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Section 4.2

Solutions Chapter 4

SECTION 4.2

4.2.6

Assume that the matrix

Vi,L(x*,\*) Vh(z*)
= < Vh(z*) 0 )
is invertible, but the sufficiency conditions do not hold for z* and A*. Since z* and A* satisfy
the first and the second order necessary conditions of Prop. 4.2.1, this implies that there is a
vector g # 0 such that Vh(z*)'y = 0 and §'V2, L(x*, \*)§ = 0. Hence, § minimizes the quadratic
function y' V2, L(z*, \*)y over all y with Vh(z*)'y = 0. Thus VZ,L(z*, \*)y = 0, and we have

V2,L(z*,\*) Vh(x*) 7 .
( Vha*y 0 ><0>_ |

which contradict the invertibility of J.

For the reverse assertion, assume that z* and \* satisfy the second order sufficiency condi-

tions of Prop. 4.2.1. Let g € R and z € R™ be vectors such that
Yy
J =0.
z

V2. L(z*, \*)y + Vh(z*)z = 0, (1)

Consequently

Vh(z*)'y = 0. (2)
Pre-multiplying Eq. (1) by § and using Eq. (2), we obtain
yViaL(z*, A*)y = 0.

In view of Eq. (2), it follows that § = 0, for otherwise the second order sufficiency condition
would be violated. Then Eq. (1) yields Vh(z*)zZ = 0. Since z* is a regular point, we must have

z = 0. Hence, J is invertible.
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4.2.7

We have

V2p(u) = =V A(u).
To calculate VA(u), we differentiate the relation
Vf(z(u)) + Vh(z(u))A(uw) = 0.

‘We have

/

Va(u)Viz L(z(u), Nu)) + VA(u)Vh(z(u)) = 0.
We also have Vz(u)Vh(z(u)) = I, from which we obtain for all ¢ € R

ch(u)Vh(:v(u))Vh(w(u))/ = th(x(u))l.
By adding the last two equations, we see that
Va(u) (Ve L(z(uw), AMu)) + th(:v(u))Vh(x(u))/) + (VA(u) — cI)h(w(u))l =0.
From this, we obtain, for every ¢ for which the inverse below exists,

Va(u) + (VA(u) — cI)h(w(u))l (V%mL(I(u), AMu)) + th(:v(u))Vh(:v(u))/> . 0.

Multiplying with Vi (z(u)) and using the equations Va(u)Vh(z(u)) = I and V2p(u) = —=VA(u),

we see that

V2p(u) = (Vh(x(u))l(V%mL(x(u), AMu)) + th(x(u))Vh(x(u))l)_1Vh(:1c(u))) o cl.

SECTION 4.3
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4.3.5

(a) Let d € F(z*) be arbitrary. Then there exists a sequence {d*} C F(x*) such that dt — d.

For each d*, we have
* k) *
Y f(arydt = tim L0 Z )

a—0 «

Since x* is a constrained local minimum, we have

* k *
M > 0 for all sufficiently small «

(for which z* 4+ adF is feasible), and thus V f(z*)’d* > 0. Hence
Vf(z*)d= lim Vf(z*)d>0
k—o0
as desired.

(b) If z* is a constrained local minimum, we have from part (a)
Vi(z*)d>0 Vdwith Vg;(z*)d <0, Vje A(z*).
According to Farkas’ lemma, this is true if and only if there exists p* such that

~Vf(@*)= > wiVg(z*), i >0.
JEA(z*)

Setting p; = 0 for j & A(z*), we have the desired result.

(c) We want to show that F(z*) = V(x*), where V (x*) is the cone of first order feasible variations
given by
Via*) = {d | Vgj(z*)d <0,V je A(a:*)}

First, let’s show that under any of the conditions (1)—(4), we have F(z*) C V(a*). By

Mean Value Theorem, for each j € A(z*) and for any d € F(z*) there is some € € [0, 1] such that
gj(z* + ad) = gj(z*) + aVg;(z* + ead)'d.

Because gj(z* + ad) < 0 for all @ € [0,a] and gj(z*) = 0 for all j € A(x*), we obtain for all
j € Alz*)

lim Vg;(x* + ead)'d < 0,

a—0

which by continuity of each Vg; implies that
Vg;(xz*)'d <0, Y j e A(x*),

so that d € V(x*). Therefore F(x*) C V(x*) and F(x*) C V(2*) [because V (z*) is closed].
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Now we need to show that V(x*) C F(x*) for each of the parts (1) through (4).

(1) Let gj(z) = bz + ¢; for all j, where b; are vectors and ¢; are scalars. Let d € V(x*). We
have

g;i(@* + ad) = b (z* + ad) + ¢; = g;j(z*) + abld.

If j € A(z*), then by the definition of V(z*) we have b’d = Vg;(x*)'d < 0, so that g;(z* + ad) <
gj(z*) =0 for all a > 0. If j & A(2*) and bd <0, then g;(z* + ad) < gj(z*) <0 for any a > 0
[because this constraint is not tight at x*]. If j & A(z*) and bid > 0, then g;(z* + ad) < 0 for all
a < aj, where a; = —g;(z*)/(ad) [here we use g;(z*) < 0]. Therefore we have g;(z* + ad) <0

for all j and all a < &, where
a=min{a; | j & A(z*), vid > 0}.

