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Section 7.3

Solutions Chapter 7

SECTION 7.3

7.3.1 (Partial Proximal Algorithm [BeT94a], [IbF96]) w w w

Fix any x ∈ ℜn. Let

x̄ ∈ arg min
y∈ℜn

{

f(y) +
1

2c

∑

i∈I

(yi − xi)2

}

(1)

and let

x̃i =

{

xi ∀ i ∈ I

x̄i ∀ i /∈ I.
(2)

We will show that

x̄ = arg min
y∈ℜn

{

f(y) +
1

2c
‖y − x̃‖2

}

, (3)

x̃ ∈ arg min
{y|yi=xi, i∈I}

Fc(y). (4)

Indeed, from the definition of x̃, the vector x̄ minimizes not only f(y) + 1
2c

∑

i∈I(yi − xi)2 but

also 1
2c

∑

i/∈I(yi − x̃i)2, implying that x̄ minimizes the sum, which is f(y) + 1
2c‖y − x̃‖2. This

proves Eq. (3).

To prove Eq. (4), note that for all vectors z ∈ ℜn with zi = xi for all i ∈ I, we have

Fc(z) = min
y∈ℜn

{

f(y) +
1

2c

∑

i∈I

(yi − xi)2 +
1

2c

∑

i/∈I

(yi − zi)2

}

≥ min
y∈ℜn

{

f(y) +
1

2c

∑

i∈I

(yi − xi)2

}

= f(x̄) +
1

2c

∑

i∈I

(x̄i − xi)2

= f(x̄) +
1

2c

∑

i∈I

(x̄i − xi)2 +
1

2c

∑

i/∈I

(x̄i − x̄i)2

≥ Fc(x̃),

where the last inequality follows from the definitions of x̃ and Fc. This proves Eq. (4).

Conversely, suppose that x̄ and x̃ satisfy (3) and (4). We will show that Eqs. (1) and (2)

hold. Indeed, Eq. (4) implies that xi = x̃i for all i ∈ I, and that ∂Fc(x̃)/∂xi = 0 for all i /∈ I,
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Section 7.5

so from Eq. (3) we have x̄i = x̃i for all i /∈ I. Thus Eq. (2) holds. To show Eq. (1), we argue by

contradiction. Suppose that for some z ∈ ℜn we have

f(z) +
1

2c

∑

i∈I

(zi − xi)2 < f(x̄) +
1

2c

∑

i∈I

(x̄i − xi)2.

Then the directional derivative of the function y 7→ f(y) + 1
2c

∑

i∈I(yi − xi)2 at x̄ along the

direction z− x̄ is negative. This directional derivative is equal to the directional derivative of the

function y 7→ f(y) + 1
2c

∑

i∈I(yi − xi)2 +
1
2c

∑

i/∈I(yi − x̄i)2 at x̄ along the direction z − x̄. The

latter directional derivative, however, is nonnegative in view of Eqs. (2) and (3), arriving at a

contradiction. This proves Eq. (1).

(b) We have

f(x̄) ≤ f(x̄) +
1

2c

∑

i∈I

(x̄i − xi)2

= min
y∈ℜn

{

f(y) +
1

2c

∑

i∈I

(yi − xi)2

}

≤ min
y∈ℜn

{

f(y) +
1

2c
‖y − x‖2

}

≤ f(x).

Since the expression in the right-hand side of the second inequality is equal to Fc(x), we obtain

f(x̄) ≤ Fc(x) ≤ f(x).

Since, we also have Fc(x̄) ≤ f(x̄), the desired result follows.

SECTION 7.5

7.5.1 (Convergence of the Subgradient Method [Pol69b]) w w w

(a) Let µ∗ be a dual optimal solution. Similar to the proof of Prop. 7.5.1, we obtain

||µk+1 − µ∗||2 ≤ ||µk − µ∗||2 − 2sk
(

q∗ − q(µk)
)

+ (sk)2||gk||2,

where q∗ = q(µ∗). Since sk = q∗−q(µk)

||gk||2
, we have

||µk+1 − µ∗||2 ≤ ||µk − µ∗||2 −
(

q∗ − q(µk)
)2

||gk||2 . (1)
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Section 7.5

Therefore

||µk+1 − µ∗|| < ||µk − µ∗||, ∀ k,

implying that {µk} is bounded.

(b) Let C be a positive constant such that ||gk|| ≤ C for all k. Then from Eq. (1) it follows that

||µk+1 − µ∗||2 +
(

q∗ − q(µk)
)2

C2
≤ ||µk − µ∗||2, ∀ k.

By summing these inequalities over all k, we obtain

1

C2

∞
∑

k=0

(

q∗ − q(µk)
)2 ≤ ||µ0 − µ∗||2,

so that

lim
k→∞

q(µk) = q∗. (2)

Since {µk} is bounded, there exist a vector µ̂ and a subsequence {µk}k∈K ⊂ {µk} converging to

µ̂ ∈M (set M is closed). By using the upper-semicontinuity of q, we have

lim sup
k→∞, k∈K

q(µk) ≤ q(µ̂) ≤ q∗,

which in view of Eq. (2) implies that q(µ̂) = q∗. Thus every limit point of {µk} is optimal.

Now we show that {µk} actually converges. Let M∗ denote the set of all dual optimal

solutions. Note that M∗ is convex (by concavity of q) and closed (by upper-semicontinuity of q).

