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Section 5.2

Solutions Chapter 5

SECTION 5.2

5.2.4 w w w

We have

minimize f(x) =
1

2
x′Qx

subject to Ax = b.

Since x∗ is an optimal solution of this problem with associated Lagrange multiplier λ∗, we have

Ax∗ = b and Qx∗ + A′λ∗ = 0. (1)

We also have

qc(λ) = minLc(x, λ),

where

Lc(x, λ) =
1

2
x′Qx+ λ′(Ax − b) +

c

2
||Ax− b||2.

One way of showing that qc(λ) has the given form is to view qc(λ) as the dual of the penalized

problem:

minimize
1

2
x′Qx+

c

2
‖Ax− b‖2

subject to Ax = b,

which is a quadratic programming problem. Note that x∗ is also a solution of this problem, so

that the optimal value of the problem is f∗. Furthermore, by expanding the term ||Ax− b||2, the

preceding problem is equivalent to

minimize
1

2
x′(Q + cA′A)x + cb′Ax +

1

2
cb′b

subject to Ax = b.

Because x∗ is the unique solution of the original problem, Q must be positive definite over the

null space of A

y′Qy > 0, ∀ y 6= 0, Ay = 0.
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Section 5.2

Then, similar to the proof of Lemma 5.2.1, it can be seen that there exists some positive scalar

c̄ such that Q+ cA′A is positive definite for all c ≥ c̄, i.e.,

Q+ cA′A > 0, ∀ c ≥ c̄. (2)

(this can be shown similar to the proof of Lemma 5.2.1). By duality theory, there is no duality

gap for the preceding problem [qc(λ∗) = f∗], and according to Example 5.4.3 from Section 5.4,

the function qc(λ) is quadratic in λ, so that the second order Taylor’s expansion is exact for all

λ, i.e.,

qc(λ) = f∗ +∇qc(λ∗)′(λ− λ∗) +
1

2
(λ− λ∗)′∇2qc(λ∗)′(λ− λ∗), ∀ λ ∈ ℜm. (3)

We now need to calculate ∇qc(λ∗) and ∇2qc(λ∗). We have

∇qc(λ) = h
(

x(λ, c)
)

∇2qc(λ) = −∇h
(

x(λ, c)
)′
{

∇2
xxLc

(

x(λ, c), λ
)

}−1

∇h
(

x(λ, c)
)

,

where x(λ, c) minimizes Lc(x, λ). To find x(λ, c), we can solve ∇Lc(x, λ) = 0, which yields

Qx+A′λ+ cA′(Ax− b) = 0 ⇔ (Q + cA′A)x = cA′b− A′λ,

so that

x(λ, c) = (Q + cA′A)−1(cA′b−A′λ), ∀ c ≥ c̄

[(Q + cA′A)−1 exists as implied by Eq. (2)]. Therefore

∇qc(λ) = h
(

x(λ, c)
)

= A(Q + cA′A)−1(cA′b−A′λ)− b, ∀ c ≥ c̄, (4)

from which by using Eq. (1), it can be seen that

∇qc(λ∗) = 0. (5)

Moreover, we have

∇2qc(λ) = −A(Q + cA′A)−1A′, ∀ λ ∈ ℜm, (6)

so that by using the preceding two relations in Eq. (3), we obtain

qc(λ) = f∗ −
1

2
(λ− λ∗)′A(Q + cA′A)−1A′(λ− λ∗), ∀ λ ∈ ℜm, ∀ c ≥ c̄.

(a) We have

λk+1 = λk + ck∇qck(λ
k),
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so that

λk+1 − λ∗ = λk − λ∗ + ck∇qck(λ
k).

We now express ∇qck(λ
k) in an equivalent form. In what follows, we assume that ck ≥ c̄ for all

k, so that ∇qck(λ) is linear for all k [cf. Eq. (4)]. By using the first order Taylor’s expansion, we

obtain

∇qc(λ) = ∇qc(λ∗) +∇2qc(λ∗)′(λ− λ∗), ∀ λ ∈ ℜm,

and by using Eqs. (5) and (6), we have

∇qc(λ) = −A(Q + cA′A)−1A′(λ− λ∗), ∀ λ ∈ ℜm,

Therefore
λk+1 − λ∗ = λk − λ∗ − ckA(Q + ckA′A)−1A′(λk − λ∗)

=
(

I − ckA(Q+ ckA′A)−1A′
)

(λk − λ∗),

and by applying the results of Section 1.3, we obtain

‖λk+1 − λ∗‖ ≤ rk||λk − λ∗||,

where

rk = max
{

|1− ckEck |, |1− ckeck |
}

,

and Ec and ec are the maximum and minimum eigenvalues of A(Q + cA′A)−1A′.

