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Section 1.1

Solutions Chapter 1

SECTION 1.1

1.1.9

—

For any z,y € R, from the second order expansion (see Appendix A, Proposition A.23) we have

fly) = f(@) = (y—2)V)+ 5y —2)V2f(2)(y— =), (1)

N =

where z is some point of the line segment joining x and y. Setting = 0 in (1) and using the
given property of f, it can be seen that f is coercive. Therefore, there exists z* € R” such that

f(z*) = infzern f(x) (see Proposition A.8 in Appendix A). The condition
mlly|[> <y'Vif(z)y, Va,yeRm

is equivalent to strong convexity of f. Strong convexity guarantees that there is a unique global

minimum z*. By using the given property of f and the expansion (1), we obtain
: m ) , M ,
(y —2)Vi@) + Flly —2l? < fly) = f@) < (y —2) V@) + lly — 2l
Taking the minimum over y € R™ in the expression above gives

i (0= 2y + Sl = all) < 1) = 50) < i, (0= 2V + 5l = ol )

Note that for any a > 0

min (s =29 f(@) + 5lly —all2) =~ IV T @I,

V£(

and the minimum is attained for y = = — Tw) Using this relation for a = m and a = M, we

obtain
1 1
s AIVI@IR < f) — f@) < 5 IV
The first chain of inequalities follows from here. To show the second relation, use the expansion

(1) at the point « = z*, and note that V f(z*) = 0, so that

Fl) — f@*) = 3y~ 2y V2H )y —a°),

The rest follows immediately from here and the given property of the function f.
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1.1.11

Since z* is a nonsingular strict local minimum, we have that V2f(z*) > 0. The function f is

twice continuously differentiable over &, so that there exists a scalar § > 0 such that
V2f(z) >0, VY, with |jz—z*| <4

This means that the function f is strictly convex over the open sphere B(x*,d) centered at z*
with radius §. Then according to Proposition 1.1.2, z* is the only stationary point of f in the
sphere B(x*,§).

If f is not twice continuously differentiable, then x* need not be an isolated stationary
point. The example function f does not have the second derivative at « = 0. Note that f(z) > 0
for © # 0, and by definition f(0) = 0. Hence, z* = 0 is the unique (singular) global minimum.
The first derivative of f(x) for x # 0 can be calculated as follows:

( _sin (— _ \/_ln(:c2)> + V3 cos (%” _ \/§1n(x2))>
2 (\/5 - 2cos T sin <—7T - \/§1n(a:2)> + 2sin g cos <%7T - \/§1n(a:2)>)
(

2x

— 2 f+2sm(f——+f1n(x2))>
- (\/5 - 2cos(2\/§lnx)) .

(1-8k)m —(148k)m
Solving f/(x) = 0, gives ¥ = ¢ 83 and y* =e 8v3 for k integer. The second derivative

of f(x), for x # 0, is given by

f"(x) =2 (\/_ —2cos(2V3Inz) + 4\/§sin(2\/§1nx)) .

Thus: - -
1"(prk) — — — n —
f(xk) 2(\/_ 2cos4 +4\/§s1n4)
=2 <\/§—2§ +4\/§§>
= 4V/6.
Similarly

77 = =2 (V2= 20 () + 4B (7))
—9 <\/§—2§—4\/§g>

= —4/6.

Hence, {z* | k > 0} is a sequence of nonsingular local minima, which evidently converges to x*,

while {y* | k > 0} is a sequence of nonsingular local maxima converging to x*.
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1.1.12

(a) Let x* be a strict local minimum of f. Then there is § such that f(z*) < f(z) for all x in
the closed sphere centered at z* with radius 6. Take any local sequence {z*} that minimizes f,
ie. ||zF —2*|| <6 and limy_, o f(x¥) = f(2*). Then there is a subsequence {z*i} and the point
T such that % — T and ||T — z*|| < J. By continuity of f, we have

f(@) = lim f(zhi) = f(z*).

1—00
Since z* is a strict local minimum, it follows that T = x*. This is true for any convergent
subsequence of {*}, therefore {x*} converges to *, which means that z* is locally stable. Next
we will show that for a continuous function f every locally stable local minimum must be strict.

Assume that this is not true, i.e., there is a local minimum x* which is locally stable but is not

strict. Then for any 6 > 0 there is a point z¢ # x* such that
0<|jz? —2*|| <@ and f(zf) = f(a*). (1)
Since z* is a stable local minimum, there is a 6 > 0 such that ¥ — z* for all {z¥} with

lim f(z%) = f(z*) and |[|zF — z*|| <. (2)

k—o0

For 6 = § in (1), we can find a point 20 # x* for which 0 < ||z0 — z*|| < § and f(29) = f(z*).
Then, for § = 3|[z0 — 2*|| in (1), we can find a point #! such that 0 < [|z! — z*[| < £[|20 — ||
and f(21) = f(z*). Then, again, for § = 3|[z1 — z*|| in (1), we can find a point 22 such that
0 < ||z2 — 2*|| < 3|/ — 2*|| and f(22) = f(z*), and so on. In this way, we have constructed
a sequence {z*} of distinct points such that 0 < ||z* — 2*|| < 6, f(zF) = f(z*) for all k, and

limg—, 00 % = z*. Now, consider the sequence {y*} defined by
y2m =qm, y2m+1 = ,CCO, Y m > 0.

Evidently, the sequence {y*} is contained in the sphere centered at x* with the radius 6. Also
we have that f(y*) = f(z*), but {y*} does not converge to x*. This contradicts the assumption

that z* is locally stable. Hence, x* must be strict local minimum.