Suppose that {µk} has two distinct limit points, say µ̂ ∈M∗ and µ̃ ∈M∗. As seen in (a), for any

µ∗ ∈ M∗, the sequence {||µk − µ∗||} decreases monotonically, and therefore it converges. Hence

||µ̂− µ∗|| = ||µ̃− µ∗|| for all µ∗ ∈M∗, implying that µ̃ = µ̂.

(c) Let q be real-valued and concave over the entire space ℜr. According to Prop. B.24 of

Appendix B, since {µk} is bounded, the set ∪k≥0∂q(µk) is bounded, and so is {gk}.

7.5.2 (A Convergent Variation of the Subgradient Method) w w w

(a) Let q̃ be an underestimate of q∗ such that q(µk) < q̃ ≤ q∗. Consider the function q̄(µ) =

min
{

q(µ), q̃
}

. Note that q̄ is concave and that maxµ∈M q̄(µ) = q̃. The proposed method is

obtained by applying the method described in Exercise 7.5.1 to the problem maxµ∈M q̄(µ). The

algorithm will either stop at some iteration k̄ for which q̄(µk̄) = q̃ [i.e., q(µk̄) ≥ q̃] or generate a

sequence {µk} such that q̄(µk) = q(µk) < q̃ for all k. According to the results of Exercise 7.5.1,

the sequence {µk} is bounded. Furthermore, provided that {gk} is bounded, the sequence {µk}
converges to some point µ̄ such that q̄(µ̄) = q̃. Since q(µ̄) ≥ q̄(µ̄), we have q(µ̄) ≥ q̃.
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Section 7.5

(b) Let q̃ be an overestimate of q∗, and let L be a constant such that ||gk|| ≤ L for all k. Then

for any N > 0, we have
N
∑

k=0

sk||gk|| =
N
∑

k=0

q̃ − q(µk)

||gk||

≥ 1

L

N
∑

k=0

(q̃ − q(µk))

≥ 1

L

N
∑

k=0

(q̃ − q∗)

=
(N + 1)(q̃ − q∗)

L
,

where the last inequality follows from the fact that q(µk) ≤ q∗ for all k. Since q̃ > q∗, by taking

limit as N → ∞ in the expression above, we obtain the desired result.

7.5.3 (Convergence Rate of the Subgradient Method) w w w

(a) To obtain a contradiction, suppose that lim infk→∞

√
k
(

q∗ − q(µk)
)

> 0. Then there is an

ǫ > 0 and large enough k̄ such that
√
k
(

q∗ − q(µk)
)

≥ ǫ for all k ≥ k̄. Therefore

(

q∗ − q(µk)
)2 ≥ ǫ2

k
, ∀ k ≥ k̄,

implying that
∞
∑

k=k̄

(

q∗ − q(µk)
)2 ≥ ǫ2

∞
∑

k=k̄

1

k
= ∞,

which contradicts the relation
∞
∑

k=0

(

q∗ − q(µk)
)2
<∞

shown in solution of Exercise 7.5.1.

(b) As seen in Exercise 7.5.1, we have for all dual optimal solutions µ∗ and all k

||µk+1 − µ∗||2 ≤ ||µk − µ∗||2 −
(

q∗ − q(µk)
)2

||gk||2 .

This relation and the inequality q(µ∗)− q(µk) ≥ a||µ∗ − µk|| yield for all k

||µk+1 − µ∗||2 ≤ ||µk − µ∗||2 − a2||µk − µ∗||2
||gk||2 ,

from which, by using supk≥0 ||gk|| ≤ b, we obtain

||µk+1 − µ∗||2 ≤
(

1− a2

b2

)

||µk − µ∗||2,

and the desired relation follows.
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Section 7.5

7.5.4 (A Variation of the Subgradient Method [CFM75]) w w w

Let µ∗ be an optimal point and q∗ = q(µ∗) be the optimal value. By induction, we will show that

(µ∗ − µk)′dk ≥ (µ∗ − µk)′gk, ∀ k. (1)

We have d0 = g0 and Eq. (1) holds for k = 0. Assuming Eq. (1) holds for k, we will prove it for

k + 1. Since dk+1 = gk+1 + βkdk, we have

(µ∗ − µk+1)′dk+1 = (µ∗ − µk+1)′gk+1 + βk(µ∗ − µk+1)′dk

= (µ∗ − µk+1)′gk+1 + βk(µ∗ − µk)′dk + βk(µk − µk+1)′dk.
(2)

By the concavity of q, the fact gk ∈ ∂q(µk), and the stepsize definition sk ≤ q∗−q(µk)

||dk||2
, we obtain

(µ∗ − µk)′gk ≥ q∗ − q(µk) ≥ sk||dk||2. (3)

The inductive hypothesis together with Eq. (3) implies that

(µ∗ − µk)′dk ≥ sk||dk||2.

Substituting this estimate in Eq. (2) yields

(µ∗ − µk+1)′dk+1 ≥ (µ∗ − µk+1)′gk+1 + βksk||dk||2 + βk(µk − µk+1)′dk

= (µ∗ − µk+1)′gk+1 + βk(skdk + µk − µk+1)′dk

≥ (µ∗ − µk+1)′gk+1,

where the last inequality follows from the properties of projection and the definition of the

method. Hence Eq. (1) holds for all k.

