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Section 2.1

Solutions Chapter 2

SECTION 2.1

2.1.3 w w w

We have that

f(xk+1) ≤ max
i

(1 + λiP k(λi))
2
f(x0), (1)

for any polynomial P k of degree k and any k, where {λi} is the set of the eigenvalues of Q. Chose

P k such that

1 + λP k(λ) =
(z1 − λ)

z1
·
(z2 − λ)

z2
· · ·

(zk − λ)

zk
.

Define Ij = [zj − δj , zj + δj ] for j = 1, . . . , k. Since λi ∈ Ij for some j, we have

(1 + λiP k(λi))
2 ≤ max

λ∈Ij
(1 + λP k(λ))2 .

Hence

max
i

(1 + λiP k(λi))
2
≤ max

1≤j≤k
max
λ∈Ij

(1 + λP k(λ))
2
. (2)

For any j and λ ∈ Ij we have

(1 + λP k(λ))
2
=

(z1 − λ)2

z21
·
(z2 − λ)2

z22
· · ·

(zk − λ)2

z2k

≤
(zj + δj − z1)2(zj + δj − z2)2 · · · (zj + δj − zj−1)2δ2j

z21 · · · z
2
j

.

Here we used the fact that λ ∈ Ij implies λ < zl for l = j + 1, . . . , k, and therefore (zl−λ)2

z2
l

≤ 1

for all l = j + 1, . . . , k. Thus, from (2) we obtain

max
i

(1 + λiP k(λi))
2 ≤ R, (3)

where

R =

{

δ21
z21

,
δ22(z2 + δ2 − z1)2

z21z
2
2

, · · · ,
δ2k(zk + δk − z1)2 · · · (zk + δk − zk−1)2

z21z
1
2 · · · z

2
k

}

.

The desired estimate follows from (1) and (3).

3



Section 2.1

2.1.4 w w w

It suffices to show that the subspace spanned by g0, g1, . . . , gk−1 is the same as the subspace

spanned by g0, Qg0, . . . , Qk−1g0, for k = 1, . . . , n. We will prove this by induction. Clearly, for

k = 1 the statement is true. Assume it is true for k − 1 < n− 1, i.e.

span{g0, g1, . . . , gk−1} = span{g0, Qg0, . . . , Qk−1g0},

where span{v0, . . . , vl} denotes the subspace spanned by the vectors v0, . . . , vl. Assume that

gk 6= 0 (i.e. xk 6= x∗). Since gk = ∇f(xk) and xk minimizes f over the manifold x0 +

span{g0, g1, . . . , gk−1}, from our assumption we have that

gk = Qxk − b = Q

(

x0 +

k−1
∑

i=0

ξiQig0

)

− b = Qx0 − b+

k−1
∑

i=0

ξiQi+1g0.

The fact that g0 = Qx0 − b yields

gk = g0 + ξ0Qg0 + ξ1Q2g0 + . . .+ ξk−2Qk−1g0 + ξk−1Qkg0. (1)

If ξk−1 = 0, then from (1) and the inductive hypothesis it follows that

gk ∈ span{g0, g1, . . . , gk−1}. (2)

We know that gk is orthogonal to g0, . . . , gk−1. Therefore (2) is possible only if gk = 0 which

contradicts our assumption. Hence, ξk−1 6= 0. If Qkg0 ∈ span{g0, Qg0, . . . , Qk−1g0}, then

(1) and our inductive hypothesis again imply (2) which is not possible. Thus the vectors

g0, Qg0, . . . , Qk−1g0, Qkg0 are linearly independent. This combined with (1) and linear inde-

pendence of the vectors g0, . . . , gk−1, gk implies that

span{g0, g1, . . . , gk−1, gk} = span{g0, Qg0, . . . , Qk−1g0, Qkg0},

which completes the proof.

