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Section 1.1

Solutions Chapter 1

SECTION 1.1

1.1.9 w w w

For any x, y ∈ Rn, from the second order expansion (see Appendix A, Proposition A.23) we have

f(y)− f(x) = (y − x)′∇f(x) +
1

2
(y − x)′∇2f(z)(y − x), (1)

where z is some point of the line segment joining x and y. Setting x = 0 in (1) and using the

given property of f , it can be seen that f is coercive. Therefore, there exists x∗ ∈ Rn such that

f(x∗) = infx∈Rn f(x) (see Proposition A.8 in Appendix A). The condition

m||y||2 ≤ y′∇2f(x)y, ∀ x, y ∈ Rn,

is equivalent to strong convexity of f . Strong convexity guarantees that there is a unique global

minimum x∗. By using the given property of f and the expansion (1), we obtain

(y − x)′∇f(x) +
m

2
||y − x||2 ≤ f(y)− f(x) ≤ (y − x)′∇f(x) +

M

2
||y − x||2.

Taking the minimum over y ∈ Rn in the expression above gives

min
y∈Rn

(

(y − x)′∇f(x) +
m

2
||y − x||2

)

≤ f(x∗)− f(x) ≤ min
y∈Rn

(

(y − x)′∇f(x) +
M

2
||y − x||2

)

.

Note that for any a > 0

min
y∈Rn

(

(y − x)′∇f(x) +
a

2
||y − x||2

)

= − 1

2a
||∇f(x)||2,

and the minimum is attained for y = x − ∇f(x)
a

. Using this relation for a = m and a = M , we

obtain

− 1

2m
||∇f(x)||2 ≤ f(x∗)− f(x) ≤ − 1

2M
||∇f(x)||2.

The first chain of inequalities follows from here. To show the second relation, use the expansion

(1) at the point x = x∗, and note that ∇f(x∗) = 0, so that

f(y)− f(x∗) =
1

2
(y − x∗)′∇2f(z)(y − x∗).

The rest follows immediately from here and the given property of the function f .
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Section 1.1

1.1.11 w w w

Since x∗ is a nonsingular strict local minimum, we have that ∇2f(x∗) > 0. The function f is

twice continuously differentiable over ℜn, so that there exists a scalar δ > 0 such that

∇2f(x) > 0, ∀ x, with ||x− x∗|| ≤ δ.

This means that the function f is strictly convex over the open sphere B(x∗, δ) centered at x∗

with radius δ. Then according to Proposition 1.1.2, x∗ is the only stationary point of f in the

sphere B(x∗, δ).

If f is not twice continuously differentiable, then x∗ need not be an isolated stationary

point. The example function f does not have the second derivative at x = 0. Note that f(x) > 0

for x 6= 0, and by definition f(0) = 0. Hence, x∗ = 0 is the unique (singular) global minimum.

The first derivative of f(x) for x 6= 0 can be calculated as follows:

f ′(x) = 2x

(√
2− sin

(

5π

6
−
√
3 ln(x2)

)

+
√
3 cos

(

5π

6
−
√
3 ln(x2)

))

= 2x

(√
2− 2 cos

π

3
sin

(

5π

6
−
√
3 ln(x2)

)

+ 2 sin
π

3
cos

(

5π

6
−
√
3 ln(x2)

))

= 2x

(√
2 + 2 sin

(

π

3
− 5π

6
+
√
3 ln(x2)

))

= 2x
(√

2− 2 cos(2
√
3 lnx)

)

.

Solving f ′(x) = 0, gives xk = e
(1−8k)π

8
√

3 and yk = e
−(1+8k)π

8
√

3 for k integer. The second derivative

of f(x), for x 6= 0, is given by

f ′′(x) = 2
(√

2− 2 cos(2
√
3 lnx) + 4

√
3 sin(2

√
3 lnx)

)

.

Thus:

f ′′(xk) = 2
(√

2− 2 cos
π

4
+ 4

√
3 sin

π

4

)

= 2

(

√
2− 2

√
2

2
+ 4

√
3

√
2

2

)

= 4
√
6.

Similarly

f ′′(yk) = = 2

(√
2− 2 cos

(−π

4

)

+ 4
√
3 sin

(−π

4

))

= 2

(

√
2− 2

√
2

2
− 4

√
3

√
2

2

)

= −4
√
6.

Hence, {xk | k ≥ 0} is a sequence of nonsingular local minima, which evidently converges to x∗,

while {yk | k ≥ 0} is a sequence of nonsingular local maxima converging to x∗.
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Section 1.1

1.1.12 w w w

(a) Let x∗ be a strict local minimum of f . Then there is δ such that f(x∗) < f(x) for all x in

the closed sphere centered at x∗ with radius δ. Take any local sequence {xk} that minimizes f ,

i.e. ||xk − x∗|| ≤ δ and limk→∞ f(xk) = f(x∗). Then there is a subsequence {xki} and the point

x such that xki → x and ||x− x∗|| ≤ δ. By continuity of f , we have

f(x) = lim
i→∞

f(xki) = f(x∗).

Since x∗ is a strict local minimum, it follows that x = x∗. This is true for any convergent

subsequence of {xk}, therefore {xk} converges to x∗, which means that x∗ is locally stable. Next

we will show that for a continuous function f every locally stable local minimum must be strict.

Assume that this is not true, i.e., there is a local minimum x∗ which is locally stable but is not

strict. Then for any θ > 0 there is a point xθ 6= x∗ such that

0 < ||xθ − x∗|| < θ and f(xθ) = f(x∗). (1)

Since x∗ is a stable local minimum, there is a δ > 0 such that xk → x∗ for all {xk} with

lim
k→∞

f(xk) = f(x∗) and ||xk − x∗|| < δ. (2)

For θ = δ in (1), we can find a point x0 6= x∗ for which 0 < ||x0 − x∗|| < δ and f(x0) = f(x∗).

Then, for θ = 1
2 ||x0 − x∗|| in (1), we can find a point x1 such that 0 < ||x1 − x∗|| < 1

2 ||x0 − x∗||
and f(x1) = f(x∗). Then, again, for θ = 1

2 ||x1 − x∗|| in (1), we can find a point x2 such that

0 < ||x2 − x∗|| < 1
2 ||x1 − x∗|| and f(x2) = f(x∗), and so on. In this way, we have constructed

a sequence {xk} of distinct points such that 0 < ||xk − x∗|| < δ, f(xk) = f(x∗) for all k, and

limk→∞ xk = x∗. Now, consider the sequence {yk} defined by

y2m = xm, y2m+1 = x0, ∀ m ≥ 0.

Evidently, the sequence {yk} is contained in the sphere centered at x∗ with the radius δ. Also

we have that f(yk) = f(x∗), but {yk} does not converge to x∗. This contradicts the assumption

that x∗ is locally stable. Hence, x∗ must be strict local minimum.