Next we show that

||µk+1 − µ∗|| < ||µk − µ∗||, ∀ k. (4)

Note that Eq. (3) implies that

(sk)2||dk||2 ≤ sk(µ∗ − µk)′gk < 2sk(µ∗ − µk)′gk. (5)

We have
||µk+1 − µ∗||2 ≤ ||µk + skdk − µ∗||2

≤ ||µk − µ∗||2 − 2sk(µ∗ − µk)′dk + (sk)2||dk||2

< ||µk − µ∗||2 − 2sk(µ∗ − µk)′dk + 2sk(µ∗ − µk)′gk

= ||µk − µ∗||2 − 2sk(µ∗ − µk)′(dk − gk)

≤ ||µk − µ∗||2,
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Section 7.5

where the first inequality follows from the nonexpansiveness property of the projection, and the

second and the last inequalities follow from Eqs. (5) and (1), respectively. Thus Eq. (4) holds.

From the definitions of dk and βk we have

||dk||2 − ||gk||2 = ||gk + βkdk−1||2 − ||gk||2

= (βk)2||dk−1||2 + 2βkgk
′
dk−1

= βk||dk−1||2
(

βk + 2
gk

′
dk−1

||dk−1||2
)

= (2− γ)βkgk
′
dk−1

≤ 0,

and therefore ||dk|| ≤ ||gk||, which combined with Eq. (1) implies that

(µ∗ − µk)′dk

||dk|| ≥ (µ∗ − µk)′gk

||gk|| , ∀ k.

7.5.8 (Approximate Subgradient Method) w w w

As in the proof of Prop. 7.5.1, we have

||µk+1 − µ||2 ≤ ||µk − µ||2 − 2skgk
′
(µ− µk) + (sk)2||gk||2, ∀ µ ∈M,

where sk = q(µ∗)−q(µk)

||gk||2
and gk ∈ ∂ǫq(µk). From this relation and the definition of the ǫ-

subgradient we obtain

||µk+1 − µ||2 ≤ ||µk − µ||2 − 2sk(q(µ)− q(µk)− ǫ) + (sk)2||gk||2, ∀ µ ∈M.

Let µ∗ be an optimal solution. Substituting the expression for sk and taking µ = µ∗ in the above

inequality, we have

||µk+1 − µ∗||2 ≤ ||µk − µ∗||2 − q(µ∗)− q(µk)

||gk||2
(

q(µ∗)− q(µk)− 2ǫ
)

.

Thus, if q(µ∗)− q(µk)− 2ǫ > 0, we obtain

||µk+1 − µ∗|| ≤ ||µk − µ∗||.
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Section 7.5

7.5.9 (Approximate Subgradient Method with Diminishing Stepsize

[CoL94]) w w w

(a) Similar to Exercise 7.5.8, we can show that

||µk+1 − µ||2 ≤ ||µk − µ||2 − 2sk
(

q(µ)− q(µk)− ǫk
)

+ (sk)2||gk||2, ∀ µ ∈M, ∀ k.

By rearranging terms, we can rewrite the above inequality as

2sk
(

q(µ)− q(µk)− ǫk − 1

2
sk||gk||2

)

+ ||µk+1 − µ||2 ≤ ||µk − µ||2, ∀ µ ∈M, ∀ k. (1)

Suppose that lim supk→∞ q(µk) < supµ∈M q(µ) − ǫ, i.e., there is a scalar δ > 0 and a

nonnegative integer k0 such that

q(µk) ≤ sup
µ∈M

q(µ)− ǫ− δ, ∀ k ≥ k0.

Choose a point µ̄ ∈M such that

q(µk) ≤ q(µ̄)− ǫ− δ, ∀ k ≥ k0. (2)

By setting µ = µ̄ in Eq. (1) and combining it with Eq. (2), we obtain

2sk
(

ǫ+ δ − ǫk − 1

2
sk||gk||2

)

+ ||µk+1 − µ̄||2 ≤ ||µk − µ̄||2, ∀ k ≥ k0.

Since ǫk → ǫ and sk||gk||2 → 0, we can assume that k0 is large enough so that

ǫ+ δ − ǫk − 1

2
sk||gk||2 ≥ δ

2
, ∀ k ≥ k0.

Therefore we have

skδ + ||µk+1 − µ̄||2 ≤ ||µk − µ̄||2, ∀ k ≥ k0.

Summation of the above inequalities gives

δ
N
∑

k=k0

sk + ||µN+1 − µ̄||2 ≤ ||µk0 − µ̄||2.

Letting N → ∞ in the relation above yields
∑∞

k=k0
sk <∞, which is a contradiction. Therefore

we must have that

lim sup
k→∞

q(µk) ≥ sup
µ∈M

q(µ)− ǫ. (3)

On the other hand, since q(µk) ≤ supµ∈M q(µ) for all k, we have

lim sup
k→∞

q(µk) ≤ sup
µ∈M

q(µ),
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which combined with Eq. (3) yields the desired result.

(b) By rearranging the terms and setting ǫk = 0 in Eq. (1), we obtain

2sk
(

q(µ)− q(µk)
)

+ ||µk+1 − µ||2 ≤ ||µk − µ||2 + (sk)2||gk||2, ∀ µ ∈M, k. (4)

Assume, to arrive at a contradiction, that lim supk→∞ q(µk) < supµ∈M q(µ). Then, by the same

reasoning as in part (a), it can be seen that there is a point µ̄ ∈ M such that Eq. (2) is valid

with ǫ = 0. This together with Eq. (4), where µ = µ̄, implies that

2skδ + ||µk+1 − µ̄||2 ≤ ||µk − µ̄||2 + (sk)2||gk||2, ∀ k ≥ k0.