(b) Since z* is a strict local minimum, we can find § > 0, such that f(z) > f(z*) for all  # z*
with ||z — 2*[| < 6. Then minj,_z«|=s f(z) = 0 > f(z*). Let GO = max|,_,+||<s |g9(z)|. Now,
we have

f(x) —eGd < f(z) +eg(x) < f(x) + eGY, Ve>0, Va |lz—a* <.

5
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Choose €% such that
F6— GO > f(z*) + e9G9,

and notice that for all 0 < e < € we have
fo—eGd > f(x*) + eGo.
Consider the level sets
L(e) = {z | f(x) +eg(x) < f(a*) + €GO,z —a*]| <6}, 0<e<e

Note that
L(el) C L(e2) C B(z*,9), VO<el <e2<el, (3)

where B(z*,§) is the open sphere centered at x* with radius 6. The relation (3) means that
the sequence {L(e)} decreases as e decreases. Observe that for any € > 0, the level set L(e) is
compact. Since z* is strictly better than any other point € B(z*,d), and 2* € L(e) for all
0 <e<ed, we have

No<e<es L(€) = {x*}. (4)
According to Weierstrass’ theorem, the continuous function f(z) + eg(z) attains its minimum on
the compact set L(e) at some point z. € L(¢). From (3) it follows that z. € B(z*,¢) for any € in

the range [0, €%]. Finally, since z. € L(e), from (4) we see that lime_,o0 e = x*.

1.1.13

In the solution to the Exercise 1.1.12 we found the numbers § > 0 and € > 0 such that for all
€ € [0,¢9) the function f(z) + eg(z) has a local minimum z. within the sphere B(z*,d) = {z |
||z —2*|| < 6}. The Implicit Function Theorem can be applied to the continuously differentiable
function G(e,x) = Vf(z) + eVg(x) for which G(0,2*) = 0. Thus, there are an interval [0,¢€), a
number dg and a continuously differentiable function ¢ : [0, €9) — B(z*, o) such that ¢(e) = xt
and

Vo(e) = —VeG (e, 6(€) (VoG (e, 6(c))) ", Vee[0,e0).

We may assume that €y is small enough so that the first order expansion for ¢(¢) at ¢ = 0 holds,

namely

o(e) = d(0) + eVe(0) + o(e), Vee|0,e0). (1)

It can be seen that V.G (0,¢(0)) = VoG(0,2*) = V2f(z*), and V.G (0,¢(0)) = Vg(x*)’, which
combined with ¢(e) = z¢, ¢(0) = (z*)’ and (1) gives the desired relation.
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SECTION 1.2

1.2.5

(a) Given a bounded set A, let r = sup{||z|| | x € A} and B = {z | ||z|| < r}. Let L =
max{||V2f(x)|| | « € B}, which is finite because a continuous function on a compact set is

bounded. For any =,y € A we have

Vi) - Vi) = /O V2 f(te+ (1 —t)y)(z —y)dt.

Notice that tz + (1 — t)y € B, for all ¢t € [0, 1]. It follows that

IVf(z) = fy)l < Lllz -yl
as desired.

(b) The key idea is to show that z* stays in the bounded set
A={z| f(z) < f(2°)}

and to use a stepsize a* that depends on the constant L corresponding to this bounded set. Let
R = max{|[z]| | z € A},

G =max{||Vf(z)| | = € A},
and

B={z||z|| < R+2G}.

Using condition (i) in the exercise, there exists some constant L such that ||V f(z) — Vf(y)| <
L||z — y||, for all z,y € B. Suppose the stepsize o satisfies

0<e<ak <(2—¢€)yk min{l,1/L},

where
_ |V f(a)dk|
[|d* ||

Let gk = ak(yk — Lak/2), which can be seen to satisfy sk > e2vk/2 by our choice of ak. We

’Yk

will, show by induction on k that with such a choice of stepsize, we have z* € A and

f(ahtt) < f(ak) — Br|dr|2, ()

7



Section 1.2

for all k£ > 0.

To start the induction, we note that 20 € A, by the definition of A. Suppose that zF € A.

By the definition of 4%, we have

AR dF)2 = |V f (k) dr] < |V F(R)]| - [ldk].
Thus, [|d¥|| < ||V f(z*)|/7* < G/+*. Hence,

% + akdr| < [|2%] + a*G/4F < R+ 2G,

which shows that 2% + a*dk € B. In order to prove Eq. (*), we now proceed as in the proof of
Prop. 1.2.3. A difficulty arises because Prop. A.24 assumes that the inequality |V f(z) =V f(y)|| <
L||z — y|| holds for all x,y, whereas in this exercise this inequality holds only for z,y € B. We
thus essentially repeat the proof of Prop. A.24, to obtain

f(@k ) = f(ab + abd)

1
:/ bV f(xk 4+ Takdk) dk dr
0

1 /
< akV f(xk)'dF + ‘/ ak (Vf(a:k + adek) - Vf(a:k)) dk dr
0

1
§oszf(xk)’dk+(ak)2||dk||2/ Lrdr
0

k)2
= akV f(akydk + —L(C; 2 v .

We have used here the inequality
IV (* + akrdh) = Vf(@h)|| < abLrd¥]),
which holds because of our definition of L and because 2k € A C B, 2k + akdk € B and (because

of the convexity of B) zF 4+ ofrdF € B, for 7 € [0, 1].