(b) Since x∗ is a strict local minimum, we can find δ > 0, such that f(x) > f(x∗) for all x 6= x∗

with ||x− x∗|| ≤ δ. Then min||x−x∗||=δ f(x) = f δ > f(x∗). Let Gδ = max||x−x∗||≤δ |g(x)|. Now,

we have

f(x)− ǫGδ ≤ f(x) + ǫg(x) ≤ f(x) + ǫGδ, ∀ ǫ > 0, ∀ x ||x− x∗|| < δ.
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Section 1.1

Choose ǫδ such that

f δ − ǫδGδ > f(x∗) + ǫδGδ,

and notice that for all 0 ≤ ǫ ≤ ǫδ we have

f δ − ǫGδ > f(x∗) + ǫGδ.

Consider the level sets

L(ǫ) = {x | f(x) + ǫg(x) ≤ f(x∗) + ǫGδ, ||x− x∗|| ≤ δ}, 0 ≤ ǫ ≤ ǫδ.

Note that

L(ǫ1) ⊂ L(ǫ2) ⊂ B(x∗, δ), ∀ 0 ≤ ǫ1 < ǫ2 ≤ ǫδ, (3)

where B(x∗, δ) is the open sphere centered at x∗ with radius δ. The relation (3) means that

the sequence {L(ǫ)} decreases as ǫ decreases. Observe that for any ǫ ≥ 0, the level set L(ǫ) is

compact. Since x∗ is strictly better than any other point x ∈ B(x∗, δ), and x∗ ∈ L(ǫ) for all

0 ≤ ǫ ≤ ǫδ, we have

∩0≤ǫ≤ǫδL(ǫ) = {x∗}. (4)

According to Weierstrass’ theorem, the continuous function f(x) + ǫg(x) attains its minimum on

the compact set L(ǫ) at some point xǫ ∈ L(ǫ). From (3) it follows that xǫ ∈ B(x∗, δ) for any ǫ in

the range [0, ǫδ]. Finally, since xǫ ∈ L(ǫ), from (4) we see that limǫ→∞ xǫ = x∗.

1.1.13 w w w

In the solution to the Exercise 1.1.12 we found the numbers δ > 0 and ǫδ > 0 such that for all

ǫ ∈ [0, ǫδ) the function f(x) + ǫg(x) has a local minimum xǫ within the sphere B(x∗, δ) = {x |
||x− x∗|| < δ}. The Implicit Function Theorem can be applied to the continuously differentiable

function G(ǫ, x) = ∇f(x) + ǫ∇g(x) for which G(0, x∗) = 0. Thus, there are an interval [0, ǫ0), a

number δ0 and a continuously differentiable function φ : [0, ǫ0) 7→ B(x∗, δ0) such that φ(ǫ) = x′
ǫ

and

∇φ(ǫ) = −∇ǫG (ǫ, φ(ǫ)) (∇xG (ǫ, φ(ǫ)))
−1

, ∀ ǫ ∈ [0, ǫ0).

We may assume that ǫ0 is small enough so that the first order expansion for φ(ǫ) at ǫ = 0 holds,

namely

φ(ǫ) = φ(0) + ǫ∇φ(0) + o(ǫ), ∀ ǫ ∈ [0, ǫ0). (1)

It can be seen that ∇xG (0, φ(0)) = ∇xG(0, x∗) = ∇2f(x∗), and ∇ǫG (0, φ(0)) = ∇g(x∗)′, which

combined with φ(ǫ) = x′
ǫ, φ(0) = (x∗)′ and (1) gives the desired relation.
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Section 1.2

SECTION 1.2

1.2.5 w w w

(a) Given a bounded set A, let r = sup{‖x‖ | x ∈ A} and B = {x | ‖x‖ ≤ r}. Let L =

max{‖∇2f(x)‖ | x ∈ B}, which is finite because a continuous function on a compact set is

bounded. For any x, y ∈ A we have

∇f(x)−∇f(y) =

∫ 1

0

∇2f
(

tx+ (1− t)y
)

(x− y)dt.

Notice that tx+ (1− t)y ∈ B, for all t ∈ [0, 1]. It follows that

‖∇f(x)− f(y)‖ ≤ L‖x− y‖,

as desired.

(b) The key idea is to show that xk stays in the bounded set

A =
{

x | f(x) ≤ f(x0)
}

and to use a stepsize αk that depends on the constant L corresponding to this bounded set. Let

R = max{‖x‖ | x ∈ A},

G = max{‖∇f(x)‖ | x ∈ A},

and

B = {x | ‖x‖ ≤ R+ 2G}.

Using condition (i) in the exercise, there exists some constant L such that ‖∇f(x) −∇f(y)‖ ≤
L‖x− y‖, for all x, y ∈ B. Suppose the stepsize αk satisfies

0 < ǫ ≤ αk ≤ (2− ǫ)γk min{1, 1/L},

where

γk =
|∇f(xk)′dk|

‖dk‖2 .

Let βk = αk(γk − Lαk/2), which can be seen to satisfy βk ≥ ǫ2γk/2 by our choice of αk. We

will, show by induction on k that with such a choice of stepsize, we have xk ∈ A and

f
(

xk+1
)

≤ f(xk)− βk‖dk‖2, (*)
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Section 1.2

for all k ≥ 0.

To start the induction, we note that x0 ∈ A, by the definition of A. Suppose that xk ∈ A.

By the definition of γk, we have

γk‖dk‖2 =
∣

∣∇f(xk)′dk
∣

∣ ≤
∥

∥∇f(xk)
∥

∥ · ‖dk‖.

Thus, ‖dk‖ ≤
∥

∥∇f(xk)
∥

∥/γk ≤ G/γk. Hence,

‖xk + αkdk‖ ≤ ‖xk‖+ αkG/γk ≤ R+ 2G,

which shows that xk + αkdk ∈ B. In order to prove Eq. (*), we now proceed as in the proof of

Prop. 1.2.3. A difficulty arises because Prop. A.24 assumes that the inequality ‖∇f(x)−∇f(y)‖ ≤
L‖x − y‖ holds for all x, y, whereas in this exercise this inequality holds only for x, y ∈ B. We

thus essentially repeat the proof of Prop. A.24, to obtain

f(xk+1) = f(xk + αkdk)

=

∫ 1

0

αk∇f(xk + ταkdk)′dk dτ

≤ αk∇f(xk)′dk +

∣

∣

∣

∣

∫ 1

0

αk

(

∇f
(

xk + αkτdk
)

−∇f(xk)
)′
dk dτ

∣

∣

∣

∣

≤ αk∇f(xk)′dk + (αk)2‖dk‖2
∫ 1

0

Lτ dτ

= αk∇f(xk)′dk +
L(αk)2

2
‖dk‖2.

(∗∗)

We have used here the inequality

∥

∥∇f
(

xk + αkτdk
)

−∇f(xk)
∥

∥ ≤ αkLτ‖dk‖,

which holds because of our definition of L and because xk ∈ A ⊂ B, xk +αkdk ∈ B and (because

of the convexity of B) xk + αkτdk ∈ B, for τ ∈ [0, 1].