Summation of these inequalities over k for k0 ≤ k ≤ N gives

2δ

N
∑

k=k0

sk + ||µN+1 − µ̄||2 ≤ ||µk0 − µ̄||2 +
N
∑

k=k0

(sk)2||gk||2, ∀ N ≥ k0.

Therefore

2δ
N
∑

k=k0

sk ≤ ||µk0 − µ̄||2 +
∞
∑

k=k0

(sk)2||gk||2 <∞, ∀ N ≥ k0.

By letting N → ∞ in the above relation, we obtain
∑∞

k=k0
sk < ∞, which is a contradiction.

Hence

lim sup
k→∞

q(µk) = sup
µ∈M

q(µ).

Let µ∗ be an optimal point. By setting µ = µ∗ in Eq. (4) and summing the obtained

inequalities for n ≤ k ≤ N , we have

2

N
∑

k=n

sk
(

q(µ∗)− q(µk)
)

+ ||µN+1 − µ∗||2 ≤ ||µn − µ∗||2 +
N
∑

k=n

(sk)2||gk||2, ∀ n ≤ k ≤ N,

where n < N are some positive integers. Let n be fixed and let N → ∞ in the last inequality.

Then

lim sup
N→∞

||µN+1 − µ∗||2 ≤ ||µn − µ∗||2 +
∞
∑

k=n

(sk)2||gk||2, ∀ n ≥ 0. (5)

Hence {µk} is bounded. Let {µkj} ⊂ {µk} be a subsequence such that

lim
j→∞

q(µkj ) = lim sup
k→∞

q(µk) = sup
µ∈M

q(µ) = q(µ∗).

Without loss of generality, we may assume that {µkj} converges to some point µ̂. The set M is

closed, so that µ̂ ∈M . By the upper semicontinuity of q, we have

lim sup
j→∞

q(µkj ) ≤ q(µ̂).
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Since lim supj→∞ q(µkj ) = limj→∞ q(µkj ) = q(µ∗), the relation above implies q(µ̂) = q(µ∗).

Thus µ̂ is optimal. Then Eq. (5) is valid with µ∗ = µ̂ and n = kj for some j, i.e.,

lim sup
N→∞

||µN+1 − µ̂||2 ≤ ||µkj − µ̂||2 +
∞
∑

k=kj

(sk)2||gk||2.

By letting j → ∞ and taking into account that limj→∞

(

||µkj − µ̂||2 +∑∞
k=nj

(sk)2||gk||2
)

= 0

(since the boundedness of {µk} implies boundedness of {gk}), we obtain

lim sup
N→∞

||µN+1 − µ̂|| = 0,

which implies that µk → µ̂.

7.5.10 (Normalized Subgradient Method [Sho85]) w w w

(a) Let µ∗ be an optimal point and let ǫ > 0 be given. If gk̄ = 0 for some k̄, then q(µk̄) = q(µ∗)

and one may take µ̄ = µ∗. If gk 6= 0 for all k, then by the nonexpansiveness of the projection

operation, we have

||µk+1 − µ∗||2 ≤
∥

∥

∥

∥

µk +
αgk

‖gk‖ − µ∗

∥

∥

∥

∥

2

= ||µk − µ∗||2 + α2 − 2α(µ∗ − µk)′
gk

||gk|| , ∀ k. (1)

Note that the term (µ∗ − µk)′gk/||gk|| represents the distance from µ∗ to the supporting hyper-

plane Hk = {µ | gk′(µk − µ) = 0}. Define Lk = {µ ∈ M | q(µ) = q(µk)}. Since q is concave

and real valued over the entire space, it is continuous over ℜr. Therefore Lk is closed, and the

distance

ρk = min
µ∈Lk

||µ− µ∗||

from µ∗ to Lk is well defined. Also the set Lk and the vector µ∗ lie on the same side of the

hyperplane Hk. Hence every line segment joining µ∗ with a point of Hk passes through Lk, and

therefore

(µ∗ − µk)′
gk

||gk|| ≥ ρk, ∀ k.

Using this inequality in Eq. (1), we obtain

||µk+1 − µ∗||2 ≤ ||µk − µ∗||2 + α2 − 2αρk, ∀ k.

In order to arrive at a contradiction, suppose that ρk ≥ α
2 (1 + ǫ) for all k. Then

||µk+1 − µ∗||2 ≤ ||µk − µ∗||2 − ǫα2, ∀ k.

11
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By summing these inequalities, we have

||µk+1 − µ∗||2 ≤ ||µ0 − µ∗||2 − ǫ(k + 1)α2, ∀ k,

and by letting k → ∞, we obtain a contradiction. Therefore there must exist a k̄ and a µ̄ ∈ Lk̄

such that
α(1 + ǫ)

2
> ρk̄ = min

µ∈Lk̄

||µ− µ∗|| = ||µ̄− µ∗||,

as desired.

(b) Let µ∗ ∈M∗. Assume that µk /∈M∗ for all k. Then similar to the proof in (a) we have

||µk+1 − µ∗||2 ≤ ||µk − µ∗||2 + (αk)2 − 2αkrk, ∀ k. (2)

Let a > 0 be fixed and let q∗ = q(µ∗). Consider the set {µ ∈ M | q(µ) ≥ q∗ − a} and its

boundary Γq∗−a. By assumption, the setM∗ is compact, so that Γq∗−a is compact. Furthermore

M∗ ∩ Γq∗−a = Ø. Hence we have

ρ(a) = min
µ∈Γq∗−a, ν∈M∗

||µ− ν|| > 0.

