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Section 2.1

Solutions Chapter 2

SECTION 2.1

2.1.3

We have that
f(xk"'l) < max(l + /\iPk(/\i))2 f(xO), (1)

for any polynomial P* of degree k and any k, where {);} is the set of the eigenvalues of ). Chose

P* such that
(21—)\) ) (22—)\) (Zk—)\)

L+APEQY) = 21 2o 2k

Define I; = [z; — 0;,2; + ¢;] for j =1,..., k. Since \; € I; for some j, we have

(14 XiPF(\i))? < max (14 APF(N))?.

AETL;

Hence

Pk < k()\))2
max (1+ A P(A))" < max rgleags(HAP ()™ (2)

For any j and A € I; we have

2 (1= A)? (22— A2 (2 —A)?

14 APE(\))? = )
(L APE) = 2
(2 + 05— 21)2(25 + 05 — 22)% -+ (25 + 05 — 2j-1)203
- zf ij
Here we used the fact that A € I; implies A < z; for [ = 5+ 1,...,k, and therefore (ZI;Q)‘)Q <1
1
foralll=j+1,..., k. Thus, from (2) we obtain
max (1+ A\ P¥(\i)* < R, 3)

where

220 2.2 ) 2.1 2
Zl 2122 2122 e Zk

R:{éf 05(22 + 02 —21)% 5,%(%+5k—21)2'~'(zk+5k—2k1)2}

The desired estimate follows from (1) and (3).
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2.1.4

It suffices to show that the subspace spanned by ¢°,g1,...,g¥—1 is the same as the subspace
spanned by g%, Qg9,...,Q% 149 for k =1,...,n. We will prove this by induction. Clearly, for

k =1 the statement is true. Assume it is true for k — 1 <n —1, i.e.

span{g®, gt,...,g*"1} = span{g?, Qg°,...,Q*~1g"},

where span{v?, ..., v!} denotes the subspace spanned by the vectors v0,...,v!. Assume that
gk # 0 (ie. zk # 2*). Since g¢ = Vf(zF) and z* minimizes f over the manifold z0 +

span{gY, g1,..., g1}, from our assumption we have that

k—1 k—1
gk =Qut—b=Q <x0 + Z@@igO) —b=Qu0 b+ Y &QI

1=0 =0

The fact that g0 = Qz0 — b yields

gk = g0+ &Qg0 + Q290 + ... + & 2QF1g0 + & _1QFgPO. (1)

If &1 =0, then from (1) and the inductive hypothesis it follows that

g* € span{g®,g',..., gk 1} (2)

We know that ¢g* is orthogonal to ¢°,...,g*—1. Therefore (2) is possible only if g¢ = 0 which
contradicts our assumption. Hence, &1 # 0. If Qkg9 € span{g® Qg",...,Q*1¢g0}, then
(1) and our inductive hypothesis again imply (2) which is not possible. Thus the vectors
g%, Qg% ..., QF 190 Qkg0 are linearly independent. This combined with (1) and linear inde-

pendence of the vectors ¢gY,..., gk—1, g* implies that

span{go7gl’ R 7gk71’gk} = span{go7 Q907 ct Qkilgo7 ngo}’

which completes the proof.

2.1.5

Let 2% be the sequence generated by the conjugate gradient method, and let d* be the sequence

of the corresponding Q-conjugate directions. We know that z5+1 minimizes f over

a9 +span {d°,d',..., d~F}.

4



Section 2.1

Let Z% be the sequence generated by the method described in the exercise. In particular, ! is
generated from 20 by steepest descent and line minimization, and for k > 1, Z*+1 minimizes f

over the two-dimensional linear manifold
Zk + span {gk and zk — Zk-1},

where gF = V f(ZF). We will show by induction that zF = Z* for all k£ > 1.

Indeed, we have by construction 21 = Z!. Suppose that z? = & for i = 1,..., k. We will
show that xk+1 = Zk+1, We have that g* is equal to gk = pkdk—1 — d¥ so it belongs to the

subspace spanned by d*—! and d*. Also % — 7k~ is equal to z*k — xk—1 = ak—1dk—1, Thus
span {g* and &%k — Zk-1} = span {d*~1 and d*}.
Observe that x* belongs to
a9 +span {d°,d!, ... dk-1},
S0

20 + span {d%,d!,...,d*=1} Dk + span {d¥~! and d*} D z* + span {d¥}.