(b) The matrix identity of Appendix A

(A+ CBC′)−1 = A−1 −A−1C(B−1 + C′A−1C)−1C′A−1

applied to (Q + ckA′A)−1 yields

(Q+ ckA′A)−1 = Q−1 −Q−1A′

(

1

ck
I +AQ−1A′

)−1

AQ−1

and so

A(Q + ckA′A)−1A′ = AQ−1A′ −AQ−1A′

(

1

ck
I +AQ−1A′

)−1

AQ−1A′.

Let γ be an eigenvalue of (AQ−1A′)−1. Using the facts that

λ = {eigenvalue of A} ⇔
1

λ
= {eigenvalue of A−1},

λ = {eigenvalue of A} ⇔ λ+ c = {eigenvalue of cI +A},

we can see that
1

γ
−

1

γ

(

1

c
+

1

γ

)−1
1

γ
=

1

c+ γ
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is an eigenvalue of

A(Q + cAA′)−1A′.

Thus

rk = max
1≤i≤m

{∣

∣

∣

∣

1−
ck

γi + ck

∣

∣

∣

∣

}

.

(c) First, for the method to be defined we need ck ≥ c̄ for all k sufficiently large. Second, for the

method to converge, we need rk < 1 for all k sufficiently large. Thus

∣

∣

∣

∣

1−
c

γi + c

∣

∣

∣

∣

< 1, ∀ i,

which is equivalent to

−2 < −
c

γi + c
< 0 or 0 <

c

γi + c
< 2.

Since c > 0, we must have γi + c > 0. Then solving the above inequality yields the threshold

value

ĉ = max

{

0, max
1≤i≤m

{−2γi}

}

.

Hence, the overall threshold value is

c = max{c̄, ĉ}.

5.2.5 w w w

Using the results of Exercise 5.2.4, updating the multipliers with

λk+1 = λk + αk(Axk − b)

implies

‖λk+1 − λ∗‖ ≤ max
i

{
∣

∣

∣

∣

1−
αk

γi + ck

∣

∣

∣

∣

}

‖λk − λ∗‖.

For the method to converge, we need for k > k̄,

∣

∣

∣

∣

1−
αk

γi + ck

∣

∣

∣

∣

≤ 1− ǫ, ∀ i,

or

ǫ ≤
αk

γi + ck
≤ 2− ǫ (1)

for some ǫ > 0. If Q is positive definite and ck = c for all k, we have γi > 0 for all i, and if

δ ≤ αk ≤ 2c, the condition (1) is satisfied for ǫ ≤ min{δ, 2γi}/(c+ γi) for all i.
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5.2.9 w w w

In the logarithmic barrier method we have

xk = argmin
x∈S

{

f(x) + ǫkB(x)
}

,

where S = {x ∈ X | gj(x) < 0, j = 1, . . . , r} and B(x) = −
∑r

j=1 ln
(

−gj(x)
)

. Assuming that f

and gj are continuously differentiable, xk satisfies

∇f(xk) + ǫk∇B(xk) = 0

or equivalently

∇f(xk)−

r
∑

j=1

ǫk

gj(xk)
∇gj(xk) = 0.

Define µk
j = − ǫk

gj(x
k)

for all j and k. Then we have

µk
j > 0, ∀ j = 1, . . . , r, ∀k, (1)

∇f(xk) +

r
∑

j=1

µk
j∇gj(xk) = 0, ∀ k. (2)

Suppose that x∗ is a limit point of the sequence {xk}. Let {xk}k∈K be a subsequence of

{xk} converging to x∗, and let A(x∗) be the index set of active constraints at x∗. Furthermore,

for any x, let ∇gA(x) be a matrix with columns ∇gj(x) for j ∈ A(x∗) and ∇gR(x) be a matrix

with columns ∇gj(x) for j 6∈ A(x∗). Similarly, we partition a vector µ: µA is a vector with

coordinates µj for j ∈ A(x∗) and µR is a vector with coordinates µj for j 6∈ A(x∗). Then Eq. (2)

is equivalent to

∇f(xk) +∇gA(xk)µk
A +∇gR(xk)µk

R = 0, ∀ k. (3)

