish is caught. By the memorylessness property of the Poisson process, the
future time is exponential, with mean 1/λ. Hence, the expected total fishing time is
4 + (1/0.6) = 5.667.

Solution to Problem 6.11. We note that the process of departures of customers who
have bought a book is obtained by splitting the Poisson process of customer departures,
and is itself a Poisson process, with rate pλ.

(a) This is the time until the first customer departure in the split Poisson process. It
is therefore exponentially distributed with parameter pλ.

(b) This is the probability of no customers in the split Poisson process during an hour,
and using the result of part (a), equals e−pλ.

(c) This is the expected number of customers in the split Poisson process during an
hour, and is equal to pλ.

Solution to Problem 6.12. Let X be the number of different types of pizza ordered.
Let Xi be the random variable defined by

Xi =
{

1, if a type i pizza is ordered by at least one customer,
0, otherwise.

We have X = X1 + · · ·+Xn, and E[X] = nE[X1].
We can think of the customers arriving as a Poisson process, and with each

customer independently choosing whether to order a type 1 pizza (this happens with
probability 1/n) or not. This is the situation encountered in splitting of Poisson pro-
cesses, and the number of type 1 pizza orders, denoted Y1, is a Poisson random variable
with parameter λ/n. We have

E[X1] = P(Y1 > 0) = 1−P(Y1 = 0) = 1− e−λ/n,

so that

E[X] = nE[X1] = n
(
1− e−λ/n

)
.
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Solution to Problem 6.13. (a) Let R be the total number of messages received
during an interval of duration t. Note that R is a Poisson random variable with arrival
rate λA + λB . Therefore, the probability that exactly nine messages are received is

P(R = 9) =

(
(λA + λB)T

)9
e−(λA+λB)t

9!
.

(b) Let R be defined as in part (a), and let Wi be the number of words in the ith
message. Then,

N = W1 +W2 + · · ·+WR,

which is a sum of a random number of random variables. Thus,

E[N ] = E[W ]E[R]

=
(

1 · 2

6
+ 2 · 3

6
+ 3 · 1

6

)
(λA + λB)t

=
11

6
(λA + λB)t.

(c) Three-word messages arrive from transmitter A in a Poisson manner, with average
rate λApW (3) = λA/6. Therefore, the random variable of interest is Erlang of order 8,
and its PDF is given by

f(x) =
(λA/6)8x7e−λAx/6

7!
.

(d) Every message originates from either transmitter A or B, and can be viewed as an
independent Bernoulli trial. Each message has probability λA/(λA+λB) of originating
from transmitter A (view this as a “success”). Thus, the number of messages from
transmitter A (out of the next twelve) is a binomial random variable, and the desired
probability is equal to (

12

8

)(
λA

λA + λB

)8 ( λB
λA + λB

)4

.

Solution to Problem 6.14. (a) Let X be the time until the first bulb failure. Let
A (respectively, B) be the event that the first bulb is of type A (respectively, B). Since
the two bulb types are equally likely, the total expectation theorem yields

E[X] = E[X |A]P(A) + E[X |B]P(B) = 1 · 1

2
+

1

3
· 1

2
=

2

3
.

(b) Let D be the event of no bulb failures before time t. Using the total probability
theorem, and the exponential distributions for bulbs of the two types, we obtain

P(D) = P(D |A)P(A) + P(D |B)P(B) =
1

2
e−t +

1

2
e−3t.
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(c) We have

P(A |D) =
P(A ∩D)

P(D)
=

1

2
e−t

1

2
e−t +

1

2
e−3t

=
1

1 + e−2t
.

(d) We first find E[X2]. We use the fact that the second moment of an exponential
random variable T with parameter λ is equal to E[T 2] = E[T ]2+var(T ) = 1/λ2+1/λ2 =
2/λ2. Conditioning on the two possible types of the first bulb, we obtain

E[X2] = E[X2 |A]P(A) + E[X2 |B]P(B) = 2 · 1

2
+

2

9
· 1

2
=

10

9
.

Finally, using the fact E[X] = 2/3 from part (a),

var(X) = E[X2]−E[X]2 =
10

9
− 22

32
=

2

3
.

(e) This is the probability that out of the first 11 bulbs, exactly 3 were of type A and
that the 12th bulb was of type A. It is equal to(

11

3

)(
1

2

)12

.

(f) This is the probability that out of the first 12 bulbs, exactly 4 were of type A, and
is equal to (

12

4

)(
1

2

)12

.

(g) The PDF of the time between failures is (e−x + 3e−3x)/2, for x ≥ 0, and the
associated transform is

1

2

(
1

1− s +
3

3− s

)
.

Since the times between successive failures are independent, the transform associated
with the time until the 12th failure is given by[

1

2

(
1

1− s +
3

3− s

)]12

.

(h) Let Y be the total period of illumination provided by the first two type-B bulbs.
This has an Erlang distribution of order 2, and its PDF is

fY (y) = 9ye−3y, y ≥ 0.

Let T be the period of illumination provided by the first type-A bulb. Its PDF is

fT (t) = e−t, t ≥ 0.
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We are interested in the event T < Y . We have

P(T < Y |Y = y) = 1− e−y, y ≥ 0.

Thus,

P(T < Y ) =

∫ ∞
0

fY (y)P(T < Y |Y = y) dy =

∫ ∞
0

9ye−3y
(
1− e−y

)
dy =

7

16
,

as can be verified by carrying out the integration.
We now describe an alternative method for obtaining the answer. Let TA1 be

the period of illumination of the first type-A bulb. Let TB1 and TB2 be the period
of illumination provided by the first and second type-B bulb, respectively. We are
interested in the event {TA1 < TB1 + TB2 }. We have

P(TA1 < TB1 + TB2 ) = P(TA1 < TB1 ) + P(TA1 ≥ TB1 )P(TA1 < TB1 + TB2 |TA1 ≥ TB1 )

=
1

1 + 3
+ P(TA1 ≥ TB1 )P(TA1 − TB1 < TB2 |TA1 ≥ TB1 )

=
1

4
+

3

4
P(TA1 − TB1 < TB2 |TA1 ≥ TB1 ).

Given the event TA1 ≥ TB1 , and using the memorylessness property of the exponential
random variable TA1 , the remaining time TA1 − TB1 until the failure of the type-A bulb
is exponentially distributed, so that

P(TA1 − TB1 < TB2 |TA1 ≥ TB1 ) = P(TA1 < TB2 ) = P(TA1 < TB1 ) =
1

4
.

Therefore,

P(TA1 < TB1 + TB2 ) =
1

4
+

3

4
· 1

4
=

7

16
.

(i) Let V be the total period of illumination provided by type-B bulbs while the process
is in operation. Let N be the number of light bulbs, out of the first 12, that are of
type B. Let Xi be the period of illumination from the ith type-B bulb. We then have
V = Y1 + · · ·+YN . Note that N is a binomial random variable, with parameters n = 12
and p = 1/2, so that

E[N ] = 6, var(N) = 12 · 1

2
· 1

2
= 3.

Furthermore, E[Xi] = 1/3 and var(Xi) = 1/9. Using the formulas for the mean and
variance of the sum of a random number of random variables, we obtain

E[V ] = E[N ]E[Xi] = 2,

and

var(V ) = var(Xi)E[N ] + E[Xi]
2var(N) =

1

9
· 6 +

1

9
· 3 = 1.
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(j) Using the notation in parts (a)-(c), and the result of part (c), we have

E[T |D] = t+ E[T − t |D ∩A]P(A |D) + E[T − t |D ∩B]P(B |D)

= t+ 1 · 1

1 + e−2t
+

1

3

(
1− 1

1 + e−2t

)
= t+

1

3
+

2

3
· 1

1 + e−2t
.

Solution to Problem 6.15. (a) The total arrival process corresponds to the merging
of two independent Poisson processes, and is therefore Poisson with rate λ = λA+λB =
7. Thus, the number N of jobs that arrive in a given three-minute interval is a Poisson
random variable, with E[N ] = 3λ = 21, var(N) = 21, and PMF

pN (n) =
(21)ne−21

n!
, n = 0, 1, 2, . . ..

(b) Each of these 10 jobs has probability λA/(λA+λB) = 3/7 of being of type A, inde-
pendently of the others. Thus, the binomial PMF applies and the desired probability
is equal to (

10

3

)(
3

7

)3 (4

7

)7

.

(c) Each future arrival is of type A with probability λA/(λA+λB) = 3/7, independently
of other arrivals. Thus, the number K of arrivals until the first type A arrival is
geometric with parameter 3/7. The number of type B arrivals before the first type A
arrival is equal to K−1, and its PMF is similar to a geometric, except that it is shifted
by one unit to the left. In particular,

pK(k) =
(

3

7

)(
4

7

)k
, k = 0, 1, 2, . . ..

(d) The fact that at time 0 there were two type A jobs in the system simply states that
there were exactly two type A arrivals between time −1 and time 0. Let X and Y be
the arrival times of these two jobs. Consider splitting the interval [−1, 0] into many
time slots of length δ. Since each time instant is equally likely to contain an arrival
and since the arrival times are independent, it follows that X and Y are independent
uniform random variables. We are interested in the PDF of Z = max{X,Y }. We first
find the CDF of Z. We have, for z ∈ [−1, 0],

P(Z ≤ z) = P(X ≤ z and Y ≤ z) = (1 + z)2.

By differentiating, we obtain

fZ(z) = 2(1 + z), −1 ≤ z ≤ 0.

(e) Let T be the arrival time of this type B job. We can express T in the form
T = −K +X, where K is a nonnegative integer and X lies in [0,1]. We claim that X
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is independent from K and that X is uniformly distributed. Indeed, conditioned on
the event K = k, we know that there was a single arrival in the interval [−k,−k + 1].
Conditioned on the latter information, the arrival time is uniformly distributed in the
interval [−k, k+ 1] (cf. Problem 6.18), which implies that X isuniformly distributed in
[0, 1]. Since this conditional distribution of X is the same for every k, it follows that
X is independent of −K.

Let D be the departure time of the job of interest. Since the job stays in the
system for an integer amount of time, we have that D is of the form D = L + X,
where L is a nonnegative integer. Since the job stays in the system for a geometrically
distributed amount of time, and the geometric distribution has the memorylessness
property, it follows that L is also memoryless. In particular, L is similar to a geometric
random variable, except that its PMF starts at zero. Furthermore, L is independent
of X, since X is determined by the arrival process, whereas the amount of time a
job stays in the system is independent of the arrival process. Thus, D is the sum of
two independent random variables, one uniform and one geometric. Therefore, D has
“geometric staircase” PDF, given by

fD(d) =
(

1

2

)bdc
, d ≥ 0,

and where bdc stands for the largest integer below d.

Solution to Problem 6.16. (a) The random variable N is equal to the number
of successive interarrival intervals that are smaller than τ . Interarrival intervals are
independent and each one is smaller than τ with probability 1− e−λτ . Therefore,

P(N = 0) = e−λτ , P(N = 1) = e−λτ
(
1−e−λτ

)
, P(N = k) = e−λτ

(
1−e−λτ

)k
,

so that N has a distribution similar to a geometric one, with parameter p = e−λτ ,
except that it shifted one place to the left, so that it starts out at 0. Hence,

E[N ] =
1

p
− 1 = eλτ − 1.

(b) Let Tn be the nth interarrival time. The event {N ≥ n} indicates that the time
between cars n − 1 and n is less than or equal to τ , and therefore E[Tn |N ≥ n] =
E[Tn |Tn ≤ τ ]. Note that the conditional PDF of Tn is the same as the unconditional
one, except that it is now restricted to the interval [0, τ ], and that it has to be suitably
renormalized so that it integrates to 1. Therefore, the desired conditional expectation
is

E[Tn |Tn ≤ τ ] =

∫ τ

0

sλe−λs ds∫ τ

0

λe−λs ds

.

This integral can be evaluated by parts. We will provide, however, an alternative
approach that avoids integration.

We use the total expectation formula

E[Tn] = E[Tn |Tn ≤ τ ]P(Tn ≤ τ) + E[Tn |Tn > τ ]P(Tn > τ).
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We have E[Tn] = 1/λ, P(Tn ≤ τ) = 1 − e−λτ , P(Tn > τ) = e−λτ , and E[Tn |Tn >
τ ] = τ + (1/λ). (The last equality follows from the memorylessness of the exponential
PDF.) Using these equalities, we obtain

1

λ
= E[Tn |Tn ≤ τ ]

(
1− e−λτ

)
+
(
τ +

1

λ

)
e−λτ ,

which yields

E[Tn |Tn ≤ τ ] =

1

λ
−
(
τ +

1

λ

)
e−λτ

1− e−λτ
.

(c) Let T be the time until the U-turn. Note that T = T1 + · · ·+ TN + τ . Let v denote
the value of E[Tn |Tn ≤ τ ]. We find E[T ] using the total expectation theorem:

E[T ] = τ +

∞∑
n=0

P(N = n)E[T1 + · · ·+ TN |N = n]

= τ +

∞∑
n=0

P(N = n)

n∑
i=1

E[Ti |T1 ≤ τ, . . . , Tn ≤ τ, Tn+1 > τ ]

= τ +

∞∑
n=0

P(N = n)

n∑
i=1

E[Ti |Ti ≤ τ ]

= τ +

∞∑
n=0

P(N = n)nv

= τ + vE[N ],

where E[N ] was found in part (a) and v was found in part (b). The second equality
used the fact that the event {N = n} is the same as the event {T1 ≤ τ, . . . , Tn ≤
τ, Tn+1 > τ}. The third equality used the independence of the interarrival times Ti.

Solution to Problem 6.17. We will calculate the expected length of the photog-
rapher’s waiting time T conditioned on each of the two events: A, which is that the
photographer arrives while the wombat is resting or eating, and Ac, which is that the
photographer arrives while the wombat is walking. We will then use the total expec-
tation theorem as follows:

E[T ] = P(A)E[T |A] + P(Ac)E[T |Ac].

The conditional expectation E[T |A] can be broken down in three components:

(i) The expected remaining time up to when the wombat starts its next walk; by the
memorylessness property, this time is exponentially distributed and its expected
value is 30 secs.

(ii) A number of walking and resting/eating intervals (each of expected length 50 secs)
during which the wombat does not stop; if N is the number of these intervals,
then N + 1 is geometrically distributed with parameter 1/3. Thus the expected
length of these intervals is (3− 1) · 50 = 100 secs.