The vector zF*+1 minimizes f over the linear manifold on the left-hand side above, and also
over the linear manifold on the right-hand side above (by the definition of a conjugate direction

method). Moreover, £F+1 minimizes f over the linear manifold in the middle above. Hence

okl = Fhtl

2.1.6 (PARTAN)

Suppose that x!, ..., % have been generated by the method of Exercise 1.6.5, which by the result
of that exercise, is equivalent to the conjugate gradient method. Let y* and x*k+1 be generated

by the two line searches given in the exercise.

By the definition of the congugate gradient method, z* minimizes f over

29 +span {g0, g',...,g" 1},
so that
gk Lspan {g%,g',...,gF 1},

and in particular

gk L gkt (1)

5



Section 2.1

Also, since y* is the vector that minimizes f over the line yo = 2% — ag®, o > 0, we have
gk LV f(yk). (2)
Any vector on the line passing through z¥—1! and y* has the form
y=oaxk=t 4+ (1 - a)yk, a e R,

and the gradient of f at such a vector has the form
Vf(axk-1 + (1 - a)yk) = Q(azk~1 + (1 — a)yk) — b
= a(Qzr1 —b) + (1 - ) (Qy* - b) 3)
= agh-t+ (1 - )V ().

From Egs. (1)-(3), it follows that g* is orthogonal to the gradient V f(y) of any vector y on the
line passing through z%-1 and y*.

In particular, for the vector xk+1 that minimizes f over this line, we have that V f(ak+1)
is orthogonal to gk. Furthermore, because x¥+1 minimizes f over the line passing through z*-1
and y*¥, Vf(x*+1) is orthogonal to y* — xk—1. Thus, V f(2*k+1) is orthogonal to

span {gk,yk — ak—1}

and hence also to

span {gk, a — zh=1},

since k1, x% and y* form a triangle whose side connecting z* and y* is proportional to g*.
Thus 25+1 minimizes f over

ak + span {gk, b — xk-1},

and it is equal to the one generated by the algorithm of Exercise 1.6.5.

2.1.7
The objective is to minimize over R™, the positive semidefinite quadratic function
1
flx) = EZE/QI +bx.

The value of z* following the kth iteration is

k—1 k—1
k¥ = arg min {f(:z:)|:1: =20+ Z”yidi,’yi € §R} = arg min {f(:z:)|:1: =20+ Z(sigi,(;i € 3‘%} ,

i=1 i=1
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where di are the conjugate directions, and ¢’ are the gradient vectors. At the beginning of the

+ 1)st iteration, there are two possibilities:
k + 1)st iterati th t ibiliti
(1) gk = 0: In this case, z* is the global minimum since f(z) is a convex function.

(2) gk # 0: In this case, a new conjugate direction d* is generated. Here, we also have two

possibilities:
(a) A minimum is attained along the direction d* and defines z++1.

(b) A minimum along the direction d¥ does not exist. This occurs if there exists a direction
d in the manifold spanned by d°, ..., d* such that d’Qd = 0 and &’d # 0. The problem

in this case has no solution.

If the problem has no solution (which occurs if there is some vector d such that d’Qd = 0
but ¥'d # 0), the algorithm will terminate because the line minimization problem along such a

direction d is unbounded from below.
If the problem has infinitely many solutions (which will happen if there is some vector d

such that d’Qd = 0 and ¥’d = 0), then the algorithm will proceed as if the matrix ) were positive

definite, i.e. it will find one of the solutions (case 1 occurs).

However, in both situations the algorithm will terminate in at most m steps, where m is

the rank of the matrix @, because the manifold

k—1
{zr e |z =20 + Z’yidi,’yi € R}

=0

will not expand for k > m.

2.1.8

Let S1 and S2 be the subspaces with S1 N Sz being a proper subspace of R* (i.e. a subspace
of " other than {0} and R™ itself). Suppose that the subspace S1 N Sz is spanned by linearly
independent vectors vi, kK € K C {1,2,...,n}. Assume that 2! and 22 minimize the given
quadratic function f over the manifolds M; and Ms that are parallel to subspaces S; and Sa,

respectively, i.e.

xl = arg 112]1\1411 f(z) and 22 =arg 112]1\1412 f(z)

where M1 =yl + 51, M2 = y2 + S2, with some vectors yl,y2 € R". Assume also that z! # z2.