If j 6∈ A(x∗), then gj(xk) < −δ for some positive scalar δ and for all large enough k ∈ K,

which guarantees the boundedness of the sequence {−1/gj(xk)}
K
. Since ǫk → 0, we have

lim
k→∞, k∈K

µk
j = − lim

k→∞, k∈K

ǫk

gj(xk)
= 0, ∀ j 6∈ A(x∗),

i.e., {µk
R → 0}K. Therefore, by continuity of ∇gj , we have

lim
k→∞, k∈K

∇gR(xk)µk
R = 0. (4)

Suppose now that x∗ is a regular point, i.e., the gradients ∇gj(x∗) for j ∈ A(x∗) are linearly

independent, so that the matrix ∇gA(x∗)′∇gA(x∗) is invertible. Then, by continuity of ∇gj , the
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matrix ∇gA(xk)′∇gA(xk) is invertible for all sufficiently large k ∈ K. Premultiplying Eq. (3) by
(

∇gA(xk)′∇gA(xk)
)−1

∇gA(xk)′ gives

µk
A = −

(

∇gA(xk)′∇gA(xk)
)−1

∇gA(xk)′
(

∇f(xk) +∇gR(xk)µk
R

)

.

By letting k → ∞ over k ∈ K, and by using the continuity of ∇f and ∇gj and the relation (4),

we obtain

lim
k→∞, k∈K

µk
A = −

(

∇gA(x∗)′∇gA(x∗)
)−1

∇gA(x∗)′∇f(x∗).

Define µ∗ by µ∗
R = 0 and

µ∗
A = lim

k→∞, k∈K
µk
A,

so that by letting k → ∞ with k ∈ K, from Eq. (3) we have

∇f(x∗) +∇gA(x∗)µ∗
A +∇gR(x∗)µ∗

R = ∇f(x∗) +∇g(x∗)µ∗ = 0.

In view of Eq. (1), µ∗ must be nonnegative, so that µ∗ is a Lagrange multiplier. Furthermore,

assuming that x∗ is a limit point of the sequence {xk}, the regularity of x∗ is sufficient to ensure

the convergence of {µk
j } to corresponding Lagrange multipliers.

By Prop. 5.1.1, every limit point of {xk} is a global minimum of the original problem.

Hence, for the convergence of {µk
j } to corresponding Lagrange multipliers, it is sufficient that

every global minimum of the original problem is regular.

5.2.11 w w w

Consider first the case where f is quadratic, f(x) = 1

2
x′Qx withQ positive definite and symmetric,

and h is linear, h(x) = Ax − b, with A having full rank. Following the hint, the iteration

λk+1 = λk + αh(xk) can be viewed as the method of multipliers for the problem

minimize 1

2
x′Qx−

α

2
‖Ax− b‖2

subject to Ax− b = 0.

According to Exercise 5.2.4(c), this method converges if α > α, where the threshold value α is

α = 0 if ζ ≥ 0, (1)

α = −2ζ if ζ < 0, (2)

where ζ is the minimum eigenvalue of the matrix

(

A(Q− αA′A)−1A′
)−1

.
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To calculate ζ, we use the matrix identity

αA(Q − αA′A)−1A′ = (I − αAQ−1A′)−1 − I

of Section A.3 in Appendix A. If ζ1, . . . , ζm are the eigenvalues of
(

A(Q − αA′A)−1A′
)−1

, we

have
α

ζi
=

1

1− αξ−1
i

− 1.

where ξi are the eigenvalues of (AQ−1A′)−1. This equation can be written as

α

ζi
=

α

ξi − α
,

from which

ζi = ξi − α.

Let ξ = min{ξ1, . . . , ξm}. Then the condition (1) is written as

0 < α ≤ ξ. (3)

The condition (2) is written as

α > 2(α− ξ) with α > ξ,

or

ξ < α < 2ξ. (4)

Convergence is obtained under either condition (3) or (4), so we see that convergence is obtained

for

0 < α < 2ξ.

In the case where f is nonquadratic and/or h is nonlinear, a local version of the above

analysis applies.
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