Inequality (*) now follows from Eq. (**) as in the proof of Prop. 1.2.3. In particular, we

have f(xk+1) ≤ f(xk) ≤ f(x0) and xk+1 ∈ A. This completes the induction. The remainder of

the proof is the same as in Prop. 1.2.3.

1.2.9 w w w

We have

∇f(x)−∇f(x∗) =

∫ 1

0

∇2f
(

x∗ + t(x− x∗)
)

(x− x∗)dt

and since

∇f(x∗) = 0,
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Section 1.2

we obtain

(x− x∗)′∇f(x) =

∫ 1

0

(x− x∗)′∇2f(x∗ + t(x− x∗))(x − x∗)dt ≥ m

∫ 1

0

‖x− x∗‖2dt.

Using the Cauchy-Schwartz inequality (x − x∗)′∇f(x) ≤ ‖x− x∗‖‖∇f(x)‖, we have

m

∫ 1

0

‖x− x∗‖2dt ≤ ‖x− x∗‖‖∇f(x)‖,

and

‖x− x∗‖ ≤ ‖∇f(x)‖
m

.

Now define for all scalars t,

F (t) = f(x∗ + t(x− x∗))

We have

F ′(t) = (x− x∗)′∇f(x∗ + t(x− x∗))

and

F ′′(t) = (x− x∗)′∇2f(x∗ + t(x− x∗))(x − x∗) ≥ m‖x− x∗‖2 ≥ 0.

Thus F ′ is an increasing function, and F ′(1) ≥ F ′(t) for all t ∈ [0, 1]. Hence

f(x)− f(x∗) = F (1)− F (0) =

∫ 1

0

F ′(t)dt

≤ F ′(1) = (x− x∗)′∇f(x)

≤ ‖x− x∗‖‖∇f(x)‖ ≤ ‖∇f(x)‖2
m

,

where in the last step we used the result shown earlier.

1.2.10 w w w

Assume condition (i). The same reasoning as in proof of Prop. 1.2.1, can be used here to show

that

0 ≤ ∇f(x̄)′p̄, (1)

where x̄ is a limit point of {xk}, namely {xk}k∈K̄ −→ x̄, and

pk =
dk

||dk|| , {pk}k∈K̄ → p̄. (2)

Since ∇f is continuous, we can write

∇f(x̄)′p̄ = lim
k→∞, k∈K̄

∇f(xk)′pk

= lim inf
k→∞, k∈K̄

∇f(xk)′pk

≤
lim infk→∞, k∈K̄ ∇f(xk)′dk

lim supk→∞, k∈K̄ ||dk|| < 0,
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Section 1.2

which contradicts (1). The proof for the other choices of stepsize is the same as in Prop.1.2.1.

Assume condition (ii). Suppose that ∇f(xk) 6= 0 for all k. For the minimization rule we

have

f(xk+1) = min
α≥0

f(xk + αdk) = min
θ≥0

f(xk + θpk), (3)

for all k, where pk = dk

||dk|| . Note that

∇f(xk)′pk ≤ −c||∇f(xk)||, ∀ k. (4)

Let x̂k+1 = xk+α̂kpk be the iterate generated from xk via the Armijo rule, with the corresponding

stepsize α̂k and the descent direction pk. Then from (3) and (4), it follows that

f(xk+1)− f(xk) ≤ f(x̂k+1)− f(xk) ≤ σα̂k∇f(xk)′pk ≤ −σcα̂k||∇f(xk)||2. (5)

Hence, either {f(xk)} diverges to −∞ or else it converges to some finite value. Suppose

that {xk}k∈K → x̄ and ∇f(x̄) 6= 0. Then, limk→∞,k∈K f(xk) = f(x̄), which combined with (5)

implies that

lim
k→∞,k∈K

α̂k||∇f(xk)||2 = 0.

Since limk→∞,k∈K ∇f(xk) = ∇f(x̄) 6= 0, we must have limk→∞,k∈K α̂k = 0. Without loss of

generality, we may assume that limk→∞,k∈K pk = p̄. Now, we can use the same line of arguments

as in the proof of the Prop. 1.2.1 to show that (1) holds. On the other hand, from (4) we have

that

lim
k→∞,k∈K

∇f(xk)′pk = ∇f(x̄)′p̄ ≤ −c||∇f(x̄)|| < 0.

This contradicts (1), so that ∇f(x̄) = 0.

1.2.12 w w w

Consider the stepsize rule (i). From the Descent Lemma (cf. the proof of Prop. 1.2.3), we have

for all k

f(xk+1) ≤ f(xk)− αk

(

1− αkL

2

)

‖∇f(xk)‖2.

From this relation, we obtain for any minimum x∗ of f ,

f(x∗) ≤ f(x0)− ǫ

2

∞
∑

k=0

‖∇f(xk)‖2.

It follows that ∇f(xk) → 0, that {f(xk)} converges, and that
∑∞

k=0 ‖∇f(xk)‖2 < ∞, from which

∞
∑

k=0

‖xk+1 − xk‖2 < ∞,
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Section 1.2

since ∇f(xk) = (xk − xk+1)/αk.

Using the convexity of f , we have for any minimum x∗ of f ,

‖xk+1 − x∗‖2 − ‖xk − x∗‖2 − ‖xk+1 − xk‖2 ≤ −2(x∗ − xk)′(xk+1 − xk)

= 2αk(x∗ − xk)′∇f(xk)

≤ 2αk
(

f(x∗)− f(xk)
)

≤ 0,

so that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + ‖xk+1 − xk‖2.

Hence, for any m,

‖xm − x∗‖2 ≤ ‖x0 − x∗‖2 +
m−1
∑

k=0

‖xk+1 − xk‖2.

It follows that {xk} is bounded. Let x be a limit point of {xk}, and for any ǫ > 0, let k be such

that

‖xk − x‖2 ≤ ǫ,

∞
∑

i=k

‖xi+1 − xi‖2 ≤ ǫ.

Since x is a minimum of f , using the preceding relations, for any k > k, we have

‖xk − x‖2 ≤ ‖xk − x‖2 +
k−1
∑

i=k

‖xi+1 − xi‖2 ≤ 2ǫ.

Since ǫ is arbitrarily small, it follows that the entire sequence {xk} converges to x.

The proof for the case of the stepsize rule (ii) is similar. Using the assumptions αk → 0

and
∑∞

k=0 α
k = ∞, and the Descent Lemma, we show that ∇f(xk) → 0, that {f(xk)} converges,

and that
∞
∑

k=0

‖xk+1 − xk‖2 < ∞.

From this point, the preceding proof applies.

1.2.13 w w w

(a) We have

‖xk+1 − y‖2 = ‖xk − y − αk∇f(xk)‖2

= (xk − y − αk∇f(xk))
′
(xk − y − αk∇f(xk))

= ‖xk − y‖2 − 2αk(xk − y)′∇f(xk) + (αk‖∇f(xk)‖)2

= ‖xk − y‖2 + 2αk(y − xk)′∇f(xk) + (αk‖∇f(xk)‖)2

≤ ‖xk − y‖2 + 2αk (f(y)− f(xk)) + (αk‖∇f(xk)‖)2

= ‖xk − y‖2 − 2αk (f(xk)− f(y)) + (αk‖∇f(xk)‖)2 ,

11



Section 1.2

where the inequality follows from Prop. B.3, which states that f is convex if and only if

f(y)− f(x) ≥ (y − x)′∇f(x), ∀ x, y.