Without loss of generality we may assume that f(z2) > f(z1). Since 22 ¢ My, the vectors z2 —z1

7
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and {vy | k € K} are linearly independent. From the definition of 2! and 22 we have that
if(xl + tok) =0 and if(gc2 + tok) =0
dt —0 dt —o

for any vk. When this is written out, we get
2V Quk — bvk =0 and 22’ Quk — b'vk = 0.
Subtraction of the above two equalities yields
(! — 22)Quk =0, VkekK.

Hence, x! — 22 is QQ-conjugate to all vectors in the intersection S1 N S2. We can use this property
to construct a conjugate direction method that does not evaluate gradients and uses only line

minimizations in the following way.

Initialization: Choose any direction d! and points y! and z! such that M] = y! + span{d'},
M3 = 2! +span{d'}, M| # M}. Let d? =z} — 22, where 2} = argmin, ¢ ;1 f(z) fori=1,2.

Generating new conjugate direction: Suppose that Q-conjugate directions d',d?, ..., d¥,
k < n have been generated. Let M} = y¥ + span{d!,...d*} and z} = arg minwer f(z). If =},
is not optimal there is a point z* such that f(z*) < f(z}). Starting from point z¥ we again
search in the directions d',d?,...,d* obtaining a point 7 which minimizes f over the manifold

M} generated by z* and d!,d2,...,dk. Since f(z?) < f(z*), we have

F@q) < flzy).

As both z; and 2% minimize f over the manifolds that are parallel to span{d!,...,d*}, setting
dk+1l = 22 — x} we have that d!,...,d*,d*+1 are Q-conjugate directions (here we have used the

established property).

In this procedure it is important to have a step which given a nonoptimal point x generates
a point y for which f(y) < f(x). If z is an optimal solution then the step must indicate this fact.
Simply, the step must first determine whether = is optimal, and if  is not optimal, it must find
a better point. A typical example of such a step is one iteration of the cyclic coordinate descent

method, which avoids calculation of derivatives.

SECTION 2.2
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2.2.1

The proof is by induction. Suppose the relation D¥q¢? = pi holds for all k and i < k — 1. The

relation Dk+1g? = pt also holds for ¢ = k because of the following calculation

yhyk' gk
q*'y*

Dk+lgk = Dkgk + = Dkgk + yk = Dkgk 4 (pk — Dkgk) = pk.

For i < k, we have, using the induction hypothesis D¥q? = pt,

Ditigi = prg 4 LODUVE 0N ')
qry*

g*'y*

Since p*'¢i = p*'Qpi = ¢+'pi, the second term in the right-hand side vanishes and we have

DFk+1gi = pi. This completes the proof.

To show that (D7)~! = @, note that from the equation D¥+1¢* = p? we have

Dn = [po pnf1Hq0 qn—l]_ ) (*)

while from the equation Qp? = Q(z*+! — ) = (Qzitl —b) — (Qa? —b) = Vf(z+1) =V f(2) = ¢,

we have

Q[po pn—l] — [qO qn—l}7

or equivalently

Q= [qO qn—l}[pO pn—l]il_ (**)

(Note here that the matrix [po p"—l} is invertible, since both @ and [qo q”—l} are

invertible by assumption.) By comparing Egs. (*) and (**), it follows that (D")~1 = Q.

2.2.2

For simplicity, we drop superscripts. The BFGS update is given by

_ ' Dqq'D D Dq \'
b=+ B - ST oo (- 75) (7 7s)
e  ¢Dgq e q¢Dq) \p'q qDq

_p4 b _DwD ( pp'  Dgp' +pg'D  Dqq'D ) .
p'q¢  ¢Dq (r9)?  Wao(@Dq)  (¢Dq)?
/D / D / /D
_D+<1+q/q>g_ qulrpq
P'q ) p'q P'q
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2.2.3

a) For simplicity, we drop superscripts. Let V = I — pgp’, where p = 1/(¢’p). We have
p p
V'DV + ppp’ = (I — pqp’)' D(I — pgp’) + ppp’
=D — p(Dgp’ + pg' D) + p*pq' Dap’ + ppp’

D / ID ID / /
_p_DPw+peD  (¢'Da)pp) | pp

q'p (¢'p)? q'p
/D / D / /D
_D+<1+q/q)g_ W+ pe
P'q ) v'q r'q

and the result now follows using the alternative BFGS update formula of Exercise 1.7.2.