Inequality (*) now follows from Eq. (**) as in the proof of Prop. 1.2.3. In particular, we
have f(ak+1) < f(zF) < f(29) and zF+1 € A. This completes the induction. The remainder of

the proof is the same as in Prop. 1.2.3.

1.2.9

We have )
Vi(x)—Vf(x*) = /0 V2f(z* + t(x — a%)) (x — a*)dt

and since

8
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we obtain
1 1
(x —az*)Vf(z) = / (x —z*)V2f(z* +t(x — x*))(z — 2*)dt > m/ |l — x*||2dt.
0 0
Using the Cauchy-Schwartz inequality (x — x*)'V f(x) < ||l — a*||||Vf(z)||, we have

1
m / o — 2+ |2dt < o — 2 ||V F(@)])

and
Vi(x
o oo < I9I@I
m
Now define for all scalars ¢,
F(t) = flz* +t(x — a*))
We have
Fi(t) = (2 — 2"V f(2* + t(a — 2*))

and

Frt) = (x — a*)V2f(z* + t(x — z*))(x — x*) > mljlz — x*||2 > 0.

Thus F” is an increasing function, and F’(1) > F(¢) for all ¢ € [0, 1]. Hence

f(x) = f(z*) = F(1) — F(0) = | Fr(t)dt
<F'(1)=(z—2*)Vf(z)

)

< o — 2| |V f(2)]| < w

where in the last step we used the result shown earlier.

1.2.10

Assume condition (i). The same reasoning as in proof of Prop. 1.2.1, can be used here to show
that
0 < Vf(@)p, (1)
where Z is a limit point of {z*}, namely {z*}, ¢ — Z, and
dk _
pk = Wu {P*}Irec — P- (2)
Since V f is continuous, we can write

Vf@)p= lim _Vf(ak)pk
k—o0, ke

= liminf Vf(ak)pk

k—o0, ke
liminf, .. yex V() d"

i supy o0, ke ||d¥]|

<0,

9



Section 1.2

which contradicts (1). The proof for the other choices of stepsize is the same as in Prop.1.2.1.

Assume condition (ii). Suppose that V f(zk) # 0 for all k. For the minimization rule we
have

f(zhk+1) = m;%f(xk + adk) = Igggf(xk + Op*), (3)

for all k, where p* = IIZZII' Note that

Vf@@k)ypt < —c[V (R, Yk (4)

Let 2kt = xk 4y pF be the iterate generated from x* via the Armijo rule, with the corresponding

stepsize &, and the descent direction p*. Then from (3) and (4), it follows that
fQ@htt) = fak) < f(@hHh) — f(ah) < oapV [ (ah)ph < —ocar||V f(2F)][2. (5)

Hence, either {f(x*)} diverges to —oo or else it converges to some finite value. Suppose
that {zF}kex — T and Vf(Z) # 0. Then, limy_,co ke f(2*) = f(Z), which combined with (5)
implies that

3 A kY2 —
lim [Vl = o.

Since limg—ookec Vf(2F) = Vf(Z) # 0, we must have limy_,o0 kexc & = 0. Without loss of
generality, we may assume that limy_,o0 kex P¥ = p. Now, we can use the same line of arguments
as in the proof of the Prop. 1.2.1 to show that (1) holds. On the other hand, from (4) we have
that

lm Y fyph = V(@)P < | V(@)]] < 0.

This contradicts (1), so that Vf(Z) = 0.

1.2.12

Consider the stepsize rule (i). From the Descent Lemma (cf. the proof of Prop. 1.2.3), we have

for all k&
ok L

f(xk-i-l) < f(xk) — ak (1 — )

) IV F@h)|P.

From this relation, we obtain for any minimum z* of f,
€ oo
fla*) < f2%) =5 Do IVFEh)).
k=0
It follows that V f(z¥) — 0, that {f(2*)} converges, and that Y ;- ||V f(2*)[|? < oo, from which
D llzktt — 2k||2 < oo,
k=0

10



Section 1.2
since V f(zF) = (zk — ak+1)/ak.
Using the convexity of f, we have for any minimum z* of f,
|kt — 2|2 — ||z — 2%]|2 — ||ak+] — zk||2 < —2(2* — ok (aht+] — zk)
= 2ok (a* — ak)'V f(zF)
< 205 (f(a") = (@)
<0,
so that

bt — a2 < flak — a2 4 a1 - a2

Hence, for any m,
m—1

o — a2 < a0 — a2+ 3 ket — a2
k=0
It follows that {z*} is bounded. Let T be a limit point of {x*¥}, and for any € > 0, let k be such

that

o0
ok —F2<e, D[ttt —aif2 <.
i=k

Since 7 is a minimum of f, using the preceding relations, for any k > k, we have
B k—1
lzk = Z)? < ok — T2 + Y [l — 22 < 2e,
i=k

Since € is arbitrarily small, it follows that the entire sequence {z*} converges to Z.

The proof for the case of the stepsize rule (ii) is similar. Using the assumptions ok — 0
and Y, ;% = 0o, and the Descent Lemma, we show that V f(z*) — 0, that {f(2*)} converges,

and that
oo
Z [|zh+1 — 2k|]2 < oo.
k=0

From this point, the preceding proof applies.

1.2.13

(a) We have
[2k+t — y||2 = |Jak — y — ok V f (k)]
= (zk —y — ok Vf(a*)) (aF —y — akV f(z*))
= [|ak — y|* = 20k (zk — y)'Vf(2k) + (k|| V £ (zF)]])?
= ||k — y||* + 20k (y — 2k )V f (%) + (k|| V £ (zF)]])?
< [lak =yl + 20 (F(y) — f(2*)) + (k| V f(F)]])?
= [lak — y[|* = 20 (f (%) = f(y)) + (k|| V f(zF)]])?,

11
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where the inequality follows from Prop. B.3, which states that f is convex if and only if

fly) = f(x) > (y—2)Vf(z), Vazy.