(b) Assume the contrary; that is, lim infk→∞ f(xk) 6= infx∈ℜn f(x). Then, for some δ > 0, there

exists y such that f(y) < f(xk)− δ for all k ≥ k̄, where k̄ is sufficiently large. From part (a), we

have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk (f(xk)− f(y)) + (αk‖∇f(xk)‖)2 .

Summing over all k sufficiently large, we have

∞
∑

k=k̄

‖xk+1 − y‖2 ≤
∞
∑

k=k̄

{

‖xk − y‖2 − 2αk (f(xk)− f(y)) + (αk‖∇f(xk)‖)2
}

,

or

0 ≤ ‖xk̄ − y‖2 −
∞
∑

k=k̄

2αkδ +

∞
∑

k=k̄

(αk‖∇f(xk)‖)2 = ‖xk̄ − y‖2 −
∞
∑

k=k̄

αk (2δ − αk‖∇f(xk)‖2) .

By taking k̄ large enough, we may assume (using αk‖∇f(xk)‖2 → 0) that αk‖∇f(xk)‖2 ≤ δ for

k ≥ k̄. So we obtain

0 ≤ ‖xk̄ − y‖2 − δ

∞
∑

k=k̄

αk.

Since
∑

αk = ∞, the term on the right is equal to −∞, yielding a contradiction. Therefore we

must have lim infk→∞ f(xk) = infx∈ℜn f(x).

(c) Let y be some x∗ such that f(x∗) ≤ f(xk) for all k. (If no such x∗ exists, the desired result

follows trivially). Then

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk (f(xk)− f(y)) + (αk‖∇f(xk)‖)2

≤ ‖xk − y‖2 + (αk‖∇f(xk)‖)2

= ‖xk − y‖2 +
(

sk

‖∇f(xk)‖‖∇f(xk)‖
)2

= ‖xk − y‖2 + (sk)2

≤ ‖xk−1 − y‖2 + (sk−1)2 + (sk)2

≤ · · · ≤ ‖x0 − y‖2 +
k
∑

i=0

(si)2 < ∞.

Thus {xk} is bounded. Since f is continuously differentiable, we then have that {∇f(xk)} is

bounded. Let M be an upper bound for ‖∇f(xk)‖. Then

∑

αk =
∑ sk

‖∇f(xk)‖ ≥ 1

M

∑

sk = ∞.

12
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Furthermore,

αk‖∇f(xk)‖2 = sk‖∇f(xk)‖ ≤ skM.

Since
∑

(sk)2 < ∞, sk → 0. Then αk‖∇f(xk)‖2 → 0. We can thus apply the results of part (b)

to show that lim infk→∞ f(xk) = infx∈ℜn f(x).

Now, since lim infk→∞ f(xk) = infx∈ℜn f(x), there must be a subsequence {xk}K such that

{xk}K → x̄, for some x̄ where f(x̄) = infx∈ℜn f(x) so that x̄ is a global minimum. We have

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 + (sk)2,

so that

‖xk+N − x̄‖2 ≤ ‖xk − x̄‖2 +
N
∑

m=k

(sm)2, ∀ k,N ≥ 1.

For any ǫ > 0, we can choose k̄ ∈ K to be sufficiently large so that for all k ∈ K with k ≥ k̄ we

have

‖xk − x̄‖2 ≤ ǫ and

∞
∑

m=k

(sm)2 ≤ ǫ.

Then

‖xk+N − x̄‖2 ≤ 2ǫ, ∀ N ≥ 1.

Since ǫ > 0 is arbitrary, we see that {xk} converges to x̄.

1.2.16 w w w

By using the descent lemma (Proposition A.24 of Appendix A), we obtain

f(xk+1)− f(xk) ≤ −αk∇f(xk)′(∇f(xk) + ek) +
L

2
(αk)2||∇f(xk) + ek||2

= −αk

(

1− L

2
αk

)

||∇f(xk)||2 + L

2
(αk)2||ek||2 − αk(1− Lαk)∇f(xk)′ek.

Assume that αk < 1
L
for all k, so that 1− Lαk > 0 for every k. Then, using the estimates

1− L

2
αk ≥ 1− Lαk,

∇f(xk)′ek ≥ −1

2
(||∇f(xk)||2 + ||ek||2) ,

and the assumption ||ek|| ≤ δ for all k, in the inequality above, we obtain

f(xk+1)− f(xk) ≤ −αk

2
(1 − Lαk) (||∇f(xk)||2 − δ2) + (αk)2

Lδ2

2
. (1)

Let δ′ be an arbitrary number satisfying δ′ > δ. Consider the set K = {k | ||∇f(xk)|| < δ′}. If

the set K is infinite, then we are done. Suppose that the set K is finite. Then, there is some

13
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index k0 such that ||∇f(xk)|| ≥ δ′ for all k ≥ k0. By substituting this in (1), we can easily find

that

f(xk+1)− f(xk) ≤ −αk

2

(

(1− Lαk)
(

δ′2 − δ2
)

− αkLδ2
)

, ∀ k ≥ k0.

By choosing α and α such that 0 < α < ᾱ < min{ δ′
2−δ2

δ′2L
, 1
L
}, and αk ∈ [α, ᾱ] for all k ≥ k0, we

have that

f(xk+1)− f(xk) ≤ −1

2
α
(

δ′2 − δ2 − ᾱLδ′2
)

, ∀ k ≥ k0. (2)

Since δ′2 − δ2 − ᾱLδ′2 > 0 for k ≥ k0, the sequence {f(xk) | k ≥ k0} is strictly decreasing.

Summing the inequalities in (2) over k for k0 ≤ k ≤ N , we get

f(xN+1)− f(xk0) ≤ − (N − k0)

2
α
(

δ′2 − δ2 − ᾱLδ′2
)

, ∀ N > k0.

Taking the limit as N −→ ∞, we obtain limN→∞ f(xN ) = −∞.

1.2.18 w w w

(a) Note that

∇f(x) = ∇xF (x, g(x)) +∇g(x)∇yF (x, g(x)).

We can write the given method as

xk+1 = xk + αkdk = xk − αk∇xF (xk, g(xk)) = xk + αk (−∇f(xk) +∇g(xk)∇yF (xk, g(xk)) ,

so that this method is essentially steepest descent with error

ek = −∇g(xk)∇yF (xk, g(xk)).

Claim: The directions dk are gradient related.

