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Section 3.1

Solutions Chapter &

SECTION 3.1

3.1.9

From Prop. 3.1.2(a), if z* is a local minimum, then
V(@) (x—a*) >0, VaoelX,

or

> 8“2(;*) (i —a7) 2 0.
i=1 v

If 27 = oy, then x; > 2}, V x;. Letting z; = a7, for j # 4, we have

Of(x¥)
6@

> 0.

Similarly, if } = §;, then z; <z, for all ;. Letting x; = 7, for j # i, we have

and letting x; = B;, we obtain

Combining these inequalities, we see that we must have

Of(z¥)
6@

Assume that f is convex. To show that Egs. (1.6)-(1.8) are sufficient for 2* to be a global

minimum, let Iy = {i | 2} = a;}, L ={i |2} = 8}, I3 = {i | ;s < xf < B;}. Then

Vi) —at) =3 2 )
i=1 ¢
=2 82(;*) (@i — i)+ ) 82(;*) (@i =B+ 82(;*) (i — 7).
i€l ! i€l ‘ icl3 ¢
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Section 3.1

Since %f) >0 for i € Iy, %ﬁf*) < 0 for i € I, and %ﬁf*) = 0 for ¢ € I3, each term in the

above equation is greater than or equal to zero. Therefore
Vi) (z—2*)>0, VaelX.

From Prop. 3.1.2(b), it follows that z* is a global minimum.

3.1.10

For any x € X such that Vf(z*)'(x — z*) = 0, we have by the second order expansion of Prop.

A.23, for all « € [0, 1] and some & € [0, o,
flz* +alz —a%)) — f(z*) = $a2(z — 2*)' V2 f(2* + a(z — z*)) (x — 2*).

For all sufficiently small «, the left-hand side is nonnegative, since x* is a local minimum. Hence
the same is true for the right-hand side, and by taking the limit as & — 0 (and also @ — 0), we
obtain

(x —a*)V2f(z*)(x —2*) > 0.

3.1.11

Proof under condition (1): Assume, to arrive at a contradiction, that z* is not a local
minimum. Then there exists a sequence {x*} C X converging to z* such that f(z¥) < f(z*) for

all k. We have
Flab) = Fa) + VA Y (@ = %) + 5ok =2 YT f )k — ) + ol — 2°]2).

Introducing the vector
xk — px
P =g
JoF — o]

and using the relation f(x*) < f(z*), we obtain

1 of[z* — z*||?)
#Vpk 1 Zpk!N72 (2% )pk ||k — 1+ 0. 1
V)t + 5o VR ot — e+ A < (1)
This together with the hypothesis V f(x*)/pk > 0 implies
1 k _ px|]2
_pklv2f(x*)pk”xk — x| + M < 0. (2)

2 [k — ||

Let us call feasible direction at x* any vector p of the form a(x — x*), where a > 0 and

z € X, x # x* (see also Section 3.2). The sequence {p¥} is a sequence of feasible directions at
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Section 3.1

x* that lie on the surface of the unit sphere. Therefore, a subsequence {pF}x converges to a
vector P, which because X is polyhedral, must be a feasible direction at * (this is easily seen by
expressing the polyhedral set X in terms of linear equalities and inequalities). Therefore, by the

hypothesis of the exercise, we have V f(z*)’p > 0. By letting k — oo, k € K in (1), we have
Vf(z*)p=0.
The hypothesis of the exercise implies that
PV2f(z*)p > 0. 3)
Dividing by ||z* — z*|| and taking the limit in Eq. (2) as k — oo, k € K, we obtain

1_ _ . of[[x* — z*[|2)
A v * 1 —~r T L 0
V@t ln e S

This contradicts Eq. (3).

Proof under condition (2): Here we argue in the similar way as in part (1). Suppose that all
the given assumptions hold and z* is not a local minimum. Then there is a sequence {z¥} C X
converging to x* such that f(a*) < f(z*) for all k. By using the second order expansion of f at
x* and introducing the vector p* = sz%zil\’ we have that both Eq. (1) and (2) hold for all .
Since {p¥} consists of feasible directions at x* that lie on the surface of the unit sphere, there
is a subsequence {p*¥}k converging to a vector p with ||p|| = 1. By the assumption given in the

exercise, we have that

Vi@ )ph >0, Yk

Hence V f(z*)p > 0. By letting ¥k — oo, k € K in (1), we obtain Vf(x*)p < 0. Consequently
V f(z*)p = 0. Since the vector P is in the closure of the set of the feasible directions at z*, the
condition given in part (2) implies that p’V2f(z*)p > 0. Dividing by ||z* — 2*|| and taking the
limit in Eq. (2) as kK — oo, k € K, we obtain p'V2 f(x*)p < 0, which is a contradiction. Therefore,

2* must be a local minimum.
Proof under condition (3): We have
f(@) = fa*) + Vf(z*) (z —a*) + %(I — ) V2 f(a)(x — 2*) + of[lx — 2*|]?),
so that by using the hypotheses V f(2*) (z —2*) > 0 and (x —2*)'V2f(2*)(z — x*) > ||z — 2*||2,
f(@) = f@) 2 Zlle = 22 + ol & — a*2).