(b) Assume the contrary; that is, iminfy_,o f(2*) # infyewn f(z). Then, for some § > 0, there
exists y such that f(y) < f(z*) — ¢ for all k > k, where k is sufficiently large. From part (a), we

have
ks — yl? < [l — g — 2k (F(2¥) — F(0)) + @4V F) ).

Summing over all &k sufficiently large, we have

S llekt =yl < 37 {llek — oll* — 20¥ (F(a%) ~ F(w) + (@HI VS )}
k=k k=k

or
0 < [lak -y - Z 2ak6 + Z (k[ VF(R)])* = [k = yll2 =D ak (26 — ok |V f(2h)]?).
k=k k=k k=k

By taking k large enough, we may assume (using ok||V f(z*)||2 — 0) that ok||V f(xk)[|2 < § for
k > k. So we obtain -
0 ok 2 5 ok

k=k
Since Y ak = oo, the term on the right is equal to —oo, yielding a contradiction. Therefore we

must have lim infj_, o f(z%) = infieqnn f(2).

(c) Let y be some z* such that f(z*) < f(zF) for all k. (If no such z* exists, the desired result
follows trivially). Then
lzk 41— y[|2 < ok — y||* — 20k (f(2*) — f(y)) + (@ ]|V f(@¥)]])”
< b —y|I” + (| V£ (2¥)])?

2
= ||k — 2
— o+ = 1” + (o 197
= ok — gl + (s

=t =yl (s571)2 + ()2

IN

k
S S R S
=0

Thus {zF} is bounded. Since f is continuously differentiable, we then have that {Vf(z*)} is
bounded. Let M be an upper bound for ||V f(z*)||. Then

e = rerey 2 3 2 -

12



Section 1.2

Furthermore,

aF[Vf(@F)|]? = sV f(@F)] < skM.

Since > (s*¥)2 < 00, sk — 0. Then o*||V f(x*)]|2 — 0. We can thus apply the results of part (b)
to show that liminfy_ o f(2*) = infyenn f(z).
Now, since liminfy_, o f(2*) = inf exn f(2), there must be a subsequence {x*} x such that

{z¥} Kk — Z, for some T where f(Z) = inf enn f(x) so that T is a global minimum. We have
lzk 1 — 2 < J|lak — 2 + (s%)2,

so that
N

a4 = a2 < flok = 2 + 37 ()2, VRN 21

m=k
For any € > 0, we can choose k € K to be sufficiently large so that for all k € K with k > k we

have

o0
ok —Z|2 <e and » (sm)2 <e.

m=k
Then
[ab+N — Z||2 < 2¢, VN >1.

Since € > 0 is arbitrary, we see that {x*¥} converges to .

1.2.16

By using the descent lemma (Proposition A.24 of Appendix A), we obtain

f(@hth) = f(aF) < —abV f(ak) (V[ (k) + eF) + g(a’“VIIVf(x’“) + k|2

L L
— ot (1= Gt ) VS + F(@RRIIek| - at(1 = Lak) T f(atyek
Assume that a% < 1 for all k, so that 1 — La* > 0 for every k. Then, using the estimates
L
1—§a’f21—Lak,

1
Vi(ahyel 2 =2 (IIVF@R)I2 +[lek]?),
and the assumption ||e¥|| < 4 for all k, in the inequality above, we obtain

Pk = f(a#) < =51~ Lak) ([VF (@)~ 82) + (o) (1)

Let ¢’ be an arbitrary number satisfying ¢’ > 6. Consider the set K = {k | ||V f(zF)|| < ¢'}. If

the set K is infinite, then we are done. Suppose that the set IC is finite. Then, there is some

13
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index ko such that ||V f(x*)|| > ¢’ for all k > ko. By substituting this in (1), we can easily find

that

faht1) — f(ak) < —%k (1 — Lak) (6 = 62) —akLs2), Y k> ko.

By choosing « and @ such that 0 < o < & < min{‘gl;T*SQ, +1}, and of € [, @] for all k > ko, we
have that
1
Flaht) = fl@h) < —5a (07 =62 —aLé?®), ¥ k> k. (2)

Since ¢'* — 62 — aLé’* > 0 for k > ko, the sequence {f(z*) | k > ko} is strictly decreasing.

Summing the inequalities in (2) over k for kg < k < N, we get

(N = ko)

5 a(6? 62 —aLé?), VN> k.

f@N+t) — f(zho) < —

Taking the limit as N — oo, we obtain limy_,c f(2V) = —00.

1.2.18 (www

(a) Note that
Vf(z) = VaF (2, g(x)) + Vg(2)Vy F(z, g(2)).

We can write the given method as
xhtl = gk + akdk = b — akV F(ak, g(2F)) = b + ok (=V f(2F) + Vg(z*)V, F(ak, g(xF)),
so that this method is essentially steepest descent with error

ek = =Vg(a*)Vy F(zF, g(z*)).

Claim: The directions d* are gradient related.

