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Solutions Chapter 5

SECTION 5.2

5.2.4

‘We have

1
minimize f(z) = 517’@:0
subject to Az = b.

Since x* is an optimal solution of this problem with associated Lagrange multiplier \*, we have
Az =b and Qz* + A X =0. (1)

We also have

ge(A) = min Le(x, A),

where

Le(z,\) = %I’Qx +N(Az — b) + §||Ax — b2,

One way of showing that g.(\) has the given form is to view g.(\) as the dual of the penalized
problem:
1
minimize ix’Qx + gHAa: —b||2
subject to Ax = b,

which is a quadratic programming problem. Note that z* is also a solution of this problem, so
that the optimal value of the problem is f*. Furthermore, by expanding the term ||Az —b||2, the

preceding problem is equivalent to

1 1
minimize ix’(Q + cA’A)x + b’ Az + §cb’b
subject to Az = b.

Because x* is the unique solution of the original problem, ) must be positive definite over the

null space of A
yYQy >0, Vy#0, Ay=0.
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Section 5.2

Then, similar to the proof of Lemma 5.2.1, it can be seen that there exists some positive scalar

¢ such that Q + cA’A is positive definite for all ¢ > ¢, i.e.,
Q+cA’A >0, Ve>e (2)

(this can be shown similar to the proof of Lemma 5.2.1). By duality theory, there is no duality
gap for the preceding problem [g.(A*) = f*], and according to Example 5.4.3 from Section 5.4,
the function g.()\) is quadratic in A, so that the second order Taylor’s expansion is exact for all

A, e,
Ge(N) = [* + VaeA Y (A =A%) + %(/\ A2 Y= A, WAeRm. (3)
We now need to calculate Vge(A*) and V2gc(A*). We have
Vge(A) = h(z(),c))
V24, () = —Vh(:c()\,c))l{Vich(:v()\,c),)\)}%Vh(:c()\,c)),
where x(\, ¢) minimizes L.(z, A). To find (A, ¢), we can solve VL.(z, A) = 0, which yields
Qr+ AN+ cA(Ax —b) =04 (Q + cA’A)x = cA'b — A/,

so that
(A ¢) = (Q + cA’A)~1(cA'b — A’)), Ve>c

[(Q + cA’A)~1 exists as implied by Eq. (2)]. Therefore
Vae(N) = h(z(X,¢)) = A(Q + cA’A)~1(cA’b — A'X) — b, Ve >e, (4)
from which by using Eq. (1), it can be seen that
Ve (A*) = 0. (5)

Moreover, we have

V2¢.(\) = —A(Q + cA’A) 1A, Y AeRm, (6)

so that by using the preceding two relations in Eq. (3), we obtain
1
ge(N) = f* — 5()\ =AY AQ + cAA) LA/ (N — ), VAeRm, Ve>e

(a) We have
Mot = Ak bV g . (AF),
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so that
AL — A+ = Nk — X+ 4 bV g i (AF).

We now express Vg« (AF) in an equivalent form. In what follows, we assume that ¢k > ¢ for all
k, so that Vg x()) is linear for all k [cf. Eq. (4)]. By using the first order Taylor’s expansion, we
obtain

Vae(A) = Vae(A*) + V2 (M%) (A — A*), Y AeRm,
and by using Eqs. (5) and (6), we have
Vge(A) = —A(Q + cA’A)~TA/ (N — \*), Ve Rm,

Therefore
Aol — e = Nk — A+ — P A(Q 4+ cFATA) LA/ (NF — \*)

= (I —ckA(Q + c’@él’A)—lA’)()\’C — M%),
and by applying the results of Section 1.3, we obtain

[ARFL = X[ < 7 RIAR — A=,

where

rk = max{|1 — c*E |, |1 — cke.x|},
and E. and e, are the maximum and minimum eigenvalues of A(Q + cA’A)~1A’.

e matrix identity o endix
(b) Th d y of Appendix A
(A+CBC) "1 = A1 - A-I1C(B-1+ C'A-1C)-1C" A1

applied to (Q + ¢ A’A)~1 yields

-1

(Q + cx A1 = Q-1 — Q1A <Cif T AQlA’> 4@
k

and so

1 ~1
A(Q + ct ATA) 1A = AQ—TA! — AQ—1 A (—I—i— AQ—lA’) AQ1A.
Ck
Let v be an eigenvalue of (AQ—1A’)~1. Using the facts that
: 1 :
A = {eigenvalue of A} < 3= {eigenvalue of A-1},

A = {eigenvalue of A} < X\ + ¢ = {eigenvalue of ¢ + A},

we can see that
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is an eigenvalue of

A(Q+ cAA) LA
Thus
ck

Yi + ¥

b

(¢) First, for the method to be defined we need ¢k > ¢ for all k sufficiently large. Second, for the

1<i<m

rk = max {‘1—

method to converge, we need r* < 1 for all k sufficiently large. Thus

'1— <1, Vi,

Yi+c¢
which is equivalent to

<0 or 0« < 2.

i +c¢ Vi +c

—2< —

Since ¢ > 0, we must have ; + ¢ > 0. Then solving the above inequality yields the threshold

value

¢ = max {O, max {—2%-}} .

<i<m
Hence, the overall threshold value is

¢ = max{c, ¢}.