(b) We have, by using repeatedly the update formula for D of part (a),
Dk = Vk=1'Dk=1Yk=1 4 ph—1pk—1pk—1'
= VE=1'Vk=2' Dk=2V k=2 k=1 4 ph=2\ k—1"pk—2pk—2"\ k=1 4 pk—1pk—1pk—1"
and proceeding similarly,
Dk = Vk=1yk=2" ... 1V0'DOVO ...\ k—2Y k-1
+ pOVE=1 YV p0p0' L k=1
+ plVE=1 2 plpl’ 2. k-1
+ pk—2V k=1 pk—2pk—2"} k-1
+ pkflpkflpkfll
Thus to calculate the direction —D#V f(z*), we need only to store DO and the past vectors p?,
qt,1=0,1,...,k — 1, and to perform the matrix-vector multiplications needed using the above

formula for D*. Note that multiplication of a matrix Vi or Vi’ with any vector is relatively

simple. It requires only two vector operations: one inner product, and one vector addition.

2.2.4

Suppose that D is updated by the DFP formula and H is updated by the BFGS formula. Thus

the update formulas are

_ ' Dqq'D
p=py2 Dub
e  q'Dgq
-4 (1+p’Hp> q¢  Hpq +qp'H
agp ) q'p q'p

If we assume that HD is equal to the identity I, and form the product HD using the above

formulas, we can verify with a straightforward calculation that HD is equal to I. Thus if the

10
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initial H and D are inverses of each other, the above updating formulas will generate (at each

step) matrices that are inverses of each other.

2.2.5

(a) By pre- and postmultiplying the DFP update formula

_ ' Dqq'D
p=p+2 Dub
e  q'Dgq

with Q1/2, we obtain

QV2pp QY2 QY/2Dqq' DQY/2

Ql/2DQ1/2 — Q1/2DQ1/2 +
P'q q'Dq

Let
R:Ql/QDQl/Q, R=Q1/2DQ1/2,

r=Q?p, q=Qp= QY.

Then the DFP formula is written as

_ rr’  Rrr'R
R=R+—— ——.
* r'r r' Rr
Consider the matrix
Rrr'R
P=R- .
r' Rr
From the interlocking eigenvalues lemma, the eigenvalues p1, ..., un satisfy

where A1, ...\, are the eigenvalues of R. We have Pr = 0, so 0 is an eigenvalue of P and r is a

corresponding eigenvector. Hence, since A1 > 0, we have 1 = 0. Consider the matrix

_ rr!
R=P+ —.
r'r
We have Rrr = r, so 1 is an eigenvalue of R. The other eigenvalues are the eigenvalues pa, . . ., fin
of P, since their corresponding eigenvectors ea, ..., e, are orthogonal to r, so that

Re; = Pe; = pie;, t=2,...,n.

(b) We have
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so if we multiply the matrix R with r/r/r'Rr, its eigenvalue range shifts so that it contains 1.

Since
r'r p'Qp P'q P'q

" Rr PQIZRQ2p = ¢Q-12RQ-12q ~ ¢Dq’

multiplication of R by r/r/r’ Rr is equivalent to multiplication of D by p’q/q’ Dq.

(¢) In the case of the BFGS update

_ 'D / Dap' 'D
D:D+(1+q/q)@_ qu/qu
P'q ) paq P'q

(cf. Exercise 1.7.2) we again pre- and postmultiply with Q!/2. We obtain

R_R4 (1+T‘/RT> ' Rrr’—i—rr’l‘%7

r'r r'r r'r

and an analysis similar to the ones in parts (a) and (b) goes through.

2.2.6

(a) We use induction. Assume that the method coincides with the conjugate gradient method

up to iteration k. For simplicity, denote for all k,

gk =V f(xk).

We have, using the facts p*'gk+1 = 0 and p* = akdk,

dk+1 = — Dk+1gh+1
O OO G AW iy S S
I G G R k! ok g
P q prq prq

k gk’ gk+1
— _gk+1 4 P4 /g

P

k1 _ k) ghtl
— _gk+l 4 (9" /9 )9t k.

d¥ gk

The argument given at the end of the proof of Prop. 1.6.1 shows that this formula is the same as

the conjugate gradient formula.

(b) Use a scaling argument, whereby we work in the transformed coordinate system y = D~1/2z,

where the matrix D becomes the identity.
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