Thus d € F(x*) and consequently V(z*) C F(x*) [since V(z*) is closed].

(2) Let d € V(z*) and let d be such that
Vgj(x*)'d <0, V5 e A(z*).

Define d, = yd + (1 — v)d. By using the Mean Value Theorem, for each j there is some € € [0, 1]

such that
gi(a* + ady) = gj(z*) + aVg;(a* + ead,)'dy
= gj(2*) + ayVg;(z* + eady)'d + a(l —7)Vg;(a* + ead, )'d.

Let v be fixed. If j ¢ A(x*), then by using the fact g;(z*) < 0 it can be seen that for all

sufficiently small o we have
gi(z* +ady) <0, Vj¢&A(z).
If j € A(x*), then by continuity of Vg; we have for all sufficiently small «
Vgj(z* + ead,)'d < 0.
This combined with the fact d € V' (x*) implies that for all sufficiently small o
gj(z* + ady) <0, Y j e A(x*).

Therefore, for a fixed -, there exists a sufficiently small & such that g;(z* + ad,) < 0 for all j
and a € (0,&]. Thus dy € F(z*) for all v and

Vh_r}r})dW:dEF(:v ).

6
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(3) Since g; is convex, we have for every j € A(z*)
9j(x*) + Vg (2*)' (T — 2*) < g;(T) <0.

By defining d = T — 2* and by using g;(z*) = 0 for all j € A(z*), from the preceding relation we
obtain

Vgi(xz*)d < 0, Y je Alx*),

and the result follows from part (2).

(4) Let B be a matrix with rows consisting of Vg;(x*)’ for j € A(z*). Since these gradients are
linearly independent, B has full row rank, so that the square matrix BB’ is invertible and the

matrix B, = B/(BB’)~1 is well-defined. Let

-1

Multiplying both sides of this equation with B, we obtain
-1
Bd=1| : |,
-1
which is equivalent to

Vg;(xz*)d = —1, Vg€ A(x*).
The result now follows from part (2).

(d) For this problem we can easily see that the point z* = (0,0) is a constrained local minimum.

We have
0 0
V¢1(0,0) = . and Vg2(0,0) = L)

Note that both constraints are active at z* = (0,0), i.e., A(z*) = {1,2}. Evidently g1 and g2 are
not linear, so the condition (c1) does not hold. Furthermore, there is no vector d = (di,d2)’ such

that
V§1(0,0)d =d2 <0 and Vg2(0,0)d=—d2 <O0.

Hence, the condition (c2) is violated. If the condition (c3) holds, then as seen in proof of
part (c3) the condition (¢2) also holds, which is a contradiction. Therefore, at x* = (0,0) the
condition (c3) does not hold. The vectors Vgi(0,0) and Vg2(0,0) are linearly dependent since
Vg1(0,0) = —Vg2(0,0), so the condition (c4) is also violated.

7
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Let scalars puo > 0, p1 > 0, and g2 > 0 be such that

poV f(z*) + mVagi(z*) + p2Vge(r*) = 0,

() () (5)-6)

It follows that po = 0, i.e., there is no Lagrange multiplier.

or equivalently

(e) Note that {z | h(z) = 0} = {z | ||h(z)|]> < 0}, so that z* is also a local minimum for
the modified problem. The modified problem has a single constraint gi(z) = ||h(z)||2, which
is active at x*. Since g; is not linear, the condition (c1) does not hold. Because Vgi(z*) =
2Vh(z*)h(z*) = 0, the conditions (c2) and (c4) are violated at z*. If g1 is convex and the
condition (c3) holds, then as seen in the proof of (¢3), the condition (c2) also holds, which is a

contradiction. Hence, at 2* each of the conditions (1)—(4) of part (c) is violated. From
poV I (@) + piVai(z*) = 0

and Vgi(z*) = 0, it follows that piV f(z*) = 0, and since V f(z*) # 0, we must have p§ = 0,

i.e., there is no Lagrange multiplier.

4.3.6

Assume that there exist z € 87 and p € R™ such that conditions (i) and (ii) hold, i.e.,

aiz <0, Vi=1,...,m, (1)
D miai =0, p#0, p>0, (2)
i=1

where a} are row vectors of the matrix A. Without loss of generality, we may assume that 1 > 0.

By pre-multiplying Eq. (1) with p; > 0 and summing the obtained inequalities over i, we have

m
Z,uiagx < malzr <O0.
i=1

On other hand, from Eq. (2) we obtain

m
S il = 0,
=1

which is a contradiction. Hence, conditions (i) and (ii) cannot hold simultaneously.