Proof: We first show that dk is a descent direction. We have

∇f(xk)′dk = (∇xF (xk, g(xk)) +∇g(x)∇yF (xk, g(xk)))′ (−∇xF (xk, g(xk)))

= −‖∇xF (xk, g(xk))‖2 − (∇g(x)∇yF (xk, g(xk)))
′
(∇xF (xk, g(xk)))

≤ −‖∇xF (xk, g(xk))‖2 + ‖∇g(x)∇yF (xk, g(xk))‖ ‖∇xF (xk, g(xk))‖

≤ −‖∇xF (xk, g(xk))‖2 + γ ‖∇xF (xk, g(xk))‖2

= (−1 + γ) ‖∇xF (xk, g(xk))‖2

< 0 for ‖∇xF (xk, g(xk))‖ 6= 0.

14
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It is straightforward to show that ‖∇xF (xk, g(xk))‖ = 0 if and only if ‖∇f(xk)‖ = 0, so that we

have ∇f(xk)′dk < 0 for ‖∇f(xk)‖ 6= 0. Hence dk is a descent direction if xk is nonstationary.

Furthermore, for every subsequence {xk}k∈K that converges to a nonstationary point x̄, we have

‖dk‖ =
1

1− γ
[‖∇xF (xk, g(xk))‖ − γ‖∇xF (xk, g(xk))‖]

≤ 1

1− γ
[‖∇xF (xk, g(xk))‖ − ‖∇g(x)∇yF (xk, g(xk))‖]

≤ 1

1− γ
‖∇xF (xk, g(xk)) +∇g(x)∇yF (xk, g(xk))‖

=
1

1− γ
‖∇f(xk)‖,

and so {dk} is bounded. We have from Eq. (1), ∇f(xk)′dk ≤ −(1 − γ) ‖∇xF (xk, g(xk))‖2.
Hence if limk→∞ infk∈K ∇f(xk)′dk = 0, then limk→∞,k∈K ‖∇F (xk, g(xk))‖ = 0, from which

‖∇F (x̄, g(x̄))‖ = 0. So ∇f(x̄) = 0, which contradicts the nonstationarity of x̄. Hence,

lim
k→∞

inf
k∈K

∇f(xk)′dk < 0,

and it follows that the directions dk are gradient related.

From Prop. 1.2.1, we then have the desired result.

(b) Let’s assume that in addition to being continuously differentiable, h has a continuous and

nonsingular gradient matrix ∇yh(x, y). Then from the Implicit Function Theorem (Prop. A.33),

there exists a continuously differentiable function φ : ℜn → ℜm such that h(x, φ(x)) = 0, for all

x ∈ ℜn. If, furthermore, there exists a γ ∈ (0, 1) such that

‖∇φ(x)∇yf(x, φ(x))‖ ≤ γ ‖∇xf(x, φ(x))‖ , ∀ x ∈ ℜn,

then from part (a), the method described is convergent.

1.2.19 w w w

(a) Consider a function g(α) = f(xk + αdk) for 0 < α < αk, which is convex over Ik. Suppose

that xk = xk + αdk ∈ Ik minimizes f(x) over Ik. Then g′(α) = 0 and from convexity it follows

that g′(αk) = ∇f(xk+1)′dk > 0 (since g′(0) = ∇f(xk)′dk < 0). Therefore the stepsize will be

reduced after this iteration. Now, assume that xk 6∈ Ik. This means that the derivative g′(α)

does not change the sign for 0 < α < αk, i.e. for all α in the interval (0, αk) we have g′(α) < 0.

Hence, g′(αk) = ∇f(xk+1)′dk ≤ 0 and we can use the same stepsize αk in the next iteration.

15
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(b) Here we will use conditions on ∇f(x) and dk which imply

∇f(xk+1)′dk ≤ ∇f(xk)′dk + ||∇f(xk+1)−∇f(xk)|| · ||dk||

≤ ∇f(xk)′dk + αkL||dk||2

≤ −(c1 − c2αkL)‖∇f(xk)‖2.

When the stepsize becomes small enough so that c1−c2αk̂L ≥ 0 for some k̂, then∇f(xk+1)′dk ≤ 0

for all k ≥ k̂ and no further reduction will ever be needed.

(c) The result follows in the same way as in the proof of Prop.1.2.4. Every limit point of {xk} is

a stationary point of f . Since f is convex, every limit point of {xk} must be a global minimum

of f .

1.2.20 w w w

By using the descent lemma (Prop. A.24 of Appendix A), we obtain

f(xk+1)− f(xk) ≤ αk∇f(xk)′(dk + ek) + (αk)2
L

2
||dk + ek||2. (1)

Taking into account the given properties of dk, ek, the Schwartz inequality, and the inequality

||y|| · ||z|| ≤ ||y||2 + ||z||2, we obtain

∇f(xk)′(dk + ek) ≤ −(c1 − pαk)||∇f(xk)||2 + qαk||∇f(xk)||

≤ − (c1 − (p+ 1)αk) ||∇f(xk)||2 + αkq2.

To estimate the last term in the right hand-side of (1), we again use the properties of dk, ek, and

the inequality 1
2 ||y + z||2 ≤ ||y||2 + ||z||2, which gives

1

2
||dk + ek||2 ≤ ||dk||2 + ||ek||2

≤ 2 (c22 + (pαk)2) ||∇f(xk)||2 + 2 (c22 + (qαk)2)

≤ 2(c22 + p2)||∇f(xk)||2 + 2(c22 + q2), ∀ k ≥ k0,

where k0 is such that αk ≤ 1 for all k ≥ k0.

By substituting these estimates in (1), we get

f(xk+1)− f(xk) ≤ −αk(c1 − C)||∇f(xk)||2 + (αk)2b2, ∀ k ≥ k0,

where C = 1 + p+ 2L(c22 + p2) and b2 = q2 + 2L(c22 + q2). By choosing k0 large enough, we can

have

f(xk+1)− f(xk) ≤ −αkb1||∇f(xk)||2 + (αk)2b2, ∀ k ≥ k0.

16



Section 1.2

Summing up these inequalities over k for k0 ≤ K ≤ k ≤ N gives

f(xN+1) + b1

N
∑

k=K

αk||∇f(xk)||2 ≤ f(xK) + b2

N
∑

k=K

(αk)2, ∀ k0 ≤ K ≤ k ≤ N. (2)

Therefore

lim sup
N→∞

f(xN+1) ≤ f(xK) + b2

∞
∑

k=K

(αk)2, ∀ K ≥ k0.

Since
∑∞

k=0(α
k)2 < ∞, the last inequality implies

lim sup
N→∞

f(xN+1) ≤ lim inf
K→∞

f(xK),

i.e. limk→∞ f(xk) exists (possibly infinite). In particular, the relation (2) implies

∞
∑

k=0

αk||∇f(xk)||2 < ∞.

Thus we have lim infk→∞ ||∇f(xk)|| = 0 (see the proof of Prop. 1.2.4). To prove that limk→∞ ||∇f(xk)|| =
0, assume the contrary, i.e.

lim sup
k→∞

||∇f(xk)|| ≥ ǫ > 0. (3)

Let {mj} and {nj} be sequences such that

mj < nj < mj+1,

ǫ

3
< ||∇f(xk)|| for mj ≤ k < nj ,

||∇f(xk)|| ≤ ǫ

3
for nj ≤ k < mj+1. (4)

Let j̄ be large enough so that

αk ≤ 1, ∀ k ≥ j̄,

∞
∑

k=mj̄

αk||∇f(xk)||2 ≤ ǫ3

27L(2c2 + q + p)
.