2.1.5 w w w

Let xk be the sequence generated by the conjugate gradient method, and let dk be the sequence

of the corresponding Q-conjugate directions. We know that xk+1 minimizes f over

x0 + span {d0, d1, . . . , dk}.
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Section 2.1

Let x̃k be the sequence generated by the method described in the exercise. In particular, x̃1 is

generated from x0 by steepest descent and line minimization, and for k ≥ 1, x̃k+1 minimizes f

over the two-dimensional linear manifold

x̃k + span {g̃k and x̃k − x̃k−1},

where g̃k = ∇f(x̃k). We will show by induction that xk = x̃k for all k ≥ 1.

Indeed, we have by construction x1 = x̃1. Suppose that xi = x̃i for i = 1, . . . , k. We will

show that xk+1 = x̃k+1. We have that g̃k is equal to gk = βkdk−1 − dk so it belongs to the

subspace spanned by dk−1 and dk. Also x̃k − x̃k−1 is equal to xk − xk−1 = αk−1dk−1. Thus

span {g̃k and x̃k − x̃k−1} = span {dk−1 and dk}.

Observe that xk belongs to

x0 + span {d0, d1, . . . , dk−1},

so

x0 + span {d0, d1, . . . , dk−1} ⊃ xk + span {dk−1 and dk} ⊃ xk + span {dk}.

The vector xk+1 minimizes f over the linear manifold on the left-hand side above, and also

over the linear manifold on the right-hand side above (by the definition of a conjugate direction

method). Moreover, x̃k+1 minimizes f over the linear manifold in the middle above. Hence

xk+1 = x̃k+1.

2.1.6 (PARTAN) w w w

Suppose that x1, . . . , xk have been generated by the method of Exercise 1.6.5, which by the result

of that exercise, is equivalent to the conjugate gradient method. Let yk and xk+1 be generated

by the two line searches given in the exercise.

By the definition of the congugate gradient method, xk minimizes f over

x0 + span {g0, g1, . . . , gk−1},

so that

gk ⊥ span {g0, g1, . . . , gk−1},

and in particular

gk ⊥ gk−1. (1)
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Section 2.1

Also, since yk is the vector that minimizes f over the line yα = xk − αgk, α ≥ 0, we have

gk ⊥ ∇f(yk). (2)

Any vector on the line passing through xk−1 and yk has the form

y = αxk−1 + (1− α)yk, α ∈ ℜ,

and the gradient of f at such a vector has the form

∇f
(

αxk−1 + (1− α)yk
)

= Q
(

αxk−1 + (1− α)yk
)

− b

= α(Qxk−1 − b) + (1− α)(Qyk − b)

= αgk−1 + (1− α)∇f(yk).

(3)

From Eqs. (1)-(3), it follows that gk is orthogonal to the gradient ∇f(y) of any vector y on the

line passing through xk−1 and yk.

In particular, for the vector xk+1 that minimizes f over this line, we have that ∇f(xk+1)

is orthogonal to gk. Furthermore, because xk+1 minimizes f over the line passing through xk−1

and yk, ∇f(xk+1) is orthogonal to yk − xk−1. Thus, ∇f(xk+1) is orthogonal to

span {gk, yk − xk−1},

and hence also to

span {gk, xk − xk−1},

since xk−1, xk, and yk form a triangle whose side connecting xk and yk is proportional to gk.

Thus xk+1 minimizes f over

xk + span {gk, xk − xk−1},

and it is equal to the one generated by the algorithm of Exercise 1.6.5.

2.1.7 w w w

The objective is to minimize over ℜn, the positive semidefinite quadratic function

f(x) =
1

2
x′Qx+ b′x.

The value of xk following the kth iteration is

xk = argmin

{

f(x)|x = x0 +

k−1
∑

i=1

γidi, γi ∈ ℜ

}

= argmin

{

f(x)|x = x0 +

k−1
∑

i=1

δigi, δi ∈ ℜ

}

,
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Section 2.1

where di are the conjugate directions, and gi are the gradient vectors. At the beginning of the

(k + 1)st iteration, there are two possibilities:

(1) gk = 0: In this case, xk is the global minimum since f(x) is a convex function.