8
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The proof will be complete if we can show that conditions (i) and (ii) cannot fail to hold

simultaneously. Indeed, if condition (i) fails to hold, the minimax problem

minimize max{ajz,...,amx}

subject to = € R

has 0 as its solution. Hence by Prop. 4.3.10, there exists a u > 0 with > ", 1; = 1 such that
S pia; = 0, or A’ = 0. Thus condition (ii) holds, and it follows that the conditions (i) and

(ii) cannot fail to hold simultaneously.

4.3.7

Assume, to obtain a contradiction, that the conclusion does not hold, so that there is a sequence
{z*} such that zF — z*, and for all k, x* # z*, h(zk) =0, and f(zF) < f(z*)+ (1/k)||zk — x*||2.

Let us write 2% = z* + d*ky*, where

xk — px
5k — ||k — ko T T
et =l v

The sequence {y*} is bounded and lies on the surface of the unit sphere, so it must have a
subsequence converging to some y with ||y|| = 1. Without loss of generality, we assume that the

whole sequence {y*¥} converges to y.

By taking the limit as 0¥ — 0 in the relations

1 oy < S+ 0kyR) — fax) . o(6%)
Llak %] > v = iyt + 200,
hi(xk) — hi(z* hi(x* + okyk) — hi(x* o(ok
0= )5k ) 5k) Sa Vhi(z*)'y* + (($k>’
. iZ?k — qgi(x* (* +5k kY _ 4. T* 0 5k
0293( )(5ng( ) :gg( (5yk) 9]( ) :ng(x*)/yk_i_ ((51@)’

we see that

Vf(xz*)y <0, Vh(z*)y=0, i=1,...,m, Vgj(z*)y <0, V5 e A(z*).

Let us now show that

where
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so that we can conclude based on the hypothesis that
y'V2,L(x*, A*)y > 0. (2)

Indeed, we have Vo L(z*, A*, u*) = 0 or equivalently

V@) +Y AVhi(@)+ > u;Vg(as) =0.

i=1 jEA*(a*)
By taking inner product of this relation with y and by using the equation Vh;(z*)'y = 0, we
obtain

Vi@ )y+ Y wiVg(at)y=0.

JEAT (x*)
Since all the terms in the above equation have been shown to be nonpositive, they must all be
equal to 0, showing that Eq. (1) holds.
We will now show that y'VZ,L(xz*, \*)y < 0, thus coming to a contradiction [cf. Eq. (2)].
Since zF = x* + §*y* by the mean value theorem [Prop. A.23(b) in Appendix A], we have

Lok 2 k k ik 4 G2 e £ (R
Lok — a2 > £(a4) - £@r) = 050 far )t + L purwe gy, 0
0= hilak) — hi(a) = Vi yyt + Elyervmgnr,  i=1m @
B ron ¢ |
02 0;(4) — gi(a) = gyt + Elpwrg e, jeaw), 6

where all the vectors ék, Zf , and éf lie on the line segment joining xz* and z*. Multiplying Eqs.
(4) and (5) by A} and p}, respectively, adding them and adding Eq. (3) to them, we obtain
!/
1 m
Hllot =2l > 6k [ VF )+ YN TVhiG) + 3 Ve | v
i=1 JEA(z)

052

ot | VRIE) + Yo NVERE) + Y Vg | o

i=1 JEA(z*)

+

Since 6% = [|z% — || and Vf(2*) + 3770, AfVhi(a*) + 370 4oy 45 Vg (2*) = 0, we obtain

2oy [ VRIE) - NTRE) - Y w5 VR(E) | o

i=1 JEA(z*)

By taking the limit as k — oo,

0>y | V2f(2*) + D N V2hi(e*) + Y piV2gi(a*) | v,
i=1 JEA(*)

thus arriving at the desired contradiction.

10
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4.3.10

(a) Consider a problem where there are two identical equality constraints [hi(z) = he(z) for all
z], and assume that z* is a local minimum such that Vhi(z*) # 0. Then, Vf(2*)+AVhi(z*) =0
for some \. Take a scalar v > 0 such that A+~ > 0 and let A\] = A+~ and A5 = —v. Then we
have

Vf(x*) + XNiVhi(x*) + NsVha(z*) =0,

but since A} and A} have different signs, there is no x such that simultaneously we have \jhq(z) >
0 and Aha(z) > 0. Thus A} and A} violate the last Fritz John condition. As an alternative

example, consider the following inequality constrained problem
minimize 1 + X2
subject to g1(x1,22) = (1)2 — 22 <0, ga2(z1,22) = —(21)2 + 22 <0.

*

Then z* = (0,0) is a local minimum with A(z*) = {1,2}, and p§ = pi = p5 = 1 satisfy

Karush-Kun-Tucker conditions, namely
V(0,0) + Vg1(0,0) + Vg2(0,0) = 0.

However, there is no point (z1,z2) such that gi(z1,z2) > 0 and g2(x1,x2) > 0, i.e., the Fritz

John condition (iv) does not hold.