The expression in the right-hand side is nonnegative for x € X close enough to z*, and it is

strictly positive if in addition z # x*. Hence z* is a strict local minimum.
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Section 3.1

Example: [Why the assumption that X is a polyhedral set was important under
condition (1)] A polyhedral set X has the property that for any point z € X, the set V() of

the feasible directions at x is closed. This was crucial for proving that the conditions
V(@) (x—a*) >0, VoelX, (1)

(x —z*)V2f(z*)(x —2*) >0, VzelX, z#a* forwhich Vf(z*)(z—2*)=0, (2)

are sufficient for local optimality of x*.

Consider the set X = {(z1,22) | (z1)? < 22} and the point (0,0) € X. Let the cost function
be f(zr1,x2) = —2(x1)2 + x2. Note that the gradient of f at 0 is [0,1). It is easy to see that

V() (z—=0)=u1z2 >0, VeeX, z#0.

Thus the point z* = 0 satisfies conditions (1) and (2) (condition 2 is trivially satisfied since in
our example Vf(0)(x — 0) = 0 simply never occurs for € X, = # 0). On the other hand,
z* = 0 is not a local minimum of f in X. Consider the points z» = (&, #) € X forn > 1.
Since z™ — x* as n — oo, for any § > 0 there is an index ns such that ||z — z*|| < § for all
n > ns. By evaluating the cost function, we have f(z7) = —;15 < 0 = f(z*). Hence, in any ¢
neighborhood of z* = 0, there are points 2 € X with the better objective value, i.e. z* is not a

local minimum.

This is happening because the set V(z*) of the feasible directions at point * is not closed

in this case. The set V(z*) is given by

V(e*) = {d = (di,d2) | d2 > 0, |d|| = 1},

(o) = ()

belong to the closure of V(z*) but they are not in the set V(z*).

and is open. The vectors

3.1.18 (www

The assumption on V2f(x) guarantees that f is strictly convex and coercive, so it has a unique
global minimum over any closed convex set (using Weierstrass’ theorem, Prop. A.8). By the

second order expansion of Prop. A.23, we have for all  and y in R”

f)=f@)+Vf(@)(y—x)+ 3y —2)VIG)(y— )
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for some g in the line segment connecting = and y. It follows, using the hypothesis, that

M m
Vi@)(y—2) + 5 lly =2l = fy) = f2) 2 V@) (y = 2) + S lly — ]2
Taking the minimum in this inequality over y € X, and changing sign, we obtain

~ min {Vf(fv)’(y — )+ %Hy - x|2} < f(@) = fa) < —min {VF@)'(y = 2) + Tlly - 2]2} .

yeX yeX

which is the desired relation.

3.1.19 (Existence of Solutions of Nonconvex Quadratic Programming

Problems)

Let {7y*} be a decreasing sequence with y* | f*, and denote
Sk={re X |2Qr+czx < ~k}.

Then the set of optimal solutions of the problem is N S*, so by Prop. 3.1.4, it will suffice
to show that for each asymptotic direction of {S*}, all corresponding asymptotic sequences are
retractive. Let d be an asymptotic direction and let {z¥} be a corresponding asymptotic sequence.
Similar to the proof of Prop. 3.1.5, we have d’Qd < 0. Also, in case (i), similar to the proof of
Prop. 3.1.5, we have a’;d < 0 for all j, while in case (ii) it is seen that d € N, where X = B+ N
and B is compact and N is a polyhedral cone. For any x € X, consider the vectors ¢ = x + kd.
Then, in both cases (i) and (ii), it can be seen that ¥ € X [in case (i) by using the argument
in the proof of Prop. 3.1.5, and in case (ii) by using the definition X = B + N]|. Thus, the cost
function value corresponding to Z* satisfies
f*<(x+kd)Q(x + kd) + ¢/ (x + kd)

=2'Qr + dx + k2d'Qd + k(c + 2Qx)'d

< 2'Qx + dx + k(c+ 2Qx)'d,
where the last inequality follows from the fact d’Qd < 0. From the finiteness of f*, it follows
that

(c+2Qx)'d >0, VaoelX.