Proof: We first show that d* is a descent direction. We have

Vf(ah)ydk = (Vo F(ab, g(a%)) + Vg(a)Vy F (2%, g(a))) (= VaF (z*, g(x*)))

= — |[VaF (e, g(a*)|” = (Vg(2)Vy F (o, g(a*))) (Vo F (2%, g(a*)))
< — [V F (2, g(@*)|* + [ Va(@)Vy F(zh, g ()| | Vo F (zF, g(a))]
< — [V F (2, g(@®)|* + 7 Vo F (2%, g(a¥))]*

(=1 +7) [V F(a*, g(zk))||*

<0 for [V F(xk, g(a*))| #0.

14
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It is straightforward to show that || V4 F (2, g(z))| = 0 if and only if |V f(z*)|| = 0, so that we
have V f(zk)'dk < 0 for |V f(z*)|| # 0. Hence dF is a descent direction if z* is nonstationary.

Furthermore, for every subsequence {2¥}cx that converges to a nonstationary point Z, we have

4] = 7= IV F @b, @) =2 V-Fa* @)
. ﬁ IVaF(2k, g(2%)|| — [Vg(z)Vy F (2, g(z%))]]
S%”va(xk’g(Ik))+Vg(I)VyF(Ik,g(fEk))H
= IVl

and so {d*} is bounded. We have from Eq. (1), Vf(z*)dd < —(1 —~) |[VoF(z*, g(z*))]>.
Hence if limy_yo0 infre g Vf(zF)'d* = 0, then limy_oo ke ||VE (zF,g(x*))|| = 0, from which
IVF(z,g(z))|| = 0. So Vf(Z) = 0, which contradicts the nonstationarity of z. Hence,

i i kY dqk
0, Jek V<0

and it follows that the directions d* are gradient related.

From Prop. 1.2.1, we then have the desired result.

(b) Let’s assume that in addition to being continuously differentiable, h has a continuous and
nonsingular gradient matrix Vyh(x,y). Then from the Implicit Function Theorem (Prop. A.33),
there exists a continuously differentiable function ¢ : #* — R™ such that h(z, ¢(z)) = 0, for all

x € Rr. If, furthermore, there exists a v € (0,1) such that

IVo(2)Vy f(, d(a)| < v IVaf(z, ¢(@)ll, VxeRn,

then from part (a), the method described is convergent.

1.2.19

(a) Consider a function g(a) = f(a* + adF) for 0 < o < o, which is convex over I*¥. Suppose
that ¥ = xk + @dk € I* minimizes f(z) over I*. Then g’(@) = 0 and from convexity it follows
that ¢/(ak) = Vf(zk+1)dk > 0 (since ¢/(0) = Vf(a*)'d* < 0). Therefore the stepsize will be
reduced after this iteration. Now, assume that Z* ¢ I*. This means that the derivative g’(c)
does not change the sign for 0 < a < aF, i.e. for all & in the interval (0, a*) we have ¢’(a) < 0.

Hence, ¢/'(ak) = V f(ak+1)’dk <0 and we can use the same stepsize o in the next iteration.

15
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(b) Here we will use conditions on V f(z) and d* which imply
Vf(xk+1)ydk <V f(ak)dr + ||V f(akt1) — V f(2F)]] - [|d¥|
< V(@) dr + o Lf|d*|[?
< —(c1 — 20 L)V (@) 2.

When the stepsize becomes small enough so that c; —coa L > 0 for some I%, then V f(ak+1)/dk <0

for all k£ > k and no further reduction will ever be needed.

(c) The result follows in the same way as in the proof of Prop.1.2.4. Every limit point of {«*} is

a stationary point of f. Since f is convex, every limit point of {z*} must be a global minimum

of f.

1.2.20

By using the descent lemma (Prop. A.24 of Appendix A), we obtain
Flah41) = F(ak) < Ak (kY (a4 ob) + (ak)2 2 a4 k|2 (1)
Taking into account the given properties of dk, ek, the Schwartz inequality, and the inequality
Iyl - 1121l < [yl + [|z]]?, we obtain
Vf(@k) (dF + e¥) < —(e1r — pow)|[V f(2F)|12 + qa¥[|V f (@)
< — (a1 = (p+1aw) [[VF(ah)][2 + akg?.
To estimate the last term in the right hand-side of (1), we again use the properties of d¥, e*, and
the inequality ||y + z[|2 < ||y]|2 + ||z||2, which gives
1
Slla* + e[z < [ldk]]2 + [le*]?
<2(3 + (pak)?) [[VF(@h)]12 +2(c3 + (q0F)?)
< 2(c3 + )V f(@F)II2 +2(c3 + ¢2), YV k> ko,
where kg is such that ap < 1 for all k& > k.

By substituting these estimates in (1), we get
f@ktt) = fa¥) < —ak(er = O)[VF(@F)[? + (F)2b2, ¥ k= ko,

where C' =1+ p+ 2L(c2 + p2) and ba = ¢2 + 2L(c2 + ¢2). By choosing ko large enough, we can
have

F(HH) — F4) < —akby|[VF )| + (@42, Y k> k.