(b) For simplicity, assume that all the constraints are inequalities (equality constraints can be
handled by conversion to two inequalities). If V f(z*) = 0, we can take p; = 0 for all j, and we
are done. Assume that V f(z*) # 0 and consider the index subsets J C A(z*) such that V f(z*)
is a positive combination of the gradients Vg;(z*), j € J, and among all such subsets, let J*

have a minimal number of elements. Without loss of generality, let J* = {1,..., s}, so we have
Vf(z*) +mVagi(a*) + -+ psVgs(z*) = 0,

where i >0for j=1,...,s.

We claim that Vgi(z*),..., Vgs(z*) are linearly independent. Indeed, if this were not so,

we would have for some a1, ..., as, not all zero,
arVgi(a*) + -+ + asVgs(a*) =0

so that
V() + (p +ya1)Vgi(z*) + - + (s + yas)Vgs(z*) = 0,

11
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for all scalars . Thus, we can find v such that p; +~ya; > 0 for all j and p5+yo; =0 for at least
one index j € {1,...,r}. This contradicts the hypothesis that the index set J* has a minimal
number of elements.
Thus Vgi(a*),...,Vgs(z*) are linearly independent, so that we can find a vector h such
that
Vgi(z*)h=---=Vgs(x*)h=1.

Consider vectors of the form

x = x* + vh,

where « is a positive scalar. By Taylor’s theorem, for sufficiently small 7, we have g;(x* +~h) > 0
and hence also pjgj(z* +~vh) > 0 for all j = 1,...,s. Thus, the scalars puj, j = 1,..., s, together
with u; =0 for j =s+1,...,r, satisfy all the Fritz John conditions with uo = 1.

4.3.11
From the given conditions, it follows that
> wiVgi() =0, (1)
jeA(z*)

where p7, ...,y are Lagrange multipliers satisfying the Fritz John conditions. Since the functions

g;(x) are convex over ", for any j € A(z*) and any feasible vector x we have

0> g;(x) — gj(z*) > Vgj(z*) (z — z*).
Therefore
g (x) > ph(gi(x*) + Vg (a*) (x — 2*))
= p;Vgj(z*)(z —a*), Vje€ Alz).
This and Eq. (1) imply

Z w;gj(z) >0, for all feasible z.
JEA(x*)

On the other hand, for all feasible z we have . 4.+ 1 gj(x) < 0. Therefore

> wigi(z) = > pigi(x) =0

JEA(z*), ,u;f>0 JEA(z*)

for all feasible z. This is possible only if gj(z) = 0 for all feasible z and j € A(x*) with p} > 0.

Since not all u7 are equal to zero, there is at least one index j with p7 > 0.

12
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4.3.12

It is straightforward that the given condition is implied by the condition (iv) of Prop. 4.3.5.

To show the reverse, we replace each equality constraint h;(x) = 0 with the two constraints
hi(z) < 0 and —h;(z) < 0, and we apply the version of the Fritz John conditions given in the
exercise. Let A\ and A; be the multipliers corresponding to the constraints h;(z) < 0 and

—hi(z) <0, respectively. Thus in any neighborhood N of z* there is a vector x such that
hi(z) > 0, for all i with A" > 0, (1)

—h;(x) > 0, for all i with \; > 0, )
gj(x) >0,  forall j with u?>0.

Evidently u;fgj(:v) > 0 for all j with p7 > 0. Since A} = AT — A7, if A # 0 then either

A > A7 =0 (corresponds to A\¥ > 0) or A\, > A\ = 0 (corresponds to A < 0). In either case,
from Egs. (1) and (2) we have that

Xihi(x) > 0, for all ¢ with Af # 0.

Hence the Fritz John condition (iv), as given in Prop. 4.3.5, holds.

4.3.13

First, let us point out some important properties of a convex function that will be used in the

proof.

Convexity of f over o implies that f is continuous over " and the set df(z) of subgra-

dients of f at x is nonempty for all z € R" (see Prop. B.24 of Appendix B).

If f is convex over R, while G is continuously differentiable over 7, then if a point y* is
an unconstrained local minimum of f(z)+ G(x), we have if 0 € 9f(y*) + VG(y*) (see Prop. B.24
of Appendix B).

(a) Let z* be a local minimum of f and S = {z | ||z — 2*|| < €}, where ¢ > 0 is such that
f(z) > f(z*) for all feasible z with € S. As in the proof of Prop. 4.1.1 (Sec. 4.1.1), for each
k > 1 we consider the penalized problem

m T

minimize F*(x) = f(2) + & S (ha())? + 5 S (g7 (2))? + gl — 7|

i=1 j=1
subject to x € S.