17
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For any j ≥ j̄ and any m with mj ≤ m ≤ nj − 1, we have

||∇f(xnj )−∇f(xm)|| ≤
nj−1
∑

k=m

||∇f(xk+1)−∇f(xk)||

≤ L

nj−1
∑

k=m

||xk+1 − xk||

≤ L

nj−1
∑

k=m

αk (||dk||+ ||ek||)

≤ L(c2 + q)





nj−1
∑

k=m

αk



+ L(c2 + p)

nj−1
∑

k=m

αk||∇f(xk)||

≤
(

L(c2 + q)
9

ǫ2
+ L(c2 + p)

3

ǫ

) nj−1
∑

k=m

αk||∇f(xk)||2

≤ 9L(2c2 + p+ q)

ǫ2

nj−1
∑

k=m

αk||∇f(xk)||2

≤ 9L(2c2 + p+ q)

ǫ2
ǫ3

27L(2c2 + q + p)

=
ǫ

3
.

Therefore

||∇f(xm)|| ≤ ||∇f(xnj )||+ ǫ

3
≤ 2ǫ

3
, ∀ j ≥ j̄, mj ≤ m ≤ nj − 1.

From here and (4), we have

||∇f(xm)|| ≤ 2ǫ

3
, ∀ m ≥ mj

which contradicts Eq. (3). Hence limk→∞ ∇f(xk) = 0. If x̄ is a limit point of {xk}, then

limk→∞ f(xk) = f(x̄). Thus, we have limk→∞ ∇f(xk) = 0, implying that ∇f(x̄) = 0.

SECTION 1.3

1.3.4 w w w

Let β be any scalar with 0 < β < 1 and B(x∗, ǫ) = {x | ||x−x∗|| ≤ ǫ} be a closed sphere centered

at x∗ with the radius ǫ > 0 such that for all x, y ∈ B(x∗, ǫ) the following hold

∇2f(x) > 0, ||∇2f(x)−1|| ≤ M1, (1)

18
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||∇f(x)−∇f(y)|| ≤ M2||x− y||, M2 = sup
x∈B(x∗,ǫ)

||∇2f(x)||, (2)

||∇2f(x)−∇2f(y)|| ≤ β

2M1
(3)

||d(x) +∇2f(x)−1∇f(x)|| ≤ β

2M2
||∇f(x)||. (4)

Then, by using these relations and ∇f(x∗) = 0, for any x ∈ B(x∗, ǫ) one can obtain

||x+ d(x) − x∗|| ≤ ||x− x∗ −∇2f(x)−1∇f(x)||+ ||d(x) +∇2f(x)−1∇f(x)||

≤ ||∇2f(x)−1 (∇2f(x)(x − x∗)−∇f(x)) ||+ β

2M2
||∇f(x)||

≤ M1||∇2f(x)(x − x∗)−∇f(x) +∇f(x∗)||+ β

2M2
||∇f(x) −∇f(x∗)||

≤ M1||∇2f(x)(x − x∗)−
∫ 1

0

∇2f ((x∗ + t(x− x∗))′ (x− x∗)dt||+ β

2
||x− x∗||

≤ M1

(∫ 1

0

||∇2f(x)−∇2f ((x∗ + t(x− x∗)) ||dt
)

||x− x∗||+ β

2
||x− x∗||

≤ β||x− x∗||.

This means that if x0 ∈ B(x∗, ǫ) and αk = 1 for all k, then we will have

||xk − x∗|| ≤ βk||x0 − x∗||, ∀ k ≥ 0. (5)

Now, we have to prove that for ǫ small enough the unity initial stepsize will pass the test of

Armijo rule. By the mean value theorem, we have

f(x+ d(x)) − f(x) = ∇f(x)′d(x) +
1

2
d(x)′∇2f(x)d(x),

where x is a point on the line segment joining x and x+ d(x). We would like to have

∇f(x)′d(x) +
1

2
d(x)′∇2f(x)d(x) ≤ σ∇f(x)′d(x), (6)

for all x in some neighborhood of x∗. Therefore, we must find how small ǫ should be that this

holds in addition to the conditions given in (1)–(4). By defining

p(x) =
∇f(x)

||∇f(x)|| , q(x) =
d(x)

||∇f(x)|| ,

the condition (6) takes the form

(1 − σ)p(x)′q(x) +
1

2
q(x)′∇2f(x)q(x) ≤ 0. (7)

The condition on d(x) is equivalent to

q(x) = − (∇2f(x∗))−1
p(x) + ν(x),
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where ν(x) denotes a vector function with ν(x) → 0 as x → x∗. By using the above relation and

the fact ∇2f(x) → ∇2f(x∗) as x → x∗, we may write Eq.(7) as

(1− σ)p(x)′ (∇2f(x∗))−1
p(x)− 1

2
p(x)′ (∇2f(x∗))−1

p(x) ≥ γ(x),

where {γ(x)} is some scalar sequence with limx→x∗ γ(x) = 0. Thus Eq.(7) is equivalent to

(

1

2
− σ

)

p(x)′ (∇2f(x∗))−1
p(x) ≥ γ(x). (8)

Since 1/2 > σ, ||p(x)|| = 1, and ∇2f(x∗) > 0, the above relation holds in some neighborhood of

point x∗. Namely, there is some ǫ ∈ (0, ǫ) such that (1)–(4) and (8) hold. Then for any initial

point x0 ∈ B(X∗, ǫ) the unity initial stepsize passes the test of Armijo rule, and (5) holds for all

k. This completes the proof.

1.3.8 w w w

Without loss of generality we assume that c = 0 (otherwise we make the change of variables

x = y −Q−1c). The iteration becomes

(

xk+1

xk

)

=

(

(1 + β)I − αQ −βI

I 0

)(

xk

xk−1

)

Define

A =

(

(1 + β)I − αQ −βI

I 0

)

.

If µ is an eigenvalue of A, then for some vectors u and w, which are not both 0, we have

A

(

u

w

)

= µ

(

u

w

)

,

or equivalently,

u = µw and
(

(1 + β)I − αQ
)

u− βw = µu.

If we had µ = 0, then it is seen from the above equations that u = 0 and also w = 0, which is

not possible. Therefore, µ 6= 0 and A is invertible. We also have from the above equations that

u = µw and
(

(1 + β)I − αQ
)

u =

(

µ+
β

µ

)

u,

so that µ + β/µ is an eigenvalue of (1 + β)I − αQ. Hence, if µ and λ satisfy the equation

µ+ β/µ = 1 + β − αλ, then µ is an eigenvalue of A if and only if λ is an eigenvalue of Q.