We now show that {z*} is retractive, so that we can use Prop. 3.1.4. Indeed for any « > 0, since
lz*|| — oo, it follows that for k sufficiently large, we have a* — ad € X [this follows similar to

the proof of Prop. 3.1.5 in case (i), and because d € N in case (ii)]. Furthermore, we have

flzk —ad) = (2F — ad)'Q(ak — ad) + ¢/ (zF — ad)
= k' Quk + xk — alc+ 2Qx*)d + a2d'Qd
< xk/ka + c'xk

<Ak,



Section 3.1

where the first inequality follows from the facts d’Qd < 0 and (¢ + 2Qz*)’d > 0 shown earlier.
Thus for sufficiently large k, we have z* — ad € Sk, so that {z*} is retractive. The existence of

an optimal solution now follows from Prop. 3.1.4.

3.1.20 (www

We proceed as in the proof of Prop. 3.1.5. By using a decomposition of d*¥ as the sum of a vector
in the nullspace of A and its orthogonal complement, and an argument like the one in the proof
of Prop. 3.1.5, we can show that
Ad =0, cd <0.
Similarly, we can show that
a;dgo, j=1,...,r
Using the finiteness of f*, we can also show that ¢/d = 0, and we can conclude the proof similar

to the proof of Prop. 3.1.5.

3.1.21 (www

Note that the cone N in this exercise must be assumed polyhedral (see the errata sheet). Let
Sk ={z € X | f(z) <~*}, and let d be an asymptotic direction of {S*}, and let {z*} be a
corresponding asymptotic sequence. We will show that {z*} is retractive, so by applying Prop.

3.1.4, it follows that the intersection of {S*}, the set of minima of f over X, is nonempty.

Since d is an asymptotic direction of {S*}, d is also an asymptotic direction of {z | f(z) <
7%}, and by hypothesis for some bounded positive sequence {a*} and some positive integer &,

we have f(zF — akd) <+ for all k > k.

Let X = X + N, where X is compact, and N is the polyhedral cone
N={yl|lady<0,j=1,...,r},

where a1, ..., a, are some vectors. We can represent z* as

where ZF € X and y* € N, so that
a;xk:a;(ik—l—yk), Vk=0,1,....,j=1,...,r

Dividing both sides with ||z*|| and taking the limit as k — oo, we obtain
a’.yk

'd= lim —L—.
G0 T S k]|
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Section 3.2

Since a’jyk < 0 for all k and j, we obtain that a’d < 0 for all j, so that d € N.

For each j, we consider two cases:
(1) ad = 0. In this case, a;(y* —ad) <0 for all k, since y* € N and a/jyk < 0.

(2) a;d < 0. In this case, we have

1 _ 1 k
T~ = (e~ )

k
so that since Hi—kl\ — d, {z*} is unbounded, and {Z*} is bounded, we obtain

i
hvoo |27

a(yk —ad) = ajd < 0.
Hence a/;(y* —ad) < 0 for k greater than some k.
Thus, for £ > k and a € (0,a], we have aj(y* — ad) < aj(y* —ad) < 0 for all j, so that

y* —ad € N and zF — ad € X.

Thus {z*} is retractive, and by applying Prop. 3.1.4, we have that {S¥} has nonempty

intersection.

3.1.22

We follow the hint. Let {yx} be a sequence of points in A.S converging to some 7 € . We will
prove that A S is closed by showing that 5 € A S.

We introduce the sets
Wi = {z Iz =7l < llyr —7ll},
and

Sk={$€S|A$€Wk}.

To show that j € AS, it is sufficient to prove that the intersection Ng° Sy is nonempty, since
every T € M2, Sk satisfies T € S and AT = 7 (because yp — 7). The asymptotic directions of
{S} are asymptotic directions of S that are also in the nullspace of A, and it can be seen that
every corresponding asymptotic sequence is retractive for {Si}. Hence, by Prop. 3.1.4, N2 Sk

is nonempty.

SECTION 3.2
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3.2.7

Since the number of extreme points of f is finite, some extreme point must be repeated within a

finite number of iterations, i.e., for some k and i € {0,1,...,k — 1}, we have
7= arggéi)r(l Vf(zk) (x — xF).
Since xF minimizes f(x) over X*~1, we must have
Vf(zk) (@ — xk) >0, Vi=0,1,...,k—1.
Combining the above two equations, we see that
Vi(zk)(x—ak) >0, VzoelX,

which implies that x* is a stationary point of f over X.

SECTION 3.3

3.3.4

We assume here that the unscaled version of the method (H* = I) is used and that the stepsize

sk is a constant s > 0.

(a) If * is nonstationary, there exists a feasible descent direction Z¥ — ¥ for the original problem,

where 2% € X. Since ¥ € X%, we have
- 1. N 1.
V(R (@ = k) + 5[ — ok[[2 < V@R - k) + oo]jak - k]2 <0,
S S
where Z* is defined by the algorithm. Thus,
- 1.
V(R @ - ak) < — 5@ - ok 2 <0,
S

so that % — 2% is a descent direction at x*. It is also a feasible direction, since a’; (¥ —zk) <0

for all j such that ajzk = b;.