13
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Similar to Sec. 4.1.1, we conclude that the solution z* for the above problem exists and (using
the continuity of f, h;, g;r) that o — z* as k — oco. Therefore, there is an index k such that x*

is an interior point of S for all & > k. For such k, we have 0 € 9Fk(x*), or equivalently
sk EEVR(aR) + ) (FVg;(ak) + (ak — ) =0,
i=1 j=1
for some s* € 9f (z*) and & = khy(a*), ¢F = kg;’(x’f)

Following the lines of the proof of Prop. 4.3.5, we obtain

m T 1
pksk + Z Ao (zk) + Zusgj(x’“) + 5—k(fck z*) =0,
=1 =1
for all k > k, where
1 ¢k ;
k_ k i _ E_ > _
/Lo—é—ka A 3k i=1,...,m, Hj 5k j=L...,m

and

oF = [ 14D+ D (>

i=1 j=1
Since zF — z* with sk € df(x¥) for all k, from Prop. B.24 and the boundedness of the se-
quence {uf, Ay, .. g b, oo k) we see that there are a vector s* € df(x*) and a limit point

(g AT, oy AN, 115, .+, 1) such that

us*—i—Z)\ Vhi( +ZMJVgJ ) =0, (1)

=1 =1

If u* = 0, then the vector
- Z AV h( Z 15V g

is equal to zero. Otherwise, we can set pu = 1 in (1), which shows that the above vector is a
subgradient of f at x*. Thus, condition (i) of the exercise is satisfied. The rest of the proof is

the same as that of Prop. 4.3.5.
(b) The proof is similar to the one of Prop. 4.3.7.

(b) Assume that Vh;(z*) are linearly independent, and that there is a vector d such that
Vhi(z*)'d =0, Vi=1,...,m, Vyg;(xz*)'d <0, vV je A(z*).
If pg = 0in (1), then using the same argument as in proof of Prop. 4.3.8 we arrive at contradiction.

Under the Slater condition, the proof that ug # 0 is the same as in Prop. 4.3.9.

14
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4.3.14

The problem can be formulated as follows
minimize r2
subject to |lx —y;||2<r2, j=1,...,p, z€R",
which is equivalent to the unconstrained minimax problem
minimize max {||x — y1]|?, ..., ||z — yp|[?}
subject to x € Rn.

According to Prop. 4.3.10, the Lagrange multiplier conditions are

(i) 2325 w5 (2" —y;) = 0.

(ii) p* >0, =1

(iii) For all j =1,...,p, if p} >0, then

[|lz* = y;|[? = max {[[z —w1[[%,..., ||z = ypl]*},

where x* is optimal solution for the minimax problem and p* is the corresponding Lagrange

multiplier.

Note that the cost function is continuous and coercive, so that the optimal solution always
exists. Furthermore, the cost function is convex and the given conditions are also sufficient for

optimality. By combining (i) and (ii) we have

p p
wr=Y iy, Yy ouj=1, wp>0, Vj,
J=1 =1

i.e., x* is a convex combination of the given points y1,...,yp. For p = 3, when y1,y2,y3 do not

lie on the same line, we have the following geometric solution:

(1) All constraints are active, so z* is at equal distance from all three points. Then z* is the
center of the circle circumscribed around the triangle of the three points. In this case z* must lie
within the triangle and is a positive combination of the y;, the coefficients being the multipliers.

This corresponds to the case when the triangle is not obtuse.

(2) Only two of the constraints are active, in which case z* lies on the line connecting the
two points. This occurs when the triangle formed by the given points is obtuse. Then x* is the
midpoint of the longest side of the triangle. If y; is not the end point of the longest side, then

i = 0. The other two Lagrange multipliers are both positive.

15
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Now consider the degenerate case when the three points lie on the same line. We can assume
that ys lies between y; and y2. Then the optimal point x* is the midpoint of the segment joining

y1 and y2. The Lagrange multipliers uj and p3 are positive, while pj = 0.

4.3.15

(a) Let {y*} be a sequence of points in T'(z) for some x € X. Assume that y* — y as k — oc.

The definition of the tangent cone implies that for every y* there is a sequence {z¥} C X \ {z}

such that
zF —x yk
¥ -z, and - — T as i — 00,
lzf =zl lly*]l
For k =1,2,..., choose an index i3 such that 75 > ip_1 > ... >4 and
k
1 ZT; —X yk 1
||z — || < = and b — < =
" 2k ok, — x|l llykll|| ~ 2*
k_ k
Evidently {xfk} C X\ {z}, and :zrfk — x as k — oo. Also, we have that Hﬁ - m ’ —0
ik !

as k — oo. This together with the fact that y* — y, and

k k
Tiy, =% ¥ Ty, =% . y* +" y* _LH
— )
Iz ==l [yl lzf ==l [ly*]] [y (1 Tyl
implies
[
i || 5 v
koo || [lzf, — =l [yl

which by the definition of T'(z) means that y € T'(x). Thus, T'(x) is closed.

(b) Let F(z) and F(z) denote, respectively, the set of feasible directions at = and its closure.
First, we will prove that F(z) C T(x) holds, regardless of whether X is convex. Let d € F(z).
Then there is an @ > 0 such that x+ad € X for all « € [0,@]. Choose any sequence {a*} C (0, @]
with k¥ — 0 as k — oo. Define a* = = + a*d. Evidently =¥ € X \ {z}, and ﬁ = H%H
converges to H%lll' Hence d € T(z). It follows that F(x) C T'(x), and since T'(z) is closed, we
have F(z) C T(z).
Next, we prove that T'(x) C F(x). Let y € T(z) and {z*} C X \ {=} be such that
xk —z
ol Tl + "
where 8 — 0 as k — oo. Since X is a convex set, the direction z* — z is feasible at z for all k.
Therefore, the direction dk = ﬁ Ayl = y+E&F||yl| is feasible at x for all k, i.e., {d¥} C F(x).