77



(iii) The expected waiting time during the walking interval in which the wombat
stands still. This time is uniformly distributed between 0 and 20, so its expected
value is 10 secs.

Collecting the above terms, we see that

E[T |A] = 30 + 100 + 10 = 140.

The conditional expectation E[T |Ac] can be calculated using the total expecta-
tion theorem, by conditioning on three events: B1, which is that the wombat does not
stop during the photographer’s arrival interval (probability 2/3); B2, which is that the
wombat stops during the photographer’s arrival interval after the photographer arrives
(probability 1/6); B3, which is that the wombat stops during the photographer’s arrival
interval before the photographer arrives (probability 1/6). We have

E[T |Ac, B1] = E[photographer’s wait up to the end of the interval] + E[T |A]

= 10 + 140 = 150.

Also, it can be shown that if two points are randomly chosen in an interval of length
l, the expected distance between the two points is l/3 (an end-of-chapter problem in
Chapter 3), and using this fact, we have

E[T |Ac, B2] = E[photographer’s wait up to the time when the wombat stops] =
20

3
.

Similarly, it can be shown that if two points are randomly chosen in an interval of
length l, the expected distance between each point and the nearest endpoint of the
interval is l/3. Using this fact, we have

E[T |Ac, B3] = E[photographer’s wait up to the end of the interval] + E[T |A]

=
20

3
+ 140.

Applying the total expectation theorem, we see that

E[T |Ac] =
2

3
· 150 +

1

6
· 20

3
+

1

6

(
20

3
+ 140

)
= 125.55.

To apply the total expectation theorem and obtain E[T ], we need the probability
P(A) that the photographer arrives during a resting/eating interval. Since the expected
length of such an interval is 30 seconds and the length of the complementary walking
interval is 20 seconds, we see that P(A) = 30/50 = 0.6. Substituting in the equation

E[T ] = P(A)E[T |A] +
(
1−P(A)

)
E[T |Ac],

we obtain
E[T ] = 0.6 · 140 + 0.4 · 125.55 = 134.22.
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C H A P T E R 7

Solution to Problem 7.1. We construct a Markov chain with state space S =
{0, 1, 2, 3}. We let Xn = 0 if an arrival occurs at time n. Also, we let Xn = i if the
last arrival up to time n occurred at time n − i, for i = 1, 2, 3. Given that Xn = 0,
there is probability 0.2 that the next arrival occurs at time n + 1, so that p00 = 0.2,
and p01 = 0.8. Given that Xn = 1, the last arrival occurred at time n − 1, and there
is zero probability of an arrival at time n+ 1, so that p12 = 1. Given that Xn = 2, the
last arrival occurred at time n− 2. We then have

p20 = P(Xn+1 = 0 |Xn = 2)

= P(T = 3 |T ≥ 3)

=
P(T = 3)

P(T ≥ 3)

=
3

8
,

and p23 = 5/8. Finally, given that Xn = 3, an arrival is guaranteed at time n + 1, so
that p30 = 1.

Solution to Problem 7.2. It cannot be described as a Markov chain with states L
and R, because P(Xn+1 = L |Xn = R,Xn−1 = L) = 1/2, while P(Xn+1 = L |Xn =
R,Xn−1 = R,Xn−2 = L) = 0.

Solution to Problem 7.3. The answer is no. To establish this, we need to show that
the Markov property fails to hold, that is we need to find scenarios that lead to the
same state and such that the probability law for the next state is different for different
scenarios.

Let Xn be the 4-state Markov chain corresponding to the original example. Let
us compare the two scenarios (Y0, Y1) = (1, 2) and (Y0, Y1) = (2, 2). For the first
scenario, the information (Y0, Y1) = (1, 2) implies that X0 = 2 and X1 = 3, so that

P(Y2 = 2 |Y0 = 1, Y1 = 2) = P
(
X2 ∈ {3, 4} |X1 = 3

)
= 0.7.

For the second scenario, the information (Y0, Y1) = (2, 2) is not enough to determine
X1, but we can nevertheless assert that P(X1 = 4 |Y0 = Y1 = 2) > 0. (This is because
the conditioning information Y0 = 2 implies that X0 ∈ {3, 4}, and for either choice of
X0, there is positive probability that X1 = 4.)

We then have

P(Y2 = 2 |Y0 = Y1 = 2)

= P(Y2 = 2 |X1 = 4, Y0 = Y1 = 2)P(X1 = 4 |Y0 = Y1 = 2)

+ P(Y2 = 2 |X1 = 3, Y0 = Y1 = 2)
(
1−P(X1 = 4 |Y0 = Y1 = 2)

)
= 1 ·P(X1 = 4 |Y0 = Y1 = 2) + 0.7

(
1−P(X1 = 4 |Y0 = Y1 = 2)

)
= 0.7 + 0.3 ·P(X1 = 4 |Y0 = Y1 = 2)

> 0.7.
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Thus, P(Y2 = 2 |Y0 = 1, Y1 = 2) 6= P(Y2 = 2 |Y0 = Y1 = 2), which implies that Yn
does not have the Markov property.

Solution to Problem 7.4. (a) We introduce a Markov chain with state equal to
the distance between spider and fly. Let n be the initial distance. Then, the states are
0, 1, . . . , n, and we have

p00 = 1, p0i = 0, for i 6= 0,

p10 = 0.4, p11 = 0.6, p1i = 0, for i 6= 0, 1,

and for all i 6= 0, 1,

pi(i−2) = 0.3, pi(i−1) = 0.4, pii = 0.3, pij = 0, for j 6= i− 2, i− 1, i.

(b) All states are transient except for state 0 which forms a recurrent class.

Solution to Problem 7.5. It is periodic with period 2. The two corresponding
subsets are {2, 4, 6, 7, 9} and {1, 3, 5, 8}.

Solution to Problem 7.10. For the first model, the transition probability matrix is[
1− b b
r 1− r

]
.

We need to exclude the cases b = r = 0 in which case we obtain a periodic class, and
the case b = r = 1 in which case there are two recurrent classes. The balance equations
are of the form

π1 = (1− b)π1 + rπ2, π2 = bπ1 + (1− r)π2,

or
bπ1 = rπ2.

This equation, together with the normalization equation π1 +π2 = 1, yields the steady-
state probabilities

π1 =
r

b+ r
, π2 =

b

b+ r
.

For the second model, we need to exclude the case b = r = 1 that makes the
chain periodic with period 2, and the case b = 1, r = 0, which makes the chain periodic
with period `+ 1. The balance equations are of the form

π1 = (1− b)π1 + r(π(2,1) + · · ·+ π(2,`−1)) + π(2,`),

π(2,1) = bπ1,

π(2,i) = (1− r)π(2,i−1), i = 2, . . . , `.

The last two equations can be used to express π(2,i) in terms of π1,

π(2,i) = (1− r)i−1bπ1, i = 1, . . . , `.
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Substituting into the normalization equation π1 +
∑`

i=1
π(2,i) = 1, we obtain

1 =

(
1 + b

`∑
i=1

(1− r)i−1

)
π1 =

(
1 +

b
(
1− (1− r)`

)
r

)
π1,

or
π1 =

r

r + b
(
1− (1− r)`

) .
Using the equation π(2,i) = (1− r)i−1bπ1, we can also obtain explicit formulas for the
π(2,i).

Solution to Problem 7.11. We use a Markov chain model with 3 states, H, M ,
and E, where the state reflects the difficulty of the most recent exam. We are given
the transition probabilities[

rHH rHM rHE
rMH rMM rME

rEH rEM rEE

]
=

[
0 .5 .5
.25 .5 .25
.25 .25 .5

]
.

It is easy to see that our Markov chain has a single recurrent class, which is aperiodic.
The balance equations take the form

π1 =
1

4
(π2 + π3),

π2 =
1

2
(π1 + π2) +

1

4
π3,

π3 =
1

2
(π1 + π3) +

1

4
π2,

and solving these with the constraint
∑

i
πi = 1 gives

π1 =
1

5
, π2 = π3 =

2

5
.

Solution to Problem 7.12. (a) This is a generalization of Example 7.6. We may
proceed as in that example and introduce a Markov chain with states 0, 1, . . . , n, where
state i indicates that there i available rods at Alvin’s present location. However, that
Markov chain has a somewhat complex structure, and for this reason, we will proceed
differently.

We consider a Markov chain with states 0, 1, . . . , n, where state i indicates that
Alvin is off the island and has i rods available. Thus, a transition in this Markov chain
reflects two trips (going to the island and returning). It is seen that this is a birth-death
process. This is because if there are i rods off the island, then at the end of the round
trip, the number of rods can only be i− 1, i or i+ 1.

We now determine the transition probabilities. When i > 0, the transition prob-
ability pi,i−1 is the probability that the weather is good on the way to the island, but
is bad on the way back, so that pi,i−1 = p(1−p). When 0 < i < n, the transition prob-
ability pi,i+1 is the probability that the weather is bad on the way to the island, but is
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good on the way back, so that pi,i+1 = p(1 − p). For i = 0, the transition probability
pi,i+1 = p0,1 is just the probability that the weather is good on the way back, so that
p0,1 = p. The transition probabilities pii are then easily determined because the sum
of the transition probabilities out of state i must be equal to 1. To summarize, we have

pii =

{
(1− p)2 + p2, for i > 0,
1− p, for i = 0,
1− p+ p2, for i = n,

pi,i+1, =
{

(1− p)p, for 0 < i < n,
p, for i = 0,

pi,i−1 =
{

(1− p)p, for i > 0,
0, for i = 0.

Since this is a birth-death process, we can use the local balance equations. We
have

π0p01 = π1p10,

implying that

π1 =
π0

1− p ,

and similarly,

πn = · · · = π2 = π1 =
π0

1− p .

Therefore,

1 =

n∑
i=0

πi = π0

(
1 +

n

1− p

)
,

which yields

π0 =
1− p

n+ 1− p , πi =
1

n+ 1− p , for all i > 0.

(b) Assume that Alvin is off the island. Let A denote the event that the weather is
nice but Alvin has no fishing rods with him. Then,

P(A) = π0p =
p− p2

n+ 1− p .

Suppose now that Alvin is on the island. The probability that he has no fishing rods
with him is again π0, by the symmetry of the problem. Therefore, P(A) is the same.
Thus, irrespective of his location, the probability that the weather is nice but Alvin
cannot fish is (p− p2)/(n+ 1− p).

Solution to Problem 7.13. (a) The local balance equations take the form

0.6π1 = 0.3π2, 0.2π2 = 0.2π3.

They can be solved, together with the normalization equation, to yield

π1 =
1

5
, π2 = π3 =

2

5
.
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(b) The probability that the first transition is a birth is

0.6π1 + 0.2π2 =
0.6

5
+

0.2 · 2
5

=
1

5
.

(c) If the state is 1, which happens with probability 1/5, the first change of state
is certain to be a birth. If the state is 2, which happens with probability 2/5, the
probability that the first change of state is a birth is equal to 0.2/(0.3 + 0.2) = 2/5.
Finally, if the state is 3, the probability that the first change of state is a birth is equal
to 0. Thus, the probability that the first change of state that we observe is a birth is
equal to

1 · 1

5
+

2

5
· 2

5
=

9

25
.

(d) We have

P(state was 2 |first transition is a birth) =
P(state was 2 and first transition is a birth)

P(first transition is a birth)

=
π2 · 0.2

1/5
=

2

5
.

(e) As shown in part (c), the probability that the first change of state is a birth is 9/25.
Furthermore, the probability that the state is 2 and the first change of state is a birth
is 2π2/5 = 4/25. Therefore, the desired probability is

4/25

9/25
=

4

9
.

(f) In a birth-death process, there must be as many births as there are deaths, plus or
minus 1. Thus, the steady-state probability of births must be equal to the steady-state
probability of deaths. Hence, in steady-state, half of the state changes are expected to
be births. Therefore, the conditional probability that the first observed transition is a
birth, given that it resulted in a change of state, is equal to 1/2. This answer can also
be obtained algebraically:

P(birth | change of state) =
P(birth)

P(change of state)
=

1/5
1

5
· 0.6 +

2

5
· 0.5 +

2

5
· 0.2

=
1/5

2/5
=

1

2
.

(g) We have

P(leads to state 2 | change) =
P(change that leads to state 2)

P(change)
=
π1 · 0.6 + π3 · 0.2

2/5
=

1

2
.

This is intuitive because for every change of state that leads into state 2, there must
be a subsequent change of state that leads away from state 2.

Solution to Problem 7.14. (a) Let pij be the transition probabilities and let πi be
the steady-state probabilities. We then have

P(X1000 = j,X1001 = k,X2000 = l |X0 = i) = rij(1000)pjkrkl(999) ≈ πjpjkπl.
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(b) Using Bayes’ rule, we have

P(X1000 = i |X1001 = j) =
P(X1000 = i,X1001 = j)

P(X1001 = j)
=
πipij
πj

.

Solution to Problem 7.15. Let i = 0, 1 . . . , n be the states, with state i indicating
that there are exactly i white balls. The nonzero transition probabilities are

p00 = ε, p01 = 1− ε, pnn = ε, pn,n−1 = 1− ε,

pi,i−1 = (1− ε) i
n
, pi,i+1 = (1− ε)n− i

n
, i = 1, . . . , n− 1.

The chain has a single recurrent class, which is aperiodic. In addition, it is a
birth-death process. The local balance equations take the form

πi(1− ε)
n− i
n

= πi+1(1− ε) i+ 1

n
, i = 0, 1, . . . n− 1,

which leads to

πi =
n(n− 1) . . . (n− i+ 1)

1 · 2 · · · i π0 =
n!

i! (n− i)!π0 =

(
n

i

)
π0.

We recognize that this has the form of a binomial distribution, so that for the proba-
bilities to add to 1, we must have π0 = 1/2n. Therefore, the steady-state probabilities
are given by

πj =

(
n

j

)(
1

2

)n
, j = 0, . . . , n.

Solution to Problem 7.16. Let j = 0, 1 . . . ,m be the states, with state j corre-
sponding to the first urn containing j white balls. The nonzero transition probabilities
are

pj,j−1 =
(
j

m

)2

, pj,j+1 =
(
m− j
m

)2

, pjj =
2j(m− j)

m2
.