Since αk → 0, one can find Nρ(a) such that αk < ρ(a) for all k > Nρ(a). If q(µk) < q∗ − a, then

ρk > ρ(a) and from Eq. (1) we have

||µk+1 − µ∗||2 < ||µk − µ∗||2 − ρ(a)αk, ∀ k > Nρ(a). (3)

Since
∑∞

k=0 α
k = ∞, there must exist Na > Nρ(a) such that q(µNa) ≥ q∗ − a. Define

d(a) = max
ν∈Γq∗−a

min
µ∈M∗

||ν − µ||.

Let k > Na. If q(µNa) ≥ q∗ − a, then minµ∗∈M∗ ||µk − µ∗|| ≤ d(a) and since

||µk+1 − µ∗|| ≤ ||µk + αkgk/||gk|| − µ∗|| ≤ ||µk − µ∗||+ αk,

we obtain

min
µ∗∈M∗

||µk+1 − µ∗|| ≤ d(a) + αk. (4)

On the other hand, if q(µk) < q∗ − a then from Eq. (3) we have

min
µ∗∈M∗

||µk+1 − µ∗|| ≤ min
µ∗∈M∗

||µk − µ∗||. (5)

Combining Eqs. (4) and (5), we obtain

min
µ∗∈M∗

||µk − µ∗|| ≤ d(a) + max
k>Na

αk, ∀ k > Na.
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Since d(a) → 0 as a→ 0, for any δ > 0 there exists aδ such that d(aδ) ≤ δ/2. Also, one can find

an index Nδ such that q(µNδ ) ≥ q∗ − aδ and αk ≤ δ/2 for all k > Nδ. Therefore

min
µ∗∈M∗

||µk − µ∗|| ≤ δ, ∀ k > Nδ,

showing that

lim
k→∞

min
µ∗∈M∗

||µk − µ∗|| = 0.

By continuity of q, we have limk→∞ q(µk) = q∗, which completes the proof.

7.5.11 (Incremental Subgradient Method with Diminishing Stepsize

[NeB01a]) w w w

Assumption (i) guarantees that the function q(µ) =
∑m

i=1 qi(µ) is concave and has bounded level

sets. Thus, the level sets of q are compact, and hence the optimal solution set M∗ is nonempty

and compact.

The proof of part (a) is tricky and is based on the assumptions (i) and (ii). The proof of

part (b) combines the ideas of incremental gradient method analysis of Section 2.4, together with

the line of proof of Exercise 7.5.10.

(a) Let µ∗ ∈ M∗ be an arbitrary optimal solution. By the nonexpansiveness property of the

projection, we have

||ψi,k−µ∗||2 ≤ ||ψi,k−1+αkgi,k−µ∗||2 ≤ ||ψi−1,k−µ∗||2−2αkgi,k′(µ∗−ψi−1,k)+(αk)2C2, ∀ i, k.

Since gi,k′(µ∗ − ψi−1,k) ≥ qi(µ∗)− qi(ψi−1,k) for each i, we obtain

||µk+1 − µ∗||2 ≤ ||µk − µ∗||2 − 2αk

m
∑

i=1

(

qi(µ∗)− qi(ψi−1,k)
)

+m(αk)2C2, (1)

for all k ≥ 0 and µ∗ ∈ M∗. Let α̂ be an upper bound for αk, and let i0 be an index such that

the level sets of qi0 are bounded. Define

q∗ = max
µ∈M

q(µ), a =
m

2
α̂C2 +

m
∑

i=1

q∗i − q∗ > 0,

and

L(a, µ∗) = {ν ∈M | qi0(ν) ≥ qi0(µ
∗)− a}.

Under assumption (i) the level set L(a, µ∗) is nonempty and compact for any µ∗ ∈ M∗.

Note that for any k either qi0(ψ
i0−1,k) < qi0(µ

∗) − a or qi0(ψ
i0−1,k) ≥ qi0(µ

∗) − a. Suppose

13
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that the former is the case. Since qi(ψi−1,k) ≤ q∗i , we have

m
∑

i=1

(

qi(µ∗)− qi(ψi−1,k)
)

>
∑

i6=i0

(

qi(µ∗)− q∗i
)

+ a

= q∗i0 − qi0(µ
∗) +

m

2
α̂C2

≥ m

2
α̂C2.

By combining this relation with Eq. (1), we obtain

||µk+1 − µ∗||2 < ||µk − µ∗||2 − αkmC2(α̂− αk) ≤ ||µk − µ∗||2,

where the last inequality follows from 0 < αk ≤ α̂. Therefore

||µk+1 − µ∗|| < ||µk − µ∗|| whenever qi0(ψ
i0−1,k) < qi0(µ

∗)− a. (2)

If qi0(ψ
i0−1,k) ≥ qi0(µ

∗) − a, then the subiterate ψi0−1,k belongs to the level set L(a, µ∗).

Therefore ||ψi0−1,k − µ∗|| ≤ diam
(

L(a, µ∗)
)

, where diam(·) denotes the diameter of a set. Since

the subgradients gi,k are bounded, it follows that

||µk+1 − µ∗|| ≤ ||µk+1 − ψi0−1,k||+ ||ψi0−1,k − µ∗|| ≤ α̂mC + diam
(

L(a, µ∗)
)

.