Now, if

0 < α < 2

(

1 + β

M

)

,
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where M is the maximum eigenvalue of Q, then we have

|1 + β − αλ| < 1 + β

for every eigenvalue λ of Q, and therefore also
∣

∣

∣

∣

µ+
β

µ

∣

∣

∣

∣

< 1 + β

for every eigenvalue µ of A. Let the complex number µ have the representation µ = |µ|ejθ . Then,
since µ+ β/µ is a real number, its imaginary part is 0, or

|µ| sin θ − β(1/|µ|) sin θ = 0.

If sin θ 6= 0, we have |µ|2 = β < 1, while if sin θ = 0, µ is a real number and the relation

|µ + β/µ| < 1 + β is written as µ2 + β < (1 + β)|µ| or (|µ| − 1)(|µ| − β) < 0. Therefore,

β < |µ| < 1. Thus, for all values of θ, we have β ≤ |µ| < 1. Thus, all the eigenvalues of A are

strictly within the unit circle, implying that xk → 0; that is, the method converges to the unique

optimal solution.

Assume for the moment that α and β are fixed. From the preceding analysis we have that

µ is an eigenvalue of A if and only if µ2 + β = 1 + β − αλ, where λ is an eigenvalue of Q. Thus,

the set of eigenvalues of A is
{

1 + β − αλ±
√

(1 + β − αλ)2 − 4β

2

∣

∣

∣ λ is an eigenvalue of Q

}

,

so that the spectral radius of A is

ρ(A) = max

{∣

∣

∣

∣

∣

|1 + β − αλ| +
√

(1 + β − αλ)2 − 4β

2

∣

∣

∣

∣

∣

∣

∣

∣ λ is an eigenvalue of Q

}

.

For any scalar c ≥ 0, consider the function g : R+ 7→ R+ given by

g(r) = |r +
√
r2 − c|.

We claim that

g(r) ≥ max{
√
c, 2r −

√
c}.

Indeed, let us show this relation in each of two cases: Case 1 : r ≥ √
c. Then it is seen that

√
r2 − c ≥ r−√

c, so that g(r) ≥ 2r−√
c ≥ √

c. Case 2 : r <
√
c. Then g(r) =

√

r2 + (c− r2) =
√
c ≥ 2r −√

c.

We now apply the relation g(r) ≥ max{√c, 2r − √
c} to Eq. (3), with c = 4β and with

r = |1 + β − αλ|, where λ is an eigenvalue of Q. We have

ρ2(A) ≥ 1

4
max{4β,max{2(1 + β − αλ)2 − 4β | λ is an eigenvalue of Q}}.
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Therefore,

ρ2(A) ≥ 1

4
max{4β, 2(1 + β − αm)2 − 4β, 2(1 + β − αM)2 − 4β}

or

ρ2(A) ≥ max

{

β,
1

2
(1 + β − αm)2 − β,

1

2
(1 + β − αM)2 − β

}

.

It is easy to verify that for every β,

max

{

1

2
(1 + β − αm)2 − β,

1

2
(1 + β − αM)2 − β

}

≥ 1

2
(1 + β − α′m)2 − β,

where α′ corresponds to the intersection point of the graphs of the functions of α inside the

braces, satisfying
1

2
(1 + β − α′m)2 − β =

1

2
(1 + β − α′M)2 − β

or

α′ =
2(1 + β)

m+M
.

From Eqs. (4), (5), and the above formula for α′, we obtain

ρ2(A) ≥ max

{

β,
1

2

(

(1 + β)
M −m

m+M

)2

− β

}

Again, consider the point β′ that corresponds to the intersection point of the graphs of the

functions of β inside the braces, satisfying

β′ =
1

2

(

(1 + β′)
M −m

m+M

)2

− β′.

We have

β′ =

(√
M −√

m√
M +

√
m

)2

,

and

max

{

β,
1

2

(

(1 + β)
M −m

m+M

)2

− β

}

≥ β′.

Therefore,

ρ(A) ≥
√

β′ =

√
M −√

m√
M +

√
m
.

Note that equality in Eq. (6) is achievable for the (optimal) values

β′ =

(√
M −√

m√
M +

√
m

)2

and

α′ =
2(1 + β)

m+M
.
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In conclusion, we have

min
α,β

ρ(A) =

√
M −√

m√
M +

√
m

and the minimum is attained by some values α′ > 0 and β′ ∈ [0, 1). Therefore, the convergence

rate of the heavy ball method (2) with optimal choices of stepsize α and parameter β is governed

by
‖xk+1‖
‖xk‖ ≤

√
M −√

m√
M +

√
m
.

It can be seen that √
M −√

m√
M +

√
m

≤ M −m

M +m
,

so the convergence rate of the heavy ball iteration (2) is faster than the one of the steepest descent

iteration (cf. Section 1.3.2).

1.3.9 w w w

By using the given property of the sequence {ek}, we can obtain

||ek+1 − ek|| ≤ βk+1−k̄||ek̄ − ek̄−1||, ∀ k ≥ k̄.

Thus, we have

||em − ek|| ≤ ||em − em−1||+ ||em−1 − em−2||+ . . .+ ||ek+1 − ek||

≤
(

βm−k̄+1 + βm−k̄ + . . .+ βk−k̄+1
)

||ek̄ − ek̄−1||

≤ β1−k̄ ||ek̄ − ek̄−1||
m
∑

j=k

βj .

By choosing k0 ≥ k̄ large enough, we can make
∑m

j=k β
j arbitrarily small for all m, k ≥ k0.

Therefore, {ek} is a Cauchy sequence. Let limm→∞ em = e∗, and let m → ∞ in the inequality

above, which results in

||ek − e∗|| ≤ β1−k̄ ||ek̄ − ek̄−1||
∞
∑

j=k

βj = β1−k̄ ||ek̄ − ek̄−1|| βk

1− β
= qk̄βk, (1)

for all k ≥ k̄, where qk̄ = β1−k̄

1−β
||ek̄ − ek̄−1||. Define the sequence {qk | 0 ≤ k < k̄} as follows

qk =
||ek − e∗||

βk
, ∀ k, 0 ≤ k < k̄. (2)

Combining (1) and (2), it can be seen that

||ek − e∗|| ≤ qβk, ∀ k,

where q = max0≤k≤k̄ q
k.
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1.3.10 w w w

Since αk is determined by Armijo rule, we know that αk = βmks, where mk is the first index m

for which

f (xk − βms∇f(xk))− f(xk) ≤ −σβms||∇f(xk)||2. (1)

The second order expansion of f yields

f (xk − βis∇f(xk))− f(xk) = −βis||∇f(xk)||2 + (βis)2

2
∇f(xk)′∇2f(x̄)∇f(xk),

for some x̄ that lies in the segment joining the points xk − βis∇f(xk) and xk. From the given

property of f , it follows that

f (xk − βis∇f(xk))− f(xk) ≤ −βis

(

1− βisM

2

)

||∇f(xk)||2. (2)

Now, let ik be the first index i for which 1− M
2 βis ≥ σ, i.e.