Since

lim d* = lim
k—o0 k—o0

(y + &¥llyll) = v,

we have y € F(z). Consequently T'(x) C F(z). This completes the proof.
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4.3.16

Let = be any vector in X. We will show that T'(z) = V(z). We have, in general T'(z) C V(z)
(see e.g., the proof of Prop. 4.3.17), so we focus on showing that V(z) C T'(z). Let y € V(x), so
that we have
Vygi(z)y <0, vV j € A(z).
Let o be a positive sequence with a* — 0, and let
xk =z + aky.
For all j € A(z) we have g;(x) = 0, and using the concavity of g;, we obtain
g4(x*) < gj(x) + a*Vg;(x)'y < 0.
It follows that for k sufficiently large, 2% is feasible. Since
zk —x Y

xk — x =
B o 71

it follows that y € T'(z), so that V(x) C T'(x).

4.3.17

Let y be a vector such that Vg;(z*)'y < 0 for all j € A(z*). By continuity of Vg;(z) (as a
function of z and j), there exist a neighborhood N of 2* and a neighborhood A of A(z*) (relative
to J) such that

Vgi(z)y <0, VzeN, VjeA (1)
Furthermore, the neighborhood N can be chosen so that

gi(z) <0, VzeN, VjeJ\A (2)
Since N is open and x* € N, we can find a scalar @ > 0 so that z*+ay € N whenever 0 < a < a.
For any o with 0 < @ < @ and j € A, by the mean value theorem and feasibility of z*, we have

gi(x* + ay) = g;j(x*) + aVyg;(z* + fay)'y < aVg;(z* + bay)'y, 3)
for some 6 € (0,1). Since z* + fay € N and j € A, from Egs. (1) and (3) we obtain
gi(z* +ay) <0, VjeA Vae(01].
For any o with 0 < o < @ the point 2* + ay belongs to N, which together with Eq. (2) implies
gilz* +ay) <0, VjeJ\A, Vac(01].

The last two inequalities show that y is a feasible direction of X at z*. In the solution to part (b)

of Exercise 4.3.15, it is shown that the set of feasible directions at x* is a subset of the tangent

cone at x*, regardless of the structure of the set X.

17
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4.3.18 (www

Assume that we have shown the validity of the linear independence/interior point constraint
qualification for the problem without equality constraints, i.e., for a local minimum x*, there

exist Lagrange multipliers under the condition that there is a vector d such that
Vg;(xz*)'d <0, V5 e A(z*). (1)

Now, consider the problem with equality and inequality constraints. Assume that there is

a vector d such that
Vhi(z*)'d =0, Vi=1,...,m,

(2)
Vgj(z*)'d <0, vV je A(z*).
Since the vectors Vhi(z*), ..., Vhy,(2*) are linearly independent, by reordering the coordinates

of x if necessary, we can partition the vector z as x = (zp, zr) such that the submatrix Vgh(z*)

(the gradient matrix of h with respect to xp) is invertible. The equation
h(IB, ,TR) =0

has the solution (7, x%,), and the implicit function theorem (Prop. A.25 of Appendix A) can be
used to express zp in terms of xg via a unique continuously differentiable function ¢ : .S — ™
defined over a sphere S centered at z7},. In particular, we have 2, = ¢(x%), h(é(xr),zr) =0

for all zg € S, and
Vé(zr) = —Vrh(d(zr),zr) (Vh(¢(zRr),zr)) ", YareSs, (3)

where Vgh is the gradient matrix of h with respect to zr. Observe that z7%, is a local minimum

of the problem
min F(zg)
(4)
subject to Gj(zr) <0, j=1,...,r
where F(zr) = f (¢(zr),2zr), Gj(xr) = g;j (¢(xr),zr). Note that this problem has no equality

constraints. From (2) we have
Vh(z*)d= VBh(CC*)’dB + Vgeh(z*)'dr =0,

and
Vgj(z*)'d = Vpg;(x*)'ds + Vrgj(x*)'dr <0, (5)
for all j € A(xz*). Since Vh(z*)' is invertible, from the first relation above we obtain
-1
dp = = (VBh(6(2}),23)")  Vah(8(z}),o%) dr,

18
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which in view of Eq. (3) is equivalent to
dp = Vo(z},) dr.
Substituting this in Eq. (5), we obtain
Vg (0(xh), %) Vo(as)dr + Vrg; ((x%), 25) dr <0,
which is equivalent to
VGj(x3)d <0, vV j e Alx*).
This means that the linear independence/interior point constraint qualification is satisfied for

problem (4), so there are Lagrange multipliers pf,. .., such that

0= VF(zh)+ Y w;VG (ay) = Vé(ag) Ve f(a*) + Vrf(z*)

j=1

+ 1 (Vo) Vegi(x*) + Virg;(z+))
j=1

. (6)
= Vé(ay) | Vaf(@*)+ Y 1 Veg(@*) | + Vrf(z*)

j=1
+ > iVrg;(a).
j=1
Define
B"=Vpgh ((ZS(‘T}F%% ‘Tj}%) , R'=VRgh (¢($E)7 ‘T}%)
and

N==B1 | Vife*) + ) w;Vag;(a*)

j=1
Then from Eq. (3) we see that V¢(z5) = —R/B’'~!, which combined with Eq. (6) implies
Vrf(z*) + RN\ + Z,LL;Vjo(:c*) =0.