Thus

||µk+1 − µ∗|| ≤ α̂mC + diam
(

L(a, µ∗)
)

whenever qi0(ψ
i0−1,k) ≥ qi0(µ

∗)− a. (3)

From Eqs. (2) and (3), we have

||µk − µ∗|| ≤ max
{

α̂mC + diam
(

L(a, µ∗)
)

, ||µ0 − µ∗||
}

∀ k ≥ 0,

which completes the proof.

(b) Here we argue similar to the proof of Exercise 7.5.10(b). Since the stepsize is bounded, the

sequence of the iterates {µk} is also bounded as seen in part (a). Let

Ci = max

{

C, max
k≥0

{

||g|| | g ∈ ∂qi(µk)
}

}

.

Note that

||ψi,k − µk|| ≤ αk

i
∑

j=1

Cj , ∀ i, k. (4)

14
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From Eq. (1) we have

||µk+1 − µ∗||2 ≤ ||µk − µ∗||2 − 2αk

(

q(µ∗)− q(µk) +

m
∑

i=1

(

qi(µk)− qi(ψi−1,k)
)

)

+m(αk)2C2

≤ ||µk − µ∗||2 − 2αk
(

q(µ∗)− q(µk)
)

+ 2αk

m
∑

i=2

Ci||ψi−1,k − µk||+m(αk)2C2

≤ ||µk − µ∗||2 − 2αk
(

q(µ∗)− q(µk)
)

+ (αk)2



2

m
∑

i=2

Ci

i−1
∑

j=1

Cj +

m
∑

i=1

C2
i





= ||µk − µ∗||2 − 2αk
(

q(µ∗)− q(µk)
)

+ (αk)2

(

m
∑

i=1

C2
i

)2

,

where the next-to-last inequality follows from Eq. (4), and we are using the facts C ≤ Ci and

qi(ψi−1,k)− qi(µk) ≤ g′i(ψ
i−1,k − µk) for all gi ∈ ∂qi(µk). Therefore

||µk+1 − µ∗||2 ≤ ||µk − µ∗||2 − 2αk
(

q(µ∗)− q(µk)
)

+ (αk)2C̄2, ∀ µ∗ ∈M∗, ∀ k ≥ 0, (5)

where C̄ =
∑m

i=1 Ci. Let a > 0 and k0 such that αk ≤ a/C̄2 for all k ≥ k0. If q(µk) < q(µ∗)− a

for some k ≥ k0, then from Eq. (5) we have

||µk+1 − µ∗||2 ≤ ||µk − µ∗||2 − αk(2a− αkC̄2),

and therefore
(

dist(µk+1,M∗)
)2 ≤

(

dist(µk,M∗)
)2 − aαk. (6)

Note that this relation cannot hold for all k ≥ k0, for otherwise the condition
∑∞

k=0 α
k = ∞ will

be violated. Hence, there is an integer k1 ≥ k0 for which q(µk1) ≥ q(µ∗) − a. This means that

the point µk1 belongs to the level set La = {µ ∈ M | q(µ) ≥ q(µ∗) − a}, which is compact, so

that

dist(µk1 ,M∗) ≤ max
µ∈La

dist(µ,M∗) <∞.

Denote

d(a) = max
µ∈La

dist(µ,M∗).

Since ||µk1+1 − µ∗|| ≤ ||µk1 − µ∗||+ αk1C̄, we have that dist(µk1+1,M∗) ≤ d(a) + αk1C̄. Hence

for k ≥ k1 we have

dist(µk+1,M∗) < d(µk,M∗) if q(µk) < q∗ − a,

[cf. Eq. (6)] and

dist(µk+1,M∗) ≤ d(a) + αkC̄ if q(µk) ≥ q∗ − a.

Combining these relations, we obtain

dist(µk,M∗) ≤ d(a) + C̄ max
k≥k1

αk, ∀ k ≥ k1.

15
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Note, using Eq. (6), that the set of indices {k | q(µk) ≥ q(µ∗) − a} is unbounded for any

choice of a > 0. Since lima→0 d(a) = 0, given any ǫ > 0, there is δ > 0 such that for 0 < a < δ

we have d(a) ≤ ǫ/2. Let the index kδ be such that q(µkδ ) ≥ q(µ∗) − a and αk ≤ ǫ/(2C̄) for all

k ≥ kδ. Then dist(µk,M∗) ≤ ǫ for all k ≥ kδ, i.e. limk→∞ dist(µk,M∗) = 0. The continuity of q

implies that

lim
k→∞

q(µk) = q(µ∗) = max
µ∈M

q(µ).

(c) By dropping the term 2αk(q(µ∗)−q(µk)) in Eq. (5) and by summing the obtained inequalities

over k for n ≤ k ≤ N , we have

||µN+1 − µ∗||2 ≤ ||µn − µ∗||2 + C̄2

N
∑

k=n

(αk)2, ∀ µ∗ ∈M∗, ∀ n,N, n < N. (7)

Since {µk} is bounded, there exist µ̂ and {µkj} ⊂ {µk} such that limj→∞ µkj = µ̂. The set

M is closed, so that µ̂ ∈ M . As seen in part (b), we have limk→∞ q(µk) = q∗, and therefore

limj→∞ q(µkj ) = q∗. Hence µ̂ ∈ M∗. By setting µ∗ = µ̂ and n = kj in Eq. (7), where j is

arbitrary, we obtain

||µN+1 − µ̂||2 ≤ ||µkj − µ̂||2 + C̄2

N
∑

k=kj

(αk)2, ∀ N > kj .