(2) gk 6= 0: In this case, a new conjugate direction dk is generated. Here, we also have two

possibilities:

(a) A minimum is attained along the direction dk and defines xk+1.

(b) A minimum along the direction dk does not exist. This occurs if there exists a direction

d in the manifold spanned by d0, . . . , dk such that d′Qd = 0 and b′d 6= 0. The problem

in this case has no solution.

If the problem has no solution (which occurs if there is some vector d such that d′Qd = 0

but b′d 6= 0), the algorithm will terminate because the line minimization problem along such a

direction d is unbounded from below.

If the problem has infinitely many solutions (which will happen if there is some vector d

such that d′Qd = 0 and b′d = 0), then the algorithm will proceed as if the matrix Q were positive

definite, i.e. it will find one of the solutions (case 1 occurs).

However, in both situations the algorithm will terminate in at most m steps, where m is

the rank of the matrix Q, because the manifold

{x ∈ ℜn|x = x0 +

k−1
∑

i=0

γidi, γi ∈ ℜ}

will not expand for k > m.

2.1.8 w w w

Let S1 and S2 be the subspaces with S1 ∩ S2 being a proper subspace of ℜn (i.e. a subspace

of ℜn other than {0} and ℜn itself). Suppose that the subspace S1 ∩ S2 is spanned by linearly

independent vectors vk, k ∈ K ⊆ {1, 2, . . . , n}. Assume that x1 and x2 minimize the given

quadratic function f over the manifolds M1 and M2 that are parallel to subspaces S1 and S2,

respectively, i.e.

x1 = arg min
x∈M1

f(x) and x2 = arg min
x∈M2

f(x)

where M1 = y1 + S1, M2 = y2 + S2, with some vectors y1, y2 ∈ ℜn. Assume also that x1 6= x2.

Without loss of generality we may assume that f(x2) > f(x1). Since x2 6∈ M1, the vectors x2−x1
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and {vk | k ∈ K} are linearly independent. From the definition of x1 and x2 we have that

d

dt
f(x1 + tvk)

∣

∣

∣

∣

t=0

= 0 and
d

dt
f(x2 + tvk)

∣

∣

∣

∣

t=0

= 0,

for any vk. When this is written out, we get

x1′Qvk − b′vk = 0 and x2′Qvk − b′vk = 0.

Subtraction of the above two equalities yields

(x1 − x2)′Qvk = 0, ∀ k ∈ K.

Hence, x1 −x2 is Q-conjugate to all vectors in the intersection S1 ∩S2. We can use this property

to construct a conjugate direction method that does not evaluate gradients and uses only line

minimizations in the following way.

Initialization: Choose any direction d1 and points y1 and z1 such that M1
1 = y1 + span{d1},

M1
2 = z1 + span{d1}, M1

1 6= M1
2 . Let d

2 = x1
1 − x2

1, where xi
1 = argminx∈M1

i
f(x) for i = 1, 2.

Generating new conjugate direction: Suppose that Q-conjugate directions d1, d2, . . . , dk,

k < n have been generated. Let Mk
1 = yk + span{d1, . . . dk} and x1

k = argminx∈Mk
1

f(x). If x1
k

is not optimal there is a point zk such that f(zk) < f(x1
k). Starting from point zk we again

search in the directions d1, d2, . . . , dk obtaining a point x2
k which minimizes f over the manifold

Mk
2 generated by zk and d1, d2, . . . , dk. Since f(x2

k) ≤ f(zk), we have

f(x2
k) < f(x1

k).

As both x1
k and x2

k minimize f over the manifolds that are parallel to span{d1, . . . , dk}, setting

dk+1 = x2
k − x1

k we have that d1, . . . , dk, dk+1 are Q-conjugate directions (here we have used the

established property).

In this procedure it is important to have a step which given a nonoptimal point x generates

a point y for which f(y) < f(x). If x is an optimal solution then the step must indicate this fact.

Simply, the step must first determine whether x is optimal, and if x is not optimal, it must find

a better point. A typical example of such a step is one iteration of the cyclic coordinate descent

method, which avoids calculation of derivatives.