The chain has a single recurrent class that is aperiodic. This chain is a birth-death
process and the steady-state probabilities can be found by solving the local balance
equations:

πj

(
m− j
m

)2

= πj+1

(
j + 1

m

)2

, j = 0, 1, . . . ,m− 1.

The solution is of the form

πj = π0

(
m(m− 1) · · · (m− j + 1)

1 · 2 · · · j

)2

= π0

(
m!

j! (m− j)!

)2

= π0

(
m

j

)2

.

We recognize this as having the form of the hypergeometric distribution (Problem 61
of Chapter 1, with n = 2m and k = m), which implies that π0 =

(
2m
m

)
, and

πj =

(
m

j

)2

(
2m

m

) , j = 0, 1, . . . ,m.
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Solution to Problem 7.17. (a) The states form a recurrent class, which is aperiodic
since all possible transitions have positive probability.

(b) The Chapman-Kolmogorov equations are

rij(n) =

2∑
k=1

rik(n− 1)pkj , for n > 1, and i, j = 1, 2,

starting with rij(1) = pij , so they have the form

r11(n) = r11(n− 1)(1−α) + r12(n− 1)β, r12(n) = r11(n− 1)α+ r12(n− 1)(1− β),

r21(n) = r21(n− 1)(1−α) + r22(n− 1)β, r22(n) = r21(n− 1)α+ r22(n− 1)(1− β).

If the rij(n−1) have the given form, it is easily verified by substitution in the Chapman-
Kolmogorov equations that the rij(n) also have the given form.

(c) The steady-state probabilities π1 and π2 are obtained by taking the limit of ri1(n)
and ri2(n), respectively, as n→∞. Thus, we have

π1 =
β

α+ β
, π2 =

α

α+ β
.

Solution to Problem 7.18. Let the state be the number of days that the gate has
survived. The balance equations are

π0 = π0p+ π1p+ · · ·+ πm−1p+ πm,

π1 = π0(1− p),

π2 = π1(1− p) = π0(1− p)2,

and similarly
πi = π0(1− p)i, i = 1, . . . ,m.

We have using the normalization equation

1 = π0 +

m∑
i=1

πi = π0

(
1 +

m∑
i=1

(1− p)i
)
,

so
π0 =

p

1− (1− p)m+1
.

The long-term expected frequency of gate replacements is equal to the long-term ex-
pected frequency of visits to state 0, which is π0. Note that if the natural lifetime m
of a gate is very large, then π0 is approximately equal to p.

Solution to Problem 7.28. (a) For j < i, we have pij = 0. Since the professor
will continue to remember the highest ranking, even if he gets a lower ranking in a
subsequent year, we have pii = i/m. Finally, for j > i, we have pij = 1/m, since the
class is equally likely to receive any given rating.
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(b) There is a positive probability that on any given year, the professor will receive
the highest ranking, namely 1/m. Therefore, state m is accessible from every other
state. The only state accessible from state m is state m itself. Therefore, m is the only
recurrent state, and all other states are transient.

(c) This question can be answered by finding the mean first passage time to the ab-
sorbing state m starting from i. It is simpler though to argue as follows: since the
probability of achieving the highest ranking in a given year is 1/m, independent of
the current state, the required expected number of years is the expected number of
trials to the first success in a Bernoulli process with success probability 1/m. Thus,
the expected number of years is m.

Solution to Problem 7.29. (a) There are 3 different paths that lead back to state
1 after 6 transitions. One path makes two self-transitions at state 2, one path makes
two self-transitions at state 4, one path makes one self-transition at state 2 and one
self-transition at state 4. By adding the probabilities of these three paths, we obtain

r11(6) =
2

3
· 3

5
·
(

1

3
· 2

5
+

1

9
+

4

25
.
)

=
182

1125
.

(b) The time T until the process returns to state 1 is equal to 2 (the time it takes for
the transitions from 1 to 2 and from 3 to 4), plus the time it takes for the state to move
from state 2 to state 3 (this is geometrically distributed with parameter p = 2/3), plus
the time it takes for the state to move from state 4 to state 1 (this is geometrically
distributed with parameter p = 3/5). Using the formulas E[X] = 1/p and var(X) =
(1− p)/p2 for the mean and variance of a geometric random variable, we find that

E[T ] = 2 +
3

2
+

5

3
=

31

6
,

and

var(T ) =
(

1− 2

3

)
· 32

22
+
(

1− 3

5

)
· 52

32
=

67

36
.

(c) Let A be the event that X999, X1000, and X1001 are all different. Note that

P(A |X999 = i) =

{
2/3, for i = 1, 2,
3/5, for i = 3, 4.

Thus, using the total probability theorem, and assuming that the process is in steady-
state at time 999, we obtain

P(A) =
2

3
(π1 + π2) +

3

5
(π3 + π4) =

2

3
· 15

31
+

3

5
· 16

31
=

98

155
.

Solution to Problem 7.30. (a) States 4 and 5 are transient, and all other states
are recurrent. There are two recurrent classes. The class {1, 2, 3} is aperiodic, and the
class {6, 7} is periodic.

(b) If the process starts at state 1, it stays within the aperiodic recurrent class {1, 2, 3},
and the n-step transition probabilities converge to steady-state probabilities πi. We
have πi = 0 for i /∈ {1, 2, 3}. The local balance equations take the form

π1 = π2, π2 = 6π3.
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Using also the normalization equation, we obtain

π1 = π2 =
6

13
, π3 =

1

13
.

(c) Because the class {6, 7} is periodic, there are no steady-state probabilities. In
particular, the sequence r66(n) alternates between 0 and 1, and does not converge.

(d) (i) The probability that the state increases by one during the first transition is
equal to

0.5π1 + 0.1π2 =
18

65
.

(d) (ii) The probability that the process is in state 2 and that the state increases is

0.1π2 =
0.6

13
.

Thus, the desired conditional probability is equal to

0.6/13

18/65
=

1

6
.

(d) (iii) If the state is 1 (probability 6/13), it is certain to increase at the first change
of state. if the state is 2 (probability 6/13), it has probability 1/6 of increasing at the
first change of state. Finally, if the state is 3, it cannot increase at the first change of
state. Therefore, the probability that the state increases at the first change of state is
equal to

6

13
+

1

6
· 6

13
=

7

13
.

(e) (i) Let a4 and a5 be the probability that the class {1, 2, 3} is eventually reached,
starting from state 4 and 5, respectively. We have

a4 = 0.2 + 0.4a4 + 0.2a5,

a5 = 0.7a4,

which yields
a4 = 0.2 + 0.4a4 + 0.14a4,

and a4 = 10/23. Also, the probability that the class {6, 7} is reached, starting from
state 4, is 1− (10/23) = 13/23.

(e) (ii) Let µ4 and µ5 be the expected times until a recurrent state is reached, starting
from state 4 and 5, respectively. We have

µ4 = 1 + 0.4µ4 + 0.2µ5,

µ5 = 1 + 0.7µ4.

Substituting the second equation into the first, and solving for µ4, we obtain

µ4 =
60

23
.

87



Solution to Problem 7.36. Define the state to be the number of operational
machines. The corresponding continuous-time Markov chain is the same as a queue with
arrival rate λ and service rate µ (the one of Example 7.15). The required probability
is equal to the steady-state probability π0 for this queue.

Solution to Problem 7.37. We consider a continuous-time Markov chain with state
n = 0, 1, . . . , 4, where

n = number of people waiting.

For n = 0, 1, 2, 3, the transitions from n to n+ 1 have rate 1, and the transitions from
n+ 1 to n have rate 2. The balance equations are

πn =
πn−1

2
, n = 1, . . . , 4,

so that πn = π0/2
n, n = 1, . . . , 4. Using the normalization equation

∑4

i=0
πi = 1, we

obtain

π0 =
1

1 + 2−1 + 2−2 + 2−3 + 2−4
=

16

31
.

A passenger who joins the queue (in steady-state) will find n other passengers
with probability πn/(π0 + π1 + π2 + π3), for n = 0, 1, 2, 3. The expected number of
passengers found by Penelope is

E[N ] =
π1 + 2π2 + 3π3

π0 + π1 + π2 + π3
=

(8 + 2 · 4 + 3 · 2)/31

(16 + 8 + 4 + 2)/31
=

22

30
=

11

15
.

Since the expected waiting time for a new taxi is 1/2 minute, the expected waiting
time (by the law of iterated expectations) is

E[T ] = E[N ] · 1

2
=

11

30
.

Solution to Problem 7.38. Define the state to be the number of pending requests.
Thus there are m + 1 states, numbered 0, 1, . . . ,m. At state i, with 1 ≤ i ≤ m, the
transition rate to i− 1 is

qi,i−1 = µ.

At state i, with 0 ≤ i ≤ m− 1, the transition rate to i+ 1 is

qi,i+1 = (m− i)λ.

This is a birth-death process, for which the steady-state probabilities satisfy

(m− i)λπi = µπi+1, i = 0, 1, . . . ,m− 1,

together with the normalization equation

π1 + · · ·+ πm = 1.

The solution to these equations yields the steady-state probabilities.
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C H A P T E R 8

Solution to Problem 8.1. There are two hypotheses:

H0 : the phone number is 2537267,

H1 : the phone number is not 2537267,

and their prior probabilities are

P(H0) = P(H1) = 0.5.

Let B be the event that Artemisia obtains a busy signal when dialing this number.
Under H0, we expect a busy signal with certainty:

P(B |H0) = 1.

Under H1, the conditional probability of B is

P(B |H1) = 0.01.

Using Bayes’ rule we obtain the posterior probability

P(H0 |B) =
P(B |H0)P(H0)

P(B |H0)P(H0) + P(B |H1)P(H1)
=

0.5

0.5 + 0.005
≈ 0.99.

Solution to Problem 8.2. (a) Let K (or K̄) be the event that Nefeli knew (or did
not know, respectively) the answer to the first question, and let C be the event that
she answered the question correctly. Using Bayes’ rule, we have

P(K |C) =
P(K)P(C |K)

P(K)P(C |K) + P(K̄)P(C | K̄)
=

0.5 · 1
0.5 · 1 + 0.5 · 1

3

=
3

4
.

(b) The probability that Nefeli knows the answer to a question that she answered
correctly is 3/4 by part (a), so the posterior PMF is binomial with n = 6 and p = 3/4.

Solution to Problem 8.3. (a) Let X denote the random wait time. We have the
observation X = 30. Using Bayes’ rule, the posterior PDF is

fΘ|X(θ | 30) =
fΘ(θ)fX|Θ(30 | θ)∫
fΘ(θ′)fX|Θ(30 | θ′) dθ′

.

Using the given prior, fΘ(θ) = 10θ for θ ∈ [0, 1/
√

5], we obtain

fΘ|X(θ | 30) =


10 θfX|Θ(30 | θ)∫ 1/

√
5

0
10 θ′fX|Θ(30 | θ′) dθ′

, if θ ∈ [0, 1/
√

5],

0, otherwise.
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We also have fX|Θ(30 | θ) = θe−30θ, so the posterior is

fΘ|X(θ | 30) =


θ2e−30θ∫ 1/

√
5

0
(θ′)2e−30θ′ dθ′

, if θ ∈ [0, 1/
√

5],

0, otherwise.

The MAP rule selects θ̂ that maximizes the posterior (or equivalently its numer-
ator, since the denominator is a positive constant). By setting the derivative of the
numerator to 0, we obtain

d

dθ

(
θ2e−30θ

)
= 2 θe−30θ − 30 θ2e−30θ = (2− 30 θ)θe−30θ = 0.

Therefore, θ̂ = 2/30.
The conditional expectation estimator is

E[Θ |X = 30] =

∫ 1/
√

5

0
θ3e−30θ dθ∫ 1/

√
5

0
(θ′)2e−30θ′ dθ′

.

(b) Let Xi denote the random wait time for the ith day, i = 1, . . . , 5. We have the ob-
servation vector X = x, where x = (30, 25, 15, 40, 20). Using Bayes’ rule, the posterior
PDF is

fΘ|X(θ |x) =
fΘ(θ)fX|Θ(x | θ)∫
fΘ(θ)fX|Θ(x | θ′) dθ′

.

In view of the independence of the Xi, we have for θ ∈ [0, 1/
√

5],

fX|Θ(x | θ) = fX1|Θ(x1 | θ) · · · fX5|Θ(x5 | θ)

= θe−x1θ · · · θe−x5θ

= θ5e−(x1+···+x5)θ

= θ5e−(30+25+15+40+20)θ

= θ5e−130θ.

Using the given prior, fΘ(θ) = 10θ for θ ∈ [0, 1/
√

5], we obtain the posterior

fΘ|X(θ |x) =


θ6e−130θ∫ 1/

√
5

0
(θ′)6e−130θ′ dθ′

, if θ ∈ [0, 1/
√

5],

0, otherwise.

To derive the MAP rule, we set the derivative of the numerator to 0, obtaining

d

dθ

(
θ6e−130θ

)
= 6θ5e−130θ − 130 θ6e−130θ = (6− 130 θ)θ5e−30θ = 0.
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Therefore,

θ̂ =
6

130
.

The conditional expectation estimator is

E
[
Θ |X = (30, 25, 15, 40, 20)

]
=

∫ 1/
√

5

0
θ7e−130θ dθ∫ 1/

√
5

0
(θ′)6e−130θ′ dθ′

.

Solution to Problem 8.4. (a) Let X denote the random variable representing the
number of questions answered correctly. For each value θ ∈ {θ1, θ2, θ3}, we have using
Bayes’ rule,

pΘ |X(θ | k) =
pΘ(θ) pX |Θ(k | θ)∑3

i=1
pΘ(θi) pX |Θ(k | θi)

.

The conditional PMF pX |Θ is binomial with n = 10 and probability of success pi equal
to the probability of answer correctly a question, given that the student is of category
i, i.e.,

pi = θi + (1− θi) ·
1

3
=

2θi + 1

3
.

Thus we have

p1 =
1.6

3
, p2 =

2.4

3
, p3 =

2.9

3
.

For a given number of correct answers k, the MAP rule selects the category i for which
the corresponding binomial probability

(
10
k

)
pki (1− pi)10−k is maximized.

(b) The posterior PMF of M is given by

pM|X(m |X = k) =

3∑
i=1

pΘ |X(θi |X = k)P(M = m |X = k,Θ = θi).