By letting first N → ∞ and then j → ∞, we have

lim sup
N→∞

||µN+1 − µ̂||2 ≤ lim
j→∞



||µkj − µ̂||2 + C̄2

∞
∑

k=kj

(αk)2



 = 0,

and therefore limk→∞ ||µk − µ̂|| = 0.

7.5.12 (Incremental Subgradient Method with Dynamically Changing

Stepsize [NeB01a]) w w w

The proof combines the arguments of the proofs of Exercise 7.5.1 and 7.5.11(b). Similar to the

proof of Exercise 7.5.11(a), we have for any µ∗ ∈M∗

||µk+1 −µ∗||2 ≤ ||µk −µ∗||2 − 2αk

m
∑

i=1

(

qi(µ∗)− qi(ψi−1,k)
)

+m(αk)2C2
i , ∀ µ∗ ∈M∗, ∀ k. (1)

Note also that

||ψi,k − µk|| ≤ αk

i
∑

j=1

Cj , ∀ i, k. (2)
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From Eq. (1) we have [as in the proof of Exercise 7.5.11(b)]

||µk+1 − µ∗||2 ≤ ||µk − µ∗||2 − 2αk

(

q∗ − q(µk) +

m
∑

i=1

(

qi(µk)− qi(ψi−1,k)
)

)

+m(αk)2C2
i

≤ ||µk − µ∗||2 − 2αk
(

q∗ − q(µk)
)

+ 2αk

m
∑

i=2

Ci||ψi−1,k − µk||+m(αk)2C2
i

≤ ||µk − µ∗||2 − 2αk
(

q∗ − q(µk)
)

+ (αk)2



2

m
∑

i=2

Ci

i−1
∑

j=1

Cj +

m
∑

i=1

C2
i





= ||µk − µ∗||2 − 2αk
(

q(µ∗)− q(µk)
)

+ (αk)2

(

m
∑

i=1

C2
i

)2

,

where the next-to-last inequality follows from Eq. (2). Therefore

||µk+1 − µ∗||2 ≤ ||µk − µ∗||2 − 2αk
(

q∗ − q(µk)
)

+ (αk)2C2, ∀ µ∗ ∈M∗, ∀ k ≥ 0.

Assume that µk /∈ M∗ for all k. By substituting the expression for αk in the above relation, we

obtain

||µk+1 − µ∗||2 ≤ ||µk − µ∗||2 − γk(2 − γk)

(

q∗ − q(µk)
)2

C2

≤ ||µk − µ∗||2 − γl(2− γu)

(

q∗ − q(µk)
)2

C2
, ∀ k ≥ 0, ∀ µ∗ ∈M∗.

(3)

Therefore

||µk+1 − µ∗|| < ||µk − µ∗||, (4)

and the sequence {µk} is bounded. Next we will show that every limit point of {µk} belongs to

M∗. Let {µkj} ⊂ {µk} and let µ̄ be such that limj→∞ ||µkj − µ̄|| = 0. Since the set M is closed,

we have µ̄ ∈M . Suppose that q(µ̄) < q∗, i.e., µ̄ /∈M∗. Since q is continuous, we can find a scalar

δ > 0 and an index j0 such that

q(µkj ) < q∗ − δ, ∀ j ≥ j0.

This, combined with Eqs. (3) and (4), implies that

||µkj+1 − µ∗||2 ≤ ||µkj − µ∗||2 − γl(2− γu)δ2

C2
≤ · · · ≤ ||µkj0 − µ∗||2 − (j + 1− j0)

γl(2 − γu)δ2

C2
,

which is a contradiction. Hence µ̄ ∈M∗. Note that the sequence of norms {||µk−µ∗||} is strictly

decreasing for any µ∗ ∈ M∗, so for any µ∗ it converges to ||µ̄− µ∗||. Finally, to show that {µk}
has a unique limit point, note that if µ̂ ∈M∗ and µ̄ ∈M∗ are limit points of the sequence {µk},
we would have ||µ̄ − µ∗|| = ||µ̂ − µ∗|| for all µ∗ ∈ M∗, which is possible only if µ̂ = µ̄. This

completes the proof.
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7.5.13 (ǫ-Complementary Slackness and Approximate Subgradients)

w w w

For the separable problem

minimize

n
∑

i=1

fi(xi)

subject to
n
∑

i=1

gij(xi) ≤ 0, j = 1, . . . , r, αi ≤ xi ≤ βi, i = 1, . . . , n,

where fi : ℜ 7→ ℜ, gij : ℜ 7→ ℜ are convex functions, the dual function is

q(µ) =
n
∑

i=1

min
αi≤xi≤βi







fi(xi) +
r
∑

j=1

µjgij(xi)







.

Let (x̄, µ̄) satisfy ǫ-complementary slackness as defined in the problem statement, and let g(x̄)

be the r-dimensional vector with jth component
∑n

i=1 gij(x̄i). We will show that

q(µ) ≤ q(µ̄) + ǭ+ g(x̄)′(µ− µ̄), ∀ µ ∈ ℜr,

where

ǭ = ǫ

n
∑

i=1

(βi − αi).

Indeed, we have for any µ ∈ ℜr

q(µ) ≤
n
∑

i=1







fi(x̄i) +

r
∑

j=1

µjgij(x̄i)







=

n
∑

i=1







fi(x̄i) +

r
∑

j=1

µ̄jgij(x̄i)







+

r
∑

j=1

(µj − µ̄j)

n
∑

i=1

gij(x̄i)

=

n
∑

i=1







fi(x̄i) +

r
∑

j=1

µ̄jgij(x̄i)







+ g(x̄)′(µ− µ̄).