SECTION 2.2
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Section 2.2

2.2.1 w w w

The proof is by induction. Suppose the relation Dkqi = pi holds for all k and i ≤ k − 1. The

relation Dk+1qi = pi also holds for i = k because of the following calculation

Dk+1qk = Dkqk +
ykyk′qk

qk
′
yk

= Dkqk + yk = Dkqk + (pk −Dkqk) = pk.

For i < k, we have, using the induction hypothesis Dkqi = pi,

Dk+1qi = Dkqi +
yk(pk −Dkqk)′qi

qk
′
yk

= pi +
yk(pk′qi − qk′pi)

qk
′
yk

.

Since pk′qi = pk′Qpi = qk′pi, the second term in the right-hand side vanishes and we have

Dk+1qi = pi. This completes the proof.

To show that (Dn)−1 = Q, note that from the equation Dk+1qi = pi, we have

Dn =
[

p0 · · · pn−1
][

q0 · · · qn−1
]−1

, (*)

while from the equation Qpi = Q(xi+1−xi) = (Qxi+1−b)−(Qxi−b) = ∇f(xi+1)−∇f(xi) = qi,

we have

Q
[

p0 · · · pn−1
]

=
[

q0 · · · qn−1
]

,

or equivalently

Q =
[

q0 · · · qn−1
][

p0 · · · pn−1
]−1

. (**)

(Note here that the matrix
[

p0 · · · pn−1
]

is invertible, since both Q and
[

q0 · · · qn−1
]

are

invertible by assumption.) By comparing Eqs. (*) and (**), it follows that (Dn)−1 = Q.

2.2.2 w w w

For simplicity, we drop superscripts. The BFGS update is given by

D̄ = D +
pp′

p′q
−

Dqq′D

q′Dq
+ q′Dq

(

p

p′q
−

Dq

q′Dq

)(

p

p′q
−

Dq

q′Dq

)′

= D +
pp′

p′q
−

Dqq′D

q′Dq
+ q′Dq

(

pp′

(p′q)2
−

Dqp′ + pq′D

(p′q)(q′Dq)
+

Dqq′D

(q′Dq)2

)

= D +

(

1 +
q′Dq

p′q

)

pp′

p′q
−

Dqp′ + pq′D

p′q

.

9



Section 2.2

2.2.3 w w w

(a) For simplicity, we drop superscripts. Let V = I − ρqp′, where ρ = 1/(q′p). We have

V ′DV + ρpp′ = (I − ρqp′)′D(I − ρqp′) + ρpp′

= D − ρ(Dqp′ + pq′D) + ρ2pq′Dqp′ + ρpp′

= D −
Dqp′ + pq′D

q′p
+

(q′Dq)(pp′)

(q′p)2
+

pp′

q′p

= D +

(

1 +
q′Dq

p′q

)

pp′

p′q
−

Dqp′ + pq′D

p′q

and the result now follows using the alternative BFGS update formula of Exercise 1.7.2.

(b) We have, by using repeatedly the update formula for D of part (a),

Dk = V k−1′Dk−1V k−1 + ρk−1pk−1pk−1′

= V k−1′V k−2′Dk−2V k−2V k−1 + ρk−2V k−1′pk−2pk−2′V k−1 + ρk−1pk−1pk−1′,

and proceeding similarly,

Dk = V k−1′V k−2′ · · ·V 0′D0V 0 · · ·V k−2V k−1

+ ρ0V k−1′ · · ·V 1′p0p0′V 1 · · ·V k−1

+ ρ1V k−1′ · · ·V 2′p1p1′V 2 · · ·V k−1

+ · · ·

+ ρk−2V k−1′pk−2pk−2′V k−1

+ ρk−1pk−1pk−1′

.

Thus to calculate the direction −Dk∇f(xk), we need only to store D0 and the past vectors pi,

qi, i = 0, 1, . . . , k − 1, and to perform the matrix-vector multiplications needed using the above

formula for Dk. Note that multiplication of a matrix V i or V i′ with any vector is relatively

simple. It requires only two vector operations: one inner product, and one vector addition.