The probabilities pΘ |X(θi |X = k) were calculated in part (a), and the probabilities
P(M = m |X = k,Θ = θi) are binomial and can be calculated in the manner described
in Problem 2(b). For k = 5, the posterior PMF can be explicitly calculated for m =
0, . . . , 5. The MAP and LMS estimates can be obtained from the posterior PMF.

The probabilities pΘ |X(θi |X = k) were calculated in part (a),

pΘ |X(θ1 |X = 5) ≈ 0.9010, pΘ |X(θ2 |X = 5) ≈ 0.0989, pΘ |X(θ3 |X = 5) ≈ 0.0001.

The probability that the student knows the answer to a question that she an-
swered correctly is

qi =
θi

θi + (1− θi)/3

for i = 1, 2, 3. The probabilities P(M = m |X = k,Θ = θi) are binomial and are given
by

P(M = m |X = k,Θ = θi) =

(
k

m

)
qmi (1− qi)k−m
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For k = 5, the posterior PMF can be explicitly calculated for m = 0, . . . , 5

pM|X(0 |X = 5) ≈ 0.0145,

pM|X(1 |X = 5) ≈ 0.0929,

pM|X(2 |X = 5) ≈ 0.2402,

pM|X(3 |X = 5) ≈ 0.3173,

pM|X(4 |X = 5) ≈ 0.2335,

pM|X(5 |X = 5) ≈ 0.1015,

It follows that the MAP estimate is

m̂ = 3.

The conditional expectation estimate is

E[M |X = 5] =

5∑
m=1

mpM|X(m |X = 5) ≈ 2.9668 ≈ 3.

Solution to Problem 8.5. According to the MAP rule, we need to maximize over
θ ∈ [0, 1] the posterior PDF

fΘ|X(θ | k) =
fΘ(θ)pX|Θ(k | θ)∫
fΘ(θ′)pX|Θ(k | θ′) dθ′

,

where X is the number of heads observed. Since the denominator is a positive constant,
we only need to maximize

fΘ(θ) pX|Θ(k | θ) =

(
n

k

)(
2− 4

∣∣∣1
2
− θ
∣∣∣) θk (1− θ)n−k.

The function to be minimized is differentiable except at θ = 1/2. This leads to two
different possibilities: (a) the maximum is attained at θ = 1/2; (b) the maximum is
attained at some θ < 1/2, at which the derivative is equal to zero; (c) the maximum is
attained at some θ > 1/2, at which the derivative is equal to zero.

Let us consider the second possibility. For θ < 1/2, we have fΘ(θ) = 4θ. The
function to be maximized, ignoring the constant term 4

(
n
k

)
, is

θk+1(1− θ)n−k.

By setting the derivative to zero, we find θ̂ = (k + 1)/(n + 1), provided that (k +
1)/(n + 1) < 1/2. Let us now consider the third possibility. For θ > 1/2, we have
fΘ(θ) = 4(1− θ). The function to be maximized, ignoring the constant term 4

(
n
k

)
, is

θk(1− θ)n−k+1.
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By setting the derivative to zero, we find θ̂ = k/(n+ 1), provided that k/(n+ 1) > 1/2.
If neither condition (k + 1)/(n + 1) < 1/2 and k/(n + 1) > 1/2 holds, we must have
the first possibility, with the maximum attained at θ̂ = 1/2. To summarize, the MAP
estimate is given by

θ̂ =



k + 1

n+ 1
, if

k + 1

n+ 1
<

1

2
,

1

2
, if

k

n+ 1
≤ 1

2
≤ k + 1

n+ 1
,

k

n+ 1
, if

1

2
<

k

n+ 1
.

Figure 8.1 shows a plot of the function fθ(θ) θ
k(1− θ)n−k, for three different values of

k, as well as a plot of θ̂ as function of k, all for the case where n = 10.
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Figure 8.1: (a)-(c) Plots of the function fθ(θ)θk(1−θ)n−k in Problem 8.5, when

n = 10, and for k = 3, 5, 7, respectively. (d) The MAP estimate θ̂ as a function
of k, when n = 10.

Solution to Problem 8.6. (a) First we calculate the values of c1 and c2. We have

c1 =
1∫ 60

5
e−0.04xdx

≈ 0.0549,
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c2 =
1∫ 60

5
e−0.16xdx

≈ 0.3561.

Next we derive the posterior probability of each hypothesis,

pΘ|T (1 | 20) =
0.3fT |Θ(x |Θ = 1)

0.3fT |Θ(x |Θ = 1) + 0.7fT |Θ(x |Θ = 2)

=
0.3 · 0.0549 e−0.04·20

0.3 · 0.0549 e−0.04·20 + 0.7 · 0.3561 e−0.16·20

= 0.4214,

and

pΘ|T (2 | 20) =
0.7fT |Θ(x |Θ = 2)

0.3fT |Θ(x |Θ = 1) + 0.7fT |Θ(x |Θ = 2)

=
0.7 · 0.3561 e−0.16·20

0.3 · 0.0549 e−0.04·20 + 0.7 · 0.3561 e−0.16·20

= 0.5786.

Therefore she would accept the hypothesis that the problem is not difficult, and the
probability of error is

pe = pΘ|T (1 | 20) = 0.4214.

(b) We write the posterior probability of each hypothesis,

pΘ|T1,T2,T3,T4,T5
(1 | 20, 10, 25, 15, 35)

=
0.3fT1,T2,T3,T4,T5 |Θ(20, 10, 25, 15, 35 |Θ = 1)

0.3fT1,T2,T3,T4,T5 |Θ(20, 10, 25, 15, 35 |Θ = 1) + 0.7fT1,T2,T3,T4,T5 |Θ(20, 10, 25, 15, 35 |Θ = 2)

=
0.3 · 0.05495 exp(−0.04 · (20 + 10 + 25 + 15 + 35))

0.3 · 0.05495 exp(−0.04 · (20 + 10 + 25 + 15 + 35)) + 0.7 · 0.35615 exp(−0.16 · (20 + 10 + 25 + 15 + 35))

= 0.9171,

and similarly

pΘ|T1,T2,T3,T4,T5
(2 | 20, 10, 25, 15, 35)

=
0.3fT1,T2,T3,T4,T5 |Θ(20, 10, 25, 15, 35 |Θ = 2)

0.3fT1,T2,T3,T4,T5 |Θ(20, 10, 25, 15, 35 |Θ = 1) + 0.7fT1,T2,T3,T4,T5 |Θ(20, 10, 25, 15, 35 |Θ = 2)

= 0.0829.

So this time the professor would accept the hypothesis that the problem is difficult.
The probability of error is 0.0829, much lower than the case of a single observation.

Solution to Problem 8.7. (a) Let H1 and H2 be the hypotheses that box 1 or 2,
respectively, was chosen. Let X = 1 if the drawn ball is white, and X = 2 if it is black.
We introduce a parameter/random variable Θ, taking values θ1 and θ2, corresponding
to H1 and H2, respectively. We have the following prior distribution for Θ:

pΘ(θ1) = p, pΘ(θ2) = 1− p,
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where p is given. Using Bayes’ rule, we have

pΘ|X(θ1 | 1) =
pΘ(θ1)pX|Θ(1 | θ1)

pΘ(θ1)pX|Θ(1 | θ1) + pΘ(θ2)pX|Θ(1 | θ2)

=
2p/3

2p/3 + (1− p)/3

=
2p

1 + p
.

Similarly we calculate the other conditional probabilities of interest:

pΘ|X(θ2 | 1) =
1− p
1 + p

, pΘ|X(θ1 | 2) =
p

2− p , pΘ|X(θ2 | 2) =
2− 2p

2− p .

If a white ball is drawn (X = 1), the MAP rule selects box 1 if

pΘ|X(θ1 | 1) > pΘ|X(θ2 | 1),

that is, if
2p

1 + p
>

1− p
1 + p

,

or p > 1/3, and selects box 2 otherwise. If a black ball is drawn (X = 2), the MAP
rule is selects box 1 if

pΘ|X(θ1 | 2) > pΘ|X(θ2 | 2),

that is, if
p

2− p >
2− 2p

2− p ,

or p > 2/3, and selects box 2 otherwise.
Suppose now that the two boxes have equal prior probabilities (p = 1/2). Then,

the MAP rule decides on box 1 (or box 2) if X = 1 (or X = 2, respectively). Given an
initial choice of box 1 (Θ = θ1), the probability of error is

e1 = P(X = 2 | θ1) =
1

3
.

Similarly, for an initial choice of box 2 (Θ = θ2), the probability of error is

e2 = P(X = 1 | θ2) =
1

3
.

The overall probability of error of the MAP decision rule is obtained using the total
probability theorem:

P(error) = pΘ(θ1)e1 + pΘ(θ2)e2 =
1

2
· 1

3
+

1

2
· 1

3
=

1

3
.

Thus, whereas prior to knowing the data (the value of X), the probability of error for
either decision was 1/2, after knowing the data and using the MAP rule, the probability
of error is reduced to 1/3. This is in fact a general property of the MAP rule: with

95



more data, the probability of error cannot increase, regardless of the observed value of
X (see Problem 8.9).

Solution to Problem 8.8. (a) Let K be the number of heads observed before the
first tail, and let pK|Hi(k) be the PMF of K when hypothesis Hi is true. Note that
event K = k corresponds to a sequence of k heads followed by a tail, so that

pK|Hi(k) = (1− qi)qki , k = 0, 1, . . . , i = 1, 2.

Using Bayes’ rule, we obtain

P(H1 |K = k) =
pK|H1

(k)P(H1)

pK(k)

=
1
2
(1− q1)qk1

1
2
(1− q1)qk1 + 1

2
(1− q0)qk0

=
(1− q1)qk1

(1− q1)qk1 + (1− q0)qk0
.

(b) An error occurs in two cases: if H0 is true and K ≥ k∗, or if H1 is true and K < k∗.
So, the probability of error, denoted by pe, is

pe = P(K ≥ k∗ |H0)P(H0) + P(K < k∗ |H1)P(H1)

=

∞∑
k=k∗

pK|H0
(k)P(H0) +

k∗−1∑
k=0

pK|H1
(k)P(H1)

= P(H0)

∞∑
k=k∗

(1− q0)qk0 + P(H1)

k∗−1∑
k=0

(1− q1)qk1

= P(H0)(1− q0)
qk
∗

0

1− q0
+ P(H1)(1− q1)

1− qk
∗

1

1− q1
= P(H1) + P(H0)qk

∗
0 −P(H1)qk

∗
1

=
1

2
(1 + qk

∗
0 − qk

∗
1 ).

To find the value of k∗ that minimizes pe, we temporarily treat k∗ as a continuous
variable and differentiate pe with respect to k∗. Setting this derivative to zero, we
obtain

dpe
dk∗

=
1

2

(
(log q0)qk

∗
0 − (log q1)qk

∗
1

)
= 0.

The solution to this equation is

k =
log(| log q0|)− log(| log q1|)

| log q0| − | log q1|
.

As k∗ ranges from 0 to k, the derivative of pe is nonzero, so that pe is monotonic. Since
q1 > q0, the derivative is negative at k∗ = 0. This implies that pe is monotonically
decreasing as k∗ ranges from 0 to k. Similarly, the derivative of pe is positive for very
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large values of k∗, which implies that pe is monotonically increasing as k∗ ranges from
k to infinity. It follows that k minimizes pe. However, k∗ can only take integer values,
so the integer k∗ that minimizes pe is either bkc or dke, whichever gives the lower value
of Pe.

We now derive the form of the MAP decision rule, which minimizes the probabil-
ity of error, and show that it is of the same type as the decision rules we just studied.
With the MAP decision rule, for any given k, we accept H1 if

P(K = k |H1)P(H1) > P(K = k |H0)P(H0),

and accept H0 otherwise. Note that if

(1− q1)qk1P(H1) > (1− q0)qk0P(H0),

then
(1− q1)qk+1

1 P(H1) > (1− q0)qk+1
0 P(H0),

since q1 > q0. Similarly, if

(1− q1)qk1P(H1) < (1− q0)qk0P(H0),

then
(1− q1)qk−1

1 P(H1) < (1− q0)qk−1
0 P(H0).

This implies that if we decide in favor of H1 when a value k is observed, then we also
decide in favor of H1 when a larger value is observed. Similarly, if we decide in favor
H0 when a value k is observed, then we also decide in favor of H0 when a smaller value
k is observed. Therefore, the MAP rule is of the type considered and optimized earlier,
and thus will not result in a lower value of pe.

(c) As in part (b) we have

pe = P(H1) + P(H0)qk
∗

0 −P(H1)qk
∗

1 .

Consider the case where P(H1) = 0.7, q0 = 0.3 and q1 = 0.7. Using the calculations in
part (b), we have

k =

log

(
P(H0) log(v0)

P(H1) log(v1)

)
log
(
v1

v0

) ≈ 0.43

Thus, the optimal value of k∗ is either bkc = 0 or dke = 1. We find that with either
choice the probability of error pe is the same and equal to 0.3. Thus, either choice
minimizes the probability of error.

Note that k decreases as P(H1) increases from 0.7 to 1.0. So the choice k∗ = 0
remains optimal in this range. As a result, we always decide in favor of H1, and the
probability of error is pe = P(H0) = 1−P(H1).

Solution to Problem 8.10. Let Θ be the car speed and let X be the radar’s
measurement. Similar to Example 8.11, the joint PDF of Θ and X is uniform over the
set of pairs (θ, x) that satisfy 55 ≤ θ ≤ 75 and θ ≤ x ≤ θ + 5. As in Example 8.11, for
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any given x, the value of Θ is constrained to lie on a particular interval, the posterior
PDF of Θ is uniform over that interval, and the conditional mean is the midpoint of
that interval. In particular,

E[Θ |X = x] =


x

2
+ 27.5, if 55 ≤ x ≤ 60,

x− 2.5, if 60 ≤ x ≤ 75,

x

2
+ 35, if 75 ≤ x ≤ 80.

Solution to Problem 8.11. From Bayes’ rule,

pΘ|X(θ |x) =
pX|Θ(x | θ)pΘ(θ)

pX(x)

=
pX|Θ(x | θ)pΘ(θ)

100∑
i=1

pX|Θ(x | i)pΘ(i)

=

1

θ
· 1

100
100∑
i=x

1

i
· 1

100

=



1

θ
100∑
i=x

1

i

, for θ = x, x+ 1, . . . , 100,

0, for θ = 1, 2, . . . , x− 1.