16



Section 1.2

Summing up these inequalities over k for kg < K < k < N gives

N N
FEN )+ b0 Y kSRR < J@K) 4 b 3 (b2, Yk SK<KSN.(2)
k=K k=K

Therefore

limsup f(aN+1) < f(xK) + by Z(ak)2, YV K > ko.
N —o00 =K

Since >"7- (k)2 < oo, the last inequality implies

limsup f(xN+1) < liminf f(zK),
N—o0 K—o0

i.e. limg o0 f(2F) exists (possibly infinite). In particular, the relation (2) implies

oo

D ak|IVFEh)]? < o

k=0

Thus we have lim infj_, o ||V f(2*)|| = 0 (see the proof of Prop. 1.2.4). To prove that limy_, ||V f(z)|| =

0, assume the contrary, i.e.

limsup ||V f(z*)]| > € > 0. (3)

k—o0

Let {m;} and {n;} be sequences such that
m; < nj < Mj41,
S <IVFEHI for my <k <ny,

IV f(z¥)]] < for n; <k <mji1. (4)

Wl m

Let j be large enough so that

oo 63
FIIV f(2k)]]2 < .
D HIVIEIIP S grpe )

J

17
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For any j > j and any m with m; <m < n; — 1, we have

n;—1
IV f(@) = Vi@l < Y ([Vf(ahtt) = V()|
k_r::fl
<L Z ||xk+l — k||
i
< LY ap (J[d¥]] + [le¥]))
k=m
njfl njfl
<Llea+q) [ D an | +Llca+p) Y al[ V()|
k=m k=m
9 3 njfl
< (He+og+Le+n?) Y alvie):
k=m

n;—1
9L(2c2 + P+ q) <
< P IPTA S v s

k=m
< 9L(2¢c2 +p+q) el
- €2 27L(2c2 + g+ p)
€
=3
Therefore
, € 2 =
V5@ < IV + 5 <2 vz m<m<n -1

From here and (4), we have
2¢
VrEml <3 Ymzm,

which contradicts Eq. (3). Hence limg_,oo Vf(zF) = 0. If T is a limit point of {z¥}, then
limg— oo f(2*) = f(Z). Thus, we have limy_,o V f(z*) = 0, implying that Vf(z) = 0.

SECTION 1.3

1.3.4

Let S be any scalar with 0 < 8 < 1 and B(z*,€) = {x | ||z —z*|| < €} be a closed sphere centered
at x* with the radius € > 0 such that for all z,y € B(z*,€) the following hold

V2f(z) >0,  [[V2f(x)~| < My, (1)

18
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IVS) = VS < Malle =yl M= s 924G (@)
I92f(@) - V21| < 55 )
ld(x) + V2 (2) V(@) < =V f@)]] (4)

- 2M>

Then, by using these relations and V f(z*) = 0, for any = € B(x*,€) one can obtain

lz +d(z) — z*[| < ||z — 2% = V2f(2) 'V f(2)]| + [|d(z) + V2 f(2) "V f ()]
< |IV21() 1 (V27 () = 20) = VI | + 52 197
< MIV2 @) — 2) = V1) + VI + 5o [97@) = V)]

1
<MV @) =)~ [V (@t =) (o -2t + Gl - o]
' B
<o ([ 1927(0) = 921 (@ + e = e ) e = 7] + Sk = 7]
0

< Bl — 2],

This means that if 29 € B(z*,€) and o =1 for all k, then we will have
|le% —a|| < BF[]a® —2*||, ¥V k>0, (5)

Now, we have to prove that for € small enough the unity initial stepsize will pass the test of

Armijo rule. By the mean value theorem, we have
fla 4+ d@) — f(2) = V() d() + () V2 @)dla),
where T is a point on the line segment joining x and x + d(z). We would like to have
Vi @yd(r) + Sy V@) < oV () d(r), ()

for all z in some neighborhood of x*. Therefore, we must find how small € should be that this

holds in addition to the conditions given in (1)—(4). By defining

W e
PO =R T N

the condition (6) takes the form

(1 — op(aa(e) + 5a@) V2f (@)a(a) < 0. 7)

The condition on d(x) is equivalent to

g(z) = = (V2f(2*)) " pl(z) + v(z),

19
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where v(z) denotes a vector function with v(z) — 0 as x — z*. By using the above relation and

the fact V2f(T) — V2f(z*) as © — x*, we may write Eq.(7) as

1 1

(1= o)p(a) (V2 f(2*) " plx) - Sp@) (V2f(2*)) " p(e) 2 7(),

where {(z)} is some scalar sequence with lim,_,z+ y(z) = 0. Thus Eq.(7) is equivalent to

(5-) pla (V27" plo) 2 2(0). 0

Since 1/2 > o, ||p(z)|| = 1, and V2f(z*) > 0, the above relation holds in some neighborhood of
point xz*. Namely, there is some € € (0,€) such that (1)—(4) and (8) hold. Then for any initial
point 20 € B(X*, €) the unity initial stepsize passes the test of Armijo rule, and (5) holds for all
k. This completes the proof.

1.3.8 (www

Without loss of generality we assume that ¢ = 0 (otherwise we make the change of variables

x =y — @ 1c). The iteration becomes

Tr1) (1+8)1-aQ —BI Ty
o ) I 0 Tho1
AZ((l—i—ﬁ)I—aQ —BI>'

I 0

Define
If i is an eigenvalue of A, then for some vectors v and w, which are not both 0, we have
u U
A =p ;
w w

U= pw and (14 B)I - aQ)u — Bw = pu.

or equivalently,

If we had g = 0, then it is seen from the above equations that v = 0 and also w = 0, which is

not possible. Therefore, u # 0 and A is invertible. We also have from the above equations that

U= pw and ((1+B)I—O<Q)u: (u—i—g) U,

so that p + /u is an eigenvalue of (1 + 8)I — a@). Hence, if p and X satisfy the equation
w+ B/pu=1+ 8 —al, then p is an eigenvalue of A if and only if A is an eigenvalue of Q.

1+ 5
0 2 —L
caca(tE)

Now, if

20
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where M is the maximum eigenvalue of @), then we have
N+B8—-—aX<1+p8
for every eigenvalue A of @, and therefore also
}u + S’ <1+p

for every eigenvalue p of A. Let the complex number p have the representation p = |p|ei?. Then,

since pu + /p is a real number, its imaginary part is 0, or

|| sin@ — B(1/|u|) sin@ = 0.