2.2.4 w w w

Suppose that D is updated by the DFP formula and H is updated by the BFGS formula. Thus

the update formulas are

D̄ = D +
pp′

p′q
−

Dqq′D

q′Dq
,

H̄ = H +

(

1 +
p′Hp

q′p

)

qq′

q′p
−

Hpq′ + qp′H

q′p
.

If we assume that HD is equal to the identity I, and form the product H̄D̄ using the above

formulas, we can verify with a straightforward calculation that H̄D̄ is equal to I. Thus if the
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initial H and D are inverses of each other, the above updating formulas will generate (at each

step) matrices that are inverses of each other.

2.2.5 w w w

(a) By pre- and postmultiplying the DFP update formula

D̄ = D +
pp′

p′q
−

Dqq′D

q′Dq
,

with Q1/2, we obtain

Q1/2D̄Q1/2 = Q1/2DQ1/2 +
Q1/2pp′Q1/2

p′q
−

Q1/2Dqq′DQ1/2

q′Dq
.

Let

R̄ = Q1/2D̄Q1/2, R = Q1/2DQ1/2,

r = Q1/2p, q = Qp = Q1/2r.

Then the DFP formula is written as

R̄ = R+
rr′

r′r
−

Rrr′R

r′Rr
.

Consider the matrix

P = R −
Rrr′R

r′Rr
.

From the interlocking eigenvalues lemma, the eigenvalues µ1, . . . , µn satisfy

µ1 ≤ λ1 ≤ µ2 ≤ · · · ≤ µn ≤ λn,

where λ1, . . . λn are the eigenvalues of R. We have Pr = 0, so 0 is an eigenvalue of P and r is a

corresponding eigenvector. Hence, since λ1 > 0, we have µ1 = 0. Consider the matrix

R̄ = P +
rr′

r′r
.

We have R̄r = r, so 1 is an eigenvalue of R̄. The other eigenvalues are the eigenvalues µ2, . . . , µn

of P , since their corresponding eigenvectors e2, . . . , en are orthogonal to r, so that

R̄ei = Pei = µiei, i = 2, . . . , n.

(b) We have

λ1 ≤
r′Rr

r′r
≤ λn,
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so if we multiply the matrix R with r′r/r′Rr, its eigenvalue range shifts so that it contains 1.

Since
r′r

r′Rr
=

p′Qp

p′Q1/2RQ1/2p
=

p′q

q′Q−1/2RQ−1/2q
=

p′q

q′Dq
,

multiplication of R by r′r/r′Rr is equivalent to multiplication of D by p′q/q′Dq.

(c) In the case of the BFGS update

D̄ = D +

(

1 +
q′Dq

p′q

)

pp′

p′q
−

Dqp′ + pq′D

p′q
,

(cf. Exercise 1.7.2) we again pre- and postmultiply with Q1/2. We obtain

R̄ = R+

(

1 +
r′Rr

r′r

)

rr′

r′r
−

Rrr′ + rr′R

r′r
,

and an analysis similar to the ones in parts (a) and (b) goes through.

2.2.6 w w w

(a) We use induction. Assume that the method coincides with the conjugate gradient method

up to iteration k. For simplicity, denote for all k,

gk = ∇f(xk).

We have, using the facts pk′gk+1 = 0 and pk = αkdk,

dk+1 = −Dk+1gk+1

= −

(

I +

(

1 +
qk

′
qk

pk′qk

)

pkpk
′

pk′qk
−

qkpk
′
+ pkqk

′

pk′qk

)

gk+1

= −gk+1 +
pkqk′gk+1

pk′qk

= −gk+1 +
(gk+1 − gk)′gk+1

dk′qk
dk.

The argument given at the end of the proof of Prop. 1.6.1 shows that this formula is the same as

the conjugate gradient formula.

(b) Use a scaling argument, whereby we work in the transformed coordinate system y = D−1/2x,

where the matrix D becomes the identity.
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