Given that X = x, the posterior probability is maximized at θ̂ = x, and this is the
MAP estimate of Θ given x. The LMS estimate is

θ̂ = E[Θ |X = x] =

100∑
θ=1

θpΘ|X(θ |x) =
101− x

100∑
i=x

1

i

.

Figure 8.2 plots the MAP and LMS estimates of Θ as a function of X.

Solution to Problem 8.12. (a) The posterior PDF is

fΘ|X1,...,Xn(θ |x1, . . . , xn) dθ =
fΘ(θ)fX|Θ(x | θ)∫ 1

0

fΘ(θ′)fX|Θ(x | θ′) dθ′

=


1

θn

1

n− 1
x1−n − 1

n− 1

, if x ≤ θ,

0, otherwise.
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Figure 8.2: MAP and LMS estimates of Θ as a function of X in Problem 8.11.

Using the definition of conditional expectation we obtain

E[Θ |X1 = x1, . . . , Xn = xn] =

∫ 1

0

θ · fΘ|X1,...,Xn(θ |x1, . . . , xn) dθ

=

∫ 1

x

θ · fΘ|X1,...,Xn(θ |x1, . . . , xn) dθ

=

1

n− 2
x2−n − 1

n− 2
1

n− 1
x1−n − 1

n− 1

=
n− 1

n− 2
· x

2−n − 1

x1−n − 1

=
n− 1

n− 2
· x

2−n − 1

x1−n − 1

=
n− 1

n− 2
· x(1− xn−2)

1− xn−1
.

(b) The conditional mean squared error of the MAP estimator is

E
[
(Θ̂−Θ)2 |X1 = x1, . . . ,Xn = xn

]
= E

[
(x−Θ)2 |X1 = x1, . . . , Xn = xn

]
= x2 − 2x

n− 1

n− 2
· x

2−n − 1

x1−n − 1
+

(
n− 1

n− 3
· x

3−n − 1

x1−n − 1

)
,
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and the conditional mean squared error for the LMS estimator is

E
[
(Θ̂−Θ)2 |X1 = x1, . . . ,Xn = xn

]
= E

[(
x2−n − 1

x1−n − 1
−Θ

)2 ∣∣∣∣ X1 = x1, . . . , Xn = xn

]

= −
(
n− 1

n− 2
· x

2−n − 1

x1−n − 1

)2

+

(
n− 1

n− 3
· x

3−n − 1

x1−n − 1

)
.

We plot in Fig. 8.3 the estimators and the corresponding conditional mean squared
errors as a function of x, for the case where n = 5.
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Figure 8.3: The MAP and LMS estimates, and their conditional mean squared
errors, as functions of x in Problem 8.12.

(c) When x is held fixed at 0.5, the MAP estimate also remains fixed at 0.5. On the
other hand, the LMS estimate given by the expression found in part (b), can be seen to
be larger than 0.5 and converge to 0.5 as n→∞. Furthermore, the conditional mean
squared error decreases to zero as n increases to infinity; see Fig. 8.4.

Solution to Problem 8.14. Here Θ is uniformly distributed in the interval [4, 10]
and

X = Θ +W,

where W is uniformly distributed in the interval [−1, 1], and is independent of Θ. The
linear LMS estimator of Θ given X is

Θ̂ = E[Θ] +
cov(Θ, X)

σ2
X

(
X −E[X]

)
.
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Figure 8.4: Asymptotic behavior of the MAP and LMS estimators, and the

corresponding conditional mean squared errors, for fixed x = 0.5, and n→∞ in

Problem 8.12.

We have
E[X] = E[Θ] + E[W ] = E[Θ], σ2

X = σ2
Θ + σ2

W ,

cov(Θ, X) = E
[(

Θ−E[Θ]
)(
X −E[X]

)]
= E

[(
Θ−E[Θ]

)2]
= σ2

Θ,

where the last relation follows from the independence of Θ and W . Using the formulas
for the mean and variance of the uniform PDF, we have

E[Θ] = 7, σ2
Θ = 3,

E[W ] = 0, σ2
W = 1/3.

Thus, the linear LMS estimator is

Θ̂ = 7 +
3

3 + 1/3

(
X − 7

)
,

or

Θ̂ = 7 +
9

10

(
X − 7

)
.

The mean squared error is (1− ρ2)σ2
Θ. We have

ρ2 =

(
cov(Θ, X)

σΘσX

)2

=

(
σ2

Θ

σΘσX

)2

=
σ2

Θ

σ2
X

=
3

3 + 1/3
=

9

10
.
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Hence the mean squared error is

(1− ρ2)σ2
Θ =

(
1− 9

10

)
· 3 =

3

10
.

Solution to Problem 8.15. The conditional mean squared error of the MAP esti-
mator Θ̂ = X is

E
[
(Θ̂−Θ)2 |X = x

]
= E

[
Θ̂2 − 2Θ̂Θ + Θ2 |X = x

]
= x2 − 2xE[Θ |X = x] + E[Θ2 |X = x]

= x2 − 2x
101− x

100∑
i=x

1

i

+

100∑
i=x

i

100∑
i=x

1

i

.

The conditional mean squared error of the LMS estimator

Θ̂ =
101−X

100∑
i=X

1

i

.

is

E[(Θ̂−Θ)2 |X = x] = E[Θ̂2 − 2Θ̂Θ + Θ2 |X = x]

=
101− x2

100∑
i=x

1

i

− 2
101− x

100∑
i=x

1

i

E[Θ |X = x] + E[Θ2 |X = x]

= − (101− x)2( 100∑
i=x

1

i

)2
+

100∑
i=x

i

100∑
i=x

1

i

.

To obtain the linear LMS estimator, we compute the expectation and variance
of X. We have

E[X] = E
[
E[X |Θ]

]
= E

[
Θ + 1

2

]
=

(101/2) + 1

2
= 25.75,

and

var(X) = E[X2]−
(
E[X]

)2
=

1

100

100∑
x=1

x2

(
100∑
θ=x

1

θ

)
− (25.75)2 = 490.19.
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The covariance of Θ and X is

cov(Θ, X) = E
[
(X −E[X])(Θ−E[Θ])

]
=

100∑
θ=1

1

100

θ∑
x=1

1

θ
(x− 25.75)(θ − 50)

= 416.63.

Applying the linear LMS formula yields

Θ̂ = E[Θ] +
cov(Θ, X)

var(X)

(
X −E[X]

)
= 50 +

416.63

490.19
(X − 25.75) = 0.85X + 28.11.

The mean squared error of the linear LMS estimator is

E
[
(Θ̂−Θ)2 |X = x

]
= E

[
Θ̂2 − 2Θ̂Θ + Θ2 |X = x

]
= Θ̂2 − 2Θ̂E[Θ |X = x] + E[Θ2 |X = x]

= (0.85x+ 28.11)2 − 2 (0.85x+ 28.11)
101− x∑100

i=x
1
i

+

∑100

i=x
i∑100

i=x
1
i

.

Figure 8.5 plots the conditional mean squared error of the MAP, LMS, and linear
LMS estimators, as a function of x. Note that the conditional mean squared error is
lowest for the LMS estimator, but that the linear LMS estimator comes very close.
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Figure 8.5: Estimators and their conditional mean squared errors in Problem

8.15.
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Solution to Problem 8.16. (a) The LMS estimator is

g(X) = E[Θ |X] =


1

2
X, if 0 ≤ X < 1,

X − 1

2
, if 1 ≤ X ≤ 2.

(b) We first derive the conditional variance E
[
(Θ − g(X))2 |X = x

]
. If x ∈ [0, 1], the

conditional PDF of Θ is uniform over the interval [0, x], and

E
[(

Θ− g(X)
)2 |X = x

]
= x2/12.

Similarly, if x ∈ [1, 2], the conditional PDF of Θ is uniform over the interval [1− x, x],
and

E
[(

Θ− g(X)
)2 |X = x

]
= 1/12.

We now evaluate the expectation and variance of g(X). Note that (Θ, X) is
uniform over a region with area 3/2, so that the constant c must be equal to 2/3. We
have

E
[
g(X)

]
= E

[
E[Θ |X]

]
= E[Θ]

=

∫ ∫
θfX,Θ(x, θ) dθdx

=

∫ 1

0

∫ x

0

θ
2

3
dθ dx+

∫ 2

1

∫ x

x−1

θ
2

3
dθ dx

=
7

9
.

Furthermore,

var
(
g(X)

)
= var

(
E[Θ |X]

)
= E

[(
E[Θ |X]

)2]− (E[E[Θ |X]
])2

=

∫ 2

0

(
E[Θ |X]

)2
fX(x) dx−

(
E[Θ]

)2
=

∫ 1

0

(
1

2
x
)2

· 2

3
x dx+

∫ 2

1

(
x− 1

2

)2

· 2

3
dx−

(
7

9

)2

=
103

648

= 0.159,

where

fX(x) =

{
2x/3, if 0 ≤ x ≤ 1,

2/3, if 1 ≤ x ≤ 2.
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(c) The expectations E
[(

Θ− g(X)
)2]

and E
[
var(Θ |X)

]
are equal because by the law

of iterated expectations,

E
[(

Θ− g(X)
)2]

= E
[
E
[(

Θ− g(X)
)2 |X]] = E

[
var(Θ |X)

]
.

Recall from part (b) that

var(Θ |X = x) =

{
x2/12, if 0 ≤ x < 1,

1/12, if 1 ≤ x ≤ 2.

It follows that

E
[
var(Θ |X)

]
=

∫
x

var(Θ |X = x)fX(x) dx =

∫ 1

0

x2

12
· 2

3
x dx+

∫ 2

1

1

12
· 2

3
dx =

5

72
.

(d) By the law of total variance, we have

var(Θ) = E
[
var(Θ |X)

]
+ var

(
E[Θ |X]

)
.

Using the results from parts (b) and (c), we have

var(Θ) = E
[
var(Θ |X)

]
+ var

(
E[Θ |X]

)
=

5

72
+

103

648
=

37

162
.

An alternative approach to calculating the variance of Θ is to first find the marginal
PDF fΘ(θ) and then apply the definition

var(Θ) =

∫ 2

0

(
θ −E[Θ]

)2
fΘ(θ) dθ.

(e) The linear LMS estimator is

Θ̂ = E[Θ] +
cov(X,Θ)

σ2
X

(
X −E[X]

)
.

We have

E[X] =

∫ 1

0

∫ x

0

2

3
x dθ dx+

∫ 2

1

∫ x

x−1

2

3
x dθ dx =

2

9
+ 1 =

11

9
,

E[X2] =

∫ 1

0

∫ x

0

2

3
x2 dθ dx+

∫ 2

1

∫ x

x−1

2

3
x2 dθ dx =

1

6
+

14

9
=

31

18
,

var(X) = E[X2]− (E[X])2 =
71

162
,

E[Θ] =

∫ 1

0

∫ x

0

2

3
θ dθ dx+

∫ 2

1

∫ x

x−1

2

3
θ dθ dx =

1

9
+

2

3
=

7

9
,
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E[XΘ] =

∫ 1

0

∫ x

0

2

3
xθ dθ dx+

∫ 2

1

∫ x

x−1

2

3
xθ dθ dx =

1

12
+

17

18
=

37

36
,

cov(X,Θ) = E[XΘ]−E[X]E[Θ] =
37

36
− 11

9
· 7

9
.

Thus, the linear LMS estimator is

Θ̂ =
7

9
+

37
36
− 11

9
· 7

9
71
162

(
X − 11

9

)
= 0.5626 + 0.1761X.

Its mean squared error is

E
[
(Θ− Θ̂)2

]
= E

[
(Θ− 0.5626− 0.1761X)2

]

= E

[
Θ2 − 2Θ (0.5626 + 0.1761X) + (0.5626 + 0.1761X)2

]
.

After some calculation we obtain the value of the mean squared error, which is approx-
imately 0.2023. Alternatively, we can use the values of var(X), var(Θ), and cov(X,Θ)
we found earlier, to calculate the correlation coefficient ρ, and then use the fact that
the mean squared error is equal to

(1− ρ2)var(Θ),

to arrive at the same answer.

Solution to Problem 8.17. We have

cov(Θ, X) = E[Θ3/2W ]−E[Θ]E[X] = E[Θ/2]E[W ]−E[Θ]E[Θ] = 0,

so the linear LMS estimator of Θ is simply Θ̂ = µ, and does not make use of the
available observation.

Let us now consider the transformed observation Y = X2 = ΘW 2, and linear
estimators of the form Θ̂ = aY + b. We have

E[Y ] = E[ΘW 2] = E[Θ]E[W 2] = µ,

E[ΘY ] = E[Θ2W 2] = E[Θ2]E[W 2] = σ2 + µ2,

cov(Θ, Y ) = E[ΘY ]−E[Θ]E[Y ] = (σ2 + µ2)− µ2 = σ2,

var(Y ) = E[Θ2W 4]−
(
E[Y ]

)2
= (σ2 + µ2)E[W 4]− µ2.

Thus, the linear LMS estimator of Θ based on Y is of the form

Θ̂ = µ+
σ2

(σ2 + µ2)E[W 4]− µ2

(
Y − σ2),

and makes effective use of the observation: the estimate of Θ, the conditional variance
of X becomes large whenever a large value of X2 is observed.

106



Solution to Problem 8.18. (a) The conditional CDF of X is given by

FX|Θ(x | θ) = P(X ≤ x |Θ = θ) = P(Θ cosW ≤ x |Θ = θ) = P
(

cosW ≤ x

θ

)
.

We note that the cosine function is one-to-one and decreasing over the interval [0, π/2],
so for 0 ≤ x ≤ θ,

FX|Θ(x | θ) = P
(
W ≥ cos−1 x

θ

)
= 1− 2

π
cos−1 x

θ
.

Differentiation yields

fX|Θ(x | θ) =
2

π
√
θ2 − x2

, 0 ≤ x ≤ θ.

We have

fΘ,X(θ, x) = fΘ(θ)fX|Θ(x | θ) =
2

πl
√
θ2 − x2

, 0 ≤ θ ≤ l, 0 ≤ x ≤ θ.