5.2.5

Using the results of Exercise 5.2.4, updating the multipliers with

AR+ = Mk 4 ok (Azk — b)

implies
ak
IIA’““—A*ISmaX{‘l— | b= v
i Yi + ¢
For the method to converge, we need for k > k,
k
}1— Y l<1-e, Vi
¥i + ¥
or
k
< <2 1
CChFa o W

for some € > 0. If Q) is positive definite and ¢ = ¢ for all k, we have 7, > 0 for all ¢, and if

0 < aF < 2¢, the condition (1) is satisfied for € < min{d, 2v;}/(c + ;) for all 4.
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5.2.9

In the logarithmic barrier method we have
k= mi +¢ekB
x arg wellsl{f(af) € (a:)},

where S = {z € X | gj(x) <0, j=1,...,r} and B(z) = = Y."_; In(—g;(2)). Assuming that f

=1

and g; are continuously differentiable, z* satisfies
Vf(xk)+efVB(zF) =0

or equivalently
T Ek
Vf(xk) — ——Vyg,(zk) =0.
( ) Z gj(Ik) ]( )

Jj=1

Define p7 = _gjz—zk) for all j and k. Then we have

u§>0, Vi=1,...,r, Vk, (1)

VI + S Vg k) =0, Y 2)

j=1
Suppose that z* is a limit point of the sequence {z*F}. Let {a*}recx be a subsequence of
{zF} converging to z*, and let A(z*) be the index set of active constraints at z*. Furthermore,
for any z, let Vga(z) be a matrix with columns Vg;(x) for j € A(z*) and Vggr(z) be a matrix
with columns Vg;(x) for j & A(xz*). Similarly, we partition a vector p: pa is a vector with
coordinates pj for j € A(x*) and pp is a vector with coordinates u; for j ¢ A(z*). Then Eq. (2)
is equivalent to

Vf(ak) + Vga(ak)uh + Vgr(ak)ul =0,  Vk. (3)

If j & A(z*), then g;(a*) < —§ for some positive scalar § and for all large enough k € K,

which guarantees the boundedness of the sequence {—1/g;(z*)},. Since e¥ — 0, we have

k
k _ _ : € — . *
Bi== h{nkelc o) 0, Vg & Alx*),

1m
k—o0, ke

i.e., {u% — 0}x. Therefore, by continuity of Vg;, we have

. k k _
s Vgr(et)ug = 0. (4)

Suppose now that z* is a regular point, i.e., the gradients Vg;(z*) for j € A(z*) are linearly

independent, so that the matrix Vga(z*)'Vga(z*) is invertible. Then, by continuity of Vg;, the
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matrix Vga(ak)'Vga(z¥) is invertible for all sufficiently large k € K. Premultiplying Eq. (3) by
(Vga(@h)yVga(ah)) ™ Vga(ah) gives

ih = —(Vga(ah)Vga(ah)) " Vgalak) (Vf(zk) + Vgr(ak)ub).

By letting & — oo over k € K, and by using the continuity of Vf and Vg; and the relation (4),

we obtain

. —1
odm il = =(Vaa(@)'Vea(a®)) Vaala)' Vi(a®).

Define p* by py = 0 and

* o= lim k
A= o Mex M

so that by letting k — oo with k € K, from Eq. (3) we have
Vf(z*) + Vga(@*)pwy + Vgr(a*)up = Vf(a*) + Vg(a*)ur = 0.

In view of Eq. (1), u* must be nonnegative, so that u* is a Lagrange multiplier. Furthermore,
assuming that z* is a limit point of the sequence {z*}, the regularity of z* is sufficient to ensure

the convergence of { ,ugc} to corresponding Lagrange multipliers.

By Prop. 5.1.1, every limit point of {z*} is a global minimum of the original problem.
Hence, for the convergence of {u’;} to corresponding Lagrange multipliers, it is sufficient that

every global minimum of the original problem is regular.

5.2.11

Consider first the case where f is quadratic, f(x) = J2/Qx with @ positive definite and symmetric,
and h is linear, h(z) = Ax — b, with A having full rank. Following the hint, the iteration

Aet1l = Ak + ah(zF) can be viewed as the method of multipliers for the problem

minimize 1a’'Qx — %”AI —b||2
subject to Ax — b= 0.

According to Exercise 5.2.4(c), this method converges if o > @&, where the threshold value @ is
a=0 if (>0, (1)

a=-2( if ¢ <0, (2)
where ( is the minimum eigenvalue of the matrix

(A(Q — adrA)—1 A1)

8



Section 5.2

To calculate ¢, we use the matrix identity

QA(Q — A’ A) 1A = (I — aAQ—1A)-1 — T

of Section A.3 in Appendix A. If (3,...,(n are the eigenvalues of (A(Q — oaA’A)—lA’)fl, we

have
a 1
G 1—af 1
where &; are the eigenvalues of (AQ—1A’)~1. This equation can be written as
a o«
Cz gz - 04,
from which
G=¢& —a.

Let £ = min{&,...,&n ). Then the condition (1) is written as
0<a<é. (3)
The condition (2) is written as
a>2(a—¢§) with a> ¢,

or

E<a<2z. (4)

Convergence is obtained under either condition (3) or (4), so we see that convergence is obtained

for

0<a<?2€E

In the case where f is nonquadratic and/or h is nonlinear, a local version of the above

analysis applies.