If sinf # 0, we have |u|2 = 8 < 1, while if sinf = 0, u is a real number and the relation
|+ B/ul < 14 B is written as pu2 + 8 < (1 + B)|u| or (Ju| — 1)(Ju] — B) < 0. Therefore,
B < |u| < 1. Thus, for all values of 6, we have 5 < |u| < 1. Thus, all the eigenvalues of A are
strictly within the unit circle, implying that xx — 0; that is, the method converges to the unique

optimal solution.

Assume for the moment that o and 8 are fixed. From the preceding analysis we have that
1 is an eigenvalue of A if and only if u2+ 8 =14 8 — aX, where X is an eigenvalue of ). Thus,

the set of eigenvalues of A is

{1+B—a)\i\/(1+ﬁ—a)\)2

—4
5 b ‘ A is an eigenvalue of Q} ,

so that the spectral radius of A is

p(A):maX{ |1+ﬁ—a/\|+\/(21+6—a)\)2—46

‘ A is an eigenvalue of Q} .

For any scalar ¢ > 0, consider the function g : Rt — R* given by
9(r) = Ir + V77 —dl.
We claim that
g(T) Z max{\/E, 2r — \/E}

Indeed, let us show this relation in each of two cases: Case I: r > /c. Then it is seen that
VT2 — ¢ > r—4/c, sothat g(r) > 2r —/c > y/c. Case 2: r < \/c. Then g(r) = \/r2 + (c—r2) =
Ve 2 — e

We now apply the relation g(r) > max{+/c,2r — \/c} to Eq. (3), with ¢ = 48 and with
r = |14+ 8 — a)|, where A is an eigenvalue of ). We have

p2(A) > imax{4ﬁ,max{2(l + B8 —aX)2 —46 | X is an eigenvalue of Q}}.
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Therefore,
p2(A) > i max{43,2(1 + 8 —am)? —453,2(1 + B — aM)? — 45}

or

pz(A)Zmax{B,%(l—i—ﬁ—am) - 8, (1+B—aM) ﬁ}.

It is easy to verify that for every 3,

(1+[3—am) _Bv

l\3|’—‘

max{%(l—l—ﬁ—am) - B, (1"‘5—04M) ﬂ}

where o’ corresponds to the intersection point of the graphs of the functions of « inside the
braces, satisfying

1 1

SU+B—am)z—§= (14 8- a'M)? -8
or

2148
 m—+ M’

From Egs. (4), (5), and the above formula for o/, we obtain

PA) 2 max{ﬂ,% (a+p2my —B}

Again, consider the point (3’ that corresponds to the intersection point of the graphs of the

functions of § inside the braces, satisfying

1
g = ((1 + B' )
2
We have
ﬂ/ —
\/_ M + \/_
and
a3 6, 7 ((
max B
Therefore,
S B VM- ym
VM +/m
Note that equality in Eq. (6) is achievable for the (optimal) values
2
g (ViI-vm
VM +/m
and
i)
m+ M
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In conclusion, we have
VM -/
min p(A) = VE v
a,B VM +/m

and the minimum is attained by some values o > 0 and 8’ € [0,1). Therefore, the convergence
rate of the heavy ball method (2) with optimal choices of stepsize « and parameter § is governed

by
||kt VM —/m
TR ‘
lzF| = VM + m

It can be seen that
\/M—\/ﬁ< M-m
VM +/m ~ M4+m’

so the convergence rate of the heavy ball iteration (2) is faster than the one of the steepest descent

iteration (cf. Section 1.3.2).

1.3.9

By using the given property of the sequence {e¥}, we can obtain
||eht1 — k|| < Brt1-F||ck — gk—1]|, Vk>k

Thus, we have
lom — et]| < lem — em=1]] +[Jem=1 — em=2]| +-.... + [Jek+1 — ek
< (ﬁm7E+l + pm—k 4+ Bk7E+1) ||k — ek=1]|
B B B m
< BLF [[ek — ekt Y B,
j=k
By choosing ko > k large enough, we can make ZT:k B9 arbitrarily small for all m,k > ko.
Therefore, {e¥} is a Cauchy sequence. Let limy, o €™ = e*, and let m — oo in the inequality

above, which results in

] < 1 |JeF — eh-1]] S g7 = g1-F [jeF — e1f] L — g
ek = et < o ek = ebotl] 3 = 1ok ek = bt {25 =t (1)
=

for all k > k, where ¢F = '811:; ||eF — ek—1||. Define the sequence {g* | 0 < k < k} as follows

o ek el
CLE

Combining (1) and (2), it can be seen that

Vik, 0<k<k. (2)

ek —ex|| < gk, VEk,

where ¢ = max<p<j ¢~
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1.3.10

Since o is determined by Armijo rule, we know that o* = ™k s, where my is the first index m

for which

[ (ah = pmsV (k) — f(ak) < —ofms||V f(zF)[[. (1)
The second order expansion of f yields
ig)2
@k~ BisV f @) ~ fa) = —3is| V)2 + DL pakyv2 (@) v s ab),

for some T that lies in the segment joining the points z¥ — fisV f(a*) and z*. From the given
property of f, it follows that
) . is M
ek = sV (a) - ) < s (1- 2

) I s ®
Now, let i be the first index i for which 1 — %Bis > o, ie.
M . M
1—7[315<a Vi, 0<i<ig, and 1—7[3%520. (3)

Then, from (1)-(3), we can conclude that my, < ix. Therefore ok > &%, where &% = Siks. Thus,
we have

[ @k —akVf(ah)) — f(ab) < —od[|V f(aF)]]. (4)
Note that (3) implies

M . M
o>1-— 7[3%*1{9: 1— —ak.