Thus the joint PDF is nonzero over the triangular region {(θ, x) | 0 ≤ θ ≤ l, 0 ≤ x ≤ θ}
or equivalently {(θ, x) | 0 ≤ x ≤ l, x ≤ θ ≤ l}. To obtain fX(x), we integrate the joint
PDF over θ:

fX(x) =
2

πl

∫ l

x

1√
θ2 − x2

dθ

= log
(
θ +

√
θ2 − x2

)∣∣∣l
x

=
2

πl
log

(
l +
√
l2 − x2

x

)
, 0 ≤ x ≤ l,

where we have used the integration formula in the hint.
We have

fΘ|X(θ |x) =
fΘ,X(θ, x)

fX(x)
=

1

log

(
l +
√
l2 − x2

x

)√
θ2 − x2

, x ≤ θ ≤ l.

Thus, the LMS estimate is given by

E[Θ |X = x] =

∫ ∞
−∞

θfΘ|X(θ |x) dx

=
1

log

(
l +
√
l2 − x2

x

) ∫ l

x

θ√
θ2 − x2

dθ

=

√
θ2 − x2

∣∣∣l
x

log

(
l +
√
l2 − x2

x

)
=

√
l2 − x2

log

(
l +
√
l2 − x2

x

) , 0 ≤ x ≤ l.
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It is worth noting that limx→0 E[Θ |X = x] = 0 and that limx→lE[Θ |X = x] = l, as
one would expect.

(b) The linear LMS estimator is

Θ̂ = E[Θ] +
cov(Θ, X)

σ2
X

(X −E[X]).

Since Θ is uniformly distributed between 0 and l, it follows that E[Θ] = l/2. We
obtain E[X] and E[X2], using the fact that Θ is independent from W , and therefore
also independent from cosW and cos2 W . We have

E[X] = E[Θ cosW ] = E[Θ]E[cosW ]

= E[Θ] · 2

π

∫ π/2

0

cosw dw =
l

2
· 2

π
sinw

∣∣∣π/2
0

=
2

π
,

and

E[X2] = E[Θ2 cos2 W ] = E
[
Θ2E[cos2 W ]

]
= E[Θ2]E[cos2 W ]

=
1

l

∫ l

0

θ2 dθ · 2

π

∫ π/2

0

cos2 w dw =
l3

3l
· 1

π

∫ π/2

0

(1 + cos 2w) dw =
l2

3π
· π

2
=
l2

6
.

Thus,

var(X) =
l2

6
− l2

π2
=
l2(π2 − 6)

6π2
.

We also have

E[ΘX] = E[Θ2 cosW ] = E[Θ2]E[cosW ] =
l2

3
· 2

π
=

2l2

3π
.

Hence,

cov(Θ, X) =
2l2

3π
− l

2
· l
π

=
l2

π

(
2

3
− 1

2

)
=

l2

6π
.

Therefore,

Θ̂ =
l

2
+
l2

6π
· 6π2

l2(π2 − 6)

(
X − l

π

)
=
l

2
+

π

π2 − 6

(
X − l

π

)
.

The mean squared error is

(1− ρ2)σ2
Θ = σ2

Θ −
cov2(Θ, X)

σ2
X

=
l2

12
− l4

36π2
· 6π2

l2(π2 − 6)

=
l2

12

(
1− 2

π2 − 6

)
=
l2

12
· π

2 − 8

π2 − 6
.
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Solution to Problem 8.19. (a) Let X be the number of detected photons. From
Bayes’ rule, we have

P(transmitter is on |X = k) =
P(X = k | transmitter is on) ·P(transmitter is on)

P(X = k)

=
P(Θ +N = k) · p

P(N = k) · (1− p) + P(Θ +N = k) · p .

The PMFs of Θ and Θ +N are

pΘ(θ) =
λθe−λ

θ!
, pΘ+N (n) =

(λ+ µ)ne−(λ+µ)

n!
.

Thus, using part (a) we obtain

P(transmitter is on |X = k) =
p · (λ+ µ)ke−(λ+µ)

k!

p · (λ+ µ)ke−(λ+µ)

k!
+ (1− p) · µ

ke−µ

k!

=
p(λ+ µ)ke−λ

p(λ+ µ)ke−λ + (1− p)µk .

(b) We calculate P(transmitter is on |X = k) and decide that the transmitter is on if
and only if this probability is at least 1/2; equivalently, if and only if

p(λ+ µ)ke−λ ≥ (1− p)µk.

(c) Let S be the number of transmitted photons, so that S is equal to Θ with probability
p, and is equal to 0 with probability 1− p. The linear LMS estimator is

Ŝ = E[S] +
cov(S,X)

σ2
X

(
X −E[X]

)
.

We calculate all the terms in the preceding expression.
Since Θ and N are independent, S and N are independent as well. We have

E[S] = pE[Θ] = pλ,

E[S2] = pE[Θ2] = p(λ2 + λ),

σ2
S = E[S2]− (E[S])2 = p(λ2 + λ)− (pλ)2.

It follows that
E[X] = E[S] + E[N ] = (pλ+ µ),

and
σ2
X = σ2

S + σ2
N

= p
(
λ2 + λ

)
− (pλ)2 + µ

= (pλ+ µ) + p(1− p)λ2.
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Finally, we calculate cov(S,X):

cov(S,X) = E
[
(S −E[S])(X −E[X])]

= E
[
(S −E[S])(S −E[S] +N −E[N ])

]
= E

[
(S −E[S])(S −E[S])

]
+ E

[
(S −E[S])(N −E[N ])

]
= σ2

S + E
[
(S −E[S])(N −E[N ])

]
= σ2

S

= p(λ2 + λ)− (pλ)2,

where we have used the fact that S − E[S] and N − E[N ] are independent, and that
E
[
S −E[S]

]
= E

[
N −E[N ]

]
= 0.
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C H A P T E R 9

Solution to Problem 9.1. Let Xi denote the random homework time for the ith
week, i = 1, . . . , 5. We have the observation vector X = x, where x = (10, 14, 18, 8, 20).
In view of the independence of the Xi, for θ ∈ [0, 1], the likelihood function is

fX(x; θ) = fX1(x1; θ) · · · fX5(x5; θ)

= θe−x1θ · · · θe−x5θ

= θ5e−(x1+···+x5)θ

= θ5e−(10+14+18+8+20)θ

= θ5e−70θ.

To derive the ML estimate, we set to 0 the derivative of fX(x; θ) with respect to
θ, obtaining

d

dθ

(
θ5e−70θ

)
= 5θ4e−70θ − 70 θ5e−70θ = (5− 70 θ)θ4e−70θ = 0.

Therefore,

θ̂ =
5

70
=

1

14
.

Solution to Problem 9.2. (a) Let the random variable N be the number of tosses
until the kth head. The likelihood function is the Pascal PMF of order k:

pN (n; θ) =

(
n− 1

k − 1

)
θk(1− θ)n−k, n = k, k + 1, . . .

We maximize the likelihood by setting its derivative with respect to θ to zero:

0 = k

(
n− 1

k − 1

)
(1− θ)n−kθk−1 − (n− k)

(
n− 1

k − 1

)
(1− θ)n−k−1θk,

which yields the ML estimator

Θ̂1 =
k

N
.

Note that Θ̂1 is just the fraction of heads observed in N tosses.

(b) In this case, n is a fixed integer and K is a random variable. The PMF of K is
binomial:

pK(k; θ) =

(
n

k

)
θk(1− θ)n−k, k = 0, 1, 2, . . . , n.
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For given n and k, this is a constant multiple of the PMF in part (a), so the same
calculation yields the estimator

Θ̂2 =
K

n
.

We observe that the ML estimator is again the fraction of heads in the observed trials.
Note that although parts (a) and (b) involve different experiments and different

random variables, the ML estimates obtained are similar. However, it can be shown
that Θ̂2 is unbiased [since E[Θ̂2] = E[K]/n = θ · n/n = θ], whereas Θ̂1 is not [since
E[1/N ] = 1/E[N ]].

Solution to Problem 9.3. (a) Let s be the sum of all the ball numbers. Then for
all i,

E[Xi] =
s

k
, E[Yi] =

s

k
.

We have

E[Ŝ] = E

[
k

n

n∑
i=1

Xi

]
=
k

n

n∑
i=1

E [Xi] =
k

n

n∑
i=1

s

k
= s,

so Ŝ is an unbiased estimator of s. Similarly, E[S̃] = s. Finally, let

L =
S

k
=

1

N

n∑
i=1

Xi =
1

N

N∑
j=1

Yj .

We have

E[L] =

n∑
n=1

E[L |N = n]p
N

(n)

=

n∑
n=1

E

[
1

n

n∑
i=1

Yi

∣∣∣ N = n

]
p
N

(n)

=

n∑
n=1

E[Y1]p
N

(n)

= E[Y1]

=
s

k
,

so that S = kE[L] = s, and S is an unbiased estimator of s.

(b) We have

var(Ŝ) =
k2

n
var(X1), var(S̃) =

k
2

m
var(Y1).
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Thus,

var(Ŝ) =
k2

n
var(X1)

=
k2

n

(
pE[Y 2

1 ]− p2(E[Y1])2
)

=
k

2

n

(
1

p
E[Y 2

1 ]−
(
E[Y1]

)2)
=
k

2

n

(
var(Y1) +

1− p
p

E[Y 2
1 ]

)
=
k

2

n
var(Y1)

(
1 +

r(1− p)
p

)
= var(S̃) · m

n
· p+ r(1− p)

p
.

It follows that when m = n,

var(S̃)

var(Ŝ)
=

p

p+ r(1− p) .

Furthermore, in order for var(Ŝ) ≈ var(S̃), we must have

m ≈ np

p+ r(1− p) .

(c) We have

var(S) = var

(
k

N

n∑
i=1

Xi

)

= k
2
var

(
1

N

n∑
i=1

Xi

)

= k
2
var

 1

N

N∑
i=1

Yi


= k

2 (
E[L2]−E[L]2

)
,

where L was defined in part (a):

L =
1

N

n∑
i=1

Xi =
1

N

N∑
i=1

Yi.

We showed in part (a) that

E[L] = E[Y1],
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and we will now evaluate E[L2]. We have

E[L2] =

n∑
n=1

E[L2 |N = n]p
N

(n)

=

n∑
n=1

1

n2
E

( n∑
i=1

Yi

)2 ∣∣∣ N = n

 p
N

(n)

=

n∑
n=1

1

n2

(
nE[Y 2

1 ] + n(n− 1)E[Y1]2
)
p
N

(n)

= E[Y 2
1 ]

n∑
n=1

1

n
p
N

(n) +
(
E[Y1]

)2 n∑
n=1

n− 1

n
p
N

(n)

=
(
E[Y 2

1 ]− (E[Y1])2
) n∑
n=1

1

n
pN (n) + (E[Y1])2,

It follows that

var(S) = k
2(
E[L2]−E[L]2

)
= k

2(
E[Y 2

1 ]− (E[Y1])2)

n∑
n=1

1

n
p
N

(n)

= E
[

1

N

]
k

2(
E[Y 2

1 ]− (E[Y1])2
)
.

Thus, we have

var(S)

var(Ŝ)
=

E
[
1/N

]
k

2
(E[Y 2

1 ]− (E[Y1])2)

(1/n)k
2 ( 1

p
E[Y 2

1 ]− (E[Y1])2
) =

E
[
n/N

]
(E[Y 2

1 ]− (E[Y1])2)
1
p
E[Y 2

1 ]− (E[Y1])2
=

E
[
n/N

]
p

p+ r(1− p) .

We will show that E
[
n/N

]
p ≈ 1 for large n, so that

var(S)

var(Ŝ)
≈ 1

p+ r(1− p) .

We show this by proving an upper and a lower bound to

E
[

1

N

]
=

n∑
n=1

1

n
p
N

(n).
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We have

n∑
n=1

1

n
p
N

(n) =

n∑
n=1

(
1

n+ 1
+

1

n(n+ 1)

)
p
N

(n)

=

n∑
n=1

1

n+ 1
p
N

(n) +

n∑
n=1

1

n(n+ 1)
p
N

(n)

=
1

(n+ 1)p
+

n∑
n=1

1

n(n+ 1)
p
N

(n)

=
1

(n+ 1)p
+

1

(n+ 1)p

n∑
n=1

1

n

(
n+ 1

n+ 1

)
pk+1(1− p)n−n

≤ 1

(n+ 1)p
+

1

(n+ 1)p

n∑
n=2

3

n+ 2

(
n+ 1

n+ 1

)
pk+1(1− p)n−n

=
1

(n+ 1)p
+

3

(n+ 1)(n+ 2)p2

n∑
n=2

(
n+ 2

n+ 2

)
pn+2(1− p)n−n

≤ 1

(n+ 1)p
+

3

(n+ 1)(n+ 2)p2
.

The first inequality comes from bounding 1/n by 3/(n+ 1) when n+ 1 is greater than
1, and ignoring the term n = 1. The second inequality holds because

n∑
n=2

(
n+ 2

n+ 2

)
pn+2(1− p)n−n <

n∑
n=−2

(
n+ 2

n+ 2

)
pn+2(1− p)n−n = 1.

The preceding calculation also shows that

1

(n+ 1)p
≤

n∑
n=1

1

n
pN (n).

It follows that for large n, we have E
[
1/N

]
≈ 1/

(
(n+ 1)p

)
or E

[
n/N

]
p ≈ 1.

Solution to Problem 9.4. (a) Figure 9.1 plots a mixture of two normal distributions.
Denoting θ = (p1, µ1, σ1, . . . , pm, µm, σm), the PDF of each Xi is

fXi(xi; θ) =

m∑
j=1

pj ·
1√

2πσj
exp

{
−(xi − µj)2

2σ2
j

}
.

Using the independence assumption, the likelihood function is

fX1,...,Xn(x1, . . . , xn; θ) =

n∏
i=1

fXi(xi; θ) =

n∏
i=1

(
m∑
j=1

pj ·
1√

2πσj
exp

{
−(xi − µj)2

2σ2
j

})
,
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and the log-likelihood function is

log fX1,...,Xn(x1, . . . , xn; θ) =

n∑
i=1

log

(
m∑
j=1

pj ·
1√

2πσj
exp

{
−(xi − µj)2

2σ2
j

})
.