(1)

For all i and all xi ∈ [αi, βi], we have from the properties of directional derivatives and the

convexity of the function fi(xi) +
∑r

j=1 µ̄jgij(xi),

fi(xi) +
r
∑

j=1

µ̄jgij(xi) ≥ fi(x̄i) +
r
∑

j=1

µ̄jgij(x̄i) + γi(xi), (2)

where

γi(xi) =















d+i (xi − x̄i) if x̄i = αi,

d−i (xi − x̄i) if x̄i = βi,

max
{

d−i (xi − x̄i), d
+
i (xi − x̄i)

}

if αi < x̄i < βi,

(3)
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and

d−i = f−
i (x̄i) +

r
∑

j=1

µ̄jg
−
ij(x̄i), d+i = f+

i (x̄i) +
r
∑

j=1

µ̄jg
+
ij(x̄i)

are the left and right derivatives of fi +
∑r

j=1 µ̄jgij at x̄i. Using the ǫ-complementary slackness

definition, we have

−ǫ ≤ d+i if x̄i = αi,

d−i ≤ ǫ if x̄i = βi,

−ǫ ≤ d−i ≤ d+i ≤ ǫ if αi < x̄i < βi.

Using the above relations in Eq. (3), we see that

γi(xi) ≥ −ǫ(βi − αi).

so Eq. (2) yields

fi(xi) +
r
∑

j=1

µ̄jgij(xi) ≥ fi(x̄i) +
r
∑

j=1

µ̄jgij(x̄i)− ǫ(βi − αi), ∀ i, ∀ xi ∈ [αi, βi].

By minimizing over xi ∈ [αi, βi] and adding over i, and using the definition of the dual function

q(µ̄), we obtain
n
∑

i=1







fi(x̄i) +

r
∑

j=1

µ̄jgij(x̄i)







≤ q(µ̄) + ǫ

n
∑

i=1

(βi − αi),

which combined with Eq. (1), yields the desired relation

q(µ) ≤ q(µ̄) + ǭ + g(x̄)′(µ− µ̄).

7.5.14 (Subgradient Methods with Low Level Errors [NeB10]) w w w

For any µ ∈M , let us denote

d(µ,M∗) = min
µ∈M∗

‖µ− µ∗‖.

We first show that for all k, we have

(

d(µk+1,M∗)
)2 ≤

(

d(µk,M∗)
)2 − 2sk(γ − β)

γ

(

q∗ − q(µk)
)

+ (sk)2(δ + β)2. (1)

Indeed, using the definition of µk+1, the nonexpansive property of projection, the subgradient

inequality, and the assumptions ‖rk‖ ≤ β and ‖gk‖ ≤ δ, we have for all µ∗ ∈M∗,
(

d(µk+1,M∗)
)2 ≤ ‖µk+1 − µ∗‖2

=
∥

∥µk − µ∗ + sk(gk + rk)
∥

∥

2

≤ ‖µk − µ∗‖2 + 2sk(gk + rk)′(µk − µ∗) + (sk)2‖gk + rk‖2

≤ ‖µk − µ∗‖2 + 2skgk
′
(µk − µ∗) + 2sk‖rk‖ ‖µk − µ∗‖+ (sk)2‖gk + rk‖2

≤ ‖µk − µ∗‖2 − 2sk
(

q∗ − q(µk)
)

+ 2skβ‖µk − µ∗‖+ (sk)2(δ + β)2.
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If we let µ∗ be the projection of µk on M∗, and use the assumption

q∗ − q(µk) ≤ γ min
µ∗∈M∗

‖µ− µ∗‖,

we obtain the desired relation (1).

Consider the case of a constant stepsize,

sk = s, ∀ k = 0, 1, . . .

and to arrive at a contradiction, assume that for some nonnegative integer k̄ and some ǫ > 0, we

have
sγ(δ + β)2

2(γ − β)
+ ǫ < q∗ − q(µk), ∀ k ≥ k̄. (2)

Applying Eq. (1) with sk = s, we obtain

(

d(µk+1,M∗)
)2 ≤

(

d(µk,M∗)
)2 − 2s(γ − β)

γ

(

q∗ − q(µk)
)

+ s2(δ + β)2,

which combined with Eq. (2), yields

(

d(µk+1,M∗)
)2 ≤

(

d(µk,M∗)
)2 − 2s(γ − β)

γ

(

sγ(δ + β)2

2(γ − β)
+ ǫ

)

+ s2(δ + β)2

or
(

d(µk+1,M∗)
)2 ≤

(

d(µk,M∗)
)2 − 2s(γ − β)

γ
ǫ, ∀ k ≥ k̄.

Since γ > β, this relation cannot hold for infinitely many k, thereby arriving at a contradiction.

The proof that lim supk→∞ q(µk) = q∗ is similar. To arrive at a contradiction, we assume

that for some nonnegative integer k̄ and some ǫ > 0, we have

ǫ < q∗ − q(µk), ∀ k ≥ k̄,

and we apply Eq. (1) to obtain

(

d(µk+1,M∗)
)2 ≤

(

d(µk,M∗)
)2 − 2sk(γ − β)

γ
ǫ+ (sk)2(δ + β)2, ∀ k ≥ k̄.

Since sk → 0 and
∑∞

k=0 s
k = ∞, this is a contradiction.
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