=1
The definition of A\* implies J
Vi f(r*) + BIA* + Z WiV pg;(a*) = 0.
j=1
Since Vh(z*) = (B', R’), the last two equalities are equivalent to
VH(@)+ VA A + 34V (a) =0
=1

which shows that the Lagrange multipliers exist. J

The proof of the existence of the Lagrange multipliers under the Slater constraint qualifica-
tion is straightforward from the preceding analysis by noting that the vector d = T — z* satisfies

the linear independence/interior point constraint qualification.
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4.3.19

For simplicity we assume that there are no equality constraints; the subsequent proof can be
easily extended to the case whether there are some inequality constraints. To show that the linear
independence/interior point constraint qualification implies boundedness of the set of Lagrange

multipliers, follow the given hint.

Conversely, if the set of Lagrange multipliers is bounded, there cannot exist a p # 0 with
>0 and 35, 4,0 11;Vgj(z*) = 0, since adding yu, for any v > 0, to a Lagrange multiplier
gives another Lagrange multiplier. Hence by the theorem of the alternative of Exercise 4.3.6,

there must exist a d such that Vg;(x*)'d < 0 for all j € A(x*).

4.3.20 (www

‘We have

<4x§ sin (x—ll) — o cos (%) ) if 21 # 0,

th(x) = 0
if 11 =0,

and it can be seen that Vh; and Vhg are everywhere continuous. Thus, for A\; =1, A2 = 1, we
have

)\1Vh1(0) + )\QVhQ(O) =0.

On the other hand, it can be seen that arbitrarily closely to z* = (0,0), there exists an z such
that hi(xz) > 0 and ha(x) > 0. Thus x* is not quasinormal, although it is seen (most easily, by a

graphical argument) that z* is quasiregular.

4.3.21 (www

Without loss of generality, we can assume that there are no equality constraints (every equality
constraint h;(z) = 0 can be replaced by two inequalities h;(z*) < 0 and —h;(x*) < 0 with h;(z)
and —h;(z) being linear, and therefore concave). Since x* is a local minimum, there exist a scalar
o and Lagrange multipliers A1, ..., Am, f1, ..., i satisfying the Fritz John conditions. Assume
that uo = 0. Then

Zujvgj(x*): > uVgj(a*) =0. (1)

JEA(z*)
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Multiplying this equation by d, we obtain

> wVg(atyd=0. (2)

JEA(z*)

If pj, > 0 for some jo € A(z*)\ J, then

> 1Vgi(ar)d < iy Vs (2+)d <0,
jeA(z*)
which is a contradiction to Eq. (2). Therefore for all jo € A(z*) \ J we must have p; = 0. Then
from Eq. (1) we have

> niVg;(a*) =0. (3)

jedJ
Now we use the same line of argument as in the proof of Prop. 4.3.6 in order to arrive at a

contradiction. In particular, since g; is concave for every j € J, we have
9i(x) < gj(*) + Vg () (x — %), Vje

By multiplying this inequality with p; and adding over j € J, we obtain

1
> nigi@) < pigi@) + | Y uVg(at) | (@ —a%) =0, (4)
= jeJ jeJ

where the last equality follows from Eq. (3) and the fact that p;g;(z*) = 0 for all j [by the Fritz

John condition (iv)]. On the other hand, we know that there is some j € J for which p; > 0 and

an z satisfying g;(z) > 0 for all j with p; > 0. For this z, we have >, ; p1;9;(z) > 0, which

contradicts Eq. (4). Thus, we can take po = 1 so that z* satisfies the necessary conditions of

Prop. 4.3.7.

SECTION 4.4

4.4.3

Let’s first consider

P in dr <— bu. (D
(P) in, c' g nax b (D)
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The dual problem to (P) is

n m m
maral) =max nf ) ) ( > ﬂ) AP

j=1 i=1

If ¢; — 0", piaij # 0, then g(p) = —oco. Thus the dual problem is
max Z 1ibi
i=1

Z,uiaij:cj, j:l,...,n
i=1
w2 0.
To find the dual of (D), note that (D) is equivalent to
S
Auglclﬁzo s
and so the dual problem is
= inf {(Az — b)'u — 'z}
mag p(a) = max mf{(Az —b)'p — 'z}
If alx — b; < 0 for any 4, then p(xz) = —oo. Thus the dual of (D) is
max —c/z or minc'x

subject to A’z > b.