(b) The likelihood function is

p1 ·
1√

2πσ1

exp

{
−(x− µ1)2

2σ2
1

}
+ (1− p1) · 1√

2πσ2

exp

{
−(x− µ2)2

2σ2
2

}
,

and is linear in p1. The ML estimate of p1 is

p̂1 =

 1, if
1√

2πσ1

exp

{
−(x− µ1)2

2σ2
1

}
>

1√
2πσ2

exp

{
−(x− µ2)2

2σ2
2

}
,

0, otherwise,

and the ML estimate of p2 is p̂2 = 1− p̂1.

(c) The likelihood function is the sum of two terms [cf. the solution to part (b)], the first
involving µ1, the second involving µ2. Thus, we can maximize each term separately
and find that the ML estimates are µ̂1 = µ̂2 = x.

(d) Fix p1, . . . , pm to some positive values. Fix µ2, . . . , µm and σ2
2 , . . . , σ

2
m to some

arbitrary (respectively, positive) values. If µ1 = x1 and σ2
1 tends to zero, the likelihood

fX1(x1; θ) tends to infinity, and the likelihoods fXi(xi; θ) of the remaining points (i > 1)
are bounded below by a positive number. Therefore, the overall likelihood tends to
infinity.
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Figure 9.1: The mixture of two normal distributions with p1 = 0.7 and p2 = 0.3

in Problem 9.4.
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Solution to Problem 9.5. (a) The PDF of the location Xi of the ith event is

fXi(xi; θ) =

{
c(θ)θe−θxi , if m1 ≤ xi ≤ m2,
0, otherwise,

where c(θ) is a normalization factor,

c(θ) =
1∫ m2

m1

θe−θx dx

=
1

e−m1θ − e−m2θ
.

The likelihood function is

fX(x; θ) =

n∏
i=1

fXi(xi; θ) =

n∏
i=1

1

e−m1θ − e−m2θ
θeθxi =

(
1

e−m1θ − e−m2θ

)n
θn

n∏
i=1

eθxi ,

and the corresponding log-likelihood function is

log fX(x; θ) =

n∑
i=1

log fXi(xi; θ) = −n log (e−m1θ − e−m2θ) + n log θ + θ

n∑
i=1

xi.

(b) We plot the likelihood and log-likelihood functions in Fig. 9.2. The ML estimate is
approximately 0.26.
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Figure 9.2: Plots of the likelihood and log-likelihood functions in Problem 9.5.
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Solution to Problem 9.6. (a) The likelihood function for a single observation x is

1

2
· 1√

2π σ1

exp

{
−(x− µ1)2

2σ2
1

}
+

1

2
· 1√

2π σ2

exp

{
−(x− µ2)2

2σ2
2

}
,

so the likelihood function is

fX1,...,Xn(x1, . . . , xn; θ) =

n∏
i=1

(
2∑
j=1

1

2
· 1√

2π σj
exp

{
−(xi − µj)2

2σ2
j

})
.

(b) We plot the likelihood as a function of σ2 and µ2 in Figure 9.3. The ML estimates
are found (by a fine grid/brute force optimization) to be σ̂2 ≈ 7.2 and µ̂2 ≈ 173.
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Figure 9.3 Plot of the log-likelihood and its contours as a function of σ2 and µ2.

(c) We plot the likelihood as a function of µ1 and µ2 in Fig. 9.4. The ML estimates
are found (by a fine grid/brute force optimization) to be µ̂1 ≈ 174 and µ̂2 ≈ 156.

(d) Let Θ denote the gender of the student, with Θ = 1 for a female student and Θ = 0
for a male student. Using Bayes’ rule, we compare the posterior probabilities,

P(Θ = 1 |X = x) =

1
2
· 1√

2πσ1
exp
{
−(x−µ1)2

2σ2
1

}
1
2
· 1√

2πσ1
exp
{
−(x−µ1)2

2σ2
1

}
+ 1

2
· 1√

2πσ2
exp
{
−(x−µ2)2

2σ2
2

} ,
118



120 140 160 180 200

120140160180200
!2000

!1000

0

u1

Log Likelihood Function

u2

u1

u 2

130 140 150 160 170 180 190 200

140

160

180

200

Figure 9.4 Plot of the log-likelihood and its contours as a function of µ1 and µ2.

and

P(Θ = 0 |X = x) =

1
2
· 1√

2πσ2
exp
{
−(x−µ2)2

2σ2
2

}
1
2
· 1√

2πσ1
exp
{
−(x−µ1)2

2σ2
1

}
+ 1

2
· 1√

2πσ2
exp
{
−(x−µ2)2

2σ2
2

} .
The MAP rule involves a comparison of the two numerators. When σ1 = σ2, it reduces
to a comparison of |x− µ1| to |x− µ2|. Using the estimates in part (c), we will decide
that the student is female if x < 165, and male otherwise.

Solution to Problem 9.7. The PMF of Xi is

pXi(x) = e−θ
θx

x!
, x = 0, 1, . . . .

The log-likelihood function is

log pX(x1, . . . , xn; θ) =

n∑
i=1

log pXi(xi; θ) = −nθ +

n∑
i=1

xi log θ −
n∑
i=1

log(xi!),

and to maximize it, we set its derivative to 0. We obtain

0 = −n+
1

θ

n∑
i=1

xi,
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which yields the estimator

Θ̂n =
1

n

n∑
i=1

Xi.

This estimator is unbiased, since E[Xi] = θ, so that

E[Θ̂n] =
1

n

n∑
i=1

E[Xi] = θ.

It is also consistent, because Θ̂n converges to θ in probability, by the weak law of large
numbers.

Solution to Problem 9.8. The PDF of Xi is

fXi(x) =
{

1/θ, if 0 ≤ xi ≤ θ,
0, otherwise.

The likelihood function is

fX(x1, . . . , xn; θ) = fX1(x1; θ) · · · fXn(xn; θ) =
{

1/θn, if 0 ≤ maxi=1,...,n xi ≤ θ,
0, otherwise.

We maximize the likelihood function and obtain the ML estimator as

Θ̂n = max
i=1,...,n

Xi.

It can be seen that Θ̂n converges in probability to θ (the upper endpoint of the
interval where Xi takes values); see Example 5.6. Therefore the estimator is consistent.

To check whether Θ̂n is unbiased, we calculate its CDF, then its PDF (by differ-
entiation), and then E[Θ̂n]. We have, using the independence of the Xi,

FΘ̂n
(x) =

{
0, if x < 0,
xn/θn, if 0 ≤ x ≤ θ,
1, if x > θ,

so that

fΘ̂n
(x) =

{
0, if x < 0,
nxn−1/θn, if 0 ≤ x ≤ θ,
0, if x > θ.

Hence

E[Θ̂n] =
n

θn

∫ θ

0

xxn−1 dx =
n

θn

(
xn+1

n+ 1

)∣∣∣∣∣
θ

0

=
n

θn
· θ

n+1

n+ 1
=

n

n+ 1
θ.

Thus Θ̂n is not unbiased, but it is asymptotically unbiased.
Some alternative estimators that are unbiased are a scaled version of the ML

estimator

Θ̂ =
n+ 1

n
max

i=1,...,n
Xi,
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or one that relies on the sample mean being an unbiased estimate of θ/2:

Θ̂ =
2

n

n∑
i=1

Xi.

Solution to Problem 9.9. The PDF of Xi is

fXi(xi) =
{

1, if θ ≤ xi ≤ θ + 1,
0, otherwise.

The likelihood function is

fX(x1, . . . , xn; θ) = fX1(x1; θ) · · · fXn(xn; θ)

=
{

1, if θ ≤ mini=1,...,n xi ≤ maxi=1,...,n xi ≤ θ + 1,
0, otherwise.

Any value in the feasible interval[
max

i=1,...,n
Xi − 1, min

i=1,...,n
Xi

]
maximizes the likelihood function and is therefore a ML estimator.

Any choice of estimator within the above interval is consistent. The reason is
that mini=1,...,nXi converges in probability to θ, while maxi=1,...,nXi converges in
probability to θ + 1 (cf. Example 5.6). Thus, both endpoints of the above interval
converge to θ.

Let us consider the estimator that chooses the midpoint

Θ̂n =
1

2

(
max

i=1,...,n
Xi + min

i=1,...,n
Xi − 1

)
of the interval of ML estimates. We claim that it is unbiased. This claim can be verified
purely on the basis of symmetry considerations, but nevertheless we provide a detailed
calculation. We first find the CDFs of maxi=1,...,nXi and mini=1,...,nXi, then their
PDFs (by differentiation), and then E[Θ̂n]. The details are very similar to the ones for
the preceding problem. We have by straightforward calculation,

fminiXi(x) =

{
n(θ + 1− x)n−1, if θ ≤ x ≤ θ + 1,
0, otherwise,

fmaxiXi(x) =

{
n(x− θ)n−1, if θ ≤ x ≤ θ + 1,
0, otherwise.

Hence

E

[
min

i=1,...,n
Xi

]
= n

∫ θ+1

θ

x(θ + 1− x)n−1 dx

= −n
∫ θ+1

θ

(θ + 1− x)ndx+ (θ + 1)n

∫ θ+1

θ

(θ + 1− x)n−1 dx

= −n
∫ 1

0

xn dx+ (θ + 1)n

∫ 1

0

xn−1 dx

= − n

n+ 1
+ θ + 1

= θ +
1

n+ 1
.
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Similarly,

E

[
max

i=1,...,n
Xi

]
= θ +

n

n+ 1
,

and it follows that

E[Θ̂n] =
1

2
E

[
max

i=1,...,n
Xi + min

i=1,...,n
Xi − 1

]
= θ.

Solution to Problem 9.10. (a) To compute c(θ), we write

1 =

∞∑
k=0

pK(k; θ) =

∞∑
k=0

c(θ)e−θk =
c(θ)

1− e−θ ,

which yields c(θ) = 1− e−θ.

(b) The PMF of K is a shifted geometric distribution with parameter p = 1 − e−θ

(shifted by 1 to the left, so that it starts at k = 0). Therefore,

E[K] =
1

p
− 1 =

1

1− e−θ − 1 =
e−θ

1− e−θ =
1

eθ − 1
,

and the variance is the same as for the geometric with parameter p,

var(K) =
1− p
p2

=
e−θ

(1− e−θ)2
.

(c) Let Ki be the number of photons emitted the ith time that the source is triggered.
The joint PMF of K = (K1, . . . ,Kn) is

pK(k1, . . . , kn; θ) = c(θ)n
n∏
i=1

e−θki = c(θ)ne−θsn ,

where

sn =

n∑
i=1

ki.

The log-likelihood function is

log pK(k1, . . . , kn; θ) = n log c(θ)− θsn = n log
(
1− e−θ

)
− θsn.

We maximize the log-likelihood by setting to 0 the derivative with respect to θ:

d

dθ
log pK(k1, . . . , kn; θ) = n

e−θ

1− e−θ − sn = 0,

or

e−θ =
sn/n

1 + sn/n
.
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Taking the logarithm of both sides gives the ML estimate of θ,

θ̂n = log
(

1 +
n

sn

)
,

and the ML estimate of ψ = 1/θ,

ψ̂n =
1

θ̂n
=

1

log
(

1 +
n

sn

) .
(d) We verify that Θ̂n and Ψ̂n are consistent estimators of θ and ψ, respectively. Let
Sn = K1 + · · ·+Kn. By the strong law of large numbers, we have

Sn
n
→ E[K] =

1

eθ − 1
,

with probability 1. Hence 1 + (n/Sn) converges to eθ, so that

Θ̂n = log
(

1 +
n

Sn

)
→ θ,

and similarly,

Ψ̂n →
1

θ
= ψ.

Since convergence with probability one implies convergence in probability, we conclude
that these two estimators are consistent.

Solution to Problem 9.16. (a) We consider a model of the form

y = θ0 + θ1x,

where x is the temperature and y is the electricity consumption. Using the regression
formulas, we obtain

θ̂1 =

n∑
i=1

(xi − x)(yi − y)

n∑
i=1

(xi − x)2

= 0.2242, θ̂0 = y − θ̂1x = 2.1077,

where

x =
1

n

n∑
i=1

xi = 81.4000, y =
1

n

n∑
i=1

yi = 20.3551.

The linear regression model is

y = 0.2242x+ 2.1077.

Figure 9.5 plots the data points and the estimated linear relation.
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Figure 9.5: Linear regression model of the relationship between temperature and

electricity in Problem 9.16.

(b) Using the estimated model with x = 90, we obtain

y = 0.2242x+ 2.1077 = 22.2857.

Solution to Problem 9.17. (a) We have

θ̂1 =

5∑
i=1

(xi − x)(yi − y)

5∑
i=1

(xi − x)2

, θ̂0 = y − θ̂1x,

where

x =
1

5

5∑
i=1

xi = 4.9485, y =
1

5

5∑
i=1

yi = 134.3527.

The resulting ML estimates are

θ̂1 = 40.6005, θ̂0 = −66.5591.

(b) Using the same procedure as in part (a), we obtain

θ̂1 =

5∑
i=1

(x2
i − x)(yi − y)

5∑
i=1

(x2
i − x)2

, θ̂0 = y − θ̂1x,
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where

x =
1

5

5∑
i=1

x2
i = 33.6560, y =

1

5

5∑
i=1

yi = 134.3527.

which for the given data yields

θ̂1 = 4.0809, θ̂0 = −2.9948.

Figure 9.6 shows the data points (xi, yi), i = 1, . . . , 5, the estimated linear model

y = 40.6005x− 66.5591,

and the estimated quadratic model

y = 4.0809x2 − 2.9948.
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Figure 9.6: Regression plot for Problem 9.17.

(c) This is a Bayesian hypothesis testing problem, where the two hypotheses are:

H1 : Y = 40.6005X − 66.5591,

H2 : Y = 4.0809X2 − 2.9948.

We evaluate the posterior probabilities of H1 and H2 given Y1, . . . , Y5,

P(H1 |Y1, . . . , Y5) =
P(H1)

∏5

i=1
fYi(yi |H1)

P(H1)
∏5

i=1
fYi(yi |H1) + P(H2)

∏5

i=1
fYi(yi |H2)

,
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and

P(H2 |Y1, . . . , Y5) =
P(H2)

∏5

i=1
fYi(yi |H2)

P(H1)
∏5

i=1
fYi(yi |H1) + P(H2)

∏5

i=1
fYi(yi |H2)

.