1− M

2
βis < σ ∀ i, 0 ≤ i ≤ ik, and 1− M

2
βiks ≥ σ. (3)

Then, from (1)-(3), we can conclude that mk ≤ ik. Therefore αk ≥ α̂k, where α̂k = βiks. Thus,

we have

f (xk − αk∇f(xk))− f(xk) ≤ −σα̂k||∇f(xk)||2. (4)

Note that (3) implies

σ > 1− M

2
βik−1s = 1− M

2β
α̂k.

Hence, α̂k ≥ 2β(1− σ)/M . By substituting this in (4), we obtain

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− 2βσ(1− σ)

M
||∇f(xk)||2. (5)

The given property of f implies that (see Exercise 1.1.9)

f(x)− f(x∗) ≤ 1

2m
||∇f(x)||2, ∀ x ∈ Rn, (6)

m

2
||x− x∗||2 ≤ f(x)− f(x∗), ∀ x ∈ Rn. (7)

By combining (5) and (6), we obtain

f(xk+1)− f(x∗) ≤ r (f(xk)− f(x∗)) ,

with r = 1− 4mβσ(1−σ)
M

. Therefore, we have

f(xk)− f(x∗) ≤ rk (f(x0)− f(x∗)) , ∀ k,

which combined with (7) yields

||xk − x∗||2 ≤ qrk, ∀ k,

with q = 2
m
(f(x0)− f(x∗)).
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1.4.2 w w w

From the proof of Prop. 1.4.1, we have

‖xk+1 − x∗‖ ≤ M

(∫ 1

0

‖∇g(x∗)−∇g(x∗ + t(xk − x∗))‖dt
)

‖xk − x∗‖.

By continuity of ∇g, we can take δ sufficiently small to ensure that the term under the integral

sign is arbitrarily small. Let δ1 be such that the term under the integral sign is less than r/M .

Then

‖xk+1 − x∗‖ ≤ r‖xk − x∗‖.

Now, let

M(x) =

∫ 1

0

∇g (x∗ + t(x− x∗))′ dt.

We then have g(x) = M(x)(x − x∗). Note that M(x∗) = ∇g(x∗). We have that M(x∗) is

invertible. By continuity of ∇g, we can take δ to be such that the region Sδ around x∗ is

sufficiently small so the M(x)′M(x) is invertible. Let δ2 be such that M(x)′M(x) is invertible.

Then the eigenvalues of M(x)′M(x) are all positive. Let γ and Γ be such that

0 < γ ≤ min
‖x−x∗‖≤δ2

eig (M(x)′M(x)) ≤ max
‖x−x∗‖≤δ2

eig (M(x)′M(x)) ≤ Γ.

Then, since ‖g(x)‖2 = (x− x∗)′M ′(x)M(x)(x − x∗), we have

γ‖x− x∗‖2 ≤ ‖g(x)‖∗ ≤ Γ‖x− x∗‖2,

or

1√
Γ
‖g(xk+1)‖ ≤ ‖xk+1 − x∗‖ and r‖xk − x∗‖ ≤ r√

γ
‖g(xk)‖.

Since we’ve already shown that ‖xk+1 − x∗‖ ≤ r‖xk − x∗‖, we have

‖g(xk+1)‖ ≤ r
√
Γ√
γ
‖g(xk)‖.

Let r̂ = r
√
Γ√
γ
. By letting δ̂ be sufficiently small, we can have r̂ < r. Letting δ = min{δ̂, δ2} we

have for any r, both desired results.
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1.4.5 w w w

Since {xk} converges to nonsingular local minimum x∗ of twice continuously differentiable func-

tion f and

lim
k→∞

||Hk −∇2f(xk)|| = 0,

we have that

lim
k→∞

||Hk −∇2f(x∗)|| = 0. (1)

Let mk and m denote the smallest eigenvalues of Hk and ∇2f(x∗), respectively. The positive

definiteness of ∇2f(x∗) and the Eq. (1) imply that for any ǫ > 0 with m − ǫ > 0 and k0 large

enough, we have

0 < m− ǫ ≤ mk ≤ m+ ǫ, ∀ k ≥ k0. (2)

For the truncated Newton method, the direction dk is such that

1

2
dk

′
Hkdk +∇f(xk)′dk < 0, ∀ k ≥ 0. (3)

Define qk = dk

||∇f(xk)|| and pk = ∇f(xk)

||∇f(xk)|| . Then Eq. (3) can be written as

1

2
qk

′
Hkqk + pk

′
qk < 0, ∀ k ≥ 0.

By the positive definiteness of Hk, we have

mk

2
||qk||2 < ||qk||, ∀ k ≥ 0,

where we have used the fact that ||pk|| = 1. Combining this and Eq. (2) we obtain that the

sequence {qk} is bounded. Thus, we have

lim
k→∞

||dk + (∇2f(x∗))−1∇f(xk)||
||∇f(xk)|| ≤ M lim

k→∞

||∇2f(x∗)dk +∇f(xk)||
||∇f(xk)||

= M lim
k→∞

||∇2f(x∗)qk + pk||

≤ M lim
k→∞

||∇2f(x∗)−Hk|| · ||qk||+M lim
k→∞

||Hkqk + pk||

= 0,

where M = ||(∇2f(x∗))−1||. Now we have that all the conditions of Prop. 1.3.2 are satisfied, so

{||xk − x∗||} converges superlinearly.
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1.4.6 w w w

For the function f(x) = ‖x‖3, we have

∇f(x) = 3‖x‖x, ∇2f(x) = 3‖x‖+ 3

‖x‖xx
′ =

3

‖x‖(‖x‖
2I + xx′).

Using the formula (A + CBC′)−1 = A−1 − A−1C(B−1 + C′A−1C)−1C′A−1 [Eq. (A.7) from

Appendix A], we have

(‖x‖2I + xx′)−1 =
1

‖x‖2
(

I − 1

2‖x‖2xx
′
)

,

and so

(∇2f(x))
−1

=
1

3‖x‖

(

I − 1

2‖x‖2xx
′
)

.

Newton’s method is then

xk+1 = xk − α (∇2f(xk))
−1 ∇f(xk)

= xk − α
1

3‖xk‖

(

I − 1

2‖xk‖2x
k(xk)′

)

3‖xk‖xk

= xk − α

(

xk − 1

2‖xk‖2x
k‖xk‖2

)

= xk − α

(

xk − 1

2
xk

)

=
(

1− α

2

)

xk.

Thus for 0 < α < 2, Newton’s method converges linearly to x∗ = 0. For α0 = 2 method converges

in one step. Note that the method also converges linearly for 2 < α < 4. Proposition 1.4.1 does

not apply since ∇2f(0) is not invertible. Otherwise, we would have superlinear convergence.

Alternatively, instead of inverting ∇2f(x), we can calculate the Newton direction at a

vector x by guessing (based on symmetry) that it has the form γx for some scalar γ, and by

determining the value of γ through the equation ∇2f(x)(γx) = −∇f(x). In this way, we can

verify that γ = −1/2.
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