(b) As in the proof of Prop. 3.3.1, we will show that the direction sequence {Z* — z*} is gradient-
related, where

TF = ARk 4 (1 — yF)ah

10
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and

szmax{we [0,1] | v&F + (1 — )k EX}.

Indeed, suppose that {x*}icx converges to a nonstationary point Z. We must prove that

limsup ||Z% — 2*| < oo, *)
k—oo, ke K
limsup Vf(z*) (z* — 2F) < 0. (*%)
k—o0, keK

Since ||Z% — xk|| < ||#F — 2| < 5|V f(z*)]|, Eq. (*) clearly holds, so we concentrate on proving
(**). The key to this is showing that +* is bounded away from 0, so that the inner product
V f(xk) (T* — x*) is bounded away from 0 when V f(xk)/ (7% — x¥) is.

For each k, we either have v¥ = 1, or else we must have for some j with a/zk <b; — ¢,
& (755 + (1 = yE)ak) = by

so that
ykal Tk — xk) = b; — alak >,

from which
€

")/k > .
llajll - 2% — ¥
It follows that for all k, we have

€

min{l,min } <~k <1,
J

llajl - 2% — |
Since the subsequence {x*}x converges, the subsequence {#* — 2%} is bounded implying also

that the subsequence {~v*}k is bounded away from 0.

For sufficiently large k, the set
Xk ={a|dax <b;, forall j with b — e < alak < b;},
is equal to the set
X = {z | djz < by, for all j with b; — e < a/T < b;},

so proceeding as in the proof of Prop. 3.3.1, we obtain

2

)

limsup Vf(zk)/ (2k — zk) < —lufc —[& - sV @]
k—o0, kEK S

where [-]* denotes projection on the set X. Since Z is nonstationary, the right-hand side of the

above inequality is negative, so that

limsup Vf(zk) (zk — k) <O.
k—oo, keK
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We have ZF — 2% = vk (Zk — zF), and since v* is bounded away from 0, it follows that

limsup Vf(z*) (z* — 2F) <0,
k—oo, ke K

proving Eq. (**).

(¢) Here we consider the variant of the method that uses a constant stepsize, which however, is
reduced if necessary to ensure that Z* is feasible. If the stepsize is sufficiently small to ensure
convergence to the unique local minimum x* of the positive definite quadratic cost function, then

7" will be arbitrarily close to * for sufficiently large k, so that T8 = Z*. Thus the convergence

rate estimate of the text applies.

3.3.7
The key idea is to show that z* stays in the bounded set

A={zeX|f(x) < f(20)}

and to use a constant stepsize s = s that depends on the constant L corresponding to this
bounded set. Let
R = max{||z| | x € A},

G =max{||Vf(z)|| | z € A},
and
B={z||z|| < R+2G}.

Using condition (i) in the exercise, there exists some constant L such that ||V f(z) — Vf(y)| <
L)z —y||, for all z,y € B. Suppose the stepsize s satisfies 0 < s < 2min{1,1/L}. We will, show

by induction on k that with this stepsize, we have 2k € A and

L 1

Fat+) < g0 = (5 = 1 ) b+t = a2 < fo) )

for all k£ > 0.

To start the induction, we note that 20 € A, by the definition of A. Suppose that zF € A.

We have zk+1 = [3:’9 — sz(:z:k)} +, so by using the nonexpansiveness of the projection mapping,
[kt —ak|| < [[(aF — sV f(aF)) — 2F| < s||Vf(zh)]| < 2G.

Thus,
[kt < fla* ] 4+ 2G < R+ 2G,
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implying that x%+1 € B. Since B is convex, we conclude that the entire line segment connecting
a* and z¥+1 belongs to B. In order to prove Eq. (*), we now proceed as in the proof of Prop. 3.3.2.
A difficulty arises because Prop. A.24 assumes that the inequality |V f(z) — Vf(y)|| < L|jz — y|
holds for all z,y, whereas in this exercise this inequality holds only for x,y € B. However, using
the fact that the Lipschitz condition holds along the line segment connecting z* and z*+1 (which

belongs to B as argued earlier), the proof of Prop. A.24 can be repeated to obtain
L
FhH) = (k) < Vf(b) (@ — k) + 5 a1 — k|2
Using this relation, and the relation
1
V(R (@ = ak) < — ok — ok
S

we obtain Eq. (*). It follows that a*+1 € A, completing the induction. The remainder of the

proof is the same as in Prop. 3.3.2.
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