We compare P(H1)
∏5

i=1
fYi(yi |H1) and P(H2)

∏5

i=1
fYi(yi |H2), by comparing their

logarithms. Using σ2 to denote the common noise variance in the two models, we have

log

(
P(H1)

5∏
i=1

fYi(yi |H1)

)
= log

(
1

2

5∏
i=1

1√
2πσ

exp

{
− (yi − θ1xi − θ0)2

2σ2

})

= −
5∑
i=1

(yi − θ1xi − θ0)2

2σ2
+ c

= −3400.7

2σ2
+ c,

and

log

(
P(H2)

5∏
i=1

fYi(yi |H2)

)
= log

(
1

2

5∏
i=1

1√
2πσ

exp

{
− (yi − θ1x

2
i − θ0)2

2σ2

})

= −
5∑
i=1

(yi − θ1x
2
i − θ0)2

2σ2
+ c

= −52.9912

2σ2
+ c,

where c is a constant that depends only on σ and n. Using the MAP rule, we select
the quadratic model.

Note that when σ1 = σ2 and P(H1) = P(H2), as above, comparing the posterior
probabilities is equivalent to comparing the sum of the squared residuals and selecting
the model for which the sum is smallest.

Solution to Problem 9.20. We have two hypotheses, the null hypothesis

H0 : µ0 = 20, σ0 = 4,

which we want to test against

H1 : µ1 = 25, σ1 = 5.

Let X be the random variable X = X1 + X2 + X3. We want the probability of false
rejection to be

P
(
X > γ;H0

)
= 0.05.

Since the mean and variance of X under H0 are 3µ0 and 3σ2
0 , respectively, it follows

that
γ − 3µ0√

3σ0

= Φ−1 (0.95) = 1.644853,
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and hence
γ = 1.644853 ·

√
3 · 42 + 60 = 71.396.

The corresponding probability of false acceptance of H0 is

P
(
X ≤ γ;H1

)
=

∫ γ

−∞

1√
2πσ1

√
3
e

−(x−µ1)2

2·3·σ2
1 dx

=

∫ 71.396

−∞

1√
2π5
√

3
e
−(x−75)2

2∗3∗52 dx

= Φ

(
71.396− 75

5
√

3

)
= Φ (−0.41615) = 0.33864.

Solution to Problem 9.21. We have two hypotheses H0 and H1, under which the
observation PDFs are

fX(x;H0) =
1

5
√

2π
e
−(x−60)2

2·25 ,

and

fX(x;H1) =
1

8
√

2π
e
−(x−60)2

2·64 .

(a) The probability of false rejection of H0 is

P(x ∈ R;H0) = 2
(

1− Φ
(
γ

5

))
= 0.1,

which yields that γ = 8.25. The acceptance region of H0 is {x | 51.75 < x < 68.25},
and the probability of false acceptance is

P (51.75 < x < 68.25;H1) =

∫ 68.25

51.75

1

8
√

2π
e
−(x−60)2

2·82 dx

= 2Φ
(

68.25− 60

8

)
− 1 = 0.697.

Consider now the LRT. Let L(x) be the likelihood ratio and ξ be the critical
value. We have

L(x) =
fX(x;H1)

fX(x;H0)
=

8

5
e

39
3200

(x−60)2 ,

and the rejection region is {
x | e

39
3200

(x−60)2 > 5ξ/8
}
.

This is the same type of rejection region as R =
{
x | |x− 60| > γ

}
, with ξ and γ being

in one-to-one correspondence. Therefore, for the same probability of false rejection,
the rejection region of the LRT is also R =

{
x | |x− 60| > γ

}
.
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(b) Let X = X1+···+Xn
n

. To determine γ, we set

P(X /∈ R;H0) = 2

(
1− Φ

(
γ
√
n

5

))
= 0.1,

which yields

γ =
Φ−1(0.95)√

n
.

The acceptance region is

R =

{
x | 60− Φ−1(0.95)√

n
< x < 60 +

Φ−1(0.95)√
n

}
,

and the probability of false acceptance of H0 is

P{X ∈ R;H1} = 2Φ

(
Φ−1(0.95)/

√
n

8/
√
n

)
− 1 = 2Φ

(
Φ−1(0.95)

8

)
− 1 = 0.697.

We observe that, even if the probability of false rejection is held constant, the prob-
ability of false acceptance of H0 does not decrease with n increasing. This suggests
that the form of acceptance region we have chosen is inappropriate for discriminating
between these two hypotheses.

(c) Consider now the LRT. Let L(x) be the likelihood ratio and ξ be the critical value.
We have

L(x) =
fX(x1, . . . , xn;H1)

fX(x1, . . . , xn;H0)
=

8

5
e

39
3200

∑n

i=1
(xi−60)2

,

and the rejection region is{
x | e

39
3200

∑n

i=1
(xi−60)2

> 5ξ/8
}
.

Solution to Problem 9.22. (a) We want to find kn satisfying

P (X ≥ kn;H0) =

n∑
k=kn

(
n

k

)
1

2

n

≤ 0.05.

Assuming that n is large enough, we use the normal approximation and obtain

P (X ≥ kn;H0) ≈ 1− Φ

(
kn − 1

2
− 1

2
n

1
2

√
n

)
,

so we have
kn−

1
2
− 1

2
n

1
2

√
n

= Φ−1 (0.95) = 1.644853,

and

kn =
1

2
n+

1

2
+ 1.644853 · 1

2

√
n =

1

2
n+ 0.822427

√
n+

1

2
.
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(b) The probability of making a correct decision given H1 should be greater than 0.95,
i.e.,

P (X ≥ kn;H1) =

n∑
X=kn

(
n

k

)
3

5

k 2

5

n−k
≥ 0.95,

which can be approximated by

P (X ≥ kn;H1) ≈ 1− Φ

(
kn − 1

2
− 3

5
n√

3
5

2
5
n

)
≥ 0.95.

Solving the above inequality we obtain

n ≥
(

10

(
0.82243 +

√
6

5
1.644853

))2

= 265.12

Therefore, n̂ = 266 is the smallest integer that satisfies the requirements on both false
rejection and false acceptance probabilities.

(c) The likelihood ratio when X = k is of the form

L(k) =

(
n
k

)
0.6k(1− 0.6)n−k(

n
k

)
0.5k(1− 0.5)n−k

= 0.8n1.5k.

Since L(k) monotonically increases, the LRT rule would be to reject H0 if X > γ,
where γ is a positive integer. We need to guarantee that the false rejection probability
is 0.05, i.e.,

P (X ≥ γ;H0) =

n∑
i=γ+1

(
n

i

)
0.5k(1− 0.5)n−k ≈ 1− Φ

(
γ − 1

2
− 1

2
n

1
2

√
n

)
= 0.05,

which gives γ ≈ 147. Then the false acceptance probability is calculated as

P (X < γ;H1) =

γ∑
i=1

(
n

i

)
0.6k(1− 0.6)n−k ≈ Φ

(
γ − 1

2
− 3

5
n√

3
5

2
5
n

)
≈ 0.05.

Solution to Problem 9.23. Let H0 and H1 be the hypotheses corresponding to λ0

and λ1, respectively. Let X be the number of calls received on the given day. We have

pX(k;H0) = e−λ0
λk0
k!
, pX(k;H1) = e−λ1

λk1
k!
.

The likelihood ratio is

L(k) =
pX(k;H1)

pX(k;H0)
= eλ1−λ0

(
λ1

λ0

)k
.
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The rejection region is of the form

R =
{
k |L(k) > ξ

}
,

or by taking logarithms,

R =
{
k | logL(k) > log ξ

}
=
{
k |λ0 − λ1 + k

(
log λ1 − log λ0) > log ξ

}
.

Assuming λ1 > λ0, we have
R = {k | k > γ},

where

γ =
λ0 − λ1 + log ξ

log λ1 − log λ0
.

To determine the value of γ for a probability of false rejection equal to α, we must have

α = P(k > γ;H0) = 1− FX(γ;H0),

where FX( · ;H0) is the CDF of the Poisson with parameter λ0.

Solution to Problem 9.24. Let H0 and H1 be the hypotheses corresponding to λ0

and λ1, respectively. Let X = (X1, . . . , Xn) be the observation vector. We have, using
the independence of X1, . . . , Xn,

fX(x1, . . . , xn;H0) = λn0 e
−λ0(x1+···+xn), fX(x1, . . . , xn;H1) = λn1 e

−λ1(x1+···+xn),

for x1, . . . , xn ≥ 0. The likelihood ratio is

L(x) =
fX(x1, . . . , xn;H1)

fX(x1, . . . , xn;H0)
=
(
λ1

λ0

)n
e−(λ1−λ0)(x1+···+xn).

The rejection region is of the form

R =
{
x |L(x) > ξ

}
,

or by taking logarithms,

R =
{
x | logL(x) > log ξ

}
=
{
x |n

(
log λ1− log λ0) +(λ0−λ1)(x1 + · · ·+xn) > log ξ

}
.

Assuming λ0 > λ1, we have

R = {x |x1 + · · ·+ xn > γ},

where

γ =
n(log λ0 − log λ1) + log ξ

λ0 − λ1
.

To determine the value of γ for a probability of false rejection equal to α, we must have

α = P(x1 + · · ·+ xn > γ;H0) = 1− FY (γ;H0),
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where FY ( · ;H0) is the CDF of Y = X1 + · · · + Xn, which is an nth order Erlang
random variable with parameter λ0.

Solution to Problem 9.25. (a) Let X denote the sample mean for n = 10. In order
to accept µ = 5, we must have

|x− 5|
1/
√
n
≤ 1.96,

or equivalently,
x ∈ [5− 1.96/

√
n, 5 + 1.96/

√
n].

(b) For n = 10, X is normal with mean µ and variance 1/10. The probability of falsely
accepting µ = 5 when µ = 4 becomes

P(5−1.96/
√

10 ≤ X ≤ 5+1.96/
√

10;µ = 4) = Φ(
√

10+1.96)−Φ(
√

10−1.96) ≈ 0.114.

Solution to Problem 9.26. (a) We estimate the unknown mean and variance as

µ̂ =
x1 + · · ·+ xn

n
=

8.47 + 10.91 + 10.87 + 9.46 + 10.40

5
≈ 10.02,

and

σ̂2 =
1

(n− 1)

n∑
i=1

(xi − µ̂)2 ≈ 1.09.

(b) Using the fact t(4, 0.05) = 2.132 (from the t-distribution tables with 4 degrees of
freedom), we find that

|µ̂− µ|
σ/
√
n

=
|10.02− 9|
1.09/

√
5

= 2.1859 > 2.132,

so we reject the hypothesis µ = 9.

Solution to Problem 9.27. Denoting by x1, . . . , xn and y1, . . . , yn the samples of
life lengths on the first and second island respectively, we have for each i = 1, . . . , n,

xi ∼ N
(
µX , σ

2
X

)
,

yi ∼ N
(
µY , σ

2
Y

)
.

Let X and Y be the sample means. Using independence between each sample, we have

X ∼ N
(
µX ,

σ2
X

n

)
,

Y ∼ N
(
µY ,

σ2
Y

n

)
,

and using independence between X and Y we further have

X − Y ∼ N
(
µX − µY ,

σ2
X

n
+
σ2
Y

n

)
.
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To accept the hypothesis µX = µY at the 95% significance level, we must have

|x− y|√
σ2
X
n

+
σ2
Y
n

< 1.96.

Since, using the problem’s data x = 181 and y = 177, the expression on the left-hand
side above can be calculated to be

|x− y|√
σ2
X
n

+
σ2
Y
n

=
|181− 177|√

32
n

+ 29
n

≈ 1.62 < 1.92.

Therefore we accept the hypothesis.

Solution to Problem 9.28. Let θ be the probability that a single item produced
by the machine is defective, and K be the number of defective items out of n = 600
samples. Thus K is a binomial random variable and its PMF is

pK(k) =

(
n

k

)
kθ(n− k)1−θ, k = 0, . . . , n.

We have two hypotheses:

H0 : θ < 0.03, H1 : θ ≥ 0.03.

We calculate the p-value

α∗ = P(K ≥ 28;H0) =

600∑
28

(
600

k

)
k0.03(600− k)1−0.03,

which can be approximated by a normal distribution since n = 600 is large:

α∗ = P

(
K − np√
np(1− p)

≥ 28− np√
np(1− p)

)

= P

(
K − 600 · 0.03√

600 · 0.03(1− 0.03)
≥ 28− 600 · 0.03√

600 · 0.03(1− 0.03)

)

= P

(
K − 18√

17.46
≥ 28− 18√

17.46

)
≈ 1− Φ(2.39)

≈ 0.84.

Since α∗ is smaller than the 5% level of significance, there is a strong evidence that the
null hypothesis should be rejected.

Solution to Problem 9.29. Let Xi be the number of rainy days in the ith year,
and let S =

∑5

i
Xi, which is also a Poisson random variable with mean 5µ. We have
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two hypotheses H0 (µ = 35) and H1 (µ ≥ 35). Given the level of significance α = 0.05
and an observed value s = 159, the test would reject H0 if either

P(S ≥ s;H0) ≤ α/2 or P(S ≤ s;H0) ≥ α/2.

Therefore the p-value is

α∗ = 2 ·min
{
P(S ≥ 159;H0),P(S ≤ 159;H0)

}
= 2 ·P(S ≤ 159;H0)

≈ 2 · Φ
(

159− 5 · 35√
5 · 35

)
≈ 0.2262,

where we use a normal approximation to P(S ≤ 159;H0). The obtained p-value is
above the 5% level, so the test accepts the null hypothesis.

Solution to Problem 9.30. (a) The natural rejection rule is to reject H0 when the
sample mean X is greater than some value ξ. So the probability of false rejection is

P(X > ξ;H0) = 1− Φ(
ξ√
v
n

) = 0.05,

which gives

ξ = Φ−1(0.95)

√
v

n
≈ 1.16.

Therefore when the observation is X = 0.96 < 1.16, we accept the null hypothesis H0.

(b) With n = 5, the critical value is

ξ = Φ−1(0.95)

√
v

n
≈ 0.52.

We compute the sample mean X = (0.96−0.34+0.85+0.51−0.24)/5 = 0.348, smaller
than ξ. So we still accept the H0.

(c) Assuming that the variance is unknown, we estimate it by

v̂ =

∑n

i=1
(Xi −X)2

n− 1
≈ 0.3680

using the t-distribution with n = 5, the T value is

T =
X − 0√

1/n
≈ 1.2827 < 2.132 = tn−1,α.

So we still accept the H0.
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