The Lagrangian optimality condition for (P) is

m / m
r* = arglrgn { (c — Zujaz) T+ Zﬂsz} ,

i=1 i=1

from which we determine the complementary slackness conditions for (P):
Ap = c.
The Lagrangian optimality condition for (D) is
p* = argmin{(Ax* — b)'u — 'z*},
n=0

from which we determine the complementary slackness conditions for (D):

Az* —b >0,
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(Az* = b)ipuf =0, Vi
Next, consider

(P) min ¢z <= max_ Wu. (D)
Alz>b,x>0 Ap<ec,un>0

The dual problem to (P) is

n

m m
gy = s 35 (o~ S )+ S

Jj=1

If ¢; — > piaij <0, then g(u) = —oco. Thus the dual problem is
max Z 1ibi
i=1

Z,uiaijgcj, j:l,...,n
i=1
= 0.
To find the dual of (D), note that (D) is equivalent to
] _H
Aurﬁnclﬁzo Y
and so the dual problem is
= inf {(Az — b)'p — 'z}
maxp(x) = max inf {(Az — b)/p — 'z}
If alx — b; < 0 for any 4, then p(xz) = —oco. Thus the dual of (D) is
max —c/z or minc'x

subject to A’x > b,z >0

The Lagrangian optimality condition for (P) is

m / m
T* = argr;lég{(C— z;u;‘m) :10—1—2/1’{1%}7
i= 1=

from which we determine the complementary slackness conditions for (P):
m

<cj —Zu;%) xr=0, >0, Vj=1,..n,
i=1

m
C—Zu;‘ai >0, Vi
i=1
The Lagrangian optimality condition for (D) is
p* = argmin{(Ax* — b)'u — c'xz*},
n=>0
from which we determine the complementary slackness conditions for (D):
Ax* —b >0,

(Az* —b)ipuf =0, Vi
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4.4.4

(a) Let A; be a Lagrange multiplier associated with the constraint Y ., z;; = 3;, and let v; be

a Lagrange multiplier associated with the constraint 2?21 xij = o. Define
X:{ZE|ZEZ'J' ZO, V’L,]}

The Lagrangian function is

L(z,v,\) Zauxu—i—Zm o — qu —l—Z)\ <Bj—zl'ij>
i=1

The dual function is

Z?il Vo + Z;—lzl AiBi ifai; —vi—A; >0 forall g, 4,

—00 otherwise.

q(v,\) = 3Elg)f(L(gc,l/, A) = {

An alternative dual function is obtained by assigning a Lagrange multiplier A\; to each
constraint y ", x;; = f;, and lumping the remaining inequality constraints within the abstract
set constraint. Thus, .

X ={z| inj =a;, x5 >0, Vi,j}
j=1

The Lagrangian function is
0= Sars + 30 (153
2 Jj=1 i=1
=YD (ai = X | + D N85
Jj=1 j=1

i=1
Then the dual function is

q(\) = inf L(z, )

rcX

n

Z AiBj + mf Z Z aij — Aj)Tij
j=1 j=1
=2 NP

—i—Z inf (aij — Aj)a,

1<j<n
j=1

and the dual problem is
maximize g(\)

subject to A € Rn.
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(b) & (c) The Lagrange multiplier A; can be interpreted as the price p;. So if the transportation

problem has an optimal solution x*, then its dual also has an optimal solution, say p*, and
)= aizi;,
2%
ie.

ijﬁ]—i—z mln (aij — p})os = Zaw ;. (1)

Since x* is primal feasible, we have

n n m
*x Q. * *
ijﬁ] = ij Z%
j=1 j=1 =1

and by combining this with Eq. (1), we obtain

Z min {ai; — pitas = (ai — pi)ay;. (2)

_— 1<j<n i
By the feasibility of z*, we have Z?:l z}; = a; for all 4, and from Eq. (2) it follows that

Z(aij _p_] — mlIl {al’Lj p;k})'r:] =0.

1<j5
4,3

Since all the terms in the summation above are nonnegative, we must have

( —p; = mln {au p}‘}) zf; =0, Y i, 4.

Therefore if z7; > 0, then

—pj = min {aix — pi}

which can be equivalently expressed as

max {pj — a}-

E3
* — Qg
P; T 1<k<n

Since p* is arbitrary, this property holds for every dual optimal solution p*.

4.4.5 (Duality and Zero Sum Games)

Consider the linear program

min ¢,
Ce>Alx

n
Zi:l z;=1,2;>0
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whose optimal value is equal to mingex max,cz 2’ Az. Introduce dual variables z € R™ and
¢ € R, corresponding to the constraints A’z — (e < 0 and Y., #; = 1, respectively. The dual

function is

I
=
lanr}

q(27 5) m'ZO,.iZI ..... n {C + Z/(A/.’,E o Ce) +€ (1 o Z .IZ) }

=1
m

= _inf Cl1= % | +a/(Az—Le) +¢

j=1
£ ifzgnzlzjzl,ge—Azg(),
—oo otherwise.

Thus the dual problem, which is to maximize ¢(z, £) subject to z > 0 and £ € R, is equivalent to

the linear program

£,

max
Ce<Az,zeZ

whose optimal value is equal to max,cz minge x @/ Az.
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