2
Hence, &% > 26(1 — o) /M. By substituting this in (4), we obtain
Flak) - fa) < F) - f) - 220D g pan )

The given property of f implies that (see Exercise 1.1.9)
f@) - f@) < oo IVI@IR, Ve e R, (6)
Slle—a*|2 < f@) = f@),  VaeRrn (7)
By combining (5) and (6), we obtain
Ja1) = Fa®) < v (fh) — f(a)).

with r =1 — %]\/([1_0). Therefore, we have

f@k) = fla=) <k (f(20) = f(z*)),  VE,
which combined with (7) yields
ok —a*|]> <qrk, Vo,

with ¢ = 2 (f(20) - f(a")).
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SECTION 1.4

1.4.2
From the proof of Prop. 1.4.1, we have
1
o+t ol < 01 ([ 1¥g(a) = alar + et = ) ) o~ .
0

By continuity of Vg, we can take § sufficiently small to ensure that the term under the integral
sign is arbitrarily small. Let §; be such that the term under the integral sign is less than r/M.
Then

[[ah+t — | < rflak — 2.

Now, let
1
M(z) = / Vg (2 + t(z — ) dt.
0
We then have g(x) = M(z)(z — z*). Note that M(x*) = Vg(z*). We have that M (z*) is
invertible. By continuity of Vg, we can take § to be such that the region Ss around z* is

sufficiently small so the M (x)’ M (x) is invertible. Let d2 be such that M (z)’M (z) is invertible.
Then the eigenvalues of M (z)' M (x) are all positive. Let v and T' be such that

0<y< min eig(M(z)M(z)< max eig(M(z)M(x)) <T.

la—a* | <52 l—a*]| <3

Then, since ||g(2)]|2 = (x — 2*) M'(z)M (z)(x — x*), we have
Yz —ax? < llg(a) | < Tlle — 2|2,

or
= lg(zkt1)]| < ||zktl — 2| and 7|2k — z*|| < —
VT NG

Since we've already shown that ||zk+1 — z*| < r||zk — z*||, we have

llg(@®)l.

I
lg(akt1)] <

<5 lg(z®)l-

Let 7 = T\/‘/%:. By letting § be sufficiently small, we can have 7 < r. Letting § = min{g, d2} we

have for any r, both desired results.
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1.4.5

Since {z*} converges to nonsingular local minimum z* of twice continuously differentiable func-
tion f and
lim [[HF — V2 f(zF)|| = 0,
k—o0
we have that
lim |[HF — V2 f(z*)]| = 0. (1)
k—o0

Let m*F and m denote the smallest eigenvalues of H* and V2 f(x*), respectively. The positive
definiteness of V2 f(x*) and the Eq. (1) imply that for any € > 0 with m — e > 0 and ko large

enough, we have

O<m—e<mrF<m-+e, V k> ko. (2)

For the truncated Newton method, the direction d* is such that

1
5dk’dek + Vf(xk)dk <0,  YEk>0. (3)
R __d* k— Vi) -
Define ¢ 57 ] and p AT Then Eq. (3) can be written as

1
S0 HEE +ptgk <0, VE>0.
By the positive definiteness of H*, we have
mk
Tl <kl Y k>0,

where we have used the fact that |[p¥|| = 1. Combining this and Eq. (2) we obtain that the

sequence {g*¥} is bounded. Thus, we have

(PRI VR V)]
o, i3l N ATl

=M lim [|V2f(x*)gk + p*||
k—oo

< M lim ||V2f(z*) — HF|| - ||¢¥|| + M lim ||HFgk + pk||
k—oo k—oo
207

where M = ||(V2f(2*))~1||. Now we have that all the conditions of Prop. 1.3.2 are satisfied, so

{||x* — x*||} converges superlinearly.
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1.4.6
For the function f(z) = ||z||?, we have
3 3
Vf(z) =3|zllz, V2f(z)=3|z[ + mm' = m(”iﬂﬂn + ax’).

Using the formula (A + CBC’)~1 = A-1 — A-1C(B~1 + C"A-1C)-1C"A-1 [Eq. (A.7) from
Appendix A}, we have

1 1
(l||2] + za’)—t = (I - —xw’) ,
[l 2||[?

and so

2f(z)) " = 1 - 1 zx!
(VEF@)™ = g (I EE )

Newton’s method is then
P = ok o (V2 () V()

1 1
=k -« I-— :vk(ack)’) 3|k ||k
3|zl ( 2|2

1
ok kE_ k|| k
=z « (3: 2”:51@”2:17 ||z ||2>

=k — o (.Ik—lxk)
2
= (1— g) zk.
2

Thus for 0 < o < 2, Newton’s method converges linearly to z* = 0. For a® = 2 method converges

in one step. Note that the method also converges linearly for 2 < o < 4. Proposition 1.4.1 does

not apply since V2£(0) is not invertible. Otherwise, we would have superlinear convergence.

Alternatively, instead of inverting V2f(x), we can calculate the Newton direction at a
vector x by guessing (based on symmetry) that it has the form ~z for some scalar v, and by
determining the value of v through the equation V2f(z)(yx) = —V f(z). In this way, we can
verify that v